

SOFTWARE PROCESS IMPROVEMENT AT ABB -
COMMON ISSUES AND LESSONS LEARNT

Christoph Welsch, Horst Lichter

ABB Corporate Research,
Heidelberg, Germany

{welsch, lichter}@decrc.abb.de

Abstract: The growing importance of software for products as well as processes has been
recognised in several ABB companies. As a result they started initiatives to improve their
software development. Unlike other improvement programmes in industry, ABB‘s software
process improvement initiatives are not part of company-wide, globally controlled
programme. They rather evolved locally in different ABB companies, coached and co-
ordinated by ABB Corporate Research.

This paper summarises the experiences gained in the various process improvement activities.
Firstly it describes how ABB‘s software process improvement initiatives relate to similar ones
in other companies, and how the foci of the improvement measures evolved over time.
Secondly, we present the current status of the improvement initiatives, pointing out the role of
ESSI funded process improvement experiments in this context. In the main part we describe
obstacles to software process improvements, and the lessons we have learned. We summarise
our experience in terms of ten theses that we consider necessary conditions for successful
software process improvement programmes. The theses cover technical, organisational as well
as human aspects.

Keywords: Software Engineering, Productivity, Software Project Management, Process
Models, ESSI, CMM

1 INTRODUCTION

Many companies in the software business have
realised that substantial gains in productivity of
software development and quality of software
products can only be achieved by improving the
software process. Such improvements have
turned out to be costly and bearing a high risk of
failure, since the software process is a complex
system of relationships among processes,
technologies and people.

Results and experiences of industrial software
process improvement (SPI) initiatives have been
recently published, such as Dion (1992) or

Johnson (1994). These initiatives have typically
been part of large, company-wide process
improvement programmes. For instance Wohl-
wend and Rosenbaum (1994) describe
Schlumberger’s software improvement
programme.

The situation at ABB is different. ABB is a
group of companies that operate in different
countries and business areas. The companies are
managed locally. As a consequence, smaller
software process improvement initiatives have
emerged independently at different ABB
companies, with specific improvement
objectives. Consultants from ABB Corporate

lichter
Typewritten Text
Proceedings of Software Quality Management SQM 97, Bath UK, C. Hawkins, M. Ross, G. Staples (Editors), Software Quality Management V: The Quality Challenge, Mechanical Engineering Publications, 1997. ISBN 1 86058 110 2.

Research have been involved in many of these
process improvements.

In this paper we present our experiences from
software process improvement initiatives at
ABB. We analyse common impediments and
enablers of improvements, and summarise the
lessons learned in terms of ten theses which we
regard as important for successful software
process improvement programmes.

The paper is organised as follows. Chapter 2
sketches the process maturity model underlying
the improvement activities. Chapter 3
summarises the process improvement activities
at ABB and describes three concrete instances in
some more detail. In chapter 4 we present our
experience and findings in terms of ten theses.
Chapter 5 summarises our conclusions.

2 UNDERLYING PROCESS MATURITY
MODEL

In general one can distinguish three key
components that determine the productivity of
software development and the overall quality of
software products:

• The process specifies how software is
produced. For instance it defines what stages
or phases are used, what deliverables are
produced, what the prerequisites are for
moving from one phase to the next one, and
what the responsibilities are.

• The technology comprises methods, languages,
standards, and tools used in the development
process.

• People eventually develop the software
products, execute the processes and apply the
technologies.

In order to systematically improve software

development and its products all key
components must be improved. During the last
decade, the software engineering community has
learned that the primary focus has to be on
people and processes, then on technologies.
Technology can only be efficiently used if
people and processes have reached a certain
level of capability.

The Capability Maturity Model (CMM)
developed by the Software Engineering Institute
at Carnegie Mellon University (Paulk et al.
1991) has strongly influenced the way process
improvements are being conducted today.

The CMM is a well recognised standard which
distinguishes five levels of software process
maturity (see figure 2) and associates with each
level a set of key practices which are required
from software organisations on that level. The
model also specifies how to advance to the next
higher level by satisfying key requirements.
Once a maturity level is known, the actions
needed to move to the next level are more or less
defined.

