
 1

Use Case Modeling for Embedded Software Systems -
Deficiencies & Workarounds

Alexander Nyßen, Horst Lichter
Research Group Software Construction, RWTH Aachen University

{any|lichter}@cs.rwth-aachen.de

Abstract

While applying use case modeling in the domain
of embedded software systems, we observed some
weaknesses, related to the very special characteris-
tics of embedded software, discriminating it from
those large-scale industrial applications, use case
modeling was initially developed for and where this
technique still has its greatest acceptance.

In this paper we discuss some of the most severe
deficiencies we observed, namely the lack of model-
ing capabilities to deal with timing and concurrency
constraints, as well as difficulties to handle stacked
interfaces, an aspect embedded software systems
often have to face.

Where possible, we provide solutions to overcome
the shortcomings mentioned, otherwise we try to at
least propose some workarounds to handle them.

1. Introduction
Having originated in the late 1980’s as a require-

ments engineering technique to develop large-scale
industrial applications [1], use case modeling has
very soon gained broad acceptance in various fields
of software development. At the end of the 1990’s it
has finally also entered the domain of embedded
software systems, as a number of object-oriented
modeling approaches targeting the embedded sys-
tems domain have been established during that time
(e.g. [2][3]), all employing use case modeling to
capture functional requirements.

Although – as is often stated - the domain of em-
bedded software systems does have its very own
characteristics and challenges, the basic concepts of
use case modeling were not adapted and customized
but are indeed used in the same manner as for large-
scale industrial applications. However, while the
concepts remained the same, if one looks at them
thoroughly, use case models for embedded software
systems tend to look a bit different.

2. Observations
Very often use case models of embedded software

systems contain timer actors [3] or – having the same
expressiveness - cyclic use cases [4] to model that
use cases are executed on a periodical basis, which is
rather typical to the embedded domain. Another
aspect, which is as well rather special, is the use of
timing marks to model timing constraints, e.g. pro-
posed in [2]. In general, it can be observed that cap-
turing just the functional requirements – the sole
purpose use case models are applied for in the indus-
trial software context – is not sufficient in the em-
bedded domain. Since especially non-functional
timing constraints have a severe impact on the later
system design it is necessary to capture those con-
straints explicitly as well.

Use case modeling, as introduced for large-scale
industrial applications and defined by the UML [5],
does – from a conceptual viewpoint - not offer ade-
quate means for that. The UML Profile for Perfor-
mance, Schedulability and Time [6] does also not
address those issues, as it does indeed not affect the
respective Use Case language unit.

Another phenomenon that can as well be observed
in use case models of embedded software systems is
that not only human users, but also external hardware
devices or software systems, located in the environ-
ment of the embedded software system, are
represented as actors. As human users most often do
not directly interact with an embedded software sys-
tem via standard devices like mouse or keyboard but
via special hardware devices, those hardware devices
are the direct communication partners of the embed-
ded software system. Hence, those external hardware
devices rather than the human users are represented
as primary actors in the use case model. The human
users are most often simply omitted. The reason why
this cannot be modeled adequately so far is that there
are no means to express that a software system has to
deal with related interfaces on different levels of
abstraction, and that therefore often only the most

4th Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER4),
30.-31. October, Heinz-Nixdorf-MuseumsForum Paderborn, Germany, 63-67.

 2
relevant interface is chosen to be represented as an
actor. Besides, this does not only hold for human
users interacting with the system via special hard-
ware devices. It does as well hold when communica-
tion to an external software system is established via
a hardware interface that has to be controlled by the
embedded system.

3. Deficiencies & Workarounds
We take both observations as an indication that

use case modeling - at least as it is applied in practice
nowadays - is not quite capable to meet the special
characteristics of embedded software systems. We
think that those briefly sketched deficiencies, namely
the lack of expressiveness to deal with timing and
concurrency concerns, as well as the modeling diffi-
culties related to interfaces are two main reasons for
this. We will elaborate this further in the following
and will provide solutions – were possible – that we
developed when defining the MeDUSA method for
small embedded software systems [7].

