
,

Maitz Sctr'izIer , Hcxst Lid1ter

Department of Computer Science

Aachen Technical University
D-52056 Aachen

{moritz, lichter}@informatik.rwth-aachen.de

Abstract

Developing program farnilies based on object-oriented framework technology is promising. But, testing the
resulting mernbers of the program farnilies is difficult and time consurning. We propose a new integrated a p-
proach focussing on this problem. First, we explain the concepts of program farnilies and product lines. Then
we discuss the problem that we try to address. In the main part, we introduce our testing approach by descri b-
ing the central concepts and by presenting an exarnple. We close by discussing related work and outlining the

state of our work and future plans.

Key Words: Testing, Framework, Program Family, Object-Orientation, Test Bench

Program Famtlles and Product
Lines

tion domain. A framework is instantiated to a cca-
crete application by subclassing and parameterising
the framework. Object-oriented frameworks allow
reusing the core parts of the functionality and arcli-
tecture, and actually this technique makes it possible
to conserve partially developed programs which are
the basis of any program family. More information
on framework development and examples of su-
cessful frameworks can be found e.g. in Lewis et al.

(1995).

1

Testing Program Faml11es -The
Problern

2

The development of program families has obvious
advantages for the rapid development of new })0-
grams. There are also advantages regarding the
maintenance of the different family members, if you
consider their common assets and especially their
core architecture. In spite of these advantages, some
problems are still not satisfactorily solved for pD-
gram families. A major problem remains the efficient
testing of all program family members. Usually, test
cases have to be developed anew for every program
family member. This seems to be contradictory to
anyone's first impression, if you think about the p-
tential to reuse test cases a cross the different mm-
bers. A reason for this is the lack of a theory for
testing program families. In practice this evidences
in the lack of a dedicated requirement for building
testable systerns in software projects, when program
families are developed. In contrast to this, it should
be obvious that the members of a program familyare
in special need for testing, with every member p-

According to Parnas (1976), a program family
evolves over time from a successful program not only
by developing improved or adapted maintenance
versions, but also by developing variants of the po-
gram for other platforms, different application areas
or user needs.

A typical example of a program family is a sof-
ware development environment, which is usually
available at different platforms supporting various
programming languages. In consequence, the mm-
bers of a program family have a great number of
properties in common. Certainly the most important
property of these is the core architecture.

The notion of a program family is closely related
to the notion of a product line (described in SEl,
1996) which is gaining considerable popularity in the
software community in recent years. But while in
practice the program familyapproach is of ten used to
realize a product line, this is not an essential premise
for a product line. A product line could also be reå-
ized as a set of completely different prograffis. On the
other hand, a product family can be used as basis for
various products that are not at all related in a certain
product line.

From the technical point of view object-oriented
technology is especially suited for the development of
program families. Thereby, object-oriented fraIB-
works playan important role. According to Ziilligb-
ven (1998), a framework defines an architecture that
consists of class hierarchies and offers a general and
generic solution for related problems in an applia-

1

test.tentially opa'ating in a different context.
Existing testing techniques and methods in }i.

erature (c.f. Beizer, 1990, Myers, 1979) do not offer
much help for testing program family members. On
oDe hand, there are white-box testing techniques that
suggest the development of test cases on basis of
explicit features in the program code. But this makes
theffi extremely sensitive to small, but in a program
family inevitable, changes to code. In consequence of
this white-box testing is often applied only info-
mally during development by the programmer for
gaining confidence in the developed code. Af te
wards, the developed test cases often are thrown
away, because it is too much work to keep theffi and
adapt theffi for another program family member.

On the other hand, there are black-box testing
techniques that can only be used when at least a
single subsystem or even the whole system is cm-
pleted. At this stage, it is possible to test the program
or subsystem as a whole, verifying its external ~-
haviour using specification-based test cases. UnfCD-
tunately, those test cases are sensitive to any change
in the external behaviour of a program what usually
creates the requirement to develop those test cases
anew for every program family member. Ifblack-box
testing is based on commercial capture-replay tools,
the captured test cases can already break from small
cosmetic changes in the graphical user interface. For
example, some of those tools base their test cases on
certain screen resolutions what forces theffi to break,
when someoDe changes the monitor settings.

Figure A program family without and with test bench

As shown schematically in figure l, the original
program needs to be modified to increase its "te&
ability" by means of a test bench. When it is clear
what is required for the test bench, we can make this
"testability" an explicit requirement for the pro-
gram's development process. In particular, design
and implementation will be guided by this requB-
ment, resulting in a program that is already prepared,
having the necessary "connection points", for the
program family specific test bench.

Because the development of a dedicated test
bench for an individual program certainly requires
additional development effort, we believe that its
construction for the members of a program family
will be especially lucrative, as can also be seen in
figure l. Because all members in a program family
have the same core architecture, the reuse potential
a cross different family members is considerable. In
consequence of that, the test bench provides a way to
test the members of a program family more eff-

ciently.

