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Abstract

While engineering of embedded & real-time systems has
moved much into the focus of the research community, be-
ing strongly promoted by those prominent application areas
as the automotive, aerospace & defense, or telecommuni-
cations industry, small embedded & real-time systems, as
they can be found in somehow marginal application areas
as the industrial automation, are still treated a bit stepmoth-
erly. In particular, profound methodical support for the soft-
ware development of such small devices is almost unavail-
able. With MeDUSA we especially target the domain of such
small embedded & real-time systems, and explicitly address
the very special technological, economical, and organiza-
tional constraints that have to be faced in such marginal
application areas.

1. Introduction

The initial incentive for the development of MeDUSA
(Method for UML-based Construction of Embedded &
Real-Time Software) resulted from the evaluation of sev-
eral pilot projects, being jointly executed at the ABB Cor-
porate Research Centre and the ABB Automation Products
GmbH, to gather experience regarding the applicability of
the object-oriented Concurrent Object Modeling and Archi-
tectural Design Method (COMET) [3] for the development
of small embedded & real-time systems in the industrial au-
tomation application area. While COMET was regarded to
be a promising starting point, the evaluation results revealed
some noticeable shortcomings [11], so that we started de-
velopment of a method, namely MeDUSA, suitable to meet
the very special characteristics in the respective domain.

Having first started as a mere evolution of COMET,
MeDUSA has undergone several changes and may now be
regarded as a distinct and self-contained method. Amongst

other things, this expresses itself in the characteristic of
the method to be indeed not object-oriented but class-based
(compare [18]), in the fact that MeDUSA is not a simple
design but an overall construction method (thus covering
also a seamless transition from detailed design into a proce-
dural implementation language), and that it is based on the
current UML language standard [13], taking in particular
advantage of the modeling capabilities in terms of compos-
ite structures, which have shown advantages in the domain
of small embedded systems (compare [10]).

The paper is outlined as follows. First, the domain being
targeted with MeDUSA is introduced. Based on this, chal-
lenges regarding the software development in this domain
are accentuated, leading to a set of goals for MeDUSA.
Then, important characteristics of MeDUSA to fulfill these
goals are described, before the method’s workflow is intro-
duced in detail. The paper is concluded with some com-
ments on the state of its validation and on future work.

2. Scope

The domain covered by MeDUSA may be characterized,
as denoted by its acronym, as software construction of small
embedded & real-time systems. However, as this domain is
rather broad - and even if we think that MeDUSA might be
applicable to quite a few application areas within it - un-
derstanding the method and its characteristics can be best
achieved by taking into consideration the application area,
MeDUSA was initially developed for, namely software of
small embedded & real-time systems in the industrial au-
tomation area, i.e. field device software - to be more con-
crete.

Field devices are rather small embedded & real-time sys-
tems. Ranging from drivetrains and positioners to measure-
ment devices, field devices are used for process automation
purposes across various industries such as food, chemicals,
water and waste water, oil and gas, pharmaceutical, and oth-
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ers. They thus come in a multiplicity of different variants.
Measurement devices for instance range from simple low
cost mass products like temperature measurement devices
for unhazardous environments up to very upscaled marginal
products as flow measurement devices to measure explosive
gases.

Being imposed on them by the industrial contexts the
systems are used in, measurement devices - or field de-
vices in general - may be characterized by hard resource
constraints in terms of memory consumption, power con-
sumption, and computation time. Strong constraints regard-
ing reliability are always natural for such devices as well,
whereas some devices, being used in hazardous environ-
ments, are additionally liable to strong safety requirements.
From a hardware viewpoint, measurement devices may thus
be characterized as single or simple 16- or 32-bit multi-
processor systems, being equipped with physical memory
of about 32-512 KByte ROM and 0.5 to 512 KByte RAM.

Due to those stringent resource constraints, the software
running on those devices is mostly realized in the C im-
plementation language, which pretty much reflects the cur-
rent state that can be faced in the overall embedded & real-
time community (compare surveys in [1] and [14]). Be-
sides this, the software running on those systems may be
characterized as having a rather low complexity. That is,
it has a rather static run-time structure in such a sense that
the software is initialized at device startup and does not dy-
namically reconfigure itself during device operations. Even
in case of a distributed hardware architecture in terms of a
multiprocessor system, the software may not be regarded to
be intensely complex concerning the distribution aspect, as
each peripheral microcontroller unit is normally connected
to the main microcontroller via a separate serial commu-
nication interface, and all communication is initiated from
the main microcontroller. Regarding its real-time proper-
ties, the software may be characterized to be real-time in
terms of its main measurement task, that is related to the
gathering of analogue data samples via the connected A/D-
converters, the calculation of measurement values (signal
processing), and the output of computed measurement val-
ues on the communication buses and the local display, the
device is equipped with. All other functionality, related
to configuration, diagnosis, or maintenance, is usually not
real-time critical.