3.1 Timing and Concurrency Constraints

As it originated from the domain of large scale in-
dustrial software systems, use case modeling does
not deal with expressing timing or concurrency con-
straints. Indeed, use cases are modeled from a mere
functional perspective, where statements about the
timing and concurrency of their execution, points of
synchronization, or other timing constraints like
deadlines or latencies are not explicitly addressed.

Indeed, when looking at them thoroughly, the on-
ly timing information given in a use case model is
the starting point of each use case, described by the
trigger of the primary actor that starts the execution
(either directly or indirectly by triggering the execu-
tion of another use case, which includes or is being
extended by the respective use case). As there is a
fundamental need to express the property of a use
case to be executed periodically, it is therefore a
natural approach to introduce timer actors [3],
representing sources of timing events, which trigger
the execution of a use case in a periodic manner.
However, what remains is a lack of means to express
details about the concurrent execution of use cases,
as well as their temporal synchronization.

Another inelegance that we see is that in case of
aperiodic events – in contrast to periodic ones – the
source the event originates from, is mixed with the
interface that represents the communication interface
towards the embedded software system, while in
case of periodic events, the event source is separately
modeled in terms of a timer actor. As an example for

this, consider an A/D converter, which delivers
analog sensor data to the embedded software system
in a digitized form. In case the A/D converter is a
passive device that has to be polled by the embedded
software system on a regular basis, a timer actor
would be modeled to represent the source of timing
events, triggering the execution of the use case, to-
gether with an interface actor representing the com-
munication channel towards the A/D converter. If the
A/D converter is an active device, notifying the em-
bedded software system with a hardware interrupt
about the availability of new raw data, the interrupt
source as well as the communication channel would
however be represented by just a single actor, thus
mixing both aspects.

As we think that the explicit modeling of timing
and concurrency constraints improves readability and
understandability and raises the awareness about the
non-functional requirements imposed on the applica-
tion, we strongly propose to explicitly separate out
all timing and concurrency concerns by introducing
eventer actors to represent sources of aperiodic
events, analogously to the already known timer ac-
tors. Together with the resulting interface actors, that
represent mere communication interfaces (without
any timing aspects) this leads to the taxonomy of
actors depicted in Figure 1. Note that interface actors
are further divided into device actors, representing
external hardware devices, and protocol actors,
representing external software systems, and that
human users are not included. We will come back to
this in the next section.

Figure 1: Actor taxonomy (compare [7])

Modeling timing constraints with the help of trig-

ger actors, periodic and aperiodic events can be han-
dled accordingly, thus removing the inelegance men-
tioned before. The A/D converter example can thus
be modeled as demonstrated by Figure 2, using an
internal timer actor in case of a passive A/D conver-
ter, or an external eventer actor in case of an active
A/D converter.

One might argue that with the clear separation of
event source and interface into two distinct actors,
the information that they indeed represent one and
the same real-world device (in our example the

4th Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER4),
30.-31. October, Heinz-Nixdorf-MuseumsForum Paderborn, Germany, 63-67.

 3
ADC) gets lost. We partly agree to this. Of course
from the structural relationships contained in the
model this information cannot be inferred. However,
instead of introducing e.g. an association between
those related actors, we prefer to leave it out, as such
relationships would most likely clutter the model and
because the practical application of the presented
workaround showed that the relationship between
trigger and interface actors can be sufficiently ex-
pressed by appropriate naming of the actors.

Figure 2: Use case model containing trigger actors

A better solution to this problem would probably

be to introduce some sort of composite actor. This is
however not expressible in terms of UML and from
our viewpoint also not properly implementable by
means of the offered UML extension mechanisms.
Therefore we do not regard it to be an adequate solu-
tion, either.

One might propose that the issues of concurrently
invocating a use case from another as well as syn-
chronizing concurrently executed use cases could as
well be expressed with the help of trigger actors,
namely by associating use cases to (internal) eventer
actors that represent the invocation or synchroniza-
tion event, rather than relating the use cases to each
other with the help of include and extend relation-
ships.

