
Model Driven Development Challenges in the
Automation Domain

Detlef Streitferdt∗, Georg Wendt∗, Philipp Nenninger∗,
Alexander Nyßen†, Horst Lichter†

∗ABB Corporate Research Center Germany
Wallstadter Straße 59, 68526 Ladenburg

Email: {detlef.streitferdt | georg.wendt | philipp.nenninger}@de.abb.com
†Research Group Software Construction, RWTH Aachen University

Ahornstraße 55, 52072 Aachen
Email: {any | lichter}@swc.rwth-aachen.de

Abstract—Model driven development has evolved to a mature
methodology and technology usable for some industrial settings.
Within the automation domain it is an upcoming approach. This
paper addresses challenges present in the automation domain
when it comes to the usage of model driven development. Quality,
life cycle, legacy systems, mental approach and safety challenges
are briefly discussed.

I. INTRODUCTION

Model driven development (MDD) has been around for
several years and proposes the usage of “models at different
levels of abstraction and performs transformations between
them in order to derive a concrete application implementation”
[1]. One way to implement MDD is using the Object Man-
agement Groups (OMG) Model Driven Architecture (MDA).
Established in 2001 MDA is a base architecture for OMG
standards. The terms used in the field of modeling differ a bit
why the OrVia research project elaborated a comparison of
“model based” versus “model driven”, see [2].

• based - A development process is used and described
with models which are further developed. Restricted to
one platform.

• driven - A development process is used and shall be
largely automated. Models are transformed one to another
and shall be reused amongst different platforms.

Thus, the main focus of MDD is on models which are used
as central concepts and are the basis for an automated system
development process. Although a system consists of hard- as
well as software components, in the automation domain the
hardware mainly imposes constraints on the system that have
to be addressed by its software. In [1] a model is defined
as “a coherent set of formal elements built for some purpose
that is amenable to a particular form of analysis. A model is
expressed in a modeling language at some abstraction level
which in itself can be defined by meta-models”. With this
broad definition in the end everything that can be processed
with a computer can be used to represent a model. There is
a distinction between the “mental model” as an abstraction
of a complex entity (which may be again a model) and
a representation of a model, which is used to share the
mental model between stakeholders (e.g. developers, project

managers, customers). By examples this definition can be
further explained. An Excel sheet or a Word file can be
a representation of a model, any UML diagram can be a
representation of a model, MATLAB/Simulink is working
with models and its representations, source code can be a
representation of a model and even pieces of ASCII text
can represent models. The development work in an industrial
environment creates models of all kinds that will be used in
the MDD.

In section II current trends and developments in the domain
of MDD are explained to build the basis for the challenges
formulated in the following section. In section IV the automa-
tion domain is briefly introduced and challenges in terms of
MDD are summarized.

II. MODEL-DRIVEN DEVELOPMENT-STATE-OF-THE-ART

To successfully apply MDD, models have to be available.
Thus, means to express domain specific structural and be-
havioural aspects have to be selected. Transformations from
one to another model have to be defined and implemented.
This could be a rather effort consuming task given the current
tool landscape. Several tools have transformation capabilities
and for complete tool chains there are ideas like the ModelBus
[3] to unify a tool landscape with different databases using a
service infrastructure, or GeneralStore [4] offering a central
meta model with XMI import / export capabilities for the
integration of modeling tools.

Any changes in the selected tool chain affect the trans-
formations between the tools and thus the models which
causes adaptation efforts for the transformations. This directly
requires to establish an environment for hosting models with
their transformations, with effort to be spent for the mainte-
nance of the environment.

MDD promises the following benefits [1]:

• Time savings by code generation. The development task
takes place on a level above the source code. Only models
are used, source code is always generated. In addition,
architectural elements can be re-used, what results again
in time saving.

