

Modelling Architectural Variability for Software Product Lines

Thomas Weiler
Research Group Software Construction, RWTH Aachen, Germany

thomas.weiler@cs.rwth-aachen.de

Abstract

In this paper requirements for a concept to model

software product line architectures are presented.
Furthermore a process for SPL architecture modelling is
described which incorporates the concept of the model
driven architecture (MDA) into SPL architecture
modelling. Besides a metamodel for SPL architecture
modelling elements is shown, which – combined with the
process for SPL architecture modelling - fulfils the
requirements deployed in the first part.

Modelling variability and traceability of requirements
within a software architecture thereby possesses the main
focus. Therefore a detailed breakdown of different kinds
of variability found in product line based software
architectures is given. The presentation concludes with an
small excerpt from a case-study within the context of an e-
shop, which should clarify the application of the elements
of the metamodel presented before.

1. Introduction

Software Product Lines (SPLs) are an advancement in

software reuse. In the scope of SPLs reuse however refers
to all documents that evolve during the development of
(similar) products. Examples for these documents are
requirements, architecture models or database designs.

SPL development is divided into two main parts,
which execute interactively. Within the domain
engineering the common and variable parts of products,
which belong to an application domain, are analysed and
described. The resulting documents of this process form
the basis of the product line, the so-called Product Line
Platform (PLP). During the application engineering
concrete products are then derived from this PLP.
Thereby the terms application and product will be used
synonymous below.

By maximising the reuse of documents in the product
line-based software development, time-to-market as well
as development costs can be significantly reduced [1].
Furthermore a correct applied product line-based
approach encourages the quality of the end products by
careful development and intensive tests of the common
parts of the SPL.

2. Present approaches

Most approaches in the scope of SPLs are focusing on
the requirements engineering. They primarily consider the
delimitation of the application domain during the process
of scoping as well as the acquisition and modelling of
requirements for SPLs.

Thereby it is identified to be crucial, to explicitly
model the variability of requirements for products of a
SPL. Furthermore a dedicated mechanism is needed,
which allows the product developer to resolve the
modelled variability for a concrete product in a way
desired by the developer of the PLP.

Within all these approaches it is often neglected that
product line-based software development can only lead to
full success if it is recognized as an integrated concept,
which involves all phases of the software engineering
process. In the following this article concentrates on
architecture modelling for SPLs.

3. SPL architecture modelling

Architecture modelling for SPLs partially demands

similar requirements as architecture modelling for
conventional systems. But many of these requirements
need a more intensive attention in the scope of SPLs,
because the PLP architecture often forms the basis for a
huge set of derived product architectures. This
simultaneously is the risk and the chance of SPLs.

In the following requirements for a SPL architecture
modelling concept are presented which are determined
during the case study presented in section 8 and are
additionally the result of a comparison of existing
approaches in the context of SPLs, see also section 9.
Thereafter a SPL architecture modelling process and a
metamodel for SPL architecture modelling elements will
be presented which fulfil the specified requirements.

Entities and relations: First of all – as with every
other architecture modelling language – there must be a
possibility to model the central building blocks of a
system – the entities – and their connections, the relations.
Thereby the entities describe central units of the system to
be modelled and the relations describe structural and

behavioural connections of this units like e.g. hierarchical
or uses relations.

Separation of concern: Architecture modelling for
SPLs must provide the possibility to concentrate on
specific aspects of a system [10]. This concept known as
separation of concern is divided into two dimensions:
Along the horizontal dimension it is possible to designate
the focus on a part of interest (clipping). The vertical
dimension allows to magnify a given fixed cutout step by
step in order to get a more and more exact image of the
cutout in question.

A combination of both dimensions is the so-called
zooming, in which an aspect is magnified step by step
whereby the observed cutout is simultaneously scaled
down and vice versa. This may be seen analogous to a
photographic lens with zoom-function where a longer
focal length (higher magnification) results in a smaller
angle.

Traceability: Traceability of requirements down to the
architecture and finally to the source code (and back) is a
vital task to ensure the comprehensibility and
maintainability of a software system. In the scope of SPLs
the claim for traceability is so much important because
resolving the variability of the requirements has direct
impact on the design and therefore the source code of the
SPL. Only if the traceability of requirements down to the
design and furthermore the source code is guaranteed, one
can fully benefit from the possibilities of reuse and
therefore of cost-saving.