Initial(1)Initial(1)

Repeatable (2)Repeatable (2)

Defined (3)Defined (3)

Managed (4)Managed (4)

Optimizing (5)Optimizing (5)

Disciplined
process

Standard,
consistent
process

Predictable
process

Continuously
improving
process

Figure 2: The CMM model

The CMM has become an industry standard for
judging the capabilities of software development
organisations. The effort for conducting process
assessments has been published e.g. in Dion
(1992). Herbsleb and Goldenstein (1996) present
a systematic survey of CMM experience in
industry.

Technology

Process People

Figure 1. Key Components of Software Development

The CMM includes an assessment technique to
measure the software process maturity of an
organisation. A CMM assessment is basically a
series of questionnaire-based interviews. In order

to apply the CMM in their organisation, some
companies have adapted the standard
questionnaire to their needs (c.f. Anglade et al,
1993).

Early on ABB Corporate Research has adopted
the CMM as a tool

• to make management aware of the necessity to
improve software processes, and

• to guide and control the implementation of the
improvements.

Most SPI initiatives at ABB have started with a
CMM assessment. Some companies have also
conducted follow-up assessments to measure the
success of the improvements

3 ABB’S SOFTWARE IMPROVEMENT
INITIATIVES

The major ABB locations dealing with software
development are Germany, Sweden, Switzerland
and USA. In all locations ABB companies have
started initiatives during the last years aimed at
improving their software development. Unlike
other improvement programmes in industry,
ABB’s improvement initiatives have not been
part of a company-wide, globally controlled
programme. They rather evolved more or less
independently, coached and co-ordinated by
ABB Corporate Research.

The following chapters present three concrete
instances of SPI initiatives from ABB Germany.
Two of them (chapters 2.2 and 2.3) are funded as
so called Process Improvement Experiments by
the ESSI program of the European Community
(ESSI stands for European System and Software
Initiative).

3.1 SPI at ABB Kraftwerksleittechnik

ABB Kraftwerksleittechnik (KWL for short) is a
company of the world-wide ABB group,
employing 850 people, 90 of them in research
and development (R&D). The improvement
initiative reported here focused on the R&D
department. Their business is developing control
systems for power plants. The products range
from controllers to operator stations and

engineering systems. Software is a major part of
these products.

3.1.1 Starting Scenario
Having recognised the impact of good software
engineering on software costs, KWL started in
1991 an initiative to improve their software
process maturity.

A team of people from KWL and the information
technology department of ABB Corporate
Research was in charge of defining and guiding
software process improvement measures. They
worked closely together with the operational
units who eventually were to apply these
measures.

3.1.2 Objectives
At the beginning, the improvements aimed at
introducing new software technologies, such as
CASE tools, or object-oriented programming,
according to recommendations from a business
analysis by external consultants. During imple-
mentation of the recommendations, however, it
turned out that the software process at hand was
not structured and documented well enough to
allow efficient use of these technologies.

As a consequence the focus moved away from
technologies to the software process as a whole.

After having defined a software process, the
focus is now on improving testing activities of
KWL's software products, as well as on
configuration and change management.

3.1.3 Improvement Activities
Introducing a CASE tool. At the outset (1991)
people believed that tools may help developers
in solving their problems. After having selected
and introduced a CASE tool it was very soon
observed, that this was not true. It turned out that
first a structured way of developing software has
to be defined.

Definition of a process model. Next an activity
was started to define the software process model.
The findings of the first activity and a CMM
assessment pointing out deficiencies in the fields
of quality assurance, peer reviews, and
configuration management provided the basis.
The process model had to consider the
organisational structures, the processes within
and outside the R&D department, as well as

major software engineering activities. The
precise definition of tasks and responsibilities in
the process model helped clarify organisational
boundaries and motivate organisational changes.
Preparing templates and guidelines for docu-
ments defined by the process model was
considerable work. Whenever possible we
adapted published standards for this purpose,
such as the various IEEE Software Engineering
Standards (see IEEE 1994). This not only saved
work, but also enhanced the acceptance by
software engineers and management. The
resulting process model was introduced in 1994
and is applied in development projects.

Introducing formal reviews. We learned that
improvement measures are only effective when
accompanied by verification processes. For this
reason, the introduction of formal reviews was a
cornerstone of all improvement activities.
Formal reviews are characterised by a well
defined review process and fixed roles of the
participants; both aspects are essential for
making reviews effective.