3 The Test Bench Approach

4 Key Concepts of a Test Bench

In the following sections we introduce the key
concepts of our approach. In section 4.1 we explain,
howatest bench and the program under test are
related to each other. Our approach is based on so
called buih-in test cases. This clearly influences the
architecture of a test bench and its connection to the
program under test. Section 4.2 describes our COD-
structive approach for increasing tegability by means
ofbuilt-in test cases and a test bench. Finally, section
4.3 gives an example for the developed testing teh-

nique.

Taking a look on development projects in the
classical engineering disciplines, you will recognise
that there an important part of development work is
spent on creating an appropriate test environment for
the developed product. For example, in automotive
engineering when engineers develop a new car ~
gine they devote a considerable part of their entire
work to the creation of a test bench for this particular
engine. This practice allows theffi to adapt this test
bench for a newengine and the parameters, they
want to exarnine afterwards. Vice versa the engine
has to provide the "connection points" for using the
test bench.

Our goal is to transfer this engineering approach
into the area of software development -particularly
the development of program farnilies. We believe, a
software test bench which aids in autornatic regre-
sion testing can improve the test process for the di-
ferent program family mernbers and make it consi-
erably more efficient. In contrast to the engine test
bench mentioned above, the most important problem
to be solved in this context is not the architecture of
the software test bench itself, but the provision of
appropriate connection points in the program under

4.1 The Test Bench Architecture

As mentioned above, object-oriented domain
frameworks, implementingthe common functionality
and architecture of an application domain, are es~
cially weIl suited to capture the core parts of a pD-
gram familyarchitecture. So our approach focuses on

2

cording to the observer pattem in the domain fram-
work, while the class TestSui te in the test bench
framework provides basic functionality for a suite of
built-in test cases. The classes TObservable,
TObserver and ObserverTest are implemented
in the domain framewor~ specific part of the test
bench. TObservable and TObserver extend the
functionality of the classes Observable and Ob-
server with inspection methods that are needed for
testing. Furthermore, ObserverTest, derived
from Test-Sui te, comprises the built-in test cases
for the collaboration under test. In fact it represents
the connection point for the test bench framework.
The derived classes Counter and respectively
CountObser-ver are the corresponding impe-
mentations according to the observer pattem in the

application.

reaction, when they recognize this new situation.
Of course, to implement those test cases, it is nc-

essary that the ObserverTes t object can inspect
certain aspects of the current state of the Counter
and CountObserver objects. They have to imp~
ment additional methods which return for example
the information, they provide for observation or they
observe. This information can then for example be
compared to determine the result of a test case. In
figure 3 this additional functionality is introduced by
the framework specific test bench classesTObserv-
able and TObserver. The "T" indicates that they
are modified versions of the original framework
classes Observable and Observer to improve
their testability .The modifications are mainly due to
introducing additional inspection methods that have
to be impemented for testing this collaboration.

Related Work5
:'::::::::::::

Testsuite Observer Observable

~~Observer
Test ~ TObservable

Framework specific Test Bench

Count
Observer

Counter

Application

Figure 3: Class diagram of the observer example

Most work in the current literature on testing 00-
ject-orienterl software focuses on testing individual
classes. In first place, these approaches can be diff«-
entiaterl through their respective theoretical roots.

In one area there are some interesting techniques
for developing test cases baserl on the abstract data
type (ADT) nature of an object using in most cases
algebraic specification as a basis (c.f. Doong &
Frankl 1994). Other approaches originate from a
more practical view, considering the implementerl
object. Those testing techniques consirler the object
as a state machine, where the objects intemal data
structure captures the actual state and its methods
represent the transitions of the state machine. The
different work in this area is mainly distinguisherl by
the precision of the underlying state model, see for
example Turner & Robson (1993) and Hoffman &
Strooper (1995). While all those techniques have
their benefits for testing the correctness of individual
classes, theyalllack a consequent strategy for testing
colIaborating classes. Even worse, to the bigger part
theyare restricterl to certain kinds of classes.

Usually, when it comes to integrate objects into
colIaborating clusters, consisting of two or more
classes, most of the published techniques suggest, if
at all, switching to specification baserl black-box
testing at system level. So there is another approach
proposing the development of test cases baserl on use-
cases. Jacobson's Objectory design methorl contains
an example for this approach (c.f. Jacobson 1994).
Another interesting approach (c.f. Jorgensen &
Erickson, 1994), originates from a critical view on
the many fold attempts to transfer classical structure-
baserl testing techniques to the context of object-
orienterl programs. It proposes developing test cases
from sequences of methorl invocations that are inn.
aterl by events at the system or subsystem level. As
mentionerl above, test cases developerl at system level

An important fact to notice here is that the class
ObserverTest does initially not need to know the
classes Counter and CountObserver, imple-
mented in the application. Before the test cases i1-
plemented by ObserverTest can be executed, an
object of the class ObserverTest has to be in-
stantiated and provided with the names of these CO-
crete classes. Afterwards this object uses those names
to instantiate representative objects for the given
derived classes by means of meta-information (e.g.
using the reflection API in Java).

