New Wave Searchables: Changing the Paradigm of

Internet-Scale Search
Axel Uhl and Horst Lichter

Abstract— Internet search engines today are facing prob-
lems in keeping up with the pace of web growth. Two facts
are responsible: bandwidth bottlenecks due to central in-
dexing; deep web (or invisible web) contents that are inaccessi-
ble for search engines. The New Wave Searchables framework
provides an approach that can solve these problems.

Keywords— Internet search, distributed information re-
trieval, software architectures, modeling, searchability,
UML, New Wave Searchables

I. INTRODUCTION

ODAY’S Internet search engines compute their cen-
tralized index by crawling web contents. This ap-
proach implies two major problems:
 large and relevant parts of the Internet content are not
reachable by crawling and thus remain inaccessible for
search engines [1]
o bandwidth and its growth impose harsh limits on cen-
tral index currency and indexable share of vastly growing
available information

Other publications support these findings, e.g. [2]:
“...search engines are increasingly falling behind in their
effort to index the web...”

The obvious solution is a distributed approach to infor-
mation retrieval that better leverages the available band-
width in order to achieve higher index currency and im-
proved coverage, including deep web contents. Forward
knowledge [3] — like keyword indices — have to be stored
“closer” to the searchable information sources than the cen-
tral index approach currently does. Furthermore, their up-
dating has to happen in a more bandwidth-efficient manner
as compared to the change detection heuristics and “brute
force” crawling methods used today.

A typical search scenario could look like this: A user di-
rects a web browser at a search portal. First, he or she con-
figures which parts of the content accessible to him or her
shall be searched. This may, i.e., include “standard” web
pages, product descriptions, multimedia archives, scientific
publications, person directories, a local mail database, or
a corporate intranet with all its documents and databases.

This selection will imply the set of different types of
queries the user may enter, depending on the selected infor-
mation sources’ query processing capabilities. Query types
may range from simple keyword queries over natural lan-
guage queries to complex multimedia queries like image
similarity or sound sample matching. Deciding for a query
type will further confine the set of searchable sources to

A. Uhl is with Interactive Objects Software GmbH, Freiburg, Ger-
many. E-mail: axel.uhl@io-software.com

H. Lichter is Professor at the Aachen Technical University, Aachen,
Germany. E-mail: lichter@informatik.rwth-aachen.de

Conference on Advances in
SSGRR2001, L'Aquila,

International
on the Internet

Proc. of

Education Italy.

Infrastructure for

which queries of that type are applicable. Furthermore, it
will present the user with a web interface for creating a
query of the selected type.

Once the query is entered and submitted it will travel
through the network towards the selected information
sources. Once the query reaches a source the search re-
sults will be computed for that particular source and will
get sent back to the network node where the query origi-
nated from.

This process can then be optimized by the already men-
tioned distribution of forward knowledge. This knowledge
may be used to answer a query without actually having to
send it to the original source which is a typical way to save
bandwidth.!

Sections IT and III will introduce an object-oriented
framework — the New Wave Searchables™ — facilitat-
ing the construction of systems that resemble the exam-
ple sketched above. Subsequently, an approach is intro-
duced in sections IV and V with which instantiations of
this framework can be automatically generated from UML
application models that are annotated with searchability
information. The generation can be customized such that
the resulting implementations are integrated with modern
application architectures like those based on J2EE/EJB
including a web-centric user interface.

II. AN INFRASTRUCTURE FOR SCALABLE DISTRIBUTED
SEARCH

The basis for all further discussions in this article is
the top level of the New Wave Searchables framework as
depicted in figure 12. Searchable data and information
sources are represented by the abstraction Searchable;
query types that can be applied to searchable sources obey
to the common abstraction Query. Results of a search
are collections of objects implementing the SearchResult
interface. The querying capabilities that a source sup-
ports can be expressed by instances implementing the
Production interface.