Improving testing efficiency. Although testing is
a ‘classical’ activity, it is often done in a fairly
casual and uncontrolled manner. At KWL,
testing was improved by providing training in
systematic testing, definition of test processes
(module test, system test, system integration test)
and their integration in the overall software
process.

Change and configuration management.
Currently there is an on-going activity that aims
at improving change and configuration
management. As a first result a change process
together with a supporting tool was introduced in
1996. It is now used world-wide in the KWL
organisation. The experiences so far are
encouraging.

3.1.4 Results and Analysis
Looking back, it is striking that the most
effective improvement measures were addressing
management issues, not technology issues. The
measures aimed at providing answers to “How-
to”-questions: How to do and document project
management? How to plan and implement
configuration management? How to go about
change management? How to assure software
quality? How to manage testing?

It is customary in industry to bet on CASE tools
when aiming for improvements in quality and
productivity. We, and many others, have learned
meanwhile that improving processes and people
is far more effective than supplying new tools –
yet it is also harder. For more detailed
information about KWL's improvement activities
we refer to Welsch (1995).

3.2 SPI at ABB Netzleittechnik

ABB Netzleittechnik (NET for short) offers to its
customers a network control system, called
S.P.I.D.E.R. which integrates functions like
energy management, low and medium voltage
distribution, supervisory control and data
acquisition. The development of S.P.I.D.E.R. is
distributed over three sites in three different
countries.

3.2.1 Starting Scenario
In order to manage its software projects, NET
has developed a software process model which
takes into account all major aspects of software
projects: organisation, planning, implementation,
and control. Quality assurance is integrated in
this process model as well. The process model is
based on the traditional phased V-like model. It
is applied in every development project. A
software process group consistently maintains
and improves the process model.

A particular weakness of the software process
concerns the early detection of errors and the
efficiency of testing. These findings were
confirmed by a CMM assessment that was
conducted in February 1995 by ABB Corporate
Research.

3.2.2 Objectives
The overall objective of the improvement acti-
vities is to make validation steps more
comprehensive and to reduce the effort needed.
The specific objectives are:

• introducing formal peer reviews,

• defining and implementing a systematic test
process,

• defining a tool environment supporting test
activities, and

• measuring test activities and collecting
relevant data.

3.2.3 Improvement Activities
Based on the results of the CMM assessment, an
improvement action plan was worked out. Until
now two major activities have been performed.

Introducing formal reviews. Although NET has a
long tradition in reviewing documents, it was
noticed that the results of reviews can be
improved using a more formal peer review
technique. In order to introduce this technique a
training workshop has been organised.

Introduction of systematic testing methods. This
activity is conducted in the context of the
Systematic Module and User Interface Test
(SMUIT) project, funded by the European
Community as the Process Improvement
Experiment 21612 of the European Systems and
Software Initiative (ESSI). It is devided into the
following phases.

PHASE 1: Defining the test process. The test
process defines what activities have to be
performed, what documentation has to be
written, how these documents have to be
validated and what the responsibilities are.
Furthermore data about the testing process is
collected during the experiment in order to have
sufficient information for assessing the impact of
the various test activities on software quality.

PHASE 2: Evaluation of test tools. Based on the
experiences and results presented in similar
evaluations available in the public domain, a
small number of tools for detailed evaluation
was selected. These tools were installed and
evaluated. The tool selected has been integrated
with the S.P.I.D.E.R. development environment.

PHASE 3: Performing tests. Before applying the
new test practices the project members were
trained both on systematic testing techniques and
on the test process. In addition to general
seminars on these topics, an introductory tutorial
was given by the tool vendor in order to make
the team members acquainted with its
functionality.

After that, tests will be prepared, executed and
documented according to the defined test process
and supported by the tools.

PHASE 4: Validation of the experiment. Based
on the collected quality data, the project team
analyses the systematic testing approach
introduced. The results obtained during the
process improvement experiment will be
summarised and disseminated by means of a
final report. This report shall describe the
experiment in a way that enables other
companies to replicate the experiences.