Evolution: Similar to conventional software products
a SPL isn’t resistant against changes during its life cycle.
By and by changing requirements lead to changed
architectures and products. Therefore a mechanism is
needed to track these changes over time. In the context of
SPLs this not only means versioning but also to decide
when and how to migrate already derived products when
changing the PLP.

Technical platform independence: To maximise the
benefit of reusing components, the design of a system and
components respectively should be independent of the
implementation technique used as long as possible along
the levels of abstraction. Thereby the term component is
not meant to denote a component known from e.g.
CORBA or EJB but a higher building block used in
architecture modelling. This will be discussed in more
detail in section 6.

The request for technical platform independence
complies with the Model Driven Architecture (MDA)
approach conceived by the OMG [4]. In the scope of
architecture modelling for SPLs, this technical platform
independence refers to the development of the PLP
architecture as well as the architectures of therefrom-
derived products.

It should be mentioned that the term platform is used
in the scope of SPL engineering as well as in the MDA

approach. So one should not mix up the two meanings of
the term platform. While in the context of SPLs this term
describes all documents on which the product line is
based, in the context of the MDA it refers to the technical
platform used. So if not explicitly mentioned context
should clarify which meaning was meant by. The
relationship between SPLs and the MDA will be
discussed in more detail in sections 4 and 5.

Variability: Modelling different variability within a
SPL is vitally important for the requirements engineering
as well as for designing the architecture. Combined with
the traceability arises the possibility to resolve variability
at the level of requirements during product configuration
and to implement it through the design level down to the
implementation level, see also section 4. Therefore a
concept for SPL architecture modelling needs to provide
the possibility to distinguish between common and
variable parts of the products derived from a PLP.

Decision support: In order to resolve variability
offered in the PLP architecture in a way intended by the
platform developer a mechanism is needed, which helps
the product developer to make the needed decisions.
Therefore each variability modelled in the PLP
architecture must be furnished with an annotation –
normally formulated in natural language – which provides
the product developer with the needed information to
resolve given variability.

Dependencies: By modelling the variability within a
SPL it must be taken into account, that there might be
dependencies between components of the system. This
can mean that for example the existence of one
component requires the existence of another component.
Therefore a concept for SPL architecture modelling needs
to support an appropriate type of relationship.

Having described the requirements for SPL
architecture modelling in the next section a process will
be presented, which illustrates the necessary steps and the
dependencies by modelling SPL architectures.

4. SPL architecture modelling process

This section presents a process for SPL architecture

modelling. As already mentioned in section 1 SPL
architecture modelling is organized in the two areas
domain engineering and application engineering. In
Figure 1 the part of architecture modelling gets more
improved.

Within the domain engineering initially the
requirements for the entire PLP are collected together
with the identified variability and afterwards compiled
into a requirements model for the PLP, which among
other things contains e.g. a feature graph [2]. This
requirements model forms the basis for the top-level layer
of the PLP architecture. Starting from this still abstract
architecture layer the PLP architecture gets more and

more improved in further architecture layers. This
procedure is according to the Model Driven Architecture
(MDA) approach introduced by the OMG [4], see also
section 5.

Product Line-Platform
Requirements-Model

PLPA-Layer 1

PLPA-Layer 2

PLPA-Layer n

D
om

ai
n

E
ng

in
ee

rin
g

Product Line Platform-
Architecture (PLPA)

…

PA-Layer i1

PA-Layer i2

PA-Layer in

A
pp

lic
at

io
n

E
ng

in
ee

rin
g

…

Product
Requirements-Model

Customizing

Product-Architecture (PA)

Figure 1. SPL architecture modelling process

In the last step within the domain engineering the that

way specified generic architecture gets realized as far as
possible. Thereby – according to the differentiation in
common and variable components – both finished and
incomplete components are placed in the PLP, see also
section 6.

At the beginning of the application engineering firstly
the requirements for a concrete product are determined on
base of the requirements for the PLP. Afterwards –
similar to the domain engineering – a first coarse
architecture layer for the product is developed, which is
based on the layer of the same abstraction level as in the
PLP architecture. In the following this top-level

architecture becomes more and more improved analogue
to the layers of the PLP architecture.

Thereby the variability included in the PLP
architecture is resolved conform to the previously
identified product requirements. In the last step the
executable system is implemented based on this product
architecture.

5. MDA and SPL architectures

To fulfil the requirement of technical platform

independence - see section 3 - the Model Driven
Architecture (MDA) approach of the OMG [4] can be
incorporated into a model for SPL architecture modelling.
Figure 2 shows an approach to integrate the MDA in a
concept for modelling SPLs.

