Proc. of INSPIRE 98 International Software Process Improvement Conference
in Education and Research, London, 87-98, 1998

Simulating Software Projects —
An Approach for Teaching Project
Management

P. Mandl—Striegnitzl, A. Drappal, H. Lichter?

1 University of Stuttgart, Stuttgart, Germany
2 Aachen University of Technology, Aachen, Germany

Abstract

In this paper, the results of two industrial case studies on software
project management are presented. These case studies revealed key
problem areas in software project management and also proved that
there is a serious lack in training of software project managers. To
reduce these deficiencies, we suggest a new approach for teaching
project management: simulating software projects. The simulation is
based on models of software development processes that can be
executed. We present a new simulation model, the QA model. The
development of that model was strongly guided by the results of the
case study. We show in detail how simulation models can be
bolstered by specific industrial data to provide the highest possible
benefit to simulation model users.

Keywords: Software Engineering, Project Management, Software
Engineering Education, Empirical Investigation, Process Modeling.

1 Introduction

Over the past years, software development projects have increasingly been plagued
by schedule and cost overruns while product quality is often poor. In reaction to this,
many software companies have started initiatives to improve their software
development processes [1]. In this context, a key factor in software development
projects deserves particular attention: the project management.

In this paper, we present the results of two industrial case studies on software
project management. These studies were motivated by the company’s goal to
improve software project management. At the beginning, a project management
assessment was performed using structured, on-site interviews with software project
managers. To verify the qualitative data collected during the assessment, a second
investigation was performed by measuring quantitative data of a completed software
development project. Analysis of the collected data clearly demonstrates a lack of
education and training of project managers.

Consequently, project managers need to be better trained before leading software
projects. Above all, management experience is required to plan and control software

lichter
Typewritten Text
Proc. of INSPIRE 98 International Software Process Improvement Conference
in Education and Research, London, 87-98, 1998

lichter
Typewritten Text

projects successfully. Experience is the key to assess situations and to foresee
consequences of possible decisions with some confidence. However, becoming an
experienced software project manager usually “costs” many wrong decisions taken
in real software projects. Within our research project SESAM (Software Engineering
Simulation by Animated Models), we propose a new approach for software project
management education. The new solution consists in simulating software projects
interactively. The basic idea is to create a model of the software development process
and to execute the model using a simulation system. The model is complemented by
an initial project scenario. Thus, software projects with a given task, given resources,
or constraints can be simulated.

This paper introduces a new simulation model, the QA (Quality Assurance)
model. The results of the two case studies thereby significantly supported model
development. The QA model covers all software development activities from
requirements specification to product delivery. It especially emphasizes the effects
of quality assurance activities.

We will then show how simulation of SESAM models, e.g. the QA model, can
help to reduce the deficiencies of software project management identified in our
investigations. Vice versa, if planned according to the metrics system used for a
SESAM model, empirical investigations can contribute to the validation of the
model and help tailoring it to specific environments.

2 Two Case Studies on Software Project Management

2.1 Description of the Case Studies

At the beginning we performed a project management assessment by means of
structured, on-site interviews with seven software project managers. Its purpose was
to assess and better understand the current practice and problems of software project
management. Furthermore their impact on software development projects was
investigated. The questionnaire used for these interviews covers more than 70 factors
potentially influencing the process and outcomes of software projects [2]. To
develop the questionnaire, other investigations were taken into consideration [3], [4],
[5]. The questions mainly address human factors and organizational aspects.

Most of the information collected during these interviews was qualitative and
subjective. Hence, in a follow-up study we performed a quantitative evaluation by
measuring an already completed software project in considerable detail to verify the
results of the first study. Furthermore this increased insight into the reasons for
certain problems occurring during software development projects. The design of the
second study is mainly based on [2] and [6].

Measuring a software project requires multiple sources of information. Hence, the
empirical investigation was implemented as follows: First we collected data on the
basis of several interviews with the technical manager and the project manager. In
addition, we asked the project staff to complete questionnaires concerning personal
aspects or quality assurance activities. Some information concerning defect and
change management data was provided by a tracking system used in the software

project. Additionally, we analysed the project key deliverables such as the project
plan, project status reports, source code, and user documentation.