Note, that queries, search results, the capability descrip-
tion objects, and the user-interface accessors used for query
creation (see below) are designed to be value-types (imple-
menting the Serializable interface) whose instances can
be passed as arguments and results of remote operation

LAn extreme and “degenerated” form of forward knowledge man-
agement is central index-keeping where indices are build using crawl-
ing techniques.

2Note the component icons labeled with a capital R. These are clas-
sifiers with stereotype Resource as defined in [4], using Organizations,
Processes and Resources as base abstractions for all kinds of business
models.

Electronic Business, Science, and

lichter
Typewritten Text
Proc. of International Conference on Advances in Infrastructure for Electronic Business, Science, and
Education on the Internet SSGRR 2001, L’Aquila, Italy.

O

Serializable

QueryCreationAccessor

Froduction

-~ fram capahility)

SearchResult

+capabilities

Syl gHTMLY
0.1yt

/

SpetQuery) rmat: i)
wﬁ'ﬁés %¥geticce sors) /<<create>>
== [tE ate:x\ / "get@ue mTypes) /
)
0.n eyt -
T — “marehior - — - Searchable
Query
%arch()
Peapply T ransfomrned] YpetDescription))
Sdispatchi)
%y etDeschptionn
Frmatche dT f@nsorme df

Fig. 1. UML model of the top-level abstractions of the New Wave Searchables framework

invocations. Using Java for implementation, this feature
comes with the language’s serialization framework.

Even with these fairly simple base definitions it is pos-
sible to provide a variety of query types, beginning with
easy-to-use keyword query types that may be combined
using boolean expressions, and reaching as far as image
similarity queries where reference image data is part of the
query. The design lends itself well for flexible extension of
the set of possible query types, mainly due to the object-
oriented principle of type inheritance.

SearchResult as part of the top-level object model can
be extended by proper specializations, e.g. WebSearch-
Result which contains typed attributes like the URL of the
found result, the title, an excerpt, etc. As search results
are designed as serializable value types these objects won’t
lose their structure when being passed to clients. This is
an advantage over HTML-based search “architectures”, es-
pecially when the search results are to be processed further
by electronic systems and are not only intended for display
to human users.

In order to make implementing the Searchable in-
terface as easy as possible, a default implementation
AbstractSearchable is provided (see figure 2). It leaves
only two major issues up to the developer of a new
Searchable implementation: Defining the search capabili-
ties and implementing the corresponding search methods.
Many other issues like default query transformation and
dispatching, or ranking of results if the query provides a
ranking function are handled generically by the framework.
Specializations of these default algorithms may be imple-
mented as needed.

Accessing Searchable objects that are distributed

O

Serizlizable
{fram io)

+searchable

1
Searchable

seanch()
getDescription()

O

Remote

{fro i)

SearchableWrap
per

AhstractSearchahle setSearchablef)

RemateSear
chable

Fig. 2. Default implementation and remote-enabling of Searchable

across a network is also made possible by the framework.
It provides the RemoteSearchable specialization of the
Searchable interface which is a Java RMI remote inter-
face (see the relationship to interface Remote in figure 2).
Again, using Java here proves very helpful; besides trans-
parent remote method invocations including marshalling

and demarshalling of arguments, results and exceptions the
Java runtime environment also addresses issues like net-
work security and firewalls. RMI’s protocol can be run
over HTTP connections or can be restricted to use ded-
icated TCP ports for communication, giving the network
administrator fine-grained control.

In order to embed the framework into a web-centric envi-
ronment with HTML-based user interfaces the framework
has to specify ways in which users can create Query objects
from their web browsers. Examples are a simple text entry
field in an HTML form where users can input a keyword
query string with boolean operators; or for creating an im-
age similarity query a user could select an image file on his
or her local file system and transmit it to the server that
is creating the Query object using an HTTP PUT request.

