
Test Automation for Object-Oriented Frameworks

Moritz Schnizler, Horst Lichter
Department of Computer Science

Aachen Technical University
D-52056 Aachen

{moritz, lichter}@informatik.rwth-aachen.de

Key Words: Testing, Object-Orientation, Collaboration, Framework, Program Family

1 Introduction
Testing is one of the most important activities in

the software development process. Only a thoroughly
tested program will possibly fulfill the user's expec-
tations. Even a systematic and careful development
process can not prevent the need for final testing, see
for example [Dyer 1992]. Consequently a product has
to pass through an appropriate and carefully planned
test, before it is released to the public.

Test Automation has the benefit that test cases
once developed, can be reused in an eventual regres-
sion test. On one hand, this is essential during product
maintenance, when corrections or changes have been
made and developers have to verify that nothing else
was broken. On the other hand test automation is
useful for testing program families which are recently
gaining importance in form of product lines [Weiss &
Lai 1999].

2 Framework Test Bench
Program families, as defined by [Parnas 1976],

are a set of programs, where it is worthwhile to first
study their common properties, before determining
the special properties of the individual family mem-
bers, also called program variants. In other words, the
members of a program family share the same imple-
mentation core, but actually represent program vari-
ants for e.g. different platforms, application areas and
customers.

Object-oriented frameworks are an ideal means
for developing program families. Actually an object-
oriented framework represents an "abstract design"
[Johnson & Foote 1988]. It comprises many design
decisions and can be extended into a complete appli-
cation. Today many projects use object-oriented
framework technology for the development of pro-
gram families, see for example [Bäumer et al. 1997].

While the use of framework technology increases
productivity, testing the individual members of a
program family remains laborious. So individual
members of a program family are tested with limited
or no reuse of test cases. Considering that all mem-
bers of a program family have the same common
core, this seems to be unnecessary. Test cases, which
retest the common functionality of different family
members, should be easily reusable form one member
to the next.

To tackle this problem, we propose the concept of
a test bench for program families which is adapted to
a particular program family. Comparable to test
benches from other engineering areas, e.g. for en-
gines in automotive engineering, the test bench auto-
mates testing the common parts of a program family.
Furthermore the test bench can be extended for the
requirements of a particular program variant. This test
bench itself is based on a test bench framework, see
figure 1, containing the essential infrastructure for
test automation. To adapt this test bench framework
to the program family under test, test cases, which are
specific for the program family, have to be imple-
mented on top of this framework.

Program
Variant A

Program
Variant B

Program
Variant C

Program
Variant D

Test
Bench
Framework

Program
Variant A

Program
Variant D

Program
Variant B

Program
Variant C

Family Specific
Part of Test Bench

Figure 1 Program Family without/with Test Bench

Because the common properties of a program
variant are implemented using framework technol-
ogy, technically the test bench is adapted to the do-
main-specific framework beneath the program family.
In fact a framework specific test bench is realised. If
a program family is based on more than one domain
framework, their test benches can be combined, as-
suming they are based on the same test bench frame-
work.

Because the test bench concept dramatically im-
proves reuse of test cases, it allows thorough regres-
sion testing what is important for program families
and frameworks. Actually a test bench serves two
purposes: First of all, it is impossible to test generic
elements in a framework having no concrete imple-
mentation. Secondly developers will introduce new
errors when they adapt generic elements for their
purposes. Both problems are alleviated, if it is possi-
ble to make a regression test of any concrete adapta-
tion.

lichter
Typewritten Text
Proc. of First International Workshop on Automated Program Analysis, Testing and Verification, ICSE 2000, Limerick, Ireland.

3 Test Cases for a Test Bench
A main issue with this approach is the question,

what kinds of test cases are best suited for integration
in the test bench? In this section we propose some
properties, such test cases should have, and take a
respective look at current testing techniques for ob-
ject-oriented software.

3.1 Test Case Properties

We identified the following properties to be im-
portant for test cases, which can be integrated in an
appropriate test bench:
• Abstraction: We can not test everything. Test

cases should be focussed on the externally visible
behaviour of the framework under test.