We now briefly describe the central aspects of software development projects we
were interested in. Some of these aspects were only recorded for the project
examined in the second study. The complete definition and planning of both studies
can be found in [2] and [7].

2.1.1 Project Profile

To record the specifics of the investigated projects, we measured characteristic
attributes such as project nature, project scope, and project type. Furthermore we
examined items such as the organization structures used on the project and the
application domain.

2.1.2 Project Totals

To get an overview of the performance of the investigated projects, we compared the
planned and actual items for overall project effort, schedule, and cost.

2.1.3 Project Tasks

In both studies we asked the project managers to list all tasks that have been
performed during the project and to estimate the percentages of project effort which
each task required. To validate this information, in case of the second study we
collected detailed task-by-task information on the resources, effort, schedule, and
cost. Furthermore we were interested in the documents that had been produced in
each task as well as in the size of the deliverables in terms of page counts.

2.1.4 Project Environment

To analyse the influence of the project environment, we were interested in attributes
such as the goals or constraints levied against the project by senior management,
customer or user demands. For both studies, the level of customer and user
involvement during different phases was measured on a 5-point ordinal scale. In the
second investigation, this information was validated by additionally measuring
quantitative factors such as effort and schedule of customer and user involvement by
tasks and for the total project.

2.1.5 Project Management

To assess the strengths and weaknesses of project management, we measured the
following variables:

. Project management experience

. Time and effort invested by the project manager for management activities

. Methods and tools used for project planning, progress tracking, and cost
tracking

. Responsibilities for project management activities

. Risk management (methods used for the analysis and monitoring of risk

factors)

In case of the second study, this information was verified and complemented by
analyzing the corresponding documents (e.g. project plan, status reports).

2.1.6 Project Staff

Since project staff skills mainly influence the software development project, we
collected information on the qualification and experience of team members.
Furthermore, to assess the quality of personnel management, we recorded data such
as staff availability, training of team members, effort spent for communication, and
team continuity. For the measured project, we were also interested in the size and
structuring of the project team.

2.1.7 Quality Assurance

For the aspect of quality assurance we collected qualitative data on the kind of
quality assurance function and the quality assurance activities performed during the
project. For the second study, we explored the effectiveness of quality assurance
activities. We collected information on the number of defects found and the effort
required. For every defect we recorded the origin, the severity, the amount of effort
required to fix it, and the quality assurance activity that helped to uncover the defect.

2.1.8 Project Outcomes

The project outcomes were only analysed in case of the second study. For each
document produced during the project we were interested in the nature of the
document (e.g. specification, design document, user documentation) and the number
of pages in total. For the source code we measured the size in lines of code per
baseline. We distinguished different code classes such as delivered code, generated
code, prototyping code, test code, and reused code. In addition, the complexity of the
source code per baseline was measured.

To capture the productivity, we were also interested in the number of
documentation pages and in the number of lines of code produced per calendar
month, and the number of personnel involved.

2.2 Results of the Case Studies

In this section, we present some of the findings resulting from our investigations. We
concentrate on the most important weaknesses concerning project management. An
overview of all results is given in [2] and [7].

2.2.1 Insufficient Time Devoted to Project Management Activities

The first investigation shows that the time devoted to project management tasks was
in the range of 5 to 100% of the project managers’ overall working time. Although
we found that even those project managers who invested only between 5 and 35% of
their time in leading their project regarded this to be sufficient, analysis of the data
clearly indicates a correlation between the percentage of time spent for project
managing and controlling and overruns in schedule and budget. As a consequence,
75% of the investigated projects were not completed within the planned schedule —

deviations from schedule were up to 150%. If more time was spent for managing the
project and controlling its progress, the deviations from schedule were minor (from
20-70%). These effects can, among others, be explained by the weak progress
control (e.g. no updates of the initial project plan) as a consequence of the
insufficient effort associated with project management tasks.

