Modelling Architectural Variability for Software Product Lines

Thomas Weiler
Research Group Software Construction, RWTH AadGennany
thomas.weiler@cs.rwth-aachen.de

Abstract

In this paper requirements for a concept to model

software product line architectures are presented.
Furthermore a process for SPL architecture modgllis

described which incorporates the concept of the ehod
driven architecture (MDA) into SPL architecture

modelling. Besides a metamodel for SPL architecture

modelling elements is shown, which — combined thi¢h
process for SPL architecture modelling - fulfilseth
requirements deployed in the first part.

Modelling variability and traceability of requiremts
within a software architecture thereby possessesthin
focus. Therefore a detailed breakdown of diffeddntls
of variability found in product line based software
architectures is given. The presentation conclugiéls an
small excerpt from a case-study within the conté@n e-
shop, which should clarify the application of tHereents
of the metamodel presented before.

1. Introduction

2. Present approaches

Most approaches in the scope of SPLs are focusing o
the requirements engineering. They primarily coasttie
delimitation of the application domain during th®gess
of scopingas well as the acquisition and modelling of
requirements for SPLs.

Thereby it is identified to be crucial, to expligit
model the variability of requirements for products a
SPL. Furthermore a dedicated mechanism is needed,
which allows the product developer to resolve the
modelled variability for a concrete product in aywa
desired by the developer of the PLP.

Within all these approaches it is often neglecteat t
product line-based software development can orlg te
full success if it is recognized as an integratedcept,
which involves all phases of the software engimegri
process. In the following this article concentraims
architecture modelling for SPLs.

3. SPL architecture modelling

Software Product Lines (SPLs) are an advancement in Architecture modelling for SPLs partially demands

software reuse. In the scope of SPLs reuse howefens
to all documents that evolve during the developnednt
(similar) products. Examples for these documents ar
requirements, architecture models or databasertesig
SPL development is divided into two main parts,
which execute interactively. Within thedomain
engineeringthe common and variable parts of products,
which belong to ampplicationdomain,are analysed and
described. The resulting documents of this prodessa
the basis of the product line, the so-calRmduct Line
Platform (PLP) During the application engineering
concrete products are then derived from this PLP.
Thereby the termapplication and product will be used
synonymous below.

By maximising the reuse of documents in the product

line-based software development, time-to-marketvel
as development costs can be significantly reduddd [
Furthermore a correct applied product
approach encourages the quality of the end produgcts
careful development and intensive tests of the comm
parts of the SPL.

similar requirements as architecture modelling for
conventionalsystems. But many of these requirements
need a more intensive attention in the scope ofsSPL
because the PLP architecture often forms the Hasia
huge set of derived product architectures. This
simultaneously is the risk and the chance of SPLs.

In the following requirements for a SPL architeetur
modelling concept are presented which are detednine
during the case study presented in section 8 aed ar
additionally the result of a comparison of existing
approaches in the context of SPLs, see also seétion
Thereafter a SPL architecture modelling process and
metamodel for SPL architecture modelling elemerits w
be presented which fulfil the specified requirersent

Entities and relations: First of all — as with every
other architecture modelling language — there nbast
possibility to model the central building blocks af

line-based system — the entities — and their connectionsrélaions.

Thereby the entities describe central units ofsystem to
be modelled and the relations describe structural a

53

behavioural connections of this units like e.gréiehical approach. So one should not mix up the two meardfgs
or uses relations. the termplatform While in the context of SPLs this term

Separation of concern: Architecture modelling for describes all documents on which the product lige i
SPLs must provide the possibility to concentrate onbased, in the context of the MDA it refers to tbehnical
specific aspects of a system [10]. This conceptknas platform used. So if not explicity mentioned context
separation of concerns divided into two dimensions: should clarify which meaning was meant by. The
Along thehorizontal dimensiorit is possible to designate relationship between SPLs and the MDA will be
the focus on a part of interestlipping). The vertical discussed in more detail in sections 4 and 5.
dimensionallows to magnify a given fixed cutout step by Variability: Modelling different variability within a
step in order to get a more and more exact imageeof SPL is vitally important for the requirements eregring
cutout in question. as well as for designing the architecture. Combivwéti