• Relevance: While test cases should abstract from
details, they should still be relevant enough to
adequately test the framework's functionality.

• Stability: Test cases should be robust not break-
ing from small changes in the implementation.
Otherwise the test bench approach would be too
costly.

• Scalability: Frameworks can consist of a few
classes solving one problem or hundreds of
classes addressing various tasks. We need test
cases for any granularity and want to combine
them, if it is necessary.

• Universality: If we want to test some functional-
ity, it must be possible to develop appropriate
test cases. It is not tolerable that we can not de-
rive test cases in some situations.

3.2 Brief Look at Current Techniques

Because this approach concentrates on testing
object-oriented frameworks, we want to keep those
issues in mind and take a brief look at current tech-
niques for testing object-oriented software, we found
in literature. Most work about testing object-oriented
software concentrates on testing individual classes.
There have been successful attempts to test individual
classes using techniques from procedural program-
ming [Fiedler 1989], based on state machines [Turner
& Robson 1993, Hoffman & Strooper 1995, Binder
1999] or the abstract data type nature of objects
[Doong & Frankl 1994].

All those techniques have in common that they
view a single class as the central entity for testing.
Within the scope of classes they produce stable and
abstract test cases based on a class interface. But all
techniques do not scale up well for interacting clus-
ters of classes, because the underlying models get too
complex. Another drawback of these techniques is the
fact that they are usually restricted to certain types of
classes and are therefore not universal.

Something we felt to be missing, are techniques
for object-oriented integration testing. We found only
one approach [Jorgensen & Erickson 1994] to test a
complete subsystem that is not limited to a black-box

test of the GUI. This approach is based on so called
atomic system functions (ASF) which can be roughly
described as the path of method calls, caused by some
event at the system border and terminated by some
output of the system.

Starting from the system border, the developed
test cases are more abstract and universal than those
at class level. But the implementation of the system is
still considered, making those test cases relevant for
testing critical functionality. Subsystems do not need
a GUI for testing, making this approach quite scal-
able. A drawback is the stability of test cases, because
they are tied up between the borders of the system
and the internal implementation.

4 Testing Collaborations
In this section we will first explain our motivation

and basic ideas for developing test cases from object-
oriented collaborations, and subsequently how role
modelling supports this effort. Afterwards we will
describe a testing process for our approach and dis-
cuss where tools can help in automation of the in-
volved tasks.

4.1 Collaborations and Testing

When proposing their ASF technique [Jorgensen
& Erickson 1994] argue that traditional software
development by functional decomposition stresses
structure over behaviour which is one of the central
elements of the object-oriented paradigm. They iden-
tify this as source for many problems arising, when
traditional testing techniques are adapted for object-
oriented systems.

While we also believe that it makes usually no
sense to use traditional testing techniques for object-
oriented systems, we have identified a source of
problems in the object-oriented paradigm itself. As
[Booch 1994] illustrates, object-orientation stresses
decomposition into objects over algorithmic decom-
position. As a matter of fact, object-oriented design
methods allow for detailed description of structural
relationships, for example using class diagrams. On
the other hand the behaviour of a single object is fully
specified by its class. But the collective behaviour of
a group of objects comes in second position, if it is
explicitly considered at all. We call such collective
behaviour of a group of objects collaborations fol-
lowing the UML terminology, [Booch 1994] calls
them mechanisms.

The statement, that collaborations are often not
adequately specified, is supported by observations,
which have been made in the maintenance phase of
object-oriented systems [Wilde et al. 1993]. They
identified distribution of program function across
several classes, what is natural for object-oriented
software, without proper documentation as a difficult
problem that makes programs hard to understand.
Because a behavioural description is the foundation
for any test, consequently it also makes programs
hard to test.

Our approach is to base tests on those collabora-
tions that implement the essential functionality of an
object-oriented system. In the case of a framework,
this means developing test cases for those collabora-
tions that define the externally visible and usable
functionality of the framework. In short words, the
extension points of the framework that can be used or
extended by a program implemented on top of the
framework, see also [Riehle & Gross 1998].