These user interface application elements responsible for
the creation of Query objects are termed Query Creation
Accessors in accordance with the definition of user inter-
face accessors in [5], [6]. They are depicted in figure 1.
Again, objects of this type can be passed by value together
with their implementation, even across remote calls, which
makes it easy to flexibly embed their functionality into web
applications like those running on portal web sites provid-
ing powerful search features.

Another important concept in the framework is that of
a Trader. Traders implement a composite pattern [7] re-
garding Searchable objects. A trader implements the
Searchable interface itself and knows a set of references to
other Searchable objects which can also be traders again.
Queries directed to a trader are conceptually sent out to
all Searchable objects known by the trader that support
the given query type. Due to the formal query capability
descriptions of each Searchable object a trader can de-
cide efficiently where queries must be sent — in case the
serializable Production objects are cached in the trader
even without requiring any remote calls for this check. The
search results are merged in the trader, possibly according
to a ranking function if one was provided together with
the query, and then returned as an ordered collection of
SearchResult objects.

Obviously, actually distributing queries to all Search-
able objects supporting the query type doesn’t scale for
large networks. A good example for this are the problems of
the Gnutella network, e.g. described in http://www.tch.
org/gnutella.html. Therefore, trader implementations
may — supported by Searchable implementations — opt
to maintain forward knowledge about some or all of the ref-
erenced searchable contents. This will enable a trader to
answer queries on behalf of its referenced Searchable ob-
jects without having to use bandwidth to distribute the
query and to collect the results. Implementing a dis-
tributed observer pattern [7], [8] is a bandwidth-efficient
approach for updating the forward knowledge stored in a
trader.

In addition to acting as smart caches for informa-
tion retrieval, traders are also the place where intelli-
gent, bandwidth-aware reconfiguration algorithms may be
hosted. Analyzing the dynamics of query-response behav-

ior of the trader’s referenced Searchable implementations
the trader can establish “shortcuts” to searchable sources
that, e.g., understand many query types or return many
results. This can save bandwidth, as fewer intermediary
transmissions of query and result objects are required.

III. THE New Wave Searchables PROTOTYPE

The framework described in the previous section has
been implemented prototypically in Java. Its source code is
freely available at http://www.NewWaveSearchables.com
under the GNU General Public License (GPL). The search
portal that runs as a prototype at the mentioned URL is
based on these sources. It has proven the concepts as fea-
sible, and it is briefly described in this section.

For several reasons of which some were already men-
tioned in section II Java was chosen as implementation
language for the prototype. Most importantly:

« portability

o rich library support for Internet access

« RMI framework for distributed objects

o serialization allowing pass-by-value for complex objects
including their implementation

¢ built-in security, policy as well as subject based

The prototype mainly consists of four parts: the frame-
work implementation, hand-written wrappers and query
types for several searchable web sources, a portal web site
based on the framework, and an example for an automati-
cally generated search adapter based on a UML application
model. The latter will be described in section V, after the
concepts for modeling and generating searchability support
have been introduced.

The framework implements all key abstractions as shown
in figures 1 and 2. The concept of query creation ac-
cessors has been drafted as a set of Java interfaces, but
has not yet been integrated with the portal web site.
Several text query types (KeywordQuery, PhraseQuery,
RegexQuery), a proximity query type, a query type based
on an OQL-related query language, attribute queries, com-
posite queries like AndQuery, OrQuery, and decorated
queries like RankingQuery have all been implemented.

With this query type set some query transformation algo-
rithms were implemented. Proximity queries may be trans-
formed into relaxed AndQuery objects, whose search results
are then postprocessed by a proximity matching algorithm.
The boolean composite query types AndQuery and OrQuery
may be decomposed into their constituents who then get
executed separately with the results being merged accord-
ing to the logics of the boolean operator.

Formal query capability description is implemented in
the prototype as well. Several standard Production imple-
mentations are given, e.g. PrimitiveProduction matching
queries as long as their type is assignment compatible to a
specified query type; or CompositeProduction recursively
describing how a composite query like an AndQuery may
be constituted. In order to express search capabilities for
attribute-searchable sources, an AttributeModel class is
provided. With it an arbitrarily nested tree of associa-
tions and attributes can be described as metadata objects.

