A UML Variant for Modeling System
Searchability

Axel Uhl! and Horst Lichter?

! Interactive Objects Software GmbH
Freiburg, Germany
uhl@io-software.com
2 Aachen Technical University
Aachen, Germany
lichter@informatik.rwth-aachen.de

Abstract. Internet search engines today are facing problems in keeping
up with the pace of web growth. Two facts are responsible: bandwidth
bottlenecks due to central indexing; deep web (or invisible web) contents
that are inaccessible for search engines. Powerful and flexibly extensi-
ble object-oriented frameworks are available that assist in the imple-
mentation of distributed search infrastructures, thus addressing the first
problem. In order to address the second problem, searchability has to
be designed into the online applications constituting the deep web, and
integrations to the distributed search infrastructures have to be imple-
mented. A model-driven approach to software construction can be used
to specify an application’s searchability. This paper presents an extension
to the UML that can be used to specify an application’s searchability
in an efficient way. The resulting models can be used to generate large
parts of the searchability implementation automatically.

1 Introduction

A fast growing share of the publicly available web content is no longer being
served from static HTML documents but rather from online applications that
are often database-driven. Given this trend it turns out that more and more
highly relevant web content [1] appears in the so-called “deep web” that is not
amenable to search engines’ crawlers which are still based on a paradigm that
assumes a static web.

Existing search infrastructures, e.g. [17,13], many of them leveraging the ben-
efits of object technology and thus by far exceeding simple low-end protocols like
HTTP / HTML in functionality and extensibility, can be used to make deep web
contents searchable. The content providers have to contribute by means of pro-
viding an implementation that adapts their content to the search infrastructure,
making their specific information searchable in the ways they want it to be.

An architecturally solid approach is to make searchability an integral part of
the overall application architecture like it has become common for persistence,
distribution, and transactionality. Using a model-driven approach to application

Z. Bellahsene, D. Patel, and C. Rolland (Eds.): OOIS 2002, LNCS 2425, pp. 199-210, 2002.
© Springer-Verlag Berlin Heidelberg 2002

200 Axel Uhl and Horst Lichter

development, searchability can be integrated into application models, as is al-
ready done today for the other architectural aspects mentioned above [8]. Not
only will this enable automatic integration with object-oriented, global Internet
search infrastructures as will be shown in this paper, but also it will become
possible to utilize this model information for automating the implementation of
information retrieval support within the application.

We have organized this paper as follows. First we explain the concept of
searchability in the context of Internet applications. We describe the New Wave
Searchables framework offering an object-oriented infrastructure for distributed
Internet search. Section 3 gives an overview on model-driven development and
lists its benefits for application development. In section 4 we show how to com-
bine both approaches: model-driven development and modeling searchability.
Section 5 exemplifies these concepts by sketching the model-driven development
of J2EE systems and then adding searchability support for a selected search in-
frastructure. After presenting existing and related work we finally evaluate our
approach, summarize the main ideas and findings, and give an outlook on issues
for future research.

2 Searchability

2.1 Definition and Problem Statement

The searchability of data and applications can formally be defined as a function
taking a query as argument and producing a (potentially empty) set of results.
Different searchability definitions may accept different kinds of queries and may
relate the results to the queries in different ways, even for equal kinds of queries.

Something is said to be globally searchable if it can be searched by submitting
a query to a general search engine that claims to search the whole Internet.

The largest share of web content today is brought online by complex, data-
base-driven applications exhibiting a web front-end. Many of these applications
are comparable in their functionality and complexity to usual desktop applica-
tions.

These web application architectures break the assumptions of typical web
search engines of a statically linked and crawlable web. For example, URLs,
which were used to identify documents, are abused by attaching information
about the application’s state, like a session identifier. HTML is no longer used
only to represent documents containing the requested information, but instead
is overloaded with presentation issues like frame layout, popup window instruc-
tions, JavaScript animations for menu or tree displays and input validation, etc.
Instead of providing hyperlinks to all information that the application makes
available online, in many cases HTML forms are used that, when submitted,
dynamically produce HTML documents.

