
BugzillaMetrics - An adaptable tool for evaluating metric
specifications on change requests

Lars Grammel, Holger Schackmann, Horst Lichter
RWTH Aachen University – Research Group Software Construction

Ahornstr. 55, 52074 Aachen, Germany
lars.grammel@googlemail.com, {schackmann, lichter}@cs.rwth-aachen.de

ABSTRACT
To manage the evolution of software processes and prod-
ucts, it is essential to evaluate their current state and how
it evolved. This information can be obtained by analyzing
the data available in change request management (CRM)
systems like Bugzilla.

Metrics and charts on change requests are already avail-
able in current CRM systems. They provide information
about common metrics, but their adaptability is limited.
This paper describes a more flexible approach for the eval-
uation of metrics on change requests.

The main characteristics of the tool presented in this pa-
per are the separation between metric specification and data
retrieval, an event driven algorithm that calculates time se-
ries data, and an abstraction of its data sources.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—process metrics,

product metrics; D.2.11 [Software Engineering]: Software
Architectures—domain-specific architectures, data abstrac-

tion

Keywords
Evaluation of change requests, software measurement, process
metrics, metrics specification, change request management

1. INTRODUCTION
Information on the evolution of software processes and

products can be obtained by analyzing the data available in
change request management (CRM) systems. The evalua-
tion of metrics on this data can be used for several purposes,
e.g. to improve the awareness and monitoring of current
project states, identify software development process weak-
nesses, and assess the result of changes in the process.

But the report functionality of existing CRM tools typ-
ically contains only a fixed set of common metrics and is
limited in its adaptability (see Section 2). Thus, there is

a need for a tool that supports a flexible definition of met-
rics and can easily be adapted to changes in the underlying
CRM system.

The tool BugzillaMetrics presented in this paper should
fulfill these requirements [10]. It was developed and used in
cooperation with Kisters AG [5]. This company offers a large
portfolio of software products developed as software product
lines. Kisters AG uses a customized Bugzilla installation.

The paper is structured as follows: First, an evaluation
of existing CRM tools is presented. Then, an overview of
the requirements and the architecture of the tool is given.
Afterwards, an example is shown and results of using the
tool are presented.

2. EXISTING TOOLS
Metrics and charts on Change Requests (CRs) are al-

ready available in current CRM tools. The development of
BugzillaMetrics was based on the evaluation and compari-
son of the CRM tools Bugzilla [1], JIRA [4], Polarion for
Subversion [6] and Code Beamer [3]. A brief overview
of the relevant results is given in the following.

Reports usually have a basic filter that determines the set
of CRs that are evaluated. The filter functionality provided
by the different tools ranges from simple keyword search to
the specification of the WHERE part of an SQL statement.
Whereas a simple keyword search is not sufficient for select-
ing a specific set of CRs, SQL statements are on a level of
abstraction that is too technical to be used by project or
product managers. Intermediate level features are for ex-
ample specifying a range or a set of values, filtering for field
changes by specifying an original or new value, filtering by
regular expressions, and combining filters with boolean op-
erators.

Reports can be divided into snapshot reports that calcu-
late values for a specific point of time, and time series reports
that calculate values at certain intervals within a time pe-
riod. The evaluated tools basically offer the following types
of snapshot reports:

• Splitting. According to some criteria, the CRs are
split into groups. The size of the groups is calculated
and displayed in the snapshot report. Splitting in-
cludes counting the number of all CRs as a special
case, namely splitting into one group. Examples for
these kinds of reports are the number of created CRs,
or the priority distribution of all CRs.

• Age based reports. Age based reports like the resolu-
tion time of closed CRs or the average age of open CRs

© ACM 
http://dl.acm.org/citation.cfm?doid=1294904.1294909 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution

Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting (IWPSE '07). 
ACM, New York, NY, USA, 35-38.  
DOI=10.1145/1294904.1294909



require the calculation of the length of a time period.

• Workload reports. The workload reports are based on
the amount of time spent on CRs and the estimated
remaining time.