Instances of class AttributeQuery can then be validated
against such an AttributeModel for syntactical correct-
ness.

The framework also provides a very simple Trader de-
fault implementation. Its main purpose is to implement
the composite pattern for Searchable objects. It does
so by delegating incoming query objects to all referenced
Searchable objects whose query capability descriptions
match the query. The returned results are collected and
merged. If the query was a RankingQuery, the Comparator
implementation provided together with the query is used
for merging the results.

The trader’s query capabilities are also computed ac-
cording to the composite pattern: they are the combina-
tion of all contained Searchable objects’ query capabil-
ities. The provided trader implementation does not yet
support any automatic reconfigurations nor any caching of
forward knowledge.

With this framework a set of wrappers for existing
searchable web sources has been implemented, among oth-
ers for popular web and usenet search engines, the Java
Technology Site Search, the Computer Science Bibliogra-
phy at the University of Karlsruhe, and for different air-
travel web sites allowing to search for cheap airfares. For
the latter, the additional query type FlightQuery has been
created, which has been used embedded into RankingQuery
objects with an AirfareComparator that compares result-
ing TripSearchResult objects by their associated price
tags.

(ST Y
g8 =
| 101 P
cancel
EmorMessage

parseErmor
epeat

4TI Ty submit createTextQuery
cancel g;:; —
- - retumGluery

TextQueryCreation
update UserTrader
hEEkTraderS(ate

tradeConfigCone

eload

1818 ™
rLe] =

e ¥

- ~
[-—p ﬁ \
1)
TraderConfiguration

configureT|

i ahort
1mg

™y
— | interuptTrader
A
| 100)

DisplayResults

finished
subl
ShowTraderState

Fig. 3. UML activity diagram for the prototype’s web application

In order to demonstrate integration with web-centric en-
vironments we created a web application through which
users can enter queries and view the search results. The
web application was modeled as a UML activity diagram
(see figure 3), and a servlet together with a set of Java
server pages (JSPs) was generated from that using the tool

ArcStyler. Fach user gets assigned a personal trader that
can be configured with the web application. References to
Searchable objects can be added to or removed from the
trader by the user.

As only query creation accessor the prototype currently
supports one for text queries and boolean combinations
thereof. It is presented as a single-line text entry field in
an HTML form. The entered query string is analyzed by a
parser that was generated using the JavaCC parser gener-
ator toolkit. Resulting from this analysis is a query object
that is then sent to the user’s personal trader.

All SearchResult objects are capable of rendering them-
selves as HTML list entry. This capability is used by the
web application to display the set of results delivered by the
trader. In case of WebSearchResult objects as returned by
typical web search engine wrappers the HTML representa-
tion consists of a link to the found document, a brief de-
scription, if available an excerpt from the found document,
and a link to the search engine that found the link.

IV. SEARCHABILITY AS ASPECT OF INTERNET-CENTRIC
APPLICATION ARCHITECTURES

A fast growing share of the publicly available web content
is no longer being served from static HTML documents but
rather from online applications that are often database-
driven. Given this trend it turns out that more and more
web content appears in the deep web that — as mentioned
in section I — is not amenable to search engines’ crawlers.

The framework presented in section IT can be used to also
search deep web contents. The content providers have to
contribute by means of providing a Searchable implemen-
tation that searches their specific information. One way to
accomplish this is, of course, a manual implementation of
the interface. But this is tedious and prone to break when-
ever the business processes or the formats of the contents
made searchable change. Yet, companies like Equero AG
pursue such an approach, offering implementation of search
wrappers for deep web sources as a service.