Behavioural design patterns, like for example Ob-
server or Chain of Responsibility [Gamma et al.
1995], describe collaborations which have appeared
valuable in various contexts. Collaborations can be
composed like design patterns to achieve even more
comprehensive collaborations. This is also possible
for the respective test cases which can be combined
to test the newly composed collaboration.

We believe using collaborations as basis for test
cases gives us enough flexibility to integrate them
into a test bench. They fulfill the following proper-
ties:
• Abstraction: They are well suited for abstraction

from details, since they can be based completely
on interfaces without touching implementation
details.

• Relevance: Because we concentrate on externally
visible collaborations, they are by definition
relevant to adequately test the framework’s func-
tionality.

• Stability: Depending on the level of abstraction
used to describe collaborations, they are more
robust to change than test cases for individual
classes.

• Scalability: As mentioned above, collaborations
and their test cases can be composed.

• Universality: Collaborations are the essence of
object-oriented systems.

4.2 Separation of Concerns

As [VanHilst & Notkin 1996] state, appropriately
chosen collaborations encapsulate fewer design deci-
sions than classes and are therefore more stable with
respect to evolution. But how do we find appropriate
collaborations? Similar to [Riehle & Gross 1998] we
believe that classes are not well suited to describe
collaborations. A class implements the behaviour of a
complete object that usually participates in more than
one collaboration. For example in figure 2 object m
acts as element in a list of data and as subject in an
implementation of the observer pattern. It follows we
need a higher level of abstraction than offered by
classes to describe the participation of an object in
different collaborations. We found role modelling, as
described by [Reenskaug et al. 1996], is a good way
to separate concerns - in this case collaborations –
which are mangled in one class.

A role model describes a structure of collaborat-
ing objects with their static and dynamic properties.

A role defines the position and responsibilities of an
object that takes part in such a structure of collabo-
rating objects. Role modelling is actually an abstrac-
tion process suppressing irrelevant objects and un-
necessary details of objects. An object's role in con-
text of a given collaboration, described by a role
model, specifies only the necessary capabilities of the
object in the given context.

c/collection: List

obs1/observer: View

m/element,
subject: Data

List of Data

Observer Pattern

Figure 2 Three objects in two collaborations

4.3 Example

Figure 3 shows the UML collaboration view of a
role model describing the observer design pattern, as
shown in figure 2. The role model abstracts from
additional functionality of the object playing the
subject role and possible other objects collaborating
as observers for the same data. On the reverse side
the collaboration view of the role model contains the
information, necessary to describe the message se-
quence for updating all observing objects, in case the
observed subject is changed.

observersubject

1: change()

2: notifyObservers()

4: getData()

3: update()

Figure 3 Collaboration view of role model

Using the information from this diagram, test
cases can be defined. As shown in figure 3, the trig-
ger to start the update collaboration is the method
change() that has to be implemented by the object
playing the subject role. The test case is executed
invoking this method for an object playing the subject
role in a concrete instantiation of the role model, as
shown in the UML object collaboration diagram in
figure 4.

Because an abstract role model is not executable,
we need to create instances of concrete objects for
classes implementing the specified roles. For example
in figure 4, the situation of one object of the class

Data playing the subject role and three prototypical
objects of the class View playing the observer role is
shown. Other test cases may require a different set up
of object instances.

obs2/observer:
View

obs1/observer:
 View

m/subject: Data

obs3/observer:
View

1: change()

2: notifyObservers()

6: getData()

7: getData()

8: getData()

3: update()

4: update()

5: update()

Figure 4 Concrete instantiation of role model

To complete the test case, we need to determine
an expected result to compare it with the actual result
achieved by test execution. There are various possi-
bilities to do so, depending on the goal of testing. An
expected result can be defined by means of structural
changes, for example the creation of a new observer
object, changes in state of participating objects or
parameter values for involved method calls. For the
given example we could check, if all participating
objects represent the same information after an up-
date. Because sometimes we need to determine the
state of an object, the code under test has to be ex-
tended by additional inspection methods.