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4591784

Computer Software and Applications, 2008. COMPSAC '08. 32nd Annual IEEE International , pp.1372-1375, July 28 2008-Aug. 1 2008
doi: 10.1109/COMPSAC.2008.156

• Quality improvement (performance, availability, security,
modifiability, scalability, reliability) by using well estab-
lished and tested transformations.

• Cross-platform development and enhanced platform mi-
gration. Changing the platform (HW) by changing the
generation engine is easier than re-implementing the code
developed specifically for a given platform.

• Models are used to improve communication and interac-
tion of different domain experts. As a central concept for
any communication models have defined semantics and
reduce common misunderstandings.

As model transformations are an important issue of MDD,
it is important to know what has to be transformed and how
the information is structured. The OMG established the Meta
Object Facility (MOF) which makes use of meta-models on
four levels:

• M0 - Concrete data, e.g. generated code.
• M1 - Models defining M0 data, e.g. any data, Unified

Modeling Language (UML) or object models.
• M2 - Meta-model defining M1 models. For example the

UML-meta-model defines the concept of e.g. classes and
relations between classes.

• M3 - Meta-meta model defines M2 models. Here are
model elements that can have some kind of connection
to other model elements.

MOF in the form of Essential MOF, a reduced MOF, is used
in the Eclipse Modeling Framework (EMF) [5]. EMF is used
to implement the open source XML Schema Infoset Model
(XSD), Service Data Objects (SDO), UML2, and Web Tools
Platform (WTP) projects at Eclipse. In addition EMF is used in
commercial products, such as Omondo EclipseUML and IBM
Rational and WebSphere products, [5]. Here, it is important
to notice that several development plug-ins are making use of
the Eclipse platform with EMF and the underlying model to
store data. Manipulations of any models can be done using the
Xtend/Xpand language, by openArchitectureware.org (OAW).
With this, arbitrary transformations are possible.

Another concept are Domain Specific Languages (DSLs).
A graphical [6] or textual1 (e.g. a programming language like
C or even the Business Process Execution Language, BPEL)
language is defined such that it is possible to describe and
solve any problem in the domain in question. Thus, there are
only two transformations, the first from the DSL to source
code and the second from the source code to machine code,
which is performed with a standard compilation environment.

III. CHARACTERIZATION OF THE INDUSTRIAL

AUTOMATION DOMAIN

This paper focuses on the automation domain with products
for factories like paper mills, oil & gas or energy production
systems. These large plants are built and assembled from
smaller parts referred to as embedded systems which have
an own development process prior to the manufacturing of the

1OAW has proposed a textual modeling framework based on Eclipse and
EMF named Xtext

plant. This paper discusses challenges for the MDD of such
embedded systems.

Embedded systems in the automation domain are a broad
application field, from very small 8-bit/1kB devices up to
large 32-bit/40MB devices. Temperature, flow or pressure
sensors for the process industry (e.g. chemical plants or food
production), motor starters, softstarter or frequency converters
are all based on such embedded systems.

IV. CHALLENGES IN THE INDUSTRIAL AUTOMATION

DOMAIN

Model based development is state-of-the-art in traditional
software development and has been an emerging topic over the
last years for embedded system development in the automation
domain. Several issues are present and need to be addressed
when making use of MDD concepts with regard to products,
development and methodology.

• The quality of small products has a big impact on the
overall system.

• The overall life cycle of a product is often over ten years.
• Most development efforts are based on existing systems

(old systems or even very old systems).
• MDD requires a model based mental approach.
• Safety as being defined in IEC61508 has to be addressed

in many systems.

The following paragraphs briefly present the challenges
present along the lines of introducing, using and maintaining
MDD within the automation domain.