An architecturally more solid alternative is to make
searchability an integral part of the overall application
architecture. Like we are used to regarding persistence,
distribution, and transactionality standard items of “real-
world” application architectures we should add searchabil-
ity as just another item to this list. It should be as natural
to apply changes to an application’s searchability as it is
to modify its transactional behavior or the physical distri-
bution of its components.

Using a model-driven approach to application develop-
ment we can start to integrate searchability into applica-
tion models, as we do already today for the other aspects
mentioned above [9]. Not only will this enable automatic
integration with global Internet search as will be shown in
the next section, but also it will become possible to utilize
this model information for automating implementation of
information retrieval support within the application. This
is illustrated in figure 4. Examples are a customer relations
management tool where searchability plays an important
role, or a warehouse management application providing one

Responsihility-driven business
design (CRC cards)

produces

initial version of | Toeksupported transformation

into technical UKL model

adds technical

elements to maodel .

UML application madel
with responsibility design

Technical model refinement
persistence, ransactions,
distribution, searchability ,

refings —— [+

Lses

Code generation using a target
companent architecture
sensitive generation cartridge

runnable generates

components e 3

Fillin business operation

database mapping implementations

searchability
adapters

Build, deploy, test, validate

validation OK?

Yes

Iteration complete. Deploy into
production enviranment,
(re-)submit references fo
searchabiiity atapters

Fig. 4. Steps in using a model-driven application development ap-
proach. Searchability related activities are highlighted in bold print,
fully or partly automated steps are displayed shaded.

set of search features for its internal users and another set
of search features for its external Internet integration.

V. GENERATING SEARCHABILITY SUPPORT FROM UML
MODELS

Model-driven application development is especially use-
ful in areas where the target architecture is complex and
has to deal with several different aspects. What may be a
single component in the model that represents some busi-
ness logic may end up as many physical artifacts, e.g.
compilable source code files for the component’s business
dimension, its technical dimension, sources for client-side
proxies or personalities, deployment descriptors, developer
documentation, and the like. We also call this few-to-
many relation between model elements and physical ar-
tifacts the gemeration fan-out. Complex component tech-
nologies typically are characterized by a high generation
fan-out®. Translative code generation [10] can be used to

3This, by the way, makes true round-trip engineering close to im-
possible, for there is typically no unambiguous reverse mapping of
changes to single artifacts.

transform the models into the physical artifacts mentioned
above.

The remainder of this section will shed light on how the
Unified Modeling Language (UML) can be used to express
searchability as an integral part of an application model. It
will be shown how from these parts of the model an imple-
mentation for the modeled searchability can be generated
automatically. Obviously, there is no “one and only” way
to do this. Therefore, a simple example is given, based on
which future searchability modeling styles may thrive.

From now on it is assumed that an application model
is given in which business components are represented as
UML classifiers, together with their operations, attributes
and associations with other components.

Class Specification for Product

General | Detail I Operations I Attributes I Relations | Components I Mested | Files | ArcStyler
JeA | UML | ArcStleEJBT1 | 1854 | BAS4x | WLS51 | wLS51CMP
ArcSlyieBOB | ArcStleEJE | ArcStledava | ArSule2R | PICASSO_EJE | WaE | MOF
Set [defaut =] | EditSet
Model Properties
Name | Value I Source I
Searchable Tiueg Overide
SearchResultdccessor search.example.Defaultd coessorsPack age. Product_WiewerDA Ovemide
SearchableBy Al Default

AccessorContainerlJRL - hitp:/ Awnw Newhs aveSearchables comMyStorebpp/MyStoretpp Ovenide

Qverlidel Wefault | Eevert |

0K I Cancell

Lppl | EmwsEV| Help |

Fig. 5. Searchability properties of a component

Figure 5 shows a set of properties pertaining to a UML
classifier that specify the general searchability for a com-
ponent. The first is the boolean flag Searchable which,
in this case, is set to True, indicating that this component
is a searchable component. In this case an adapter will be
generated for this particular component that implements
the Searchable interface.