Thereby the core model known from the MDA is
specialized to a domain specific core model, which offers
modelling elements adapted on a given domain. These
modelling elements are used to define a platform
independent PLP model conforming to the MDA, based
on the analysed requirements for the PLP. The platform
independent PLP model consists of several abstraction
layers, which give from top to bottom a more and more
complete view of the modelled system. It is then -
according to the MDA - mapped to a platform specific
PLP model, which also consists of several abstraction
layers.

During the application engineering initially the
product requirements are determined based on the
requirements of the PLP and then implemented by a
platform independent product model pursuant to the

Figure 2. MDA and SPLs

Core Model

Domain Specific Core Model

Platform Independent PLP Model
Platform Independent Product Model

Platform Specific PLP Model Platform Specific Product Model

Modelling Element

Abstraction Layer

PLP-Requirement Product Requirement

uses

1..*

1..*

1..*

1..*

1..*

implements
implements

1..*

depends on

maps to maps to

uses

implements

1..*

1..*

maps to

depends on

1..*

implements
1..*

maps to

1..*

1..*

MDA. This consists – analogue to the platform
independent PLP model – of several abstraction layers
and is mapped to a platform specific product model,
which in turn consists of several abstraction layers.

6. Feature components

The central building blocks for modelling the PLP and

application architectures in the approach presented here
are feature components. A feature component can be seen
as a self-contained unit, which represents a specific
characteristic of the system to be modelled. They are an
adaptation of the feature concept introduced by the
Feature Oriented Domain Analysis (FODA) to the level
of architecture modelling for SPLs [1].

Figure 3. Feature Components

It must be mentioned that the feature components at

the level of architecture modelling aren’t necessarily
identical to the features according to FODA, which are
identified at the level of the requirements analysis [2]. For
example it might be possible that a set of features
identified in the requirements analysis together build a
feature component at the level of architecture modelling.
It might also be possible, that a feature is implemented by
a set of feature components likewise aspects in the Aspect
Oriented Development [5]. Furthermore feature
components need – contrary to their name – not to be
realised at the implementation level as components
provided by for example CORBA or EJB. As shown in
Figure 3 feature components can be divided into three
different types.

Common feature components are used in a PLP
architecture and describe feature components, which can
occur in every application based on this architecture.
Common feature components occur in derived application
architectures without modification.

Variable feature components are feature components,
which can occur in every derived application architecture
only by resolving the offered variability of type
incomplete specification. This type will be described in
more detail in section 7.1.

The last type of feature components is represented by
specific feature components. They are special building
blocks needed to construct a specific application
architecture derived from a PLP architecture. At this it
must be taken into account, that in the course of the
evolution of a SPL an initially product-specific feature
component at a later date can be incorporated into the
PLP and thereby become a variable or even a common
feature component of the PLP, see section 3.

7. Metamodel

After this preparatory work in this section a metamodel

for SPL architecture modelling elements will be given
which – in conjunction with the SPL architecture
modelling process presented in sections 4 and 5 – fulfils
the requirements described at the beginning. In section 8
an example will illustrate the elements presented in the
metamodel shown in Figure 4.

The central modelling element is the feature
component mentioned in section 6. Thereby each feature
component memorises the requirements covered by it. In
doing so traceability of requirements down to the
architecture level is supported as asked for in section 3.

 Feature components can participate in relations with
the aid of relation ends as known from the UML [3].
Thereby a relation can be a dependency – see also section
3 – or a hierarchy relation.

Among a dependency-relation two different kinds of
dependencies between feature components can be
distinguished:

• Prohibited
• Required

A dependency of type prohibited is an undirected

relationship between two feature components. In a
prohibited-Relationship the existence of one feature
component forbids the existence of the other feature
component in a derived product architecture.

A dependency of type required is a directed
relationship between two feature components. It is used if
the existence of one feature component of the PLP
architecture depends on the existence of another feature
component of the PLP architecture within a derived
product architecture.

A hierarchy-relation depicts a conceptual structure
between a super- and a – possibly set of – sub-feature
component(s). It should be seen more as a is part of-
relation than a generalisation similar to the connections
used in a feature graph in FODA [2].

The other major part of the metamodel pertains to the
modelling of variability. Thereby two types of variability
can be distinguished: incomplete specification and choice.

7.1. Incomplete specification

Variability in the form of an incomplete specification
is characterised by a missing or incomplete specification
of a component. At this four different types can be
distinguished:

A definition only determines the skeleton of a feature
component likewise an interface. The detailed
specification is done during the application engineering.