However, as can be seen in figure 3, the collabo-
ration view of the role model usually gives not
enough information to specify expected results and
therefore complete test cases. On one hand, we could
use informal descriptions to substantiate the role
model, but this would make tool support for test case
generation difficult. Contracts [Helm et al. 1990] are
a more formal alternative allowing the detailed speci-
fication of obligations between collaborating objects.
Another possibility is the use of the UML object
constraint language (OCL) [OMG 1999] to enrich the
role diagrams with additional information.

4.4 Process and Tools

In this section we explain our process to develop
test cases for collaborations and the possibilities for
tool support of the involved tasks. As shown in figure
5, the source code of the program or framework un-
der test is the starting point for developing collabora-
tion based test cases. In the first step the developer
adds information about the roles a class implements
to the source code. Such a role description must indi-
cate, what operations of the class belong to the role
and what are the other roles, it collaborates with. For
example [Riehle 2000] gives some pseudo-Java nota-
tion for documenting such role models that can be
adapted for this purpose. This information is inte-
grated using structured comments, leaving the Java
code semantically unchanged. As discussed above, it
is also necessary to improve the testability of the code
by implementing additional inspection methods to
ease the realisation of more comprehensive test cases.

In a second step the extractor tool uses the given
description of a role models static structure to extract
only those methods of a class which are relevant to its
respective role. Additionally, it analyses the code of
the implemented methods collecting information
about its dynamic behaviour – its collaborations. Both
types of information are combined into an internal
representation that can be used by other tools. For
example in a third step, a visual editor allows visuali-
sation of the extracted role model using for example
UML representing its static structure and its collabo-
rations. Further it allows the definition of additional
constraints for the represented collaborations using
OCL or a similar enhancement to the UML easing the
development of test cases.

Test Case
Code

Role Model
Extractor

Annotated
Source Code

Internal
Representation
(Role Model +
Collaborations)

Visual Editor Test Case
Generator

Developer

Test
Framework

(JUnit)

dependent on

1

2
3

4

Tool
Input/
Output

n
step

Figure 5 Testing Process

Another tool that uses the internal representation
of the role model is the test case generator. In a fourth
step, it assists in the definition of test cases for the
different collaborations of a given role model. For
example, this tool suggests available collaborations,
for which the tester can then create test cases by pro-
viding appropriate preconditions and expected results.
Especially this tool assists in the set up of the neces-
sary configuration of object instances for a specific
test case. The test case generator is closely related to
the test execution framework that finally executes the
developed test cases. It generates Java code for the
test cases and additional set up code according to the
extension points of that framework.

One possibility for a test execution framework is
the JUnit testing framework [Beck & Gamma 1998]
that offers a simple, but flexible approach to imple-
ment and execute tests. In fact, in the end this frame-
work is the test bench, mentioned above, while the
test cases developed according to this process and
which make finally part of the system under test as
executable code are the program or framework spe-
cific part of the test bench.

5 Conclusions and Outlook
In the preceding sections, we showed that test

automation makes sense for the development and
maintenance of programs, and especially for program
families. For this reason, we proposed our model of a

test bench for object-oriented frameworks, the basis
of program families.

Following the need to realise test cases for a test
bench, we examined the applicability of current tech-
niques for testing object-oriented software. We
showed that most of them depend too much on im-
plementation details and scale up badly for clusters of
collaborating classes. In contrast, we proposed the
development of test cases focussing on object-
oriented collaborations which can be specified using
role modelling. We showed, how role modelling can
be used to abstract from too many details and to sepa-
rate concerns between different collaborations. While
we showed that it is generally possible to develop test
cases using role models of collaborations, it was also
mentioned that, especially for automation of test case
generation, more powerful means to specify obliga-
tions between roles have to be used. Currently we are
evaluating different possibilities for introducing ad-
ditional constraints into role models of collaborations,
making them more suitable for test case generation.