Therefore, search engines are usually unable to index the contents of these
types of Internet applications. Instead, Internet applications have to define ex-
plicitly which data are searchable in which ways, and they have to implement
their specified searchability.

A UML Variant for Modeling System Searchability 201

2.2 Approach to Improved Application Searchability

It is specific to each application which types of queries the application may
answer and how these queries are applied to the content and processes that are
brought online through the application. Regarding the architecture of the search
infrastructure, centralized approaches to Internet search have repeatedly been
reported to fail regarding scalability issues [10,18]. Instead, architectures that
distribute index information and query processing can be implemented in much
more scalable and efficient ways.

Such architectures consist of protocol and interface specifications that govern
how queries are transmitted, received, and routed to the searchable sources,
how results are retrieved, ranked, and merged, how queries can be transformed,
and how query capabilities of searchable sources are formally described. Several
different such architectures have been conceived and implemented over the course
of various research and industry projects. Section 2.3 will present one that will
be used as example for the remainder of this paper.

2.3 The New Wave Searchables Framework

In [17,16] the New Wave Searchables framework for object-oriented, distributed
Internet search has been presented. It combines best practices from many re-
search projects in the field of distributed search technology and implements
them using Java technology which lends itself well to the implementation of a
distributed object-oriented infrastructure. It constitutes a search architecture in
the above sense.

Its key abstraction is the interaction between four object types: Searchable,
Query, Production, and SearchResult (see figure 1). Searchables specify their
query capabilities using Production objects. Productions can tell if they match
a Query object. Query objects that are understood by a Searchable are sent to
it, and the Searchable can produce zero or more SearchResult instances.

Using inheritance, new Query subtypes as well as specialized Searchable and
Production implementations can be plugged into the framework in intuitive

O

Production
match(q : Query) : boolean

1
+capabilities
maiches search for
e

—
L — — <<create>> 0..n
- ..
[So— — — smer i
— applyto
e Searchable SearchResult
search(q : Query) : Set<SearchResult> equals(r : SearchResult) : boolean

Fig. 1. UML model of the top-level abstractions of the New Wave Searchables
framework

202 Axel Uhl and Horst Lichter

ways. This allows developers to integrate new ways of searching information
and searching new types of media at any time. Java’s RMI subsystem trans-
parently manages all relevant issues regarding polymorphic remote method calls
and even the transmission of implementation byte code for specialized value-type
classes over the network.

The framework supports query transformation. Each query type may im-
plement transformation algorithms that receive as input a Production instance
describing the search capabilities of a searchable source to which to apply the
query. The query can tell whether or not it may transform itself such that the
resulting query or queries can be processed by the searchable source.

Query routing, result ranking and merging is implemented in the New Wave
Searchables framework by so-called Traders. A trader implements a Composite
pattern on searchables.

At http://wuw.NewWaveSearchables.com a prototypical implementation is
online that demonstrates how the concepts can be integrated with existing web
technologies. Queries can be created and submitted using a web frontend, search-
able web sources are presented as wrapped New Wave Searchables objects, and
search results are displayed in HTML documents. The New Wave Searchable
framework is also maintained as an active open source project on SourceForge
(http://search.sourceforge.com).

3 Model Driven Development

In 2001 the Object Management Group (OMG) started an initiative named
Model-Driven Architecture (MDA) [14,9]. Tt suggests using models to describe
software systems at various levels of abstractions, where the models are always
held consistent with each other. The software development process benefits from
the easier specification at appropriate abstraction levels (see figure 2, left), the
increased portability of system specifications, and the improved readability of
specifications that serve as additional up-to-date documentation of the system.
Figure 2, right, illustrates the increase in portability.