A combination of both dimensions is the so-called thetraceability arises the possibility to resolve variability
zooming in which an aspect is magnified step by step at the level of requirements during product confidion
whereby the observed cutout is simultaneously dcale and to implement it through the design level dowrhe
down and vice versa. This may be seen analogows to implementation level, see also section 4. Therefare
photographic lens with zoom-function where a longer concept for SPL architecture modelling needs tovipe
focal length (higher magnification) results in a adier the possibility to distinguish between common and
angle. variable parts of the products derived from a PLP.

Traceability: Traceability of requirements down to the Decision support: In order to resolve variability
architecture and finally to the source code (antkpb& a offered in the PLP architecture in a way intendgdHe
vital task to ensure the comprehensibility and platform developer a mechanism is needed, whicpshel
maintainability of a software system. In the scop&PLs the product developer to make the needed decisions.
the claim for traceability is so much important &ese Therefore each variability modelled in the PLP
resolving the variability of the requirements hased architecture must be furnished with an annotation —
impact on the design and therefore the source obtlee normally formulated in natural language — whichvpdes
SPL. Only if the traceability of requirements dotenthe the product developer with the needed information t
design and furthermore the source code is guardntee resolve given variability.

can fully benefit from the possibilities of reuseda Dependencies: By modelling the variability within a

therefore of cost-saving. SPL it must be taken into account, that there migght
Evolution: Similar to conventional software products dependencies between components of the system. This

a SPL isn't resistant against changes during fiesdycle. can mean that for example the existence of one

By and by changing requirements lead to changedcomponent requires the existence of another conmione
architectures and products. Therefore a mechangm i Therefore a concept for SPL architecture modelfiagds
needed to track these changes over time. In thiexoof to support an appropriate type of relationship.

SPLs this not only means versioning but also tod#ec Having described the requirements for SPL
when and how to migrate already derived productsnwh architecture modelling in the next section a preces|
changing the PLP. be presented, which illustrates the necessary stegpshe

Technical platform independence: To maximise the dependencies by modelling SPL architectures.
benefit of reusing components, the design of aesystind
components respectively should be independent ef th 4, SPL architecture modelling process
implementation technique used as long as possibtega
the levels of abstraction. Thereby the texamponenis This section presents a process for SPL architectur
not meant to denote a component known from e.g.modelling. As already mentioned in section 1 SPL
CORBA or EJB but a higher building block used in architecture modelling is organized in the two area
architecture mOde”ing. This will be discussed imrm domain engineeringand app|ica’[i0n engineering In

detail in section 6. Figure 1 the part of architecture modelling getsreno
The request for technical platform independence jmproved.
Complies with theModel Driven Architecture (MDA) Within the domain engineering initia”y the

approach conceived by the OMG [4]. In the scope of requirements for the entire PLP are collected tueyet
architecture modelling for SPLs, this technicaltiplan with the identified variability and afterwards coitegl
independence refers to the development of the PLPinto a requirements modefor the PLP, which among
architecture as well as the architectures of thenef other things contains e.g. feature graph[2]. This
derived products. requirements model forms the basis for the topHiyer

It should be mentioned that the teptatformis used of the PLP architecture. Starting from this stitisract
in the scope of SPL engineering as well as iNNHBA architecture layer the PLP architecture gets moré a

54

more improved in further architecture layers. This
procedure is according to tihodel Driven Architecture
(MDA) approach introduced by the OMG [4], see also
section 5.