From an economical and organizational perspective,
strong constraints are as well observable. That is, an inher-
ently existing cost pressure is characteristic for the devel-
opment of such devices, as well as regulatory constraints,
resulting from safety and reliability requirements. Further
organizational constraints that result from the distributed
development, such systems are normally realized in, are re-
stricting their development. What is as well characteristic
is that most of the software development is indeed not per-

formed by software engineering professionals, but by elec-
trical engineers, communication engineers, process engi-
neers or physicians. While this should not be understood as
a discrimination of those professions it points to the prob-
lem that software is developed mostly by domain experts,
lacking profound software engineering skills.

3. Challenges & Goals

Model-based software engineering seems to be a rea-
sonable means to deal with the increased complexity and
the special technical, economical, and organizational con-
straints being faced in the respective application area. Inter-
estingly, it does not have penetrated the domain to a large
extend, as surveys on the state-of-the-practice in software
engineering of embedded & real-time systems unveil ([16]
[15]).

The reasons for this are manifold. First, while model-
based software engineering does not lead to larger and
less efficient code, most model-based software engineer-
ing approaches seem to facilitate the use of higher abstract-
ing implementation technology as object-oriented program-
ming languages or component-based middleware, which is
somehow contrasting with the very restrictive technical con-
straints being faced in the context of small embedded &
real-time systems. Often model-based methodical support
is also not continuous in a sense that the transformation of
a detailed design model into source code is left open or -
leading to the same result - regarded to be obvious, what is
mostly not the case if no object-oriented but a procedural
implementation language is used.

It is the goal of MeDUSA to overcome those problems.
In detail, the method was designed according to the follow-
ing goals:

• Methodological Completeness - A continuous me-
thodical approach, covering all constructive software
engineering activities from the early elicitation of soft-
ware requirements, via analysis and design, up to the
late transition into the resulting implementation, has to
be developed.

• Constraint Adequateness - The method has to ade-
quately deal with the special technical, organizational,
and economical constraints being faced in the appli-
cation area of small embedded & real-time systems.
That is, it has to avoid that concepts or technologies
are used, which are contrasting the technical restric-
tions being faced, leading to a breach between detailed
design and implementation. It further has to assure its
practical applicability and easy adoptability. It thus has
to be based on standard languages and standard tools
wherever possible.
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3.1. Characteristics

To meet these goals, MeDUSA was designed to be a
methodologically complete construction method, covering
all constructive activities of the software development life-
cycle from the early requirements gathering up to the con-
cluding implementation. To meet the special organizational
constraints in the respective application domain, it was ex-
plicitly designed to be iterative, what seems to best match
the requirements in terms of flexibility and customizabil-
ity that result from the integration of software develop-
ment into a larger system engineering context. Furthermore,
MeDUSA was designed to be based on standards (the UML
is used as notation), so that easy adoption and understanding
is achieved, and market-available tools can be employed.

In contrast to its predecessor COMET, MeDUSA was
designed to not facilitate object-oriented concepts like in-
heritance and polymorphism, as this would hinder a seam-
less transition of the detailed design into a procedural im-
plementation, and may thus be characterized as being class-
based (compare classification provided in [18]). This is
achieved by what we denote as the instance-driven nature
of the method. That is, all of the analysis as well as most
of the design are performed by modeling on the instance
level, i.e. in terms of objects rather than classes, and class
design is postponed to the very late detailed design. This
way, object-oriented concepts, which are expressed on the
class level, are disregarded up to then and are thus omitable.

What has to be especially emphasized is that MeDUSA
was designed to comprise a continuous real-time analysis,
which is performed based on the early requirements, as well
as on the results of the analysis and design activities, to gain
understanding and awareness on how the software is able to
meet the non-functional real-time requirements, which are
imposed on it.

4. The MeDUSA Workflow

MeDUSA is defined in terms of a workflow 1 compris-
ing five phases, corresponding to the development lifecycle
phases being covered, as indicated in Figure 1.

1The notation being applied to the definition of MeDUSA [8] is SPEM
2.0, which is currently available as a Beta Specification [12]. It devides
the definition of a method or process into a static method content, which
is defined in terms of task, role, and work product definitions, as well as
a process, which defines the timely usage of the method content elements
in terms of task, role, and work product uses, being further composable
to iterations, and phases. SPEM further allows to define process patterns,
representing reusable process building blocks, as well as end-to-end de-
livery processes (here, the terms workflow pattern and workflow are used
divergently, as the SPEM 2.0 terms seem to be misleading). For the sake
of simplicity, this twofold division is disregarded here, and the method is
simply described taking the process viewpoint. Further, the level of detail
was limited to exclude the specifications of roles and work products. The
interested reader may refer to [8] for further information.