Precise specifications of mapping techniques that describe how to transform
models between the different abstraction layers ensure that all models for one
system are mutually consistent and non-contradictory. A mapping is the actual
execution of a mapping technique. It may use input in addition to the source
model(s), called annotations. These make it possible to mark-up a model for
a specific mapping technique without making the model itself specific to this
technique.

A chain of sets of metamodels leading from abstract to detailed specifications
of a system, together with the corresponding mapping techniques is called a
modeling style.

Models are instances of metamodels. The work on the Meta Object Facility
(MOF) [5] provides definitions of models, metamodels, and their mutual rela-
tions. Metamodels may be arranged along abstraction and refinement relations
and describe aspects of a platform. For example, the Java programming language

A UML Variant for Modeling System Searchability 203

amo‘;.” t ?f replacing full defailed,
specification platforms 2 and 3 targef platform
content adding most detail

4 rework at high-level platforms

adding most detail

at low-level platforms
rework

manually added

T T T T metamodels
piatform 1 pafforn 2 plation 3

-
automated mappings

Fig. 2. Left: Development efficiency. The same amount of specification content
usually can be provided much easier at higher levels of abstraction while trans-
formations into more detailed levels can be automated, working in favor of the
left path, “crossing the hills where they are lower”. Right: Specifying as abstract
as possible (above curve) increases portability and reduces the amount of rework
in case of changing a platform decision or developing for multiple platforms. Too
much too detailed specifications (lower curve) result in increased porting effort

specification together with the set of standardized APIs form the metamodel for
the Java platform.

It is an important achievement of the MDA initiative to abstract from existing
automated model transformations like programming language compilers, and ex-
tend this notion into the realm of more abstract models of a system, like Unified
Modeling Language (UML) [12] models or Class-Responsibility-Collaboration
(CRC) card models [19]. Within MDA, generation of source code and other
text-based artifacts of a software system becomes merely a special case of more
general transformations between arbitrary models. However, text-based docu-
ments can themselves be regarded a model in the context of MDA, and hence
can be used as input or output of model transformations.

4 Combining Search Architecture
and Application Architecture

Distributed search infrastructures define a technical architecture for parts of
a software system: the search architecture. It defines the protocols, interfaces,
and semantics that can be used to implement an application’s searchability (see
again section 2). For example, the New Wave Searchables framework defines
a search architecture by means of its top-level types and interfaces Searchable,
Query, SearchResult, and Production and the protocol it uses for communication
between the distributed components (Java RMI).

Typically, a search architecture cannot stand alone but needs to be integrated
with the architecture that an application is built with: the application architec-
ture. The application architecture defines the nature of the entities that are to
be made searchable using the search architecture.

204 Axel Uhl and Horst Lichter

According to IEEE Std. 610.12-1990, an architecture defines the organiza-
tional structure (the static and the dynamic view) of a system. In the context of
software development, an application architecture specifies a template structure
or a blueprint for a class of applications in terms of e.g. layers, components and
their interrelationships, and the corresponding development infrastructure. Ap-
plication developers have to ensure that concrete architectures conform to the
application architecture.

A search architecture and an application architecture can be combined, re-
sulting in a platform in the sense of MDA as described in section 3. Hence, com-
mon metamodels can be found, making it possible to create models of searchable
applications, serving as specification of both the core application and its search-
ability.

A technology platform supporting searchability with a given search infras-
tructure typically consists of the core application implemented in the applica-
tion architecture, e.g. a component-based J2EE or .NET environment, that is
extended by an adaptation layer that mediates between the core application and
the search infrastructure. Figure 3 illustrates this setup. The adaptors access the
application’s core and adapt it to the search infrastructure.

The combination of the application architecture, the search architecture and
the search adaptor micro-architecture form the platform on which the search-
enabled application gets deployed. The benefit in having specified this platform
is that it becomes possible to define MDA support for it. This includes the def-
inition of metamodels that allow for the creation of models for this platform
at appropriate levels of abstraction and corresponding mapping techniques that
can be automated. By being able to use appropriate abstraction levels for spec-
ifying an application’s searchability and having automated mapping techniques
handle the transformation into source code, the search-related functionality can
be developed much more efficiently.