THE QUALITY CHALLENGE. A failure of small products
(the embedded systems) has a big impact on the overall
systems (e.g. a plant) reliability and uptime. Downtime costs
of huge factories / plants are very high and can go up to several
million dollars per day. As stated in the last section, quality
is a key issue of MDD. Thus, the challenges presented in [7]
are valid for MDD as well and have been taken as basis for
the following list of quality issues, to be addressed in MDD:

• introduction of new technologies
• uncertainty in introducing new tools or tool chains
• simulation

Based on own experiences with hard- and software tech-
nologies (e.g. new processor types, peripherals, UML profiles
or development methods), changes evolve within a two to four
year cycle. For MDD, only changes leading to an decreased
development time or effort, are relevant. Either a technology
changes towards an enhanced version that is worth looking
at, or new technologies are developed, which are again worth
looking at. Estimations on the impact of a changed / new
technology versus staying with an existing setup are very hard
and here, prediction/estimation models are needed to easily
assess intended changes.

In a similar league as the technology changes the intro-
duction of new tools or tool chain bares a high uncertainty in
estimating the impact of such changes. The models of a system
with their interrelations form the valuable asset for a company.
Tools working on such data are just enablers for the MDD idea.

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4591784

Computer Software and Applications, 2008. COMPSAC '08. 32nd Annual IEEE International , pp.1372-1375, July 28 2008-Aug. 1 2008
doi: 10.1109/COMPSAC.2008.156

Fig. 1. Developers Environment with Tailoring

Capabilities and features of tools are of course different and
lead to different maturity levels that need to be considered.
Thus, a tool evaluation before its integration is a prerequisite.
Even with good preparations prior to the integration of a tool
into the MDD landscape of a company, being locked into a
specific tool, simply because of its proprietary interfaces is
a risk that has to be considered. The challenge is to foster
standardization efforts towards inter tool data exchange models
or working intra tool import / export interfaces. The vision,
depicted in figure 1, is a combined tool method knowledge
base, called the developers environment. The development
process as well as the tools in the tool chain can be tailored
to the specific needs of a given development department or a
project. The integration of a method with all the needed tools,
together with a model driven approach offers quite high saving
potentials. For the marine, automotive and aerospace domain a
developers environment with simulation capabilities was built,
see [8]. The resulting 30% development time reduction shows
the high potentials but also the needed integration of tools to
reach such savings.

A well known quality aspect in systems development is the
time of error correction - the earlier the better. Once models are
available, tool supported simulation is possible and supports
the identification of errors in early stages, at requirements
level. This was done in the aforementioned project with the
30% development time reduction, see [8]. In this project,
simulation was done with Hardware-In-The-Loop (HIL) and
it turned out, that the simulation was a key success factor
to reach such a high development time reduction. For HIL
simulation as well as model based debugging special hardware
and a model simulator (which is a software tool) are needed.
All relevant parts of the environment have to be simulated to
ensure correct simulation results. The simulation of the exact
timing behaviour can also be tool supported, see ChronSim
[9] for example.

THE LIFE-CYCLE CHALLENGE. A product life cycle of
often more than ten years, as present in the automation domain,
directly leads to the known issue of how to be able to change,

maintain or only re-do any development steps from the very
first product version at the end of the product life cycle? Tools,
operating systems, target hardware or development hardware
changes over time, a company in the automation domain has
to make sure that all the models initially developed for a
product are still usable even if the product life cycle comes
to its end. In particular, it should be possible to execute all
transformations developed at the beginning of the project to
make corrections to the model or introduce enhancements.

MDD of course offers means to overcome the challenge of
changing hard- and software by increasing the abstraction level
inherently present in the models. The basic idea is, that the
models are stable over time, and by improved transformations
to new target platforms the software for an embedded system
can be generated at any time. Within the automation domain
there is still the challenge left to validate whether this concept
holds over time. A solution idea is to have improved, model-
based testing methods and tools, which enable a validation of
newly generated code for new platforms.