As an example for this consider the one presented
in Figure 3. Here, an eventer actor representing the
raising of an alarm is introduced, as well as a use
case associated to it, responsible of handling the
alarm.

Figure 3: Use case model with an internal eventer actor

However, this is not an adequate solution, as the
concept of actors in this scenario would be misused
to represent a relationship that is indeed established
conceptually between two use cases and not between
use cases and actors. We therefore regard synchro-
nizing of concurrent use cases to be an open issue
that has to be investigated further.

3.2 Interfaces on different levels of abstraction

Another situation that one faces in the context of
embedded software systems is that the software has
to deal with related interfaces on different levels of
abstractions.

Besides the already mentioned example of a hu-
man user interacting with the application via a non
standard hardware device, one could think as well of
an external software system, connected to the appli-
cation via a hardware communication interface, such
as a UART or a SPI, which is controled not by an
underlying operating system, but by the embedded
software system itself. In such a case, the embedded
software system has to deal with interfaces on differ-
ent levels of abstraction, namely the UART or SPI
hardware communication interface, as well as the
software protocol that is exchanged over that inter-
face. As we already pointed out, use case modeling –
as specified by the UML - does not offer adequate
means to represent such a situation.

There are several reasons for that. The most ob-
vious one is that the relationships between actors are
inspired from a kind of access rights perspective, so
that only generalization relationships are modeled
between them. Actors representing related interfaces
on different levels of abstraction can thereby not be
adequately related to each other. Further, the defined
relationships between use cases are motivated from a
kind of reuse perspective, so that there is no ade-
quate possibility to specify that two use cases are
related to each other, other than that the functionality
of one use case is included within the functionality of
the other (include and extend), or that it is a speciali-
zation (generalization).

A possiblity that might however be investigated,
is the use of dependency relationships (respectively
use depencency relationships), which are not directly
meant to be used in use case diagrams, but which
might be used as the dependency relationship is de-
fined between classifiers, and use cases and actors
are both classifiers. Figure 4 shows how the above
described scenario could thereby be represented.

4th Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER4),
30.-31. October, Heinz-Nixdorf-MuseumsForum Paderborn, Germany, 63-67.

 4

Figure 4: Modeling stacked interfaces by means of de-

pendencies

The only problem of this approach is that no pre-

cise statement about the actual relationship between
the two use cases can be inferred. Indeed, the depen-
dency relationship can be seen as the most informal
kind of relationship that is defined by the UML.

Further, statements about concurrency of the re-
spective use case executions or about their synchro-
nization needs cannot be inferred. To denote that,
means to specify concurrent execution of use cases,
as well as the synchronization of concurrently ex-
ecuted use cases would be needed. As already stated
in the preceding section, use case modeling does not
offer any means for that.

For reasons we have discussed at the end of the
preceding section the use of an internal eventer actor
to represent the synchronization event, which would
lead to a model similar to the one denoted in Figure
5, is no valid solution, because the actor is misused
to represent a relationship that should actually be
established directly between the use cases.

Figure 5: Using an eventer actor to synchronize

 concurrently executing use cases

As there is no concise solution to deal with such a

situation, we propose to apply the one sketched in
Figure 4, namely the use of dependency relation-
ships, or – where this is not appropriate, e.g. because

the modeling tool does not support such relation-
ships in use case diagrams - to only concentrate on
the interface on the lowest relevant level of abstrac-
tion.

In our example we would therefore just represent
the underlying hardware interface as an actor and
drop the representation of the related software proto-
col interface, as there the embedded software system
has to control the underlying hardware communica-
tion interface by itself.

We may have to point out that the embedded sys-
tems we have analyzed are rather small devices,
built-up from special purpose hardware and having
no real-time operating system. Therefore the embed-
ded software is directly responsible of driving the
hardware, so that the hardware interface can be re-
garded as the interface on the lowest relevant level of
abstraction.