5 Defining a Modeling Style for Searchability

In this section, excerpts from an existing modeling style for J2EE systems are
presented. It is then shown how this modeling style can be extended to support
modeling searchability in such a way that an adaptor layer for the New Wave
Searchable framework can be generated mostly automatically from the models.

Core _use | Search application
Application Adaptors layer

[implemented in—_|

(e.g. J2EE/.NET) Architecture layer

Application Architecture Search } architecture

Fig. 3. Extending an application architecture by searchability

A UML Variant for Modeling System Searchability 205

5.1 A Modeling Style for J2EE Systems

The modeling style for developing J2EE systems described here is a small subset
of the style used by ArcStyler [1], limited to those aspects that are required to
demonstrate the integration of searchability support with this style.

At the most abstract level, the system is described using CRC cards with
responsibilities [19] which, due to space limitations, is not described in any more
detail here.

An automated mapping technique transforms the responsibility-driven mod-
els into technical UML models. Each card becomes a UML class, and the gen-
eralization relationships between the CRC cards are mapped to UML general-
izations. Responsibilities and collaborations are, based on model annotations,
mapped to one or more of the following UML metamodel elements: attributes,
operations, and association ends (roles).

In the UML model several technical properties of these model elements can
be specified, for example the multiplicities and navigability of association ends
or solely technically motivated inheritance relationships.

Next, the UML model is annotated for a mapping technique transforming it
into a set of Java source files, deployment descriptors, Java IDE project files,
ANT (see http://jakarta.apache.org/ant/) build support scripts, and SQL
scripts. This includes the specification of a component’s transactional behavior.

Eventually, the annotated model is used as input to a mapping technique
producing all of the abovementioned output. The generated Java IDE project
files can be used to modify the generated source code in order to insert “if-then-
else” logic in marked areas.

O
Searchable O

N +homes 7 EJBHome
‘ 0..n

EJBNWSAdaptor

search(q : Query) : Set<SearchResult>

preselect(q : Query) : Set<Set<EJBObject>>

postprocess(q : Query, preresults : Set<Set<EJBObject>>) : Set<EJBObject>
wrap(q : Query, postresults : Set<EJBObject>) : Set<SearchResult>

<<realize>>

public Set search(Query q)
{

return wrap(q, postprocess(q, preselect(q)));

Fig. 4. Adaptor between New Wave Searchables Searchable interface and
J2EE/EJB architecture. Angle brackets denote parameterized type instantia-
tions

206 Axel Uhl and Horst Lichter

Core
abstract Application Searchability
class cards, responsibiliies initial absfract dbstract
search markup CRC model
refined sear- technical

‘ UML component model F— chability model } UML model
P ‘ search source code
ully deployed components adaptors implementation

detailed

Fig. 5. Modeling a searchable system at different levels of abstraction

5.2 Combining J2EE and New Wave Searchables Architectures

For clarity and brevity of this example, a simple micro-architecture is chosen
for the adaptors that mediate between the New Wave Searchables and the J2EE
architectures, shown in figure 4. The abstract class EJBNWSAdaptor implements
the Searchable interface provided by the New Wave Searchables framework. At
the same time it references one or more home interfaces of EJB components that
it makes searchable.

The default implementation of the search operation performs the search in
three steps:

pre-selection Zero or more finders on any of the home interfaces that the adap-
tor references are called (basically a query on the corresponding component’s
extent, exposed as an operation of the life-cycle-managing home interface).
The parameters for the finder calls are retrieved from the passed query ob-
ject. The collections of EJB remote references that each finder call produced
are returned.

post-processing The results returned by the finders may then be processed
further. This may be necessary because the set of available finders may not
be sufficient to implement the desired query semantics. Furthermore, if more
than one finder was called in the pre-selection step, the results have to be
combined, e.g. by intersecting (AND-semantics) or uniting (OR-semantics)
the result sets.

wrapping In most cases, the wrap method will produce SearchResult instances
that contain only those pieces of information from the found instances that
are supposed to appear as visible and accessible part of the results.