These results could be confirmed by the second investigation. On average the
project manager could only spend 25% of his overall working time on managing the
project since he was assigned to up to four other software projects. According to the
plan, the overall effort estimated for project management was 15 manweeks, which
is less than 5% of the planned overall project effort. This project, too, was completed
with enormous cost and schedule overruns. In contrast to the first study, the project
manager did admit that the time spent was insufficient for leading a project of this
size.

2.2.2 Insufficient Education of Software Project Managers

Analysis of the collected data of both investigations demonstrates a lack of education
of project managers. While training the developers on technical topics is regarded as
necessary if ability and knowledge of team members is insufficient, none of the
interviewed project managers had ever participated in courses on software project
management. Hence, technical experts being promoted into managerial positions had
never been trained on the new skills required for successfully leading a software
project.

As a consequence, project managers did not know important project management
techniques. E.g., the only method that was applied by every project manager was
planning of schedule and milestones by means of Gantt charts because this was
supported by tools (e.g. MS Project). But project planning was done without
applying any cost estimation method or systematic risk management. Analysis
revealed that there was no explicit identification of risks in the project plan, and, as
a consequence, no explicit management of risks. Risks were first mentioned in the
status reports at the time of their appearance, but again without consequences on the
plan.

In most projects there was a lack of regular and explicit updates of the project
plan. We identified a clear deficit of project tracking and control.

Our conclusion is that organizations and project managers do not know how
important and useful the application of basic management techniques is in order to
effectively plan and control a software project. As a consequence, training on project
management techniques is often neglected.

2.2.3 Important Quantitative Data were not Available for Project Management

In all investigated projects there was no systematic collection of quantitative project
data that could be used to support project planning and to control the progress of the
current project. Consequently, we found that the estimation of effort and time for
new projects was always done based on the project managers’ experience or on the
experience of others. Looking at the answers we got from project managers, it is
obvious that the estimations based on experiences are highly inaccurate. E.g., there

were often unrealistic estimations concerning the productivity of team members or
the effort necessary for inter-project communication and quality assurance activities.
The second investigation shows a dramatic underestimation of the effort needed for
producing the user documentation. Because of this, all testing activities were
cancelled in order to complete the user manuals. Consequently, project planning
based on unrealistic estimations was one of the main reasons for the enormous time
and schedule overruns.

If there are no metrics defined to measure quality and progress, project managers
cannot realistically plan for further quality assurance tasks or effort necessary to
complete the software product. Hence, measuring a software development project is
the basis for any kind of software process improvement.

2.2.4 Quality Assurance was Often Neglected

Another aspect concerns quality assurance. Our investigations show that the
importance and value of quality assurance activities was underestimated by project
managers as well as by the development organization. Some project managers stated
that their projects had no quality assurance function at all. In some projects, the
project manager or the developers were responsible for quality assurance. In case of
the project investigated in the second study, analysis of the initial project plan shows
that it was planned to perform quality assurance activities such as design or code
reviews. No effort, however, was assigned to these tasks. Only for software testing
(as a quality assurance activity) information such as effort and time was estimated
and explicitly mentioned in the project plan. As a consequence, except one formal
review of the functional specification, only testing activities have been performed.
But although software testing was considered necessary, it was stopped because of
time pressure. This is also true for most of the projects of the first study. In case the
projects ran into schedule problems, the most common way to short-cut them was to
skip quality assurance activities. Hence, the schedule constraints always had priority
over quality goals. This may be reasonable in some cases, but it should not be the
standard case.

3 The SESAM Simulation System

Besides others, these findings clearly demonstrate a lack of training of project
managers. To reduce problems in leading software projects, managers need to be
trained in advance. In this chapter, we present our approach for teaching software
project management by executing models of software development projects in
SESAM. We will introduce a simulation model, the QA model, that aims at
demonstrating important effects in software projects (especially effects concerning
quality assurance).