3.2.4 Results and Analysis
The process improvement experiment SMUIT is
going on. It is presently at the half way mark.
The testing process that we have applied so far to
analyse some S.P.I.D.E.R modules is suitable to
deliver the following results:

• Identify those modules that are poor with
respect to quality attributes such as
complexity, readability, and maintainability.

• Identify those modules that contain dead,
never used code.

• Identify those modules that are not testable due
to their complexity with regard to the number
of linear independent paths.

• Identify those modules that should be re-
engineered.

Since we have analysed only a small part of the
overall S.P.I.D.E.R. system so far, we are at the
moment not able to provide quantitative results
about the improvements achieved.

3.3 SPI at ABB Calor Emag Schaltanlagen
and ABB Daimler-Benz Transportation

The two companies ABB Calor Emag
Schaltanlagen (business: switch gear stations)
and ABB Daimler-Benz Transportation (Adtranz
for short; business: railway systems) faced
similar problems in their control system enginee-
ring: The share of engineering costs in the
overall product costs was steadily increasing.
Poor tool support of engineering activities was
identified as the major reason for this.

To improve the situation the two companies
started a joint project developing a common
integrated tool platform for control system
configuration and maintenance. They decided to
use object-oriented software technologies in this

project (C++, bought-in class framework, object-
oriented data base system).

Prototype development started in mid-1992 with
a team of 5-7 members. Meanwhile the project
has grown to about 30 people, distributed across
three countries (Germany, Sweden, Switzerland).

3.3.1 Starting Scenario
The software process in this project had evolved
in a fairly uncontrolled manner. With growing
project size, the software process was found to
be less and less adequate. The development
project could be characterised by:

• Ambitious project goals. Development of an
integrated engineering environment for control
system engineering is a complex task.
According to the classification in Goldberg
(1995) it is a “first-of-its-kind” project for both
involved companies.

• Complex project structure. The project is
distributed across development teams in three
countries.

• No systematic analysis and design. No
published object-oriented analysis and design
methods were used, nor any CASE tools.

• Poor documentation of existing
implementation. The software underwent rapid
changes with the effect that documentation
became very quickly out of date.

When starting the improvement activities, the
software process maturity at Adtranz as well as
ABB Calor Emag Schaltanlagen was rather low.
A CMM assessment which was conducted at
Adtranz late 1995 and which also included the
development project mentioned above, rated the
maturity roughly at 2 on the CMM scale.

3.3.2 Objectives
As an answer to the realised deficiencies, upper
management launched in January 1996 an
initiative to improve the software process in the
project. The objectives were:

• standardising forward engineering of object-
oriented analysis and design,

• enhancing and automating documentation of
work results, and

• reverse engineering of existing (insufficiently
documented) object-oriented software.

Support for reverse engineering was not only
needed for re-documenting the legacy software,
but – even more importantly – for keeping the
upcoming implementation (source code) and its
documentation consistent. It is typical for most
software projects that the source code evolves
quite rapidly, while the documentation remains
unchanged and is soon out of date.

To guide and coach the process improvements,
software engineering consultants from ABB
Corporate Research have been involved.

The improvement measures are funded as a Pro-
cess Improvement Experiment by the European
Community.

3.3.3 Improvement Activities
CASE tool evaluation. In the context of this
process improvement experiment CASE tools
were evaluated with emphasis on support for (a)
forward engineering, i.e. analysis and design,
and (b) reverse engineering, in particular for
automated document generation.

The CASE tool that met the requirements best
features a powerful documentation facility. It
extracts comments and structures out of the
source code and converts them, according to
rules defined by the user, into text and graphics
in a word processor template. So the source code
is the single source both for code and design
documentation. This single source principle in-
creases the chance that in case of code changes
also the pertinent comments – the source of the
documentation – are updated.

Definition of a process model. The selected
CASE tool supports the Coad/Yourdon method
(Coad, 1991). For the overall process model,
however, the method of Jacobson (1992) was felt
better suited than Coad/Yourdon. So the
management decided to use a mixed approach:
the process and methods follow Jacobson, while
Coad/Yourdon is used as the notation for object
modelling.