5.3 A Simple UML-Based Metamodel for the Combined Platform

Searchability can be supported by corresponding metamodel extensions at all
levels of abstraction provided by the J2EE modeling style, as depicted in figure 5.
The extensions for the UML level are provided as an example.

Figure 6 shows the extensions to the UML-based metamodel used for spec-
ifying the system at the technical level. SearchableClass is a metaclass whose
instances model a single search adaptor, each. For each adaptor a single query
type must be specified. Furthermore, a set of finders to be called when receiving

A UML Variant for Modeling System Searchability 207

context SearchableClass
inv: self.finderCalls->notEmpty() implies
self.finderCalls->forall(f: FinderCall | f.args->notEmpty() implies
f.args->forall(a: FinderArgument | a.actualParameter.start = self.queryType))

/

+type| 1

-
SearchableClass +queryTypel gjass +operations Operation +owner +parameters| Parameter
— = 0..n |name : string 1 0..n |name : string

+formalParameter

-

:

+finder1

+finderCalls,|, 0..n

FinderCall pathElements : Feature[]
1/ +actualParameter
™~ +arg
™~ FinderArgument
context FinderCall
inv: self.args->notEmpty() implies
self.args->forall(a: FinderArgument | a.formalParameter.owner = self.finder.oclAsType(Operation))

inv: self.finder.parameters->notEmpty() implies self.finder.parameters->forall(p:Parameter |
self.args->select(a: FinderArgument | formalParameter=p)->size() = 1)

NavigationPath

Fig. 6. Example: metamodel for describing searchability of a J2EE architecture

a query of the specified type has to be associated with the adaptor. For each
finder the model must specify how the finder arguments are retrieved from the
query. It does so by providing NavigationPath instances that describe how to
retrieve the value to be used as finder argument, starting on the query object,
and navigating along features (attribute, associations, operations) of the query.

Specialized physical components can be used to group multiple Searchable-
Class instances together that are assigned as residents of the component.

5.4 Source Code Level

An instance of the extended UML metamodel sketched in section 5.3 can be
used to generate corresponding source code that provides sections where the
developer has to add more detail. Each SearchableClass instance is transformed
into a Java class extending the EJBNWSAdaptor class (see again figure 4). An
implementation of the getSupportedQueryTypes operation is generated that
returns a Production that matches queries of the query type specified in the
model for the SearchableClass.

In the constructor of the generated class, the home interfaces of those EJBs
whose finders are used by the SearchableClass are resolved and stored in the
homes role. An implementation for the preselect method is generated that calls
the finders on the homes as specified by the model, retrieving the arguments from
the passed query and returning the results returned by the finders.

208 Axel Uhl and Horst Lichter

In the postprocess operation, a default implementation is generated that
intersects all finders’ result sets. The developer may modify this default to
meet special needs. The same customization is possible for the wrap operation,
where the generated default implementation returns the references to the EJBs,
wrapped as SearchResult objects.

From the specialized physical components containing SearchableClass in-
stances as their residents, source can be generated that instantiates the Trader
class from the New Wave Searchables framework, adding one instance of each
EJBNWSAdaptor that was created from each of the residents to it. By default,
the resulting trader supports the combined set of query types and can be used
to register the application with a search engine.

6 Related Work

Concepts for a distributed search infrastructure based on CORBA have been
developed, e.g., in the InfoBus [13] project. This and similar projects con-
tained many excellent approaches, prototyping wrappers for existing informa-
tion sources and demonstrating how CORBA helps in solving the challenges of
distributed systems development leveraging the benefits of object technology.
However, they have not addressed other important aspects like showing how dif-
ferent query types can be applied in the presence of heterogeneous data sources
that support different sets of query types.