3.1 Basic Idea

Providing a training environment for future project managers is one of the most
important aspects of the SESAM project. The project aims at creating a software

system that enables users to interactively simulate software projects. A potential
system user is a (future) project manager, also called student in the remainder. A user
may or may not have practical experience, however, a sound theoretical software
engineering and project management education is strongly recommended.

The user of the simulator receives a project description and plans the project
according to his or her abilities. The student then communicates with the system
using a simple interface. He or she can trigger game actions that correspond to
actions within real projects, like hiring new people, or assigning tasks to staff
members. Depending on the actions triggered, the student gets reactions from the
system. The success of the simulated project or its failure, respectively, depends on
the actions and decisions the project manager has taken. The progress of the
simulated project is reflected quantitatively using various process and product
attributes. After the simulation is finished, the process as well as the resulting
products can be analysed. This approach offers, among others, the following

opportunities:

. The simulation allows for demonstrating and explaining how the resources
used, or the management approach adopted, influence the overall project
results.

. The simulation is a means of examining the consequences of changing the
process, or the resources.

. The simulation of software projects allows for coaching future project
managers by exposing them to reality like problems and situations.

. The models can be tailored to specific development environments in order to

support project planning and project control.

Quantitative modeling is not a new idea. The pioneering work of Tarek Abdel-
Hamid aimed at gaining a fundamental understanding of software project
management processes [8]. His results have influenced a number of similar
approaches [9], [10], the basic idea of which is to describe and simulate software
processes using system dynamics. The drawback of system dynamics models is that
they are neither interactive, nor fine-grained. While well suited to describe
quantitative aspects, they do not provide means of interaction between model and
student for training purposes.

3.2 A SESAM Model - The QA Model

In the following section, a model of a software development process, the Quality
Assurance model (QA model), is introduced. We will discuss the modeling
approach, basic model assumptions, and the metrics used. Details on conceptual and
technical aspects of the SESAM simulation system can be found in [11].

3.2.1 Educational Goals and Model Requirements

Before developing the new simulation model, the educational goals have been
elaborated. We found it most important to provide sufficiently realistic simulation
models so that students accept the system as a training environment. Additionally,
the educational success strongly depends on the fact that the student is not guided by

the system but that the student is forced to control the project interactively and based

on his or her own decisions. One result of our analysis was the derivation of the

following basic educational goals.

. The model should be flexible so that the results of different management
approaches can be compared. Students should develop their own solutions to
a given management problem instead of following a predefined course of the
project.

. The model should be fine-grained. The commands the simulation model
accepts should resemble those actions a project manager would take in
reality. Thus, experience gained during simulation can be transferred to real
projects.

. The model should cover all phases of software development. Particularly in
the later stages of a software project, significant deficiencies or failings can
and will be unveiled. Students should be confronted with these serious
problems. Only after they have experienced these difficulties, they have a
chance to avoid them in real projects.

Preliminary studies within the SESAM project proved it difficult to develop a
universal model that fits any particular software project independent of its size. The
QA model concentrates on small to medium size projects and covers all development
activities from requirements specification to product delivery. Software
development can be supported by quality assurance activities. The QA model
includes reviews of all documents as well as different kinds of tests. As the results of
the case studies suggest, demonstrating the costs and effects of quality assurance
activities is especially important for most SESAM users.

3.2.2 Model Assumptions

SESAM models contain known effects in software projects. The knowledge and the
assumptions captured in the QA model mainly stem from the software engineering
literature and from experts. The literature search focused on empirical studies. The
results of these studies help to describe the cause and effect relationships in a
quantitative way. A few model assumptions are now discussed.

(1) The productivity of the individual developer decreases as the size of the
project team increases since a growing amount of time is spent for
communication (e.g. in meetings). Brooks [12] demonstrated this correlation
first.

(2) Developers’ abilities and experiences fundamentally influence their
productivity as well as the quality of the results they produce [13]. This effect
is also reflected in different cost estimation methods, e.g. COCOMO [14].