The new software process prescribed well-
defined documents as deliverables of important
software engineering activities. As the first step,
guidelines as well as templates for Requirements

Specifications and Design Descriptions were
provided. The requirements specifications follow
the pattern in figure 3, which adds chapters for
object-oriented modelling to the IEEE standard
structure for requirements specifications (see
IEEE 1994).

3.3.4 Results and Analysis
To reduce the risk of the process improvement
experiment we implemented the new practices in
an incremental and iterative way. Incremental
and iterative means that the improvements are
being introduced by going several times in small
cycles through the spiral depicted in figure 4.
This approach gave us early indications of the
usability of the new practices and of their
acceptance by the engineers.

We regarded the acceptance by the project
members as the key indicator for success. Only if
the practitioners feel the benefits of the new
software engineering practices pretty soon, they
are willing to adopt them.

Standardised documents have turned out to be a
good means to get order into a fairly
uncontrolled software process. At the same time
they allow to check how well the new practices
are applied, and, if necessary, to take corrective
actions.

define new practices apply practices

feedback,
revise practices

integrate into
software process

improved process

Figure 4: Spiral-like implementation of process
improvements

4 LESSONS LEARNED: TEN THESES

In this chapter we would like to summarise our
experience in terms of ten theses. They express
findings that should be easily transferable to
other organisations.

THESIS 1: Focus on people and processes,
not on technology.

Process, people and technology are the key com-
ponents of software development. Only if all
components have satisfactory maturity the
resulting products will be of satisfactory quality.
Improvement of one component can not be
achieved in isolation from the others. In the
context of SPI that means particularly, not only
to improve process elements (e.g. project
planning), but also to enhance people's capability
to perform the improved process. Only people
can bring the improved process to life. This issue
is the main focus of the personal software
process documented in Humphrey (1995). Its
objective is to make developers aware of the
processes they use to do their work, and of the
performance of those processes.

ABSTRACT

TABLE OF CONTENTS

1. INTRODUCTION ERROR! BOOKMARK NOT D

1.1 PURPOSE
1.2 SCOPE................................
1.3 ABBREVIATIONS AND DEFINITIONS
1.4 REFERENCES

2. GENERAL DESCRIPTION

2.1 PRODUCT PERSPECTIVE
2.2 PRODUCT FUNCTIONS................................
2.3 USER CHARACTERISTICS
2.4 GENERAL CONSTRAINTS
2.5 ASSUMPTIONS AND DEPENDENCIES

3. SPECIFIC REQUIREMENTS

3.1 FUNCTIONAL REQUIREMENTS
3.1.1 Use Cases
3.1.2 Domain Object Model
3.1.3 Object Specifications

3.2 EXTERNAL INTERFACE REQUIREMENTS
3.3 PERFORMANCE REQUIREMENTS
3.4 QUALITY ATTRIBUTES
3.5 DESIGN CONSTRAINTS

4. APPENDICES

5. DEVIATIONS FROM HIGHER LEVEL DOCUMENTS

6. REVISON PAGE

object-oriented
specification!

Figure 3. Template for requirements specifications

In summary we think that the emphasis of SPI
activities should be on both the process and the
people. As a consequence, we recommend not to
introduce technology oriented tools before a
software process is defined and applied.

THESIS 2: Basic improvements are manage-
ment oriented.

We have observed that the majority of im-
provements addressed management-oriented
issues. This conforms with the CMM which calls
for good software engineering practices (“How
to do it”), but does not prescribe certain techno-
logies (“Which tool to use”).

For instance, at the very beginning of KWL’s
software process improvement programme, we
erroneously put our hope on introducing CASE
tools. The CASE tool introduction failed (after
considerable investments) mainly because the
developers were not well prepared and the
software process was neither defined nor applied
well enough, to integrate the usage of CASE
tools. The promised benefits of CASE can only
be achieved if its use is part of a well-defined –
and actually employed – software process.

A similar situation we encountered at the process
improvement experiment at Adtranz and ABB
Calor Emag Schaltanlagen. For engineers as well
as management, the initial motivation to start a
process improvement experiment was the wish to
use some CASE tool. It turned out very soon,
however, that management-related improve-
ments (project planning and controlling) are
more important in order to solve the main
problems in the development project.

THESIS 3: No software process improve-
ments without clear
responsibility.