Garlic [3] is a project that has conducted research in the area of informa-
tion retrieval on heterogeneous multi-media data sources. Garlic uses an object-
oriented model to represent data and queries. One task was query rewriting in the
context of an extensible query type set [7], using search capability descriptions
and query execution cost models for the participating searchable data sources.
Given these descriptions and models a query could be mapped to a cost-optimal
execution plan using standard planning algorithms. Garlic does not address is-
sues like integerating the query type framework with web frontends and the
problem of handling large numbers of searchable collections.

Another approach to heterogeneous and distributed search has been resear-
ched in the DISCO project [15]. In DISCO the search capabilities of the data
sources are described as grammars for the queries. All DISCO-enabled sources
have to be capable of delivering all their retrievable instances which can be
prohibitive for huge data collections. DISCO, like Garlic, also uses a cost model
for query execution. A special feature of DISCO is that it can reasonably deal
with temporary unavailability of data sources. Web integration of the framework
was not discussed.

Other existing approaches that define distributed search infrastructures, and
that cannot be discussed in detail due to space limitations are Lexibot (http:/
/www.lexibot.com), Apple’s Sherlock [11], and Grub (http://www.grub.org).

The general ideas of model-driven software construction are combined in the
OMG’s work on MDA [14,9]. Many application- or domain-specific modeling

A UML Variant for Modeling System Searchability 209

styles have been created, e.g. for multimedia or real-time applications. [2] pro-
vides an overview. Examples can also be found in [0].

7 Conclusions and Future Work

In this paper we have presented a model-driven approach for search-enabling
Internet applications that constitute parts of the deep web. This was achieved by
combining an application architecture and an object-oriented search architecture
into a platform that can then be supported by the Model-Driven Architecture
(MDA). A chain of metamodels and corresponding mapping techniques have
been presented that enable developers to specify an application’s searchability
in convenient and portable ways.

The automation of mapping techniques reduces the implementation effort
to a minimum. As a result, making deep web applications searchable using a
powerful search infrastructure that leverages the benefits of distributed object
technology becomes straightforward, easy, and intuitive, which in turn gives
rise to hopes that an increasing share of deep web information will be globally
searchable in the future.

Future research will have to focus on improving the metamodels with regard
to their applicability to a wide range of combinations of application and search
architectures. The example presented here assumed that a set of query functions
(finders in the case of EJB) are available that the model can refer to. Intelligent
target-technology-aware mappings may be found that create default sets of such
query operations. We will investigate to what extent portable specifications of
search logic details are possible by defining mapping techniques to other object-
oriented search infrastructures.

References

1. Michael K. Bergman. The deep web: Surfacing hidden value. July 2000. URL
http://128.121.227.57/download/deepwebwhitepaper.pdf. 199

2. Margaret Burnett. Visual language research bibliography. URL
http://www.cs.orst.edu/ burnett/vpl.html. 209

3. M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flick-
ner, A. W. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E.
L. Wimmers. Towards heterogeneous multimedia information systems: The garlic
approach. In Research Issues in Data Engineering, pages 124-131. IEEE Com-
puter Society Press, Los Alamitos, Ca., USA, March 1995. ISBN 0-8186-7056-8.
URL http://wuw.almaden.ibm.com/cs/garlic/ride-dom95.html. 208

4. Interactive Objects Software GmbH. ArcStyler User’s Guide. URL
http://www.io-software.com/products/docu/Users-Guide.pdf. 205

5. The Object Management Group. The MOF specification version 1.3, March 2000.
URL http://www.omg.org/cgi-bin/doc?formal/00-04-03. 202

6. John C. Grundy and John Hosking. High-level static and dynamic visualisation
of software architectures. In IEEE Symposium an Visual Languages, Seattle, WA,
USA, September 2000. URL
http://www.cs.auckland.ac.nz/~john-g/papers/v100.ps.gz. 209