Figure 1. MeDUSA Workflow

All phases comprise iterations over a set of tasks, being
initially executed in the respective phase, as well as itera-
tive backflows to tasks that have been initially performed in
earlier phases, as indicated in Figure 2 exemplarily for the
Architectural Design Phase.

Figure 2. Architectural Design Phase

Each phase is concerned with the construction of a re-
spective model, i.e. Requirements Model, Analysis Model,
Design Model, and Implementation Model, where each such
model may be understood as the consistent set of all work
products being produced by the respective tasks, compris-
ing UML models and diagrams, as well as additional mod-
els and documentation like textual narrative use case de-
scriptions, or even source code. Each phase ends when
passing a milestone, which indicates that the respective
model and all prior models being evolved during reitera-
tions, are complete and concise.

The tasks being primarily executed in a phase together
with their dependencies are defined by a respective work-
flow pattern. They are explained in detail in the following
sections.
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4.1. Requirements Workflow Pattern

MeDUSA is a use-case driven method, so Use Case
Modeling, i.e. the construction of a UML use case model, as
well as Use Case Description Modeling, the development of
UML-based or textual detailed descriptions for each identi-
fied use case, are the essential tasks being performed. As

Figure 3. Requirements Workflow Pattern

denoted by Figure 3, they are executed in parallel, although
Use Case Modeling will quite naturally be started with a
slight advance, as an initial set of use cases will have to be
identified, before detailed descriptions for the use cases can
be created. While use case modeling is first and foremost
suited to capture functional constraints, in the context of
embedded & real-time systems, especially timing and con-
currency constraints have to be regarded.

Figure 4. MeDUSA Actor Taxonomy

As described in [9], the explicit modeling of such con-
straints is supported by the MeDUSA Actor Taxonomy, as
outlined by Figure 4, which is used to denote distinct actors
as sources of all periodic and aperiodic events. Based on
this, a Preliminary Real-Time Analysis may be performed,
as motivated and described in [9] and [8].

4.2. Analysis Workflow Pattern

Based on the Requirements Model, which captures the
functional and non-functional requirements of the software
in terms of use cases, the Analysis Model, being build to
gather profound understanding of the problem domain, is
constructed in terms of collaborating (analysis) objects.

Figure 5. MeDUSA Object Taxonomy

This is supported by the MeDUSA Object Taxonomy,
outlined in Figure 5, which categorizes (analysis) objects
into entity, trigger, interface, control, and application-logic
objects. Objects of the different categories are identified
successively by the tasks of the Analysis Workflow Pattern.

Figure 6. Analysis Workflow Pattern

As depicted by Figure 6, Context Modeling and Informa-
tion Modeling are initially performed to identify interface
and trigger objects needed to interface the software to the
external embedding environment and representing sources
of system behavior, as well as entity objects, which rep-
resent shared data objects, the system has to keep track
of. UML object diagrams are employed for both purposes,
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showing the identified (analysis) objects and their relation-
ships.

Further analysis objects (control and application-logic)
are defined during the successive Inter-Object Collabora-
tion Modeling. Here, object collaborations are developed,
whose participants - already identified entity, interface, and
trigger objects, as well as newly identified ones - collabo-
ratively perform the scenarios subsumed by the use cases,
captured in the Requirements Model, by means of UML
communication or sequence diagrams.

Having identified the collaborations, and having defined
how the system behavior manifests itself in the inter-object
behavior of those collaborations, the conceptually last mod-
eling step of the Analysis Workflow Pattern, namely Intra-
Object Behavior Modeling, is concerned with modeling of
internal object behavior for those objects, where this is not
trivial. Analogously to the Requirements Workflow Pattern,
a successive Intermediate Real-Time Analysis is performed
based on the Analysis Model, again not to proof schedu-
lability and performance of a later system design - which
actually has not been developed yet, but to indicate initial
performance problems and to identify hot spots that have to
regarded in particular in the following.

4.3. Architectural Design Workflow Pattern

Having gained decent and profound understanding of the
problem domain, architectural design is the first step to
compose a solution. All tasks needed to construct a De-
sign Model, i.e. specifying the overall software architecture
in terms of a decomposition of the system into fully encap-
sulated and self-contained subsystems, are correspondingly
subsumed by the Architectural Design Workflow Pattern.

As indicated by Figure 7, architectural design is started
by Identifying Subsystems. That is, the (analysis) objects
are grouped together, resulting in a couple of subsystems.
A number of potentially conflicting design principles like
Locality in Changes, Functional Coupling [5], or Task Cou-
pling [8] may be quoted to guide and support the identifica-
tion. Additionally to grouping together objects to subsys-
tems, the initial externally visible interfaces of the subsys-
tems have to be defined, by deriving them from the message
communication established between the aggregated objects
and all external ones. A UML composite structure diagram
denoting the internal decomposition of each subsystem (in
terms of aggregated parts) as well as its external interfaces
in terms of exposed required and provided interfaces, as
well as a UML class diagram showing the signatures of the
exposed interfaces, are developed to document the outcome
of this task. Further, UML sequence and (protocol) state
machine diagrams are developed to denote behavioral as-
pects of the subsystem and its externally visible interfaces.