Finally we described a process and associated
tools for test case development and test automation
according to our approach. After implementing some
experimental versions of the test bench approach
using the JUnit [Beck & Gamma 1998] testing
framework as test execution framework, we are cur-
rently developing prototypes of the mentioned role
model extractor and test case generator tools to gain
more knowledge about the advantages and limitations
of our approach.

References

Bäumer, D., Gryczan, G., Knoll, R., Lilienthal, C.,
Riehle, D., Züllighoven, H. (1997): Frame-
work Development for Large Systems, Com-
munications of the ACM, vol. 40, no. 10, pp.
52 - 59, October, 1997.

Beck, K., Gamma, E. (1998): Test Infected: Pro-
grammers Love Writing Tests, Java Report,
vol. 3, no. 7, pp. 40 - 50, July 1998.

Binder, R. (1999): Testing Object-Oriented Systems:
Models, Patterns, and Tools, Addison-Wesley,
1999.

Booch, G. (1994): Object-Oriented Analysis and
Design with Applications, 2 ed., Benjamin
Cummings, 1994.

Doong, R.-K., Frankl, P. G. (1994): The ASTOOT
Approach to Testing Object-Oriented Pro-
grams, ACM Trans. on Software Engineering
and Methodology, vol. 3, no. 2, pp. 101 - 130,
April 1994.

Dyer, M., The Cleanroom Approach to Quality Soft-
ware Development , Wiley,1992.

Fiedler, S. P. (1989): Object-Oriented Unit Testing,
HP Journal, vol. 40, no. 2, pp. 69 -74, April,
1989.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.
(1995): Design Patterns - Elements of Reus-
able Object-Oriented Software, Addison-
Wesley, 1995.

Helm, R., Holland, I. M., Gangopadhyay, D. (1990):
Contracts: Specifying Behavioral Composi-
tions in Object-Oriented Systems, ACM SIG-
PLAN Notices, vol. 25, no. 10, pp. 169 - 180,
October 1990.

Hoffman, D., Strooper, P. (1995): The Testgraph
Methodology: Automated Testing of Collec-
tion Classes, JOOP, vol. 8, pp. 35 - 41, No-
vember/December 1995.

Johnson, R. E., Foote, B. (1988): Designing Reusable
Classes, JOOP, vol. 1, no. 2, pp. 20 - 30; 35,
June/July, 1988.

Jorgensen, P. C., Erickson, C. (1994): Object-
Oriented Integration Testing, Communications
of the ACM, vol. 37, no. 9, pp. 30 - 38, Sep-
tember 1994.

OMG (1999): Unified Modeling Language Specifi-
cation, Version 1.3, June 1999.

Parnas, D. L. (1976): On the Design and Develop-
ment of Program Families, IEEE Transactions
on Software Engineering, vol. 2, no. 1, pp. 1 -
9, March 1976.

Reenskaug, T., Wold, P., Lehne, O. A. (1996):
Working With Objects, Manning Publications
Co., 1996.

Riehle, D., Gross, T. (1998): Role Model Based
Framework Design and Integration, Proceed-
ings OOPSLA '98, pp. 117 - 133, ACM Press,
1998.

Riehle, D. (2000): Framework Design - A Role Mod-
eling Approach, PhD. Thesis, ETH Zürich,
2000.

Turner, C. D., Robson, D. J. (1993): The Testing of
Object-Oriented Programs, University Dur-
ham, Technical Report TR-13/92, February
1993.

Weiss, D. M., Lai C. T. R. (1999): Software Product-
Line Engineering - A Family-Based Software
Development Process, Addison Wesley, 1999.

Wilde, N., Matthews, P., Huitt, R. (1993): Maintain-
ing Object-Oriented Software, IEEE Software,
vol. 10, no. 1, pp. 75 - 80, January 1993.

VanHilst, M., Notkin, D. (1996): Using Role Com-
ponents to Implement Collaboration-Based
Designs, Proceedings of OOPSLA '96, 1996.