A refinement defines the behaviour and data of a
feature component in an abstract way likewise a template-
or hook-feature component. The exact design will be
defined product-specific.

At the redefinition a specification for the feature
component exists already but it can be renewed product-
specific. This can serve for the definition of a preset
specification of a feature component, which can be
product-specific redesigned.

Similar to the redefinition the extension also defines a
(standard) specification of a feature component. However
this specification can be product-specific extended by
functions or data.

Beyond these four types of incomplete specification
redefinition and extension are optional variability because
in these cases a sufficient complete specification of the

feature component in question is given. On the other hand
variability of type definition or refinement must always be
resolved.

7.2. Choice

The second type of variability between members of a

SPL concerns the choice from a set of offered feature
components from the PLP. It can be distinguished in the
following three types:

• Option
• Alternative
• Or

In case of an option the product developer has to

decide, if he takes over an optional feature component
from the PLP to the product architecture. In case of an
alternative exactly one feature component must be chosen
from a set of offered feature components.

An or-choice describes a set of feature components
from which one ore more feature components must be
chosen. Table 1 shows the different types by illustrating
the used cardinalities of the choice and selection sets. It
should be mentioned that these three types could also be
combined to obtain a broader variety of possible sets to
choose from.

Figure 4. Metamodel for SPL architecture modelling elements

Modeling Element

Feature Component

-coveredRequirements : Vector

Variability

Common Feature Component Variable Feature Component

Specific Feature Component

Incomplete Specification

Choice

Option Alternative

Dependency

Prohibited Required

Relation

Refinement RedefinitionDefinition Extension

Or

Decision Support

Relation End

Hierarchy

Platform Feature Component

1..*

1..*

2..*

1..*

Table 1. Choice

 Cardinality of
choice

Cardinality of
selected set

Option 0..1 1
Alternative 1 *
Or 1..* *

When resolving variability during the application

engineering, incomplete specifications must be completed
that means defined, refined, redefined or extended.
Furthermore the product developer has to come to a
decision about the feature components to choose from sets
of offered feature components in variability of type
choice.

Regarding all types of variability a decision support is
provided which supports the product developer resolving
given variability, see section 3.

8. Example

In the following a small excerpt from a first case-study

is presented to illustrate the application of the metamodel
elements. This case study models a SPL in the context of
an Internet e-shop.

In Figure 5 a feature graph modelling the order
subsystem of an e-shop product line is shown. Thereby an
extended notation compared to FODA is used [2].

The order system consists of an optional feature
payment denoted by the circle above the feature element.
The feature graph defines different types of payment
methods among which the product developer can chose
one or more. Within this or-choice – see section 7.2 – the
feature other payment method is a placeholder for further
payment methods which can be defined product specific.

On the right hand of the feature graph a feature order
confirmation, which denotes the kind of order
confirmation for the seller, is described, where the
product developer must decide, which one of the
alternatives offered he chooses, see also section 7.2.
Amongst the three offered alternatives the feature fax
needs to be redefined in a derived application, see section
7.1.

The two remaining optional features are the possibility
to distinguish a delivery address from a billing address
and to make use of a gift service. Thereby the gift service
depends on the feature delivery address because one
rarely wants to send one’s gift together with an invoice.
This is shown by the use of a requires relationship
between this two features.

In the feature graph shown every variability is
numbered, whereby the numbering scheme should be read
from top to bottom. For example the variability of type
definition at the feature other payment method has number
1.1b.1 because it is under the or-choice number 1.1,
which in turn is under the optional feature payment, which
has number 1.

Figure 5. Feature graph e-shop

Order

Payment

InvoiceCredit Card

Other Payment Method C.O.D.

E-Mail

Order Confirmation

Fax

Merchandise Information System

Delivery addressGift service

Ref

Def

1.1

1.1b.1

a

b c

d

2 3

4

a

b

c

4a.1

1

Feature

Def

Feature

Ref

Feature

Or Alternative

Definit ion RefinementOptional Feature

a
b

c

No No

No No

No

a
b

c

Requires

By using this numbering scheme the product developer
can move along a decision tree build up from this
hierarchical variability numbers. Together with a decision
support for every variability modelled, that way the
product developer can easily resolve the variability
offered by the PLP.
After this description of an feature graph for the order
part of the e-shop the associated PLP architecture will be
presented in part. It is constructed as a three-layer
architecture.