Subsystem Consolidation is then performed to ensure

Figure 7. Architectural Design Workflow Pat-
tern

that the initial subsystem decomposition is sustainable un-
der design considerations. That is, it literally turns the ini-
tially partitioned analysis objects into design objects, by
splitting respectively merging together objects, while in-
deed also the preliminary identified interfaces of the subsys-
tems are consolidated. That is, they are as well restructured
according to their later integration needs and additionally, a
detailed class design is developed for the interfaces them-
selves, as well as for all data types being exchanged via the
interfaces.

Subsequently, Structural System Architecture Model-
ing and Behavioral System Architecture Modeling are per-
formed, being concerned with integrating the different sub-
systems, which have been individually defined in terms of
their provided and required interfaces, to an overall soft-
ware system. Here, a UML composite structure respectively
component diagram is employed, denoting how the subsys-
tems are interconnected via their required and provided in-
terfaces to form an overall system, and UML sequence dia-
grams are further used to specify how system behavior man-
ifests itself on the system level, i.e. in terms of collaborating
subsystems.

To analyze feasibility of the software architecture in
terms of performance and schedulability, a Conclusive
Real-Time Analysis is performed. Unlike the previously ex-
ecuted Preliminary or Intermediate Real-Time Analysis, the
analysis is now based on the actual task design, which man-
ifests itself after the division and consolidation of the active
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trigger objects, from which all concurrent system behavior
originates.

4.4. Detailed Design Workflow Pattern

Having specified the software architecture in terms of
fully encapsulated and self-contained subsystems, the de-
tailed design of each subsystem has to be developed. As

Figure 8. Detailed Design Workflow Pattern

indicated by Figure 8, this is performed in terms of Class
Design Modeling, where for each part (object), belonging
to a subsystem’s internal decomposition as well as for each
port, forming its externally visible interface by aggregating
required and provided interfaces, a respective class is de-
signed. While all preceeding tasks have been performed on
the level of the overall system, Class Design Modeling may
be performed individually and in parallel for each subsys-
tem, as all external interfaces have already be defined.

4.5. Implementation Workflow Pattern

Last, the detailed design has to be transferred into source
code, where MeDUSA, as already mentioned, facilitates a
seamless transition into a procedural implementation in the
C-language. Conceptually, the transition is performed in
two steps. First, the information already captured explicitly
in the Design Model is transferred into source code equiv-
alents. Second, all detail code needed to build up a decent
and complete source code base for the overall system has to
be added. While the first, Code Generation, is more or less
automateable by a code generation tool, the latter step has
to be performed manually. While conceptually one step, the
second part (adding the code details) is actually performed
in terms of two tasks, namely Implementing and Integrating.
While the first is concerned with completing the code base
of each subsystem, and may thus be executed in parallel
for each subsystem, the latter is concerned with program-
ming the glue code that is needed to integrate the individ-
ual subsystem specific code fragements, as well as the code
that is concerned about non-subsystem specific aspects, like
startup and initialization.

Figure 9. Implementation Workflow Pattern

4.6. Conclusion & Outlook

Model-based software engineering seems to be a very
promising approach for the development of small embedded
& real-time systems. The intense use of models throughout
all phases of the development does not only facilitate a con-
cise and systematic procedure, it also offers an increased
potential in terms of traceability and analyzeability, which
seems to be an adequate means to deal with the stringent
technical constraints, those systems are exposed to.

However, it obviously has not yet achieved to penetrate
the domain of small embedded & real-time systems, as the
special technical and organizational constraints inherent to
the domain are not adequately addressed. Therefore, we
developed a method that especially suits the needs of soft-
ware development in the respective domain. Although the
method was initially designed targeting the development of
field devices, we think that it might be applicable to a broad
range of small embedded & real-time systems.

The Second Edition of MeDUSA [8] is currently being
evaluated in a pilot project, being executed at ABB Au-
tomation Products GmbH. Any lessons learned therein will
- as with earlier revisions - be incorporated into the method,
whose most recent definition can always be retrieved from
the MeDUSA project web site [7] in electronic form.

While basic tools for the MeDUSA-specific generation
of C code [2][6] and for the specific methodical support [4]
have already been developed based of our ViPER platform
[17], we are currently spending further efforts on these top-
ics, as a lack of profound tool support seems to be a major
hindrance, most recent development methods are suffering
from.
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