Product Line-Platform
Requirements-Mode|

PLPA-Layer 1
PLPA-Layer 2

PLPA-Layer n

Product Line Platform-
Architecture (PLPA)

Product
Requirements-Model
PA-Layer i,
>{ PA-Layer i,
PA-Layer i,

Product-Architecture (PA)

o
=
o}
[}
S
o)
c
w
1=
©
£
S
(a]

Application Engineering

Figure 1. SPL architecture modelling process

In the last step within the domain engineering ttie
way specified generic architecture gets realizefaass
possible. Thereby — according to the differentiatio

architecture becomes more and more improved analogu
to the layers of the PLP architecture.

Thereby the variability included in the PLP
architecture is resolved conform to the previously
identified product requirements. In the last stée t
executable system is implemented based on thisuptod
architecture.

5. MDA and SPL architectures

To fulfil the requirement of technical platform
independence - see section 3 - tModel Driven
Architecture (MDA)approach of the OMG [4] can be
incorporated into a model for SPL architecture ntlotg
Figure 2 shows an approach to integrate the MDA in
concept for modelling SPLs.

Thereby thecore modelknown from the MDA is
specialized to @omain specific core modekhich offers
modelling elements adapted on a given domain. These
modelling elements are used to define patform
independent PLP modelonforming to the MDA, based
on the analysed requirements for the PLP. The golatf

common and variable components — both finished andindependent PLP model consists of sevetastraction

incomplete components are placed in the PLP, ss® al
section 6.

At the beginning of theapplication engineeringdirstly
the requirements for a concrete product are detexandn

layers which give from top to bottom a more and more
complete view of the modelled system. It is then -
according to the MDA - mapped to @atform specific

PLP model which also consists of several abstraction

base of the requirements for the PLP. Afterwards —layers.

similar to the domain engineering — a first coarse
architecture layer for the product is developedictvtis
based on the layer of the same abstraction leval Hse
PLP architecture. In the following this top-level

During the application engineering initially the
product requirements are determined based on the
requirements of the PLP and then implemented by a
platform independent product modelursuant to the

Modelling Element

)

Core Model

1

Domain Specific Core Model

PLP-Requirement

Product Requirement

1.
<g implements

Platform Independent PLP Model

1.*
<g implements

Product Model

Platform

! maps to

T
|
|
| maps to
|
i

Platform Specific PLP Model

Platform Specific Product Model

Figure 2. MDA and SPLs

55

MDA. This consists — analogue to the platform The last type of feature components is represeoyed
independent PLP model — of several abstractionrsaye specific feature component$hey are special building
and is mapped to alatform specific product model blocks needed to construct a specific application

which in turn consists of several abstraction layer architecture derived from a PLP architecture. As ti
must be taken into account, that in the coursehef t
6. Feature components evolution of a SPL an initially product-specificatere

component at a later date can be incorporated timto
PLP and thereby become a variable or even a common

The central building blocks for modelling the PLida
g ¢ feature component of the PLP, see section 3.

application architectures in the approach presehtze
arefeature component#\ feature component can be seen
as a self-contained unit, which represents a specif /- Metamodel
characteristic of the system to be modelled. Theyaam

adaptation of thefeature concept introduced by the After this preparatory work in this section a metatel
Feature Oriented Domain Analysis (FOD&) the level ~ for SPL architecture modelling elements will be egiv
of architecture modelling for SPLs [1]. which — in conjunction with the SPL architecture
modelling process presented in sections 4 and Wfitsf
Fosture Gomponent the requirements described at the beginning. Iticge8

an example will illustrate the elements presentedhie
metamodel shown in Figure 4.

The central modelling element is théeature
componenimentioned in section 6. Thereby each feature
Gamimon Festure Gomponert [P — pe—— component memorises the requirements covered biynit.
doing so traceability of requirements down to the
architecture level is supported as asked for itiaed.

Figure 3. Feature Components Feature components can participateetations with
the aid ofrelation endsas known from the UML [3].