The adapter will support the AttributeQuery query
type which is also part of the New Wave Searchables frame-
work. Queries of this type consist of a set of pairs, where
each pair consists of an attribute path specification — a dot-
separated list of attribute or association end names with an
attribute at its end — and a subquery to be applied to the
value of the attribute denoted by the path. A component is
considered matched by such an AttributeQuery if for all
contained pairs the inner query matches the correspond-
ing attribute, starting attribute path navigation from the
component at hand?.

In the searchability modeling style example explained
here it is assumed that a search result must be dis-
playable as an HTML table entry, containing a link that
leads to a human-readable representation of the found
component instance. In order to be able to generate a
complete implementation the model must contain infor-
mation on how to assemble those result objects. Here,
these are the two properties SearchResultAccessor and

4Tt may occur that an attribute path traverses a to-many associa-
tion. In this case the subquery is conceptually applied to all associ-
ated instances, and the subquery is considered a match if at least one
of the associated instances produces a match for the subquery.

AccessorContainerURL. They define the name of a server-
side Java class (a user interface accessor, as explained in
section II) capable of rendering a component instance as
HTML, and the URL of a servlet that can execute this
accessor, respectively.

With this information at hand an implementation can be
generated that creates SearchResult objects that can ren-
der themselves as HTML table entries with a link included
that is based on the servlet URL, the accessor class name
and additionally on a reference to the found component
instance. When such a link is traversed, it will invoke the
servlet which in turn activates the specified accessor and
passes the reference encoded in the link to the accessor.
This reference can then be used by the accessor to extract
any information from the component required for render-
ing its user interface which is then transmitted to the client
by the servlet.

Next, searchability has to be specified for attributes and
associations of the searchable component. This will de-
cide which sorts of AttributeQuery objects are accepted
at all. Obviously, queries providing subqueries for non-
existing attribute paths are invalid. But queries are also
invalid if they use attribute paths that contain elements
that have not been marked as searchable in the model.

Each attribute and each association end in the model
may — just like classifiers — be tagged as searchable. This
information will be used to generate an AttributeModel
implementation for the classifier to which the tagged at-
tribute / association end belongs, defining exactly the set
of valid attribute paths.

For each searchable component a method is generated
into the component’s life-cycle management interface that
is responsible for finding component instances based on
a given query. Using EJB as component technology this
would be the component’s home interface, and the method
would be a finder method. This finder method takes a
query object as argument which is then transformed into a
query that can be executed against the component’s per-
sistence manager. This could be a database query, an EJB-
QL query, or — if an object-to-relational (O2R) mapping
tool is used — a query in the O2R tool’s query language.

This transformation can be implemented generically, pa-
rameterized only by the particular AttributeModel for the
searchable component. Thus, the transformation algorithm
does not need to be generated for each searchable com-
ponent but can be coded once and then be reused by all
searchable components, e.g. by subclassing or delegation.

A prototype has been implemented for the BEA Weblogic
EJB application server in conjunction with the TopLink
O2R mapping tool. Tomcat was used as servlet execu-
tion engine. This combination was particularly suited for
the task at hand because of TopLink’s powerful dynamic
querying capabilities which makes the transformation of
framework queries into TopLink queries straightforward.

The prototype handles all kinds of text queries (key-
word and phrase), boolean combinations thereof, and prox-
imity queries, furthermore attribute queries complying
with the searchable component’s attribute model. They

are transformed into TopLink’s association and attribute
traversal methods (any0f, get), text search expressions
(containsSubstring), and boolean operators (and, or).
Searchable attributes in the prototype currently have to be
of type String, but obviously, other attribute types could
easily be supported as well.

| Logical Package...l Language |

Clazs Name
B Product example Analysiz
B MyStare example Analysiz

(] I Cancel |

Fig. 6. Modeling a Trader component and assigning a set of classifiers
marked as searchable (in this case Product and MyStore)

Apply | Ernwsevl Help |

If several components have been modeled as search-
able, and a single point of entry is to be provided for
searching the application, sets of searchable components
can be assigned to UML components with stereotype
<<Searchable>> in the model (see figure 6). This will
cause the generation of a Trader implementation that cre-
ates and references the generated Searchable adapters for
the assigned searchable components.