210

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Axel Uhl and Horst Lichter

Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Opti-
mizing querfies across diverse data sources. In Proceedings of the Twenty-third
International Conference an Very Large Databases, pages 276-285. VLDB Endow-
ment, Saratoga, Calif., Athens, Greece, August 1997. URL
http://www.almaden.ibm.com/cs/garlic/v1db97opt.ps. 208

Richard Hubert. White Paper: Convergent Architecture & The Arc-
Styler Tool Suite, 2000. URL http://www.io-software.com/products/
docu/i0_CA_ArcStyler_Whitepaper.pdf. 200

Thomas Koch, Axel Uhl, and Dirk Weise. Model-Driven Architecture, January
2002. URL

http://cgi.omg.org/cgi-bin/doc?ormsc/02-01-04.pdf. 202, 208

Steve Lawrence and C. Lee Giles. Searching the World Wide Web. Science,
280(5360):98, 1998. URL
http://www.neci.nj.nec.com/"lawrence/science98.html. 201

John Montbriand. Extending and controlling sherlock. November 1999. URL
http://developer.apple.com/technotes/tn/tn1141 .html. 208

The Object Management Group (OMG). The unified modeling language, version
1.4, September 2001. URL
http://www.omg.org/cgi-bin/doc?formal/01-09-67.pdf. 203

M. Roscheisen, M. Baldonado, C.-C. K. Chang, L. Gravano, S. Ketchpel, and A.
Paepcke. The stanford infobus and its service layers: Augmenting the internet with
higher-level information management protocols. In Digital Libraries in Computer
Science: The McDoc Approach, LNCS, volume 1392. Springer, 1998. URL
http://www-diglib.stanford.edu/diglib/WP/PUBLIC/D0C148.pdf. 199, 208
The Object Management Group (OMG). Model Driven Architecture: The Archi-
tecture of Choice for a Changing World, 2001. URL
http://cgi.omg.org/cgibin/doc?ormsc/01-07-01. 202, 208

A. Tomasic, Louiqa Raschid, and Patrick Valduriez. A data model and query
processing technique for scaling access to distributed heterogeneous databases in
DISCO. IEEE Transactions an Computers, special issue an Distributed Computing
Systems, 1997. URL

ftp://ftp.umiacs.umd.edu/pub/ONRrept/IeeeT0CS96.ps. 208

Axel Uhl and Horst Lichter. New Wave Searchables: Changing the paradigm of
Internet scale search. In International Conference an Advances in Infrastructure
for Electronic Business, Science, and Education an the Internet. SSGRR, L’Aquila,
Italy, August 2001. ISBN 88-85280-61-7. URL
http://shipping.accesscable.net/uhl/SSGRR.PDF. 201

Axel Uhl. The future of Internet search. In Roberto Baldoni, editor, DOA’01
International Symposium an Distributed Objects and Applications, Short Papers,
September 2001. ISBN 888665811-7. URL
http://shipping.accesscable.net/uhl/D0A2001Short .PDF. 199, 201

Axel Uhl. A bandwidth model for internet search. In Proceedings of the 28th Inter-
national Conference an Very Large Data Bases (VLDB ’02). Morgan Kaufmann,
Orlando, September 2002. URL

http://www.vldb.org/conf/2002/P687.pdf. 201

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing ObjectOri-
ented Software. Prentice-Hall, Englewood Cliffs, NJ 07632, 1990. 203, 205

	A UML Variant for Modeling System Searchability
	Introduction
	Searchability
	Definition and Problem Statement
	Approach to Improved Application Searchability
	The New Wave Searchables Framework

	Model Driven Development
	Combining Search Architecture and Application Architecture
	Defining a Modeling Style for Searchability
	A Modeling Style for J2EE Systems
	Combining J2EE and New Wave Searchables Architectures
	A Simple UML-Based Metamodel for the Combined Platform
	Source Code Level

	Related Work
	Conclusions and Future Work
	References