(3) Reviews allow to find errors early in the development process. Completeness
and correctness of the reference documents significantly determine the
effectiveness of the review. Besides, reviews are influenced by other factors
like developers’ review experience or the effort devoted to the review
preparation [15], [16].

(4) The later an error that was introduced early in the development process is
uncovered, the higher are the costs to remove that error [17].

3.2.3 Modeling Concepts and Metrics

The selected dynamic effects have to be represented in the simulation model.
Therefore, relevant entities have to be identified and are further described by
attributes. Definition of a coherent metrics system then allows to reflect changes of
the actual project state in a predominantly quantitative way.

The basic approach taken for the QA model consists in modeling documents and
developers. Developers produce or examine or improve different types of software
documents depending on the task assigned by the project manager. When producing
software, the developers have to identify, to transform, and to document customer
requirements.

Documents. The software that is produced during the simulated project is
characterized by its contents, its size, and its quality. The content of the software is
modeled by requirements. These requirements are measured using the Function
Point method [18]. This approach allows to abstract from a specific project task,
while preserving the opportunity to evaluate the simulated results quantitatively. The
metric is sufficiently abstract for being suitable for all types of software produced
during a project. Thus, a uniform approach for modeling different types of
documents could be chosen.

The size of a document is given in number of pages or lines of code, respectively.
The size is derived from the number of adjusted function points (AFP) contained in
a document. Thereby, the languages or notations applied for the respective document
are considered. The guality of a document is primarily characterized by assigning
errors to the requirements contained in a document. We distinguish analysis, design,
coding, and documentation errors to focus on the time of fault introduction.
Modeling the documents’ quality is complemented by assigning further individual
quality attributes (like readability) where necessary.

Developers. Developers are the most important resource in software projects. Their
knowledge and their experiences significantly influence the project results.
Consequently, the description of the developers in the QA model also concentrates
on their abilities. First the experiences of the developers concerning different tasks
(e.g. specifying, coding, or reviewing) are rated at an ordinal scale (no/low/average/
high). Second the skills regarding various notations and languages are evaluated.
Thus, a detailed individual profile of each simulated developer is constructed.

The different model elements are then dynamically combined. If, for example, a
developer is asked to design the system, he or she searches for a reference document,
e.g. the specification. This information is taken as a basis, and is transferred into the
system design depending on the individual skills. In the QA model, this software
production task is described by the following three attributes: the productivity rate
(AFP/hour), the error rate (number of errors/AFP), and the loss quote (% [AFP]).
Software examination and correction is modeled in a similar way. These activities,
however, allow to detect and to remove errors instead of introducing new ones.

Finally, the actual development process is characterized by cost, effort, and
duration.

3.2.4 Model Parameterization

A significant part of the cause and effect relationships covered in the QA model is
quantitatively supported by the data provided in [6]. This data stems from observing
a broad range of software projects that are further distinguished by their project class.
All productivity information is expressed on a function point basis and also given for
individual activities. Additionally, Jones [6] provides data material concerning
errors, costs, and duration. Where necessary, other investigations have been taken
into consideration, e.g. [15] or [16].

Despite this approach, there is still a number of model aspects that cannot be
bolstered by empirical data. Therefore, quantification of the QA model is
complemented by estimated parameters that have to be validated, as more empirical
data is available. Simulation experiments, however, showed the model to produce
plausible results. Results of different simulation runs are presented and discussed in
[19].

4 How Project Management and Investigations can
Benefit from the SESAM System and Vice Versa

As mentioned before, the results of the two industrial case studies provided valuable
support when developing the QA model. Analysis of the data allowed to identify
important aspects that should be focused on in the model. The results, however, were
only used in a qualitative respect. Below, we give reasons for this situation.

We then analyse how empirical studies and model development have to be
coordinated to gain the highest possible mutual benefit. Especially, we discuss the
requirements for also using the quantitative results of empirical studies within a
simulation model.