SPI is a long term activity. Significant results
can only be achieved by continuously improving
the development process. Therefore it is
extremely helpful to have a group responsible for
pushing SPI activities. This group, in the
following called software process group, serves
as a focal point where all SPI activities are
planned, co-ordinated and assessed. This
includes e.g. working out an improvement action
plan or recruiting external consultants.

At KWL and NET the software process groups
are also responsible for software quality assu-
rance in general. At Adtranz and ABB Calor
Emag Schaltanlagen, there was no such group.
Here the management of the development project

took over the responsibility for the process
improvements and enforced them.

THESIS 4: No change of well-worn processes
without new people.

Any group of people working together develops
specific processes that have proven to work
fairly reasonable. These processes are typically
undocumented and communicated “by doing”.
The older the processes and the group structures
are, the harder to change such processes.

Software process improvements aim at re-engi-
neering existing processes. To make the re-engi-
neering effective, positive examples are needed,
that is, people that practically show how the new
processes integrate with the daily work.

It is necessary therefore to bring new people
with fresh ideas and views into the development
projects. These people should also coach the
project members in applying the new practices
and processes. We have observed this especially
at Adtranz and ABB Calor Emag Schaltanlagen
where a group of new and highly motivated
people was involved in the process improvement
activities.

Involvement of external software engineering
experts facilitates the acceptance of new
measures. We consider it extremely difficult for
an organisation to achieve substantial software
engineering improvements by its own power
alone.

At all ABB companies where SPI measures have
been conducted (KWL, NET, Adtranz, ABB
Calor Emag Schaltanlagen), people from ABB
Corporate Research served as software engi-
neering experts. At first (the initial SPI activities
were started at KWL) the relation between the
software process group, external experts, and
development projects was as depicted in figure 5
(a): software process group and external experts
devised in collaboration the improvement

measures, and coached the development projects.

It turned out that the structure in figure 5 (b) is
more effective: Experts knowing the new
practices co-work actively in the development
projects. They not only introduce but also apply
the new practices and feed back the application
experience to the process group. That is, the
software engineering experts participate actively
in the software development (they are regular
members of development teams), at the same
time acting as links between operational and
software process group.
THESIS 5: Process maturity assessments

guide, control and sell the im-
provement process.

Software process assessments serve different
purposes. We believe that, in the context of SPI,

assessments are very helpful to support the
following tasks:

• Identifying the state of practice concerning the
software process. If you want to improve
something, you have to know where you start
from. The outcome of an assessment defines
the baseline upon which improvements are to
build.

• Identifying the main deficiencies in the
development process and planning the
improvement activities. Because a process
assessment clearly identifies the main
deficiencies, it supports planning the SPI acti-
vities, so that very important process areas
(e.g. peer review) are improved first.

application,
coaching

(b) The co-worker model

feedback

collaboration
coaching

(a) The coaching model

Software Process
GroupDevelopment

Project

Software Engineering
Experts

coaching

feedback

Software Process
Group

Development
Project

Software Engineering
Experts

Figure 5. Organisational structures for implemen-
ting improvement measures (b is more

effective).

• Quantifying the success (or failure) of
improvement measures. Generally it is quite
difficult to quantify the benefits of SPI
programmes (see also thesis 3.10). Although
not expressing the return of investment in
Dollars, the CMM is a widely accepted yard-
stick for measuring software process improve-
ments. Even senior management understands
it. Follow-up assessments are being conducted
or planned at KWL and NET.

Furthermore, assessments and their results are a
good means to build up awareness for SPI at the
management level.

THESIS 6: Adoption of standards accelerates
the implementation of
improvements.

Many aspects of a SPI programme can be
covered by published standard solutions. This is
in particular true for several key practices of the
CMM, which are addressed by IEEE Software
Engineering Standards (see IEEE 1991). In the
SPI programme at KWL, we have adopted the
IEEE standards about project management,
configuration management, quality management,
requirements specifications and design descrip-
tions.
Using standards has two big advantages over
individually designed solutions:

• Standards save work because a lot of capable
people put their knowledge and experience
into the standards. You need not re-invent the
wheel.

• Standards receive far better acceptance by
management and developers than individually
designed solutions. This is particularly true in
an electrical engineering company like ABB.
Here, most managers as well as software
developers are electrical engineers by their
education. They are used to standards and
regard them highly.