There are several limitations in the evaluated tools. Users
can only use a fixed set of evaluations with slight mod-
ifications like the evaluated timespan. Metric developers
can only change details through the user interfaces. If they
want to create new metrics, they have to implement these
by themselves, if the software is available in source code
or offers an appropriate interface, or they have to rely on
the CRM vendor. Thus, developing and experimenting with
new metrics is difficult. Another limitation is that compar-
ing metric results from different CRM systems is not easy
due to slight differences in the metric implementations.

3. REQUIREMENTS AND ARCHITECTURE
In this section, we first introduce some basic terms. Then

the requirements for BugzillaMetrics are described and an
overview of the architecture is given.

3.1 Basic Terms
A change request is a request to extend or modify a

software system. The CR state is the property configura-
tion of a CR at a certain point of time. One property of a
CR is the CR status, which models the processing state,
e.g. ‘new’, or ‘assigned’.

In this paper, an event is an occurrence of a change in the
history of a CR, or a change of the evaluated time interval.
An event filter is a filter that accepts or denies events. For
example, an event filter can be defined, that only accepts
events which model assignee changes. A state filter is a
filter that accepts or denies CRs based on their CR state.

A CR value is a numerical value that is assigned to a CR
as the result of the evaluation of an event by a CR value
calculator. An example for a CR value calculator is the
incoming rate: all CR creation events are counted in a CR
value with the default weight of 1.

3.2 Requirements
The overall development goal of BugzillaMetrics was to

overcome the limitations of the existing tools concerning
metric definition and evaluation. Metric developers should
concentrate on the metric models and be able to test new
metrics quickly. Therefore the tool should provide a mech-
anism for the flexible specification of a wide range of met-
rics. Furthermore, it should have a modular architecture
that supports extensions and modifications.

Regarding the difficulties comparing data from different
CRM systems, the tool should provide a mechanism that
separates the metric evaluation from the data source access.

Several variations points of the evaluation algorithm were
identified that describe the flexibility requirements for Bugzil-
laMetrics. They are examined in the following, grouped by
their likelihood to change.

• Weights are used in the calculation of CR values on
certain events. New weights are likely to be added
when new calculations are required.

• Data sources are likely to be adapted to a changed
database scheme when the tool is ported to a new ver-
sion of the CRM system or a different CRM system.

Figure 1: Integration of the architecture in the ex-
isting environment

The following aspects are somewhat likely to change:

• New CR state filters, for example to support range
checks on number fields, might be added.

• Events and the corresponding event filters might be
added to represent and filter new data sources.

• Group calculation operations to support more com-
plex statistical or mathematical operations might be
added to support new metric calculations.

The following aspects might change, although they are ex-
pected to be stable:

• CR value calculators that support calculations out-
side of the scope of the available calculators.

• Groupings. The way the results are grouped might
be changed. This includes changing the order and the
available group parameters.

BugzillaMetrics is designed in a way that allows these varia-
tion points to change without affecting the evaluation algo-
rithm and its data structures. This was achieved by concen-
trating the complete algorithm configuration in a configura-
tion part and restricting the dependencies of the evaluation
algorithm to the interfaces of the variation points.

3.3 General Architecture
The tool architecture defines three components (see Fig-

ure 1). The core component contains the evaluation algo-
rithm which calculates the metric result for a metric spec-
ification, and has read-only access to an existing Bugzilla
database. Both the metric result and the metric specifica-
tion are XML documents. The chart component creates
chart images from a given metric result. The web frontend
provides a user interface for specifying and using metrics.

4. THE EVALUATION ALGORITHM
In this section, the most important parts of the evalu-

ation algorithm are outlined. The main characteristics of
the algorithm are a flexible parametrization mechanism, an
event driven design that calculates time series data, and an
abstraction of the data sources.

The algorithm can be divided into these main steps:

1. The XML metric specification is parsed and the object
structure of the metric calculation is configured, e.g.
the CR value calculators.

© ACM 
http://dl.acm.org/citation.cfm?doid=1294904.1294909 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution

Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting (IWPSE '07). 
ACM, New York, NY, USA, 35-38.  
DOI=10.1145/1294904.1294909



2. It is calculated which information is required for the
metric evaluation. Then the objects for the CRs in-
cluded in the basic filter are created and initialized
with the current values for the required fields.