In case of embedded systems having other charac-
teristics it might be very reasonable to concentrate on
higher levels of abstraction, if for example standard
hardware devices are used or if a real-time operating
system takes the responsibility of driving the hard-
ware. In such a case a protocol actor representing the
interface to the operating system or even a human
user actor could be concentrated on instead.

We indeed tend to not represent human users as
actors. The reason for this is that they normally play
a subordinate role in case of an embedded software
system, as they nearly never directly communicate
with the system, but most often via software or non-
standard hardware interfaces residing in the envi-
ronment of the embedded system. Therefore, even if
not concentrating on the interface on the lowest rele-
vant level of abstraction, but when applying a solu-
tion using dependency relationships, we would pro-
pose to normally not model human user actors.

In case a human user communicates with an em-
bedded system via standard hardware as sketched
above, and those hardware is controlled by an under-
lying operation system, it might however be reason-
able to represent the human actor rather than the
standard hardware or the operating system as the
human user is in this situation the interface on the
lowest relevant level of abstraction.

Anyhow, such a software system does probably
show - even if being embedded - more characteristics
of an industrial information system than of a typical
embedded software system (at least as we sketch it
here), so that use case modeling as currently offered
by the UML may be quite appropriate do deal with it.

For the type of embedded systems that we face,
we propose to omit human actors, as the decrease in
clarity of the resulting diagram would outweigh the

4th Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER4),
30.-31. October, Heinz-Nixdorf-MuseumsForum Paderborn, Germany, 63-67.

 5
benefit of representing them. This is also the reason
why the actor taxonomy denoted in Figure 1 does not
represent any human user actors.

Nevertheless, if a concise solution to deal with
modeling interfaces on all levels of abstraction ap-
propriately could be found, human user actors should
of course be represented.

4. Conclusion & Outlook
Although use case modeling has gained broad acep-
tance in the field of embedded systems in the last
years, quite a number of deficiencies can be observed
concerning the special characteristics of embedded
software systems.

As described, timing constraints - something that
is up to now not regarded thoroughly - can be quite
well expressed by separating them out by means of
trigger actors. Whereas timer actors are a concept
already introduced by former approaches [3], we
propose to introduce eventer actors, which we define
to represent asynchronous event sources accordingly.

What remains an open issue in this context is that
there are no adequate modeling means to deal with
synchronization of concurrently executing use cases.
As we pointed out, this is as well a problem, when
trying to model interfaces on different levels of ab-
stractions, as that almost always leads to concurrent
behavior inside the system and thereby creates the
need for synchronization as well.

Having those deficiencies and open issues in
mind, we proposed some workarounds that are in
line with the UML specification, but which all have
– as we pointed out - their respective advantages and
disadvantages. Therefore we see the need for further
research on this topic in the future.

References
[1] Ivar Jacobson: Object Oriented Development in an

Industrial Environment. In OOPSLA ’87 Proceedings.
pp 183-191. 1987.

[2] Bruce Powel Douglass: Doing Hard Time – Develop-
ing Real-Time Systems with UML, Objects, Frame-
works, and Patterns. Addison Wesley - Object Tech-
nology Series. 1999.

[3] Hassan Gomaa: Designing Concurrent, Distributed,
and Real-Time Applications with UML. Addison
Wesley - Object Technology Series. 2000.

[4] Tim Weilkiens: Systems Engineering mit
SysML/UML – Modellierung, Analyse, Design.
dpunkt.verlag. 2006.

[5] OMG: UML Superstructure v2.1.1, OMG Document
07-02-05, 2007.

[6] OMG: UML Profile for Schedulability, Perfor-
mance, and Time v1.1, OMG Document 05-01-02,
2005.

[7] Alexander Nyßen, Horst Lichter: MeDUSA- MethoD
for UML2-based Design of Embedded Software Ap-
plications. Aachener Informatik Berichte. AIB-2007-
07. ISSN 0935–3232. May 2007.

4th Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER4),
30.-31. October, Heinz-Nixdorf-MuseumsForum Paderborn, Germany, 63-67.