Once again: the searchability modeling style presented
here is just an example of how searchability of an appli-
cation can be expressed in UML. A prototype has proven
the feasibility of the concepts. Now further research has to
show how far this approach may reach, what other search-
bility modeling styles can be conceived of, and what the
limits and constraints of the approach are.

VI. RUNTIME ENVIRONMENT

Section V has delivered a technique for automatically
generating implementations for application searchability
support. This section will show how the results can be
embedded into a global information retrieval environment,
and which aspects have to be considered in order to ensure
reliable operation of the search infrastructure.

The adapters and traders generated by the procedure
presented in section V have to be instantiated by a running
process, and references to the instances have to be added
to other — typically remote — traders. This will integrate
the generated Searchable objects into a global mesh of
interconnected, federated traders.

This procedure resembles the steps a web site operator
performs in order to have the site indexed by crawling-
based search engines where the operator will submit links
to selected documents on the site to several search engines,
hoping they will crawl their contents and make them ap-
pear in the search engine’s index.

Search portals may then set up their trader by referenc-
ing all Searchable objects — including other traders —

they want to include in searches performed through the
portal. At this point the search portal can benefit from
the query creation accessors specified by implementations
of the Searchable interface: They can be automatically
embedded into the portal’s user interface. Of course, se-
curity policies may apply, with the portal accepting acces-
sors from specific organizations only, or restricting runtime
privileges of the accessors. Java’s policy-based descrip-
tive standard security, together with its JAAS framework
for authentication and authorization, makes subject-based
privilege enforcement easy to implement.

When distributing object references across the Internet
and storing them in traders, it is important that the imple-
mentation of these references to the Searchable objects are
robust against things like process restarts, server reboots
or class evolution. Two techniques have been evaluated in
the prototype:

o using Java RMI Activation and the activation daemon
rmid

o implementing loose references that are bound to objects
only via a naming service

RMI activation allows the use of so-called activatable ob-
ject references. Such references are robust against process
or server restarts. The activation subsystem of the Java
runtime environment persistently stores information that
can be used to activate objects on demand, whenever an
activatable reference to an object of that kind is used.

Unfortunately, it is hard to make these references “sur-
vive” major changes to the implementation of the refer-
enced objects. Partly, this is due to limits in compatibly
evolving the serialized activation information together with
the changes in the Searchable implementations. Another
challenge is the management of activation IDs. Those are
part of activatable object references and are used by the ac-
tivation subsystem for deciding which class to instantiate
and from which persistent source to retrieve the activation
information. By default, the activation subsystem gener-
ates new and unique IDs for each object that gets registered
as activatable. Significant effort would have to be spent in
assigning dedicated activation IDs, because then unique-
ness and association with persistent activation information
would have to be managed explicitly.

In the prototype it turned out to be easier to use loose
references bound to objects by naming. This can be com-
bined with RMI activation by caching an activatable refer-
ence after retrieving it from the naming service. A naming
lookup then only has to take place in case the activatable
reference goes stale. The resulting reference implementa-
tion performs comparably to activatable references as long
as the reference doesn’t go stale, and only one naming ser-
vice lookup is required to update the reference in case using
the cached activatable reference fails. With this reference
implementation even the class of the referenced object may
change® dynamically without having the reference break.

5as long as it remains assignment compatible to Searchable

VII. CONCLUSIONS AND QUTLOOK

Global search across all publicly accessible Internet con-
tents represents an enormous technical challenge. Today’s
central index based approaches have problems regarding
access to the information, especially in the deep web, as
well as keeping up with the content growth and change
frequency, due to bandwidth constraints.