THESIS 7: Pilot projects must be open
minded towards innovations.

In the relevant literature one can find lots of
recommendations on the characteristics of an
ideal pilot project: it should be an important but
not a vital project, be of decent size, but not too
large, and the additional effort for the pilot
applications should be planned and budgeted
right from the beginning.

From our experience, an additional aspect is
equally important to the success of pilot
applications: The pilot project members should
have an open attitude towards innovations. Only
if they really want the new practices to be
successful, one will have application success
stories, necessary for dissemination of the new
practices.

For instance, in the SPI initiative at KWL, we
felt at times a somewhat “defensive” attitude
towards innovations in pilot projects. Although
not exactly rejecting the new practices, the pilot
project members seemed to be not very
interested in the success of these practices. In
such cases the application of the new practices
was more and more evaporating, and eventually
substituted again by the former behaviours.

In the SPI at Adtranz and ABB Calor Emag
Schaltanlagen, the situation was very different.
Here, the success of the process improvement
initiative was to the most part due to the
enthusiasm and openness of the project
members.
THESIS 8: The main obstacles to im-

provements come from organisa-
tional and human factors.

Any SPI initiative encounters difficult situations
during its execution, sometimes even putting the
whole initiative at risk. The causes for these
difficulties trace mostly back to organisational
and human factors. Some examples:

• The lack of software engineering knowledge in
management and software development makes
the management uncertain when it comes to
assessing the value of new software
engineering measures. Even the smallest crises
may then endanger important parts of the SPI
programme. At KWL, for instance, it took
some time and considerable effort to convince
the management of the necessity of a defined
software process model.

• SPI programmes are often felt as a threat.
They are mostly initiated by top management,
aiming at improving productivity. Increased
productivity, in other terms, means staff
reduction. Therefore it comes as no surprise
that many software developers get concerned,
try to protect themselves against this threat,
and are not very friendly towards the
improvement measures (see also thesis 3.7).

THESIS 9: Software process improvements
need long term management
support.

SPIs are long term programmes of at least two or
three years. They consist of a set of co-ordinated
activities. Because these activities require a
significant investment, the management of the
development organisation must support the
improvement programme actively. This means,
that it is not sufficient to allocate the budget
needed for the programme but also to
demonstrate clearly that it is of very high impor-
tance. Experience shows that due to daily
business needs improvement activities are often
delayed or not conducted seriously. If
management does not consistently back up the
SPI programme, people's motivation and the
intensity of the improvement activities are likely
to decrease.

As figure 6 illustrates, there is a gap between the
expected and the actual improvements. People
expect more than is realistic. After some time,
they realise this discrepancy and tend to be
disillusioned. The initial enthusiasm has turned
into serious doubts about the use of the SPI
programme (the “valley of tears“ in figure 6).
This is a very critical phase. Only if management
backs up the SPI programme, the benefits will be
achieved.

Furthermore, the management has to ensure, for
instance by audits, that the improved process is
applied correctly in development projects.

time

actual
improvements

expectations
“valley of tears”

improvements

Figure 6. Expected versus actual improvements

THESIS 10: The investment in SPI is high,
the return of investment is
medium and long term.

Several results from SPI programmes in industry
are reported in the literature. For instance,
Hughes Aircraft started a two-year improvement
programme to raise its Software Engineering
Division from level 2 to level 3 (c.f. Humphrey
et al. 1991). The programme cost the company
roughly $400,000. They calculated that the
initial return of investment (ROI) amounted to $2
million annually. Even more remarkable
numbers are reported from Raytheon‘s
programme: They invested almost $1 million
annually in SPI, and achieved a 7.7:1 ROI, as
well as 2:1 productivity gains (source: Saiedian
and Kuzara, 1995). Larry Druffel from the
Software Engineering Institute summarises in
Methods & Tools (1994) that “organisations
engaged in process improvement for periods of
three years or more achieved an increase in ROI
of 4:1 to 8.8:1.“

For the SPI initiatives presented in this paper, the
investment has been between 1 and 2 person
years annually per SPI initiative. However, we
are not yet able to express the ROI in
quantitative terms.