The PLP architecture is made up of a presentation
layer, which visualises the outcomes of the subjacent
business logic layer and serves in addition as the
communication interface from the end user to the e-shop
system, normally by means of a web browser.

The business logic layer contains the functional
components of the e-shop, e.g. order handling or customer
management. In the following this layer will be described
in more detail.

The lower most layer is the database layer, which
provides the business logic layer with the functionality
needed to manage the dates with the help of a database
system.

It should be mentioned that the layers described here
aren’t identical to the PLP architecture layers mentioned
in sections 4 and 5. Here the three layers describe a
logical segmentation of the system to be modelled (a tier-
architecture) whereas in the second case the layers
describe the hierarchy of abstraction of the modelled PLP
architecture.

The variability described in the feature graph in Figure
5 is brought down to the PLP architecture of the e-shop.
Figure 6 presents a part of the business logic layer, which
amongst other things consists of the feature components
order_system, data_access_support,
customer_management, application_control, and
catalog_management.

It is visible that the feature component order_system is
influenced by two types of variability presented in the
feature graph in Figure 5. Furthermore the feature
component catalog_management has a variability
annotated, which was modelled in another here not shown
part of the feature graph.

The feature component data_access_support in the
above figure shall depict a feature component, which has
no direct conjunction with features from the feature graph

but is a feature component needed for technical
realisation. It should be mentioned that it is possible, that
certain variability arises not until architecture level. Thus
it is imaginable, that a feature component can be realised
in many different ways – for example a DBMS can be
realised relational or object oriented.

The two other feature components in Figure 6 will not
deepened and are only shown for reasons of
completeness. In the following the feature component
order_system will be observed in more detail.

Figure 7 shows a detailed view of the feature
component order_system mentioned before. Here the
abstraction level allows using a well-known modelling
language – here the UML – in order to describe the
specific characteristics of this feature component. As can
be seen in Figure 7 the different types of variability
modelled in conjunction with the features payment and
order confirmation in the feature graph of Figure 5 can be
regained in the feature component order_system.

The optional feature payment is mapped to the now
optional class PaymentMethod depicted by the circle with
annotation Opt and number 1. Similar the alternative
number 4 and the or-choice number 1.1 are represented in
this feature component. Three additional classes are
shown, which describe an order based on a (virtual)
shopping cart. These two classes come from another
feature not modelled in the feature graph shown in Figure
5.

business_logic_layer

order_system

application_control

catalog_management

data_access_support

customer_management

presentation_layer

database_layer

Def

Ref

1.1b.1

4a.1 Ref

6.2

Figure 6. Business logic layer

It should be pointed out that the types of variability
shown in the feature graph not only have impact on the
business logic layer and therefore the feature component
order system but also on the other layers presentation
layer and database layer and their corresponding feature
components. For example the or-choice number 1.1
between the different types of payment methods must also
be modelled (and implemented) at the presentation layer,
so that e.g. the end user can choose his preferred payment
method. As can be seen in this example, the mapping of
features from the feature graph doesn’t need to match
one-to-one with the feature components modelled at the
architecture level, as already mentioned in section 6.

The next step is to bring the modelled variability down
to the source code. This can be achieved by annotating the
source code with appropriate tags to depict the different
types of variability. Because this actual is work in
progress it will not deepened here.

9. Related work

As stated in section 2 most of the existing approaches

concerning SPLs are focusing on the requirements
engineering. Nevertheless some approaches exist which
try to concentrate more on the downstream phases of the
development process like the design, whereby some of

them had certain influence on the approach presented in
this article. As also stated by Muthig et.al. in [8] existing
approaches often seem to be more pragmatic solutions
resulting from practical modelling experiences in a
particular domain or environment whose results are not
universally transferable.

In [6] Flege describes an approach for using the UML
[3] for system family architecture description. Thereby he
focuses solely on construction-time variability, because
only this type of variability results in different products
and is therefore essential for developing SPLs. Presence
of variability at later stages like e.g. at binding or runtime
doesn’t require special attention in the context of SPLs
because they only affect one single product, see also [8]
and [9].