The test cases executed by the ObserverTest
object range from simple, but also less interesting
ones, to more complex cases. A simple one is for
example the addition of a new observer to the b-
served model object. The expected outcome in this
case is that thereafter the registrated observer object
is part of the model objects data structure. A change
to the model object initiates a more complex test case
that has to be followed first by the notification of all
registered observer objects and their appropriate

4

are no solution for testing the various members of a
program family. So our approach tries to bridge the
gap between different techniques for testing classes
and on the other hand complete prograffis.

Our approach was certain1y influenced by the
work of Beck & Gamma (1998) which doesn't pD-
vide a specific technique for developing test cases,
but proposes a simple Java testing framework (JU-
nit). The philosophy behind this framework recm-
mends that developers implement test cases for ev-
rything, they assume to be importallt, during their
actual work on the program. Later on, the framework
provides the necessary functionality to automatically
execute those test cases, leading to improved quaiity
of the final program. Actually, we are trying to use
this framework in our prototype, but definitdy this
simple framework has to be adapted and extended for
our approach.

6 State of Work

After having done some conceptual work, we
have currently implemented in Java a prototype for
the above mentionedexample. It shows the central
components and especially the built-in collaboration
based test cases. We are using the prototype to ec:-
amine on one hand the technical difficulties of such
an implementation. On the other hand, we want to
investigate the possibilities to develop test cases 8-
cording to our approach. In order to make statements
about the usefulness of our testing approacq we need
much more experience. We hope to gain this expti;.
ence by experimenting with the pototype.

Because the first results are proroising, we want
to extend this approach on other interesting patterns
of collaboration based on the experience gained from
the prototype. In the end. we plan to instrument a
complete framework with those built-in tests (e.g. the
framework JHotDraw, designed to develop graphical
editors). At the moment we are implementing in
Java, so another aspect of our work is the question, if
our approach is tied to certain language features or if
it can easily be adapted for other object-oriented
languages like Smalltalk or Eiffel.

Doong, R.-K., Frankl, P. G. (1994): The ASTOOT
Approach to Testing Object-Oriented Programs,
ACM Trans. on Software Engineering and Meh-
odology, vol. 3, no.2, pp. 101- 130, Apri11994.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.
(1995): Design Patteros -Elements of Reusable
Object-Oriented Software, Addison- W esley ,
1995.

Helm, R., Holland, I. M., Gangopadhyay, D. (1990):
Contracts: Specifying Behavioral Compositions in
Object-Oriented Systems, ACM SIGPLAN N>-
tices, vol. 25, no.10, pp. 169- 180, October
1990.

Hoffman, D., Strooper, P. (1995): The Testgraph
Methodology: Automated Testing of Collection
Classes, JOOP, vol. 8, pp. 35- 41, Novem-
ber/December 1995.

Jacobson, I. (1994): Object-Oriented Software Eng-
neering, Addison-Wesley, 1994.

Jorgensen, P. C., Erickson, C. (1994): Object-
Oriented Integration Testing, Comrnunications of
the ACM, vol. 37, no.9, pp. 30- 38, September
1994.

Lewis T. et al. (1995): Object Oriented Application
Frameworks, Manning Publications Co., 1995.

Myers. G. J. (1979): The Art ofSoftware Testing-
John Wiley & Sons, 1979.

Paroas, D. L. (1976): On the Design and Devel<p-
ment of Program Families, IEEE Transactions on
Software Engineering, vol. 2, no. l, pp. 1- 9,
March 1976.

Pree, W. (1997): Komponentenbasierte Softwac-
entwicklung mit Frameworks, dpunkt Verlag,
1997.

SEl (1997): Product Line Practice Workshop Report
'96, Caroegie Mellon University, Technical ~-
port CMU/SEI-97- TR-OO3, June 1997.

Turner, C. D., Robson, D. J. (1993): The Testing of
Object-Oriented Programs, University Durham,
Technical Report TR-13/92, February 1993.

Ziillighoven, H. (1998): Das objektorientierte Ko-
struktionshandbuch nach dem Werkzeug Mat-
rial-Ansatz, dpunkt Verlag, 1998.References

Beizer, B. (1990): Software Testing Techniques, 2nd
ed., International Thomson Computer Press,
1990.

Beck, K., Cunningham, W. (1989): A Laboratory For
Teaching Object-Oriented Thinking, ACM
SIGPLAN Notices, vol. 24, no.10, pp. I. 6, (k.
tober 1989.

Beck, K., Gamma, E. (1998): Test Infected: PD-
grammers Love Writing Tests, Java Report, vol.
3, no.7, pp. 40- 50, July 1998.

5