It must be mentioned that the feature components at! Néreby a relation can bedapendency- see also section
the level of architecture modelling aren’t necegar S — Or ahierarchyrelation. , ,
identical to the features according to FODA, whinte Among adependencyelation two different kinds of
identified at the level of the requirements analygj. For ~ dependencies between feature components can be
example it might be possible that a set of featuresdistinguished:
identified in the requirements analysis togethelidba

feature component at the level of architecture riode y PrOh'b'ted

It might also be possible, that a feature is im@eted by * Required

a set of feature components likewasgpectdn the Aspect

Oriented Development [5]. Furthermore feature A dependency of typeprohibited is an undirected

components need — contrary to their name — noteto b relationship between two feature components. In a
realised at the imp]ementaﬂon level as ComponentsprOhlbltedRelatlonShlp the existence of one feature
provided by for example CORBA or EJB. As shown in component forbids the existence of the other featur

Figure 3 feature components can be divided inteehr componentin a derived product architecture.
different types. A dependency of typerequired is a directed

Common feature componentre used in a PLP relationship between two feature components. uisisd if
architecture and describe feature components, wtach ~ the existence of one feature component of the PLP
occur in every application based on this architectu architecture depends on the existence of anotfeurke
Common feature components occur in derived appticat component of the PLP architecture within a derived
architectures without modification. product architecture.

Variable feature componentre feature components, A hierarchyrelation depicts a conceptual structure
which can occur in every derived application amttisre ~ between a super- and a — possibly set of — subrkeat
only by resolving the offered variability of type component(s). It should be seen more &as part of
incomplete specificationiThis type will be described in relation than a generalisation similar to the catioas
more detail in section 7.1. used in deature graphin FODA [2].

56

Modeling Element

Decision Support Variability

Feature Component | _Retation End P—-—
N elation -
~coveredRequirements : Vector |qg— | Incomplete Specification

Specific Feature Gomponent ZT ZT

Hierarchy Dependency

Choice

% % Definition Refinement Redefinition Extension

1 Prohibited Required

Platform Feature Gomponent

Option Alternative or

Common Feature Component Variable Feature Component

1.0

Figure 4. Metamodel for SPL architecture modelling elements

The other major part of the metamodel pertaindhéo t feature component in question is given. On therdtiaad
modelling ofvariability. Thereby two types of variability variability of typedefinition or refinementmust always be

can be distinguisheihcomplete specificatioandchoice resolved.
7.1. Incomplete specification 7.2. Choice
Variability in the form of anincomplete specification The second type of variability between members of a

is characterised by a missing or incomplete spetifin SPL concerns thehoice from a set of offered feature
of a component. At this four different types can be components from the PLP. It can be distinguishethan
distinguished: following three types:
A definition only determines the skeleton of a feature
component likewise an interface. The detailed « Option
specification is done during tleg@plication engineering o Alternative
A refinementdefines the behaviour and data of a « O
feature component in an abstract way likewise gtate-
or hook-feature Component. The exact deSign will be In case of anoption the product deve|oper has to
defined product-specific. decide, if he takes over an optional feature corepbn
At the redefinition a SpeCiﬁcation for the feature from the PLP to the product architecture. In catearo
component exists already but it can be renewedusted ajternativeexactly one feature component must be chosen
SpeCifiC. This can serve for the definition of %m from a set of offered feature Components_
specification of a feature component, which can be An or-choice describes a set of feature components
product-specific redesigned. from which one ore more feature components must be
Similar to theredefinitionthe extensionalso defines a chosen. Table 1 shows the different types by iustg
(standard) specification of a feature componenwéi@r the used cardinalities of the choice and selecsiets. It
this specification can be product-specific extendsd should be mentioned that these three types cost z

functions or data. _ ~ combined to obtain a broader variety of possibls &
Beyond these four types of incomplete specification chgose from.

redefinitionandextensiorareoptional variability because
in these cases a sufficient complete specificatibthe

57

Table 1. Choice

Cardinality of Cardinality of
choice selected set
Option 0.1 1
Alternative| 1 *
Or 1.* *