5 SUMMARY AND CONCLUSIONS

Typical of all software process improvement
initiatives at ABB – and we suppose this applies
also to other companies – is that they start with

emphasis on technologies, in particular on
fascinating tools. As the initiative goes on,
emphasis moves more and more away from tools
towards processes and people's capabilities. This
learning phase seems to be inescapable. We
observed it in all improvement initiatives. The
fascination of tools often serves as the “door
opener” for more effective improvements
regarding process and people.

The main risks for a successful and sustained
software process improvement are over-
ambitious improvement steps. It needs a
systematic approach and a lot of experience to
select the right set of measures suited for raising
the maturity of the software process at hand.

We have made very good experience with the
iterative and incremental approach to
implementing software process improvements. It
is more effective and bears less risk of failure
than the “Big Bang” approach. The latter would
first define the complete software process, and
then try applying it.

A further danger for SPI initiatives is that their
long-term character is not recognised. Process
improvement involves change; changing
established software processes takes time.

REFERENCES

Anglade, E., S. Miller, G. Tucker and A. Verducci,
Jr. (1993) AT&T Software Process Assessments.
Knowledge Base, Vol. 2, Issue 1, Jan.

Coad P., Yourdon E. Object-Oriented Analysis.
Englewood Cliffs, Prentice-Hall, 1991.

Coad P., Yourdon E. Object-Oriented Design.
Englewood Cliffs, Prentice-Hall, 1991.

Dion, R. (1992). Elements of a process-improvement
program. IEEE Software, July, 83-85.

Goldberg A, Rubin K.S. Succeeding with Objects —
Decision Framework for Project Management.
Addison-Wesley, 1995.

IEEE (1994): Software Engineering Standards
Collection.

Herbsleb, J.D., D.R. Goldenstein (1996): A
Systematic Survey of CMM Experience and
Results, Proc of ICSE 96, IEEE Computer Society
Press, pp 323-330.

Humphrey W. S. (1995): A Discipline for Software
Engineering, Addison-Wesley.

Humphrey W.S., R.T. Snyder, R.R. Willis (1991):
Software process improvement at Hughes
Aircraft, IEEE Software, July.

Jacobson, I. Object-Oriented Software Engineering.
Addison-Wesley, 1992.

Methods & Tools (1994). 2(4), ISSN 1023-4918.

Paulk, M.C., B. Curtis, M. Chrissis (1991). Capability
maturity model for software. SEI Tech. Rep.
CMU/SEI-91-TR-24.

Saiedian, H. and R. Kuzara (1995). SEI Capability
Maturity Model‘s Impact on Contractors. IEEE
Computer, 28(1): 16–26.

Welsch, C. H. Lichter, M. Zeller (1995): Software
Process Improvement at ABB Kraftwerkleit-
technik, In Proc. of Experiences with the
Management of Software Projects, Elsevier
North-Holland (in preparation)

Wohlwend, H., S. Rosenbaum (1994).
Schlumberger´s Software improvement Program.
IEEE Trans. on SE, Vol. 20, No. 11, 833-839.

Johnson D.L., J.G. Brodman (1994): What small
organizations say about the CMM," Proc. 16th
Int'l Conf. Software Eng.(ICSE 16), IEEE
Computer Soc.

	1 INTRODUCTION
	2 UNDERLYING PROCESS MATURITY MODEL
	3 ABB’S SOFTWARE IMPROVEMENT INITIATIVES
	3.1 SPI at ABB Kraftwerksleittechnik
	3.1.1 Starting Scenario
	3.1.2 Objectives
	3.1.3 Improvement Activities
	3.1.4 Results and Analysis

	3.2 SPI at ABB Netzleittechnik
	3.2.1 Starting Scenario
	3.2.2 Objectives
	3.2.3 Improvement Activities
	3.2.4 Results and Analysis

	3.3 SPI at ABB Calor Emag Schaltanlagen and ABB Daimler-Benz Transportation
	3.3.1 Starting Scenario
	3.3.2 Objectives
	3.3.3 Improvement Activities
	3.3.4 Results and Analysis

	4 LESSONS LEARNED: TEN THESES
	5 SUMMARY AND CONCLUSIONS
	REFERENCES