The drawback of Flege’s approach is the lack of
elements in the UML for explicit modelling of
architectural variability. Flege uses UML’s stereotypes to
depict variable architectural elements. Thereby he only
models optional elements by neglecting e.g. alternatives
among modelling elements. In Flege’s approach
alternatives should be modelled at the level of the
decision model. At the design level this leads to optional
elements (the single alternatives) which are no more
distinguishable from other, real optional elements.
Therefore the approach presented in this article explicitly

Figure 7. Order system

order_system

OrderConfirmation

FaxOrderConfirmation EMailOrderConfirmation

MISOrderConfirmation

PaymentMethod

CreditCard TBD CashOnDelivery Invoice

Order ShoppingCart Item
0..*

Opt

1

Alt

4

Ref

4a.1

Def

1.1b.1

Or

a

b

c a b c d

<<uses>>

catalog_management

1.1

distinguishes the different types of variability presented in
section 7 at the design level to allow traceability from the
requirements down to the design and the source code.

Furthermore Flege focuses exclusively on variability
with a complete set of specified variants by discarding
variability of type incomplete specification that might be
used by product developers in an unanticipated way. As
per Flege the reason for this is that unspecified variability
has no impact during the instantiation of a reference
architecture. In the approach presented in this paper
variability of type incomplete specification is explicitly
included. At first different specifications of elements
among products of a SPL – resulting in incomplete
specification in the PLP architecture – are a
distinguishable characteristic of these products and
therefore represent one type of variability within a SPL.
Furthermore only by explicitly modelling variability of
type incomplete specification – including the
corresponding decision support – one can help the product
developers to use the offered variability only the way
intended by the PLP developers.

In [7] Batory et.al. refer to the need for higher-level
modelling elements when modelling SPL architectures.
Therefore they use features at the design level instead of
e.g. modules. These features are then step-wise refined
during the design resulting in a more and more precise
architecture description. In their approach Batory et.al.
concentrate more on the transition from the design to the
implementation by introducing templates for JAVA. The
feature components presented in section 6 also try to offer
higher-level architecture modelling elements but are –
contrary to Batory et. al. – clearly differentiated from the
features of FODA [2] used during the requirements
analysis.

10. Conclusion and future work

In this paper requirements for a concept to model SPL

architectures were presented. Furthermore a SPL
architecture modelling process was described which
incorporates the concept of the model driven architecture
into SPL architecture modelling. Besides a metamodel for
SPL architecture modelling elements was shown, which –
together with the described SPL architecture modelling
process - fulfils the requirements deployed in the first
part.

A first practical application in the context of a case-
study from which parts were shown in the example
illustrated in section 8 has shown the load capacity of the
presented concepts for a medium sized application.
Within this case-study a domain for e-shops was analysed
and based on a requirements model including a feature
graph for this domain a PLP architecture using the
modelling elements offered by the presented metamodel
was developed.

For the time being two products were derived from this
PLP to show the load capacity of the given concept.
Thereby it turned out that – although the concept was
useful – a meaningful and broader application can only be
achieved if the concepts are supported by tools. Otherwise
the PLP and product developers can hardly manage the
given complexity.

This leads to another aspect, which requires more work
to be done: The transitions from requirements engineering
to architecture design and from architecture design to the
level of implementation must be supported in a concept
for modelling SPL architectures. Otherwise the lack of
systematics makes the stability and durability of a SPL
solely depending on the intelligence and creativity of the
developers involved.

11. References

[1] Donohoe P. (editor), Software Product Lines:
Experience and Research Directions, Kluwer
International Series, 2000.

[2] Kang, et. al., Feature Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report SEI-CMU,
Pittsburgh, 2000.

[3] OMG, Unified Modeling Language Specification,
Version. 1.4, Technical Report, OMG, 2001.

[4] Soley R., OMG, Model Driven Architecture, White
Paper, OMG, 2000.

[5] AOSD Steering Committee, Aspect-Oriented Software
Development, http://aosd.net

[6] Flege O., System Family Architecture Description
Using the UML, IESE-Report No. 092.00/E, 2000

[7] Batory, Johnson, MacDonald, and von Heeder,
Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study, ACM
Transactions on Software Engineering and Methodology
(TOSEM), Vol. 11, Nr. 2, pp. 191-214, 2002

[8] Muthig and Atkinson, Model-Driven Product Line
Architectures, SPLC 2002, LNCS 2379, pp. 110-129,
2002

[9] Thiel S. and Hein A., Systematic Integration of
Variability into Product Line Architecture Design, SPLC
2002, LNCS 2379, pp. 130-153, 2002

[10] van Zyl, Product Line Architecture and the
Separation of Concerns, SPLC 2002, LNCS 2379, pp. 90-
109, 2002

	page 521: 53
	page 531: 54
	page 541: 55
	page 551: 56
	page 561: 57
	page 571: 58
	page 581: 59
	page 591: 60
	page 601: 61