When resolving variability during theapplication

The order system consists of an optional feature
paymentdenoted by the circle above the feature element.
The feature graph defines different types of paymen
methods among which the product developer can chose
one or more. Within thisr-choice — see section 7.2 — the
featureother payment methad a placeholder for further
payment methods which can be defined product specif

On the right hand of the feature graph a featutker
confirmation which denotes the kind of order

engineeringjncomplete specifications must be completed confirmation for the seller, is described, wheree th
that means defined, refined, redefined or extendedProduct developer must decide, which one of the
Furthermore the product developer has to come to z@lternatives offered he chooses, see also sectidn 7

decision about the feature components to choose $eis
of offered feature components in variability of eyp
choice.

Regarding all types of variability decision supporis
provided which supports the product developer keésgl
given variability, see section 3.

8. Example

In the following a small excerpt from a first castedy
is presented to illustrate the application of thetamodel
elements. This case study models a SPL in the xiate
an Internet e-shop.

In Figure 5 a feature graph modelling tloeder
subsystem of an e-shop product line is shown. Tyeae
extended notation compared to FODA is used [2].

Amongst the three offered alternatives the featiase
needs to be redefined in a derived application,seegon
7.1.

The two remaining optional features are the polsibi
to distinguish adelivery addres€rom a billing address
and to make use ofgift service Thereby thegift service
depends on the featurgelivery addressbecause one
rarely wants to send one’s gift together with awnoine.
This is shown by the use of @equires relationship
between this two features.

In the feature graph shown every variability is
numbered, whereby the numbering scheme shoulddake re
from top to bottom. For example the variability type
definition at the featurether payment methdths number
1.1b.1 because it is under the or-choice number 1.1
which in turn is under the optional featyr@ymentwhich
has number 1.

[OtherPaymentMethod}[C.0.D. J

1.1b.1

[

Merchandise Information System }

No, No,
****** »
b b)
Or Alternative Requires
@)
.
Feature
N a No I
Optional Feature Definition Refinement

Figure 5. Feature graph e-shop

58

By using this numbering scheme the product develope
can move along aecision treebuild up from this
hierarchical variability numbers. Together witllecision
support for every variability modelled, that way the
product developer can easily resolve the varighbilit
offered by the PLP.

After this description of an feature graph for theler
part of the e-shop the associated PLP architeetilrde
presented in part. It is constructed as a threexlay
architecture.

The PLP architecture is made up ofpeesentation
layer, which visualises the outcomes of the subjacent
business logic layerand serves in addition as the
communication interface from the end user to tlshap
system, normally by means of a web browser.

The business logic layercontains the functional
components of the e-shop, e.g. order handling stocuer
management. In the following this layer will be diéised
in more detail.

The lower most layer is thdatabase layer which
provides the business logic layer with the funciidg
needed to manage the dates with the help of a astab
system.

It should be mentioned that the layers describee he
aren't identical to the PLP architecture layers tioered
in sections 4 and 5. Here the three layers desaibe
logical segmentation of the system to be modeletief-

but is a feature component needed for technical
realisation. It should be mentioned that it is jjuss that
certain variability arises not until architectuevél. Thus

it is imaginable, that a feature component candadised

in many different ways — for example a DBMS can be
realised relational or object oriented.

The two other feature components in Figure 6 will n
deepened and are only shown for reasons of
completeness. In the following the feature compbnen
order_systenwill be observed in more detail.

Figure 7 shows a detailed view of the feature
component order_systemmentioned before. Here the
abstraction level allows using a well-known modadhe]li
language — here the UML — in order to describe the
specific characteristics of this feature compongst.can
be seen in Figure 7 the different types of varigpil
modelled in conjunction with the featurpsymentand
order confirmationin the feature graph of Figure 5 can be
regained in the feature componendler_system

The optional featurgpaymentis mapped to the now
optional clas?aymentMethodlepicted by the circle with
annotationOpt and number 1. Similar the alternative
number 4 and the or-choice number 1.1 are repredemt
this feature component. Three additional classes ar
shown, which describe an order based on a (virtual)
shopping cart. These two classes come from another
feature not modelled in the feature graph showRigure

architecture) whereas in the second case the layer$.

describe the hierarchy of abstraction of the medeRLP
architecture.