In order to get closer to the goal of making all avail-
able information searchable the paradigm of Internet search
has to be reversed. While crawling still may play a role
for static parts of the web, content providers will have to
contribute by explicitly providing search interfaces to their
web-enabled applications and other web contents.

This article has presented a framework — the New Wave
Searchables — that defines searchability interfaces and im-
plements many best practices from the field of distributed
information retrieval. A comprehensive prototype has been
used to evaluate the concepts and to test feasibility.

A novel approach was described that integrates searcha-
bility as one more integral aspect of modern application
architectures that can, like other aspects, be expressed
in models, using e.g. UML. Given a searchability model-
ing style, adapters can be generated automatically using
translative code generation that integrate the application
with the global search framework.

Integration with interconnected, federated networks of
traders and search portals can easily be implemented using
this approach, as has also been validated with the proto-
type.

Further research will have to be focussed on bandwidth-
efficiently distributing and updating forward knowledge be-
tween traders and intelligent, dynamic, bandwidth-aware,
and automatic reorganization of trader meshes. It will be
interesting to look closer at the forces affecting the evolu-
tion of the set of available query types; query power, easy
of use, and standardization are just a few of them. Not
least, UML searchability modeling style alternatives and
extensions to the example presented in this article have to
be investigated; potentials and limits of the approach are
to be researched.

REFERENCES

[1] Michael K. Bergman, “The deep web: Surfacing hidden value,”
July 2000.

[2] Steve Lawrence and C. Lee Giles, “Searching the World Wide
Web,” Science, vol. 280, no. 5360, pp. 98, 1998.

[3] C. Weider, J. Fullton, and S. Spero, “Architecture of the
whois++ index service,” Feb. 1996.

[4] David A. Taylor, Business Engineering with Object Technology,
John Wiley & Sons, Inc., 1995.

[5] Jens Heiderich and Richard Hubert, “Verfahren zur modell-
basierten objektorientierten Entwicklung von externen Schnitt-
stellen fiir verteilte Softwaresysteme, Deutsches Patent, An-
meldenummer 00123321.2,” Oct. 2000.

[6] Jens Heiderich and Gisela Hillenbrand, “Arcstyler 2.5 accessor
guide,” .

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-oriented Software, Addison
Wesley, Reading, 1996.

[8] Axel Uhl, “Verfahren zur Informationsiibertragung, Patent
Nr. DE19832482 A 20000127, Aktenzeichen DE19981032482
19980720, Prioritdtsaktenzeichen DE19981032482 19980720,
Klassifikationssymbol GO6F13/14 ; H04L12/24,” Jan. 2000.

[9] Richard Hubert, “White Paper: Convergent Architecture & The
ArcStyler Tool Suite,” 2000.

[10] Rodney Bell, “Code generation from object models,” Embedded
Systems Programming, vol. 11, no. 3, Mar. 1998.

Axel Uhl received a diploma degree in com-
puter science from the University of Karlsruhe,
Germany in 1995, where he specialized in dis-
tributed and parallel computing as well as in
software engineering. For the next four years
he was with Asea Brown Boveri (ABB) Corpo-
rate Research where he focused on Internet-
enabling business processes. Since January
2000 he is with Interactive Objects Software
GmbH where he works as a software archi-
tect in a team developing the architectural IDE
ArcStyler™ and pursues a PhD study in the area of software archi-
tectures for scalable Internet search.

Horst Lichter received a diploma degree
in computer science from the University of
Kaiserslautern, Germany. Then he was a mem-
ber of the software engineering group at ETH
Zurich and University of Stuttgart. After
receiving a PhD degree from the University
of Stuttgart he was with the Union Bank of
Switzerland, Zurich, and the ABB Corporate
Research Centre, Heidelberg. Since 1998 he
is a professor for computer science at Aachen
Technical University (RWTH Aachen) heading
a research group focusing on software construction and quality assur-
ance.