3. All CR values are calculated by processing the event
sources and calling the configured CR value calculators
(see Subsection 4.2) with the created events. The CR
values are classified in a tree structure that is similar to
the result structure. The event source processing goes
back in time from the newest to the oldest relevant
event. The CR states are updated accordingly, so each
CR has the state it had when the event occurred.

4. The group values for the CR values created in the pre-
vious step are calculated by calling the group value
calculators with the bottom layer of the tree structure
that contains the CR values.

5. The XML result document for the group values that
are stored in the CR value container tree is created.

Figure 2: Parametrization of the algorithm

4.1 Parametrization
The evaluation algorithm (see Figure 2) can be parame-

trized in several ways by the metric specification:

• The basic filter determines which CRs will be con-
sidered in the evaluation. It is a state filter.

• State filters provide a configurable filtering on CR
states like the product, assignee, component and so on.
They can be combined with ‘AND’ and ‘OR’ expressions.

• Event filters provide a configurable filtering of events.
Event filters are used to configure how CR value cal-
culators react on events.

• The group parameter determines how the evaluated
CRs will be partitioned into CR groups before the
group themselves are evaluated.

• CR value calculators determine how the value for a
CR on a certain event is calculated. The algorithm can
be parametrized with more than one CR value calcula-
tor. There are different types of CR value calculators,
which use state filters, event filters and weights.

Figure 3: Design of the CR value calculators

• Group value calculations determine how the result
value for a group is calculated from the results of the
CR value calculators for the CRs in that group. The
results from the CR value calculators can be combined
using mathematical operations, both operations that
work on sets of CR values like sum and common opera-
tions like division. The algorithm can be parametrized
with more than one group value calculation.

• Evaluation time period and time granularity.

4.2 CR Value Calculators
CR value calculators (see Figure 3) calculate CR values

on certain events. They are a core part of the evaluation
algorithm, filtering and transforming the event stream to a
set of CR values. The following CR value calculators are
predefined:

• CountEventsCalculator is the most flexible calcula-
tor. It contains an event filter that selects the events
for which CR values are calculated. The calculation
of the numerical values of the CR values is delegated
to the weight the calculator is parametrized with. Ex-
amples where this calculator is used are the incoming
rate or the outgoing rate.

• CountEventsUntilCalculator calculates the number
of times an event has occurred for a CR until another
event happened. Both events are specified by an event
filter. An example where this calculator is used is the
number of assignee changes before resolution metric.

• IntervalLengthCalculator calculates the length of
the time interval in days between two events that hap-
pen on a CR. Both events are specified by an event
filter. The interval length calculator can be used to
calculate the age of a CR before it switches to the
processing state for the first time, for example.

• StateResidenceTimeCalculator calculates the time in
days a CR was in a certain state before the time point
of a certain event. At such an event, a CR value is cal-
culated. The event is specified by an event filter and
the state is specified by a state filter. An example for
this calculator is the average processing time metric.

© ACM 
http://dl.acm.org/citation.cfm?doid=1294904.1294909 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution

Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting (IWPSE '07). 
ACM, New York, NY, USA, 35-38.  
DOI=10.1145/1294904.1294909



Using event filters to configure the CR value calculators
has two advantages:

• The different concerns of event filtering and calculat-
ing CR values are separated. This especially provides
independent extensibility of the event filter variation
point and the CR value calculator variation point.

• Flexible configuration of the CR value calculators with
different event filters in the metric specifications.

<metr ic>
<groupingParameters>

<f i e ldGroup ing>product</ f i e ldGroup ing>

</ groupingParameters>
<c rVa lueCa l cu la to r s>

<countEvents id=” incoming”>

<event> <c r e a t e /> </ event>
</ countEvents>
<countEvents id=” outgo ing ”>

<event>
<t r a n s i t i o n f i e l d=” s t a t u s ”>

<from> NEW </ from>

<from> REOPENED </ from>

<from> ASSIGNED </ from>

<to> RESOLVED </ to>

<to> CLOSED </ to>

</ t r a n s i t i o n>

</ event>
</ countEvents>

</ c rVa lueCa l cu la to r s>
<groupEvaluat ions>

<c a l c u l a t i o n name=”BMI” >

<d iv id e>
<sum crVa lueCa lcu la tor=” outgo ing ” />
<sum crVa lueCa lcu la tor=” incoming” />

</ d iv id e>
</ c a l c u l a t i o n>

</ groupEvaluat ions>
<evaluat ionTimePer iod>

<s t a r t> 2006−08−14 </ s t a r t>
<end> 2006−08−27 </end>

</ evaluat ionTimePer iod>

</ metr ic>

Figure 4: Backlog management index specification

5. METRIC SPECIFICATION EXAMPLE
Figure 5 shows as an example of a metric specification a

definition of the backlog management index (BMI) [11].