The empirical data collected in the case studies could not be used to bolster the
QA model quantitatively. This has the following reasons: (1) SESAM models aim at
reflecting reality as closely as possible. Comprehensive models are best quantified
using investigations that cover a number of different aspects on a broad statistical
basis. This, however, could not be ensured by the studies described above. (2) We
could not measure all aspects covered in the QA model since one of the main
deficiencies of project management is that hardly any quantitative data were
available. (3) To ensure that the data material “fits” the model, the metrics defined
for the data collection should be the same as those used in the model. But, since at
least model development is a long term activity, the tasks did overlap. At the time the
empirical studies started, the metrics system has not been fully defined.

However, even without being quantitatively bolstered, the QA model is highly
suitable to call attention to the problems identified in our investigations. First of all,
using the SESAM simulation system helps (future) project managers to gain
experience without wasting time and money in real projects. Users can examine and
compare the overall project results depending on the management approach taken.
Since the QA model covers all software development activities, project managers
can learn about the effort needed for different project tasks (e.g. specification, user

documentation, or code reviews). Furthermore the students are confronted with
reality like problems, so that they become aware of the potential risks and learn how
to manage them adequately. Hence, they will get an impression of how important it
is to assess and monitor risks during the software project. They experience which
quantitative information is needed to be able to assess product quality and project
progress (e.g. to estimate the remaining effort or to come to decisions). Probably, this
quantitative data will then be collected in real projects they have to manage. Another
effect that cannot be taught by text books is to determine the adequate amount of time
required for project management tasks.

Specifically, the problem of quality assurance neglection identified in both
investigations is best addressed by the QA model since it emphasizes the effects of
quality assurance activities. If (future) project managers interactively simulate the
software project modeled by the QA model, they will experience the consequences
of neglecting quality assurance (e.g. skipping testing activities because of schedule
problems). They will learn how quality assurance influences the overall project
results.

We will now give an overview of how these tasks should be coordinated best to
gain mutual benefit. To ease planning of empirical investigations, the QA model can
be used as an input for defining the metrics applied for data collection, i.e. the metric
definitions can be matched to those used in the model. Vice versa, the QA model can
then profit by the results of these investigations since the collected data can
contribute to the validation of the QA model (e.g. the representation of dynamic
effects). Hence, empirical data will be provided for those parameters that could only
be estimated during model development. Figure 4.1 demonstrates how SESAM
models and empirical investigations should influence each other.

Metric system

SESAM model _ Empirical
(e.g. QA model) . investigations

Empirical data

Figure 4.1: Interrelation between SESAM models and empirical investigations

The success of the suggested coordination of SESAM models and case studies
mainly depends on the data available in the investigated software projects. Hence, to
ensure that all aspects defined in the case study can be measured, it is first
recommended to introduce a metrics program for the company in consideration
based on the metrics system used in the SESAM model, e.g. the QA model. Vice
versa, the collected data allow for tailoring the SESAM model to the company’s
environment. Adjusting the model to a specific environment is important for the
following facts. (1) Transfer of the experiences gained by simulations to practical
work is simplified if the model used for the simulation is able to reflect the student’s
reality. (2) If tailored quantitatively to a specific development environment, SESAM
models can support planning and control of projects developed in this environment.
(3) Furthermore it is then possible to investigate the effects of process changes before

introducing them in real software projects.

Thus, to develop realistic SESAM models we need more company specific data.
Vice versa, industry benefits from models tailored to their specific needs. Figure 4.2
demonstrates this interrelation.

Data for planning
and control

- l
SESAM model Metric program _ Industrial
(e.g. QA model) project management

Empirical data

Figure 4.2: Interrelation between SESAM models and software project management

5 Conclusions and Outlook

In this paper, we have presented a new approach for teaching software project
management. The basic idea is to provide reality-like experiences to (future) project
managers by simulating software projects. The development of simulation models
for the SESAM system highly benefits from empirical investigations. They are not
only hints to key problem areas that should be considered in the simulation model.
Empirical investigations do also provide quantitative data which are needed for the
simulation. New empirical investigations that collect the data already used in the
simulation model allow for tailoring the models to a specific development
environment. In return, specific SESAM models are highly suitable for teaching
project managers that work in that environment.