The variability described in the feature graph iguFe
5 is brought down to the PLP architecture of thehep.
Figure 6 presents a part of the business logia Jaykich
amongst other things consists of the feature comptsn
order_system, data_access_support,
customer_management, application_control, and
catalog_management

It is visible that the feature componemtier_systenis
influenced by two types of variability presented tive
feature graph in Figure 5. Furthermore the feature
component catalog_managementhas a variability
annotated, which was modelled in another here mowa
part of the feature graph.

The feature componerdata_access_supporlin the
above figure shall depict a feature component, wihias
no direct conjunction with features from the featgraph

presentation_layer

application_control
A,

4 A
order_system . customer_management
1.1b.1
A
w6
6.2

data_access_support [¢—

v

database_layer

s

4a.l catalog_m

business_logic_layer

Figure 6. Business logic layer

59

iOrderConfirmation PaymentMethod .

FaxOrderConfirmation EMailOrderConfirmation CreditCard TBD CashOnbDelivery Invoice

4a.l 1.1b.1
MISOrderConfirmation
(0]

r

b
1.1
\Alt/ Order ShoppingCart 0. Item
4

order_system <<uses>>

<

v
catalog_management

Figure 7. Order system

It should be pointed out that the types of varigbil them had certain influence on the approach predante
shown in the feature graph not only have impacthan this article. As also stated by Muthig et.al. i §&isting
business logic layeand therefore the feature component approaches often seem to be more pragmatic satution
order systembut also on the other layepesentation resulting from practical modelling experiences in a
layer anddatabase layerand their corresponding feature particular domain or environment whose results rase
components. For example the or-choice number 1.luniversally transferable.
between the different types of payment methods mgst In [6] Flege describes an approach for using theLUM
be modelled (and implemented) at fivesentation layer [3] for system family architecture description. Téley he
so that e.g. the end user can choose his prefpaydent focuses solely on construction-time variability,caese
method. As can be seen in this example, the mapgfing only this type of variability results in differeproducts
features from the feature graph doesn’t need toclmat and is therefore essential for developing SPLssdtee
one-to-one with the feature components modellethet of variability at later stages like e.g. at bindimgruntime
architecture level, as already mentioned in sedion doesn’t require special attention in the contextSefLs

The next step is to bring the modelled variabitiown because they only affect one single product, see [&]
to the source code. This can be achieved by anngtdte and [9].

source code with appropriate tags to depict theemint The drawback of Flege's approach is the lack of

types of variability. Because this actual is wonk i elements in the UML for explicit modelling of

progress it will not deepened here. architectural variability. Flege uses UML'’s stengids to
depict variable architectural elements. Therebyohty

9. Related wor k models optional elements by neglecting e.g. alteres

among modelling elements. In Flege's approach

As stated in section 2 most of the existing apmeac alternatives should be modelled at the level of the
concerning SPLs are focusing on the requirementsdecision model. At the design level this leads ptiomal

engineering. Nevertheless some approaches existhwhi €lements (the single alternatives) which are noemor

try to concentrate more on the downstream phasmf diStingUiShable from Other, real Optional elements.
development process like the design, whereby sofme oTherefore the approach presented in this artici@tty

60

distinguishes the different types of variabilityepented in
section 7 at the design level to allow traceabfiiom the
requirements down to the design and the source code
Furthermore Flege focuses exclusively on variabilit
with a complete set of specified variants by didtay
variability of type incomplete specification thaight be
used by product developers in an unanticipated wWay.
per Flege the reason for this is that unspecifizdability
has no impact during the instantiation of a refeeen
architecture. In the approach presented in thisepap
variability of type incomplete specification is dxjily
included. At first different specifications of elemts

For the time being two products were derived frbia t
PLP to show the load capacity of the given concept.
Thereby it turned out that — although the conceps w
useful — a meaningful and broader application adg be
achieved if the concepts are supported by toolse@tise
the PLP and product developers can hardly manage th
given complexity.