It is calculated as: BMI =
outgoingRate
incomingRate

No basic filter is given in the specification, so all CRs in
the database are evaluated by the algorithm. The grouping
parameters XML element determines that the CRs are split
into groups according to their product. So the BMI for each
product will be represented by a line in the resulting chart.

In the example, two CR value calculators that count events
are defined, one for the incoming rate that counts the CR
creations with the default weight 1, and one for the outgoing
rate that counts CR status transitions from the set of unfin-
ished work CR states to the set of finished work CR states.
The group evaluation XML element then defines how the
CR value calculators are combined to obtain the BMI as
the final result.

6. PRACTICAL RESULTS
BugzillaMetrics was used in practice on a company data-

base containing about 20,000 CRs, aggregated over 5 years.
Discussions of the metrics and charts created by the tool

with the users gave a first impression of the advantages and
problems of the tool and its usage.

The already known advantages of using metrics in general
are, amongst others, that vague assumptions are supported
by concrete figures, and that the success of process changes
can be controlled [7]. Besides these, an advantage of Bugzil-
laMetrics is that the usage of metric specifications allows
metric developers to concentrate on the model of the metric,
not its implementation. In addition to the general pitfalls of
metrics already observed in literature like manipulation of
the data base [8] and the fact that interpretation is a must
[9, 12], the usage of metric specifications also revealed some
pitfalls of metric definitions caused by some subtle differ-
ences that would otherwise probably remain hidden in the
implementation.

Furthermore, because of its modular architecture and the
separation of the data source, porting the tool from a mod-
ified Bugzilla to a standard Bugzilla was rather easy.

7. SUMMARY AND FUTURE WORK
In this paper, the main concepts of BugzillaMetrics, a

tool for the flexible evaluation of metrics on CRM system
databases, have been presented.

The starting point was the evaluation of existing CRM
systems. Based on those results, a design approach for a
metric evaluation tool has been outlined. The most impor-
tant design concepts are the separation between the metric
specification and the data retrieval, and the flexible config-
uration of metrics. Further work on the tool includes the
development of a better user interface and algorithm im-
provements. BugzillaMetrics will be published as an open-
source project soon [2].

8. REFERENCES
[1] Bugzilla 2.18.6. http://www.bugzilla.org.

[2] BugzillaMetrics. http://bugzillametrics.sf.net.

[3] Code Beamer 4.2.1. http://www.intland.com.

[4] JIRA 3.7. http://www.atlassian.com/software/jira/.

[5] Kisters AG. http://www.kisters.de.

[6] Polarion for Subversion 2.6. http://www.polarion.com.

[7] V. Basili, G. Caldiera, and H. Rombach. The goal
question metric approach. Encyclopedia of Software

Engineering, pages 528–532, 1994.

[8] T. DeMarco. Why Does Software Cost So Much?

Dorset House Publishing, New York, 1995.

[9] N. E. Fenton and S. L. Pfleeger. Software Metrics.

PWS Publishing Company, Boston, MA, 1996.

[10] L. Grammel. Development of a tool for the evaluation

of change requests. Diploma thesis, RWTH Aachen
University, 2007.

[11] S. H. Kan. Metrics and Models in Software Quality

Engineering. Addison-Wesley, Reading, MA, 1995.

[12] D. H. Rombach, L. C. Briand, and C. M. Differding.
Practical guidelines for measurement-based process
improvement. Software Process: Improvement and

Practice, 2(4), 1997.

© ACM 
http://dl.acm.org/citation.cfm?doid=1294904.1294909 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution

Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting (IWPSE '07). 
ACM, New York, NY, USA, 35-38.  
DOI=10.1145/1294904.1294909