Implementation of a simulation model proved the approach to be suitable for
project management education [20]. Since our current models are based on average
industrial data, we now plan to collect specific industrial data in further empirical
investigations. Then it is possible to perform specific education programs as well as
to validate the simulation model in an industrial environment.

References

1. Wohlwend H, Rosenbaum S. Schlumberger‘s Software Improvement Program.
IEEE Transactions on Software Engineering (20), No. 11, 1994, pp 833 - 839

2. Lichter H, MandlI-Striegnitz P. Software-Projektmanagement in der Industrie —
Erfahrungen und Analysen. Bericht SL-2/96, Universitit Stuttgart, 1996, in
german

3. Drappa A. Erhebung von Metriken in industriellen Softwareprojekten.
Diplomarbeit, Universitét Stuttgart, 1993, in german

4. Jones C. Programming Productivity. McGraw-Hill, New York, 1986

5. Paulk M, Curtis B, Chrissies M, Weber C. Capability Maturity Model for
Software, Version 1.1. Carnegie Mellon University, 1993

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

Jones C. Applied Software Measurement. 2nd Ed, McGraw-Hill, New York,
1996

Mandl-Striegnitz P, Lichter H. A Case Study on Project Management in
Industry — Experiences and Conclusions. Proceedings of the European Software
Measurement Conference (FESMA), 06. - 08. May 1998, Antwerp, Belgium,
1998, pp 305 - 313

Abdel-Hamid TK, Madnick SE. Software Project Dynamics: An Integrated
Approach. Prentice Hall, Englewood Cliffs, 1991

Levary RR, Lin CY. Modelling the Software Development Process using an
Expert Simulation System Having Fuzzy Logic. Software — Practice and
Experience (21/2), 1991, pp 133 - 148

Madachy R. System Dynamics Modeling of an Inspection-Based Process.
Proceedings of the 18th International Conference on Software Engineering, 25.
- 29. March 1996, Berlin (Germany), 1996, pp 376 - 386

Melchisedech R, Deininger M, Drappa A, et al. SESAM — A Software
Engineering Education Tool Based on Graph Grammars. Bulletin of the
European Association for Theoretical Computer Science (EATCS), No. 58,
1996, pp 198 - 221

Brooks FP. The Mythical Man-Month. Datamation, 1974, pp 44 - 52.
Sackman H, et al. Exploratory Experimental Studies Comparing Online and
Offline Programming Performance. Communications of the ACM (11), No. 1,
1968

Boehm BW. Software Engineering Economics. Prentice Hall, Englewood
Cliffs, 1981

Weller EF. Lessons from Three Years of Inspection Data. IEEE Software (10),
No. 5, 1993, pp 38 - 45

Porter AA, Siy HP, Toman CA, et al. An Experiment to Assess the Cost-
Benefits of Code Inspections in Large Scale Software Development. IEEE
Transactions on Software Engineering (23), No. 6, 1997, pp 329 - 346
Ludewig J, Frithauf K, Sandmayr H. Software-Priifung. Eine Anleitung zum
Test und zur Inspektion. 2. Auflage, vdf Hochschulverlag, Ziirich, 1995, in
german

International Function Point Users Group (IFPUG). Function Point Counting
Practices Manual, Release 4.0, 1994

Drappa A, Ludewig J. Quantitative Modeling for the Interactive Simulation of
Software Projects. Proceedings of the Software Process Simulation Modeling
Workshop ProSim 98, 22. - 24. June 1998, Silver Falls, OR (USA), 1998
Deininger M, Schneider K. Teaching Software Project Management by
Simulation — Experiences with a Comprehensive Model. In: Diaz-Herrera, J. L.
(Hrsg.): Software Engineering Education. Proceedings of the 7th Conference on
Software Engineering Education, January 1994, San Antonio, Texas, USA.
Springer (Berlin), 1994, pp 227 - 242