This leads to another aspect, which requires mand w
to be done: The transitions from requirements ergging
to architecture design and from architecture degigtne
level of implementation must be supported in a ephc
for modelling SPL architectures. Otherwise the latk

among products of a SPL — resulting in incomplete systematics makes the stability and durability oBRL

specification in the PLP architecture -

are a solely depending on the intelligence and creativityhe

distinguishable characteristic of these productd an developers involved.

therefore represent one type of variability witlsirSPL.
Furthermore only by explicitly modelling variabjfitof
type incomplete specification — including the
corresponding decision support — one can help ibéygct
developers to use the offered variability only thay
intended by the PLP developers.

In [7] Batory et.al. refer to the need for highewél

11. References

[1] Donohoe P. (editor),Software Product Lines:
Experience and Research Directipns Kluwer
International Series, 2000.

modelling elements when modelling SPL architectures [2] Kang, et. a|.,|:eature Oriented Domain Ana]ysis

Therefore they use features at the design lev&tansof
e.g. modules. These features are then step-wisgedef
during the design resulting in a more and more ipeec
architecture description. In their approach Batetyal.
concentrate more on the transition from the detigte
implementation by introducing templates for JAVAheT
feature componenisresented in section 6 also try to offer
higher-level architecture modelling elements bu¢ ar
contrary to Batory et. al. — clearly differentiatedm the

(FODA) Feasibility StudyTechnical Report SEI-CMU,
Pittsburgh, 2000.

[3] OMG, Unified Modeling Language Specification,
Version. 1.4 Technical Report, OMG, 2001.

[4] Soley R., OMG,Model Driven Architecture White
Paper, OMG, 2000.

features of FODA [2] used during the requirements 5] AOSD Steering Committeéyspect-Oriented Software

analysis.

10. Conclusion and future wor k

In this paper requirements for a concept to modril S
architectures were presented.

Furthermore a SPU7] Batory, Johnson,

Developmenthttp://aosd.net

[6] Flege O., System Family Architecture Description
Using the UML. IESE-Report No. 092.00/E, 2000

MacDonald, and von Heeder,

architecture modelling process was described whichAchieving Extensibility Through Product-Lines and

incorporates the concept of theodel driven architecture
into SPL architecture modelling. Besides a metarhfade
SPL architecture modelling elements was shown, lwhic
together with the described SPL architecture maougll
process - fulfils the requirements deployed in finst
part.

A first practical application in the context of ase-

study from which parts were shown in the example

illustrated in section 8 has shown the load capasfithe

Domain-Specific Languages: A Case StudgCM
Transactions on Software Engineering and Methodolog
(TOSEM), Vol. 11, Nr. 2, pp. 191-214, 2002

[8] Muthig and Atkinson,Model-Driven Product Line
Architectures SPLC 2002, LNCS 2379, pp. 110-129,
2002

[9] Thiel S. and Hein A.,Systematic Integration of

presented concepts for a medium sized application.Variability into Product Line Architecture Desig®PLC

Within this case-study a domain for e-shops wasyaad

2002, LNCS 2379, pp. 130-153, 2002

and based on a requirements model including a reatu

graph for this domain a PLP architecture using the[10] van Zyl, Product Line Architecture and the
modelling elements offered by the presented metainod Separation of ConcernSPLC 2002, LNCS 2379, pp. 90-
was developed. 109, 2002

61

	page 521: 53
	page 531: 54
	page 541: 55
	page 551: 56
	page 561: 57
	page 571: 58
	page 581: 59
	page 591: 60
	page 601: 61