THE LEGACY CHALLENGE. Any development method
in the automation domain has to address the integration of
previous development efforts. In many cases legacy hard- and
software has to be used and re-used as much as possible. Inside
a MDD project such re-use is only possible by describing a
legacy component by its exact interfaces. Once this is done the
newly created model element, a component, can be used in the
current system. The drawback in this approach is that legacy
systems could have been developed without the component
idea in mind. Thus, even if an interface around a piece of
source code can be identified, the resulting component is rather
specific. This can be addressed by refactoring the software to
get to better re-usable components. The challenge is to find
ways to reduce the effort needed to integrate legacy systems
or components into the models of MDD projects.

THE MENTAL APPROACH CHALLENGE. MDD, by con-
struction, requires a development engineer to think in terms of
models. In addition to this, the well known source code is still
present and needed in the system, but this piece of information
is not meant to be used or even changed by a developer. Most
current tools have a round-trip-engineering support, to enable
the manipulation of source code. This eases the migration
to MDD. The future vision goes towards embedded system
development without touching the actual source code.

Based on estimations, the average development experiences
of developers in the automation domain are around ten years.
These experiences are mainly in the field of traditional C-
Code development. Clearly the changes in the mental approach
towards MDD require training efforts, tool chain changes,
and refactoring, as well as re-modeling of existing systems.
With the given market timing constraints, changes in the
development method as well as changes of the tool chain,
can only be made gradually based on a migration plan. The
challenge is to get to a high quality estimation of the efforts
needed to get to the mental approach of MDD.

MDD should be an integral part of an engineering educa-
tion in e.g. computer science or electrical engineering. The

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4591784

Computer Software and Applications, 2008. COMPSAC '08. 32nd Annual IEEE International , pp.1372-1375, July 28 2008-Aug. 1 2008
doi: 10.1109/COMPSAC.2008.156

challenge is the integration of the structured MDD in the
educational system of universities. In addition, domain specific
add-ons need to be addressed within companies.

THE SAFETY CHALLENGE. An increasing number of em-
bedded systems in the automation domain are certified or will
have to be certified according to the safety standard IEC61508.
MDD on the one hand enables a structured and documentable
development path to a product, but on the other hand currently
offers only little support in directly addressing safety issues
in models or its transformations. In the avionic, railway and
automotive domain safety enabled tools are available, like
Esterels Scade [10]. The challenge is to elaborate more on
safety certified model transformations and the integration of
best practise knowledge out of non-automation domains.

V. CONCLUSION

MDD with models and transformations between models
as key concepts, has evolved to a mature methodology and
technology partially usable in an industrial setting. For the
automation domain an MDD analysis revealed challenges that
have been discussed in this paper.

To keep and enhance the product quality calculation models
for better estimations are needed. Improved integration op-
tions for a tailorable tool landscape are needed to secure an
investment in MDD technology and methodology. In addition,
the tools shall offer safety certified model transformations. At
the same time legacy system integration into MDD projects
should consume a reduced effort. For the products with a
long life cycle the promises for a long lasting model driven
developers environment have to be validated. Finally, high
quality estimations are needed for the costs the mental change
towards MDD causes.

Further research in the MDD arena will have to dig deeper
into the challenges towards solutions, which are applicable
in the automation domain. Personalized migration paths need
to be developed, starting with the current status towards
model based development to finally reach the model driven
development goal.

REFERENCES

[1] Aram Hovsepyan and Stefan Van Baelen and Bert Vanhooff and Wouter
Joosen and Yolande Berbers, “Key research challenges for successfully
applying MDD within real-time embedded software development,” in
International workshop on embedded computer systems: architectures,
modeling and simulation (SAMOS 2006) edition:6 location:Samos,
Greece date:17-20 July 2006, Lecture notes in computer science
vol:4017 pages:49-58, 2006.

[2] OrVia, “Orchestrierung und Validierung kooperierender Sys-
temkomponenten,” Website, 04 2008. [Online]. Available:
http://www.ids-scheer.com/de/orvia

[3] Xavier Blanc and Marie-Pierre Gervais and Prawee Sriplakich, “Model
Bus: Towards the Interoperability of Modelling Tools,” in Lecture Notes
in Computer Science, vol. 3599/2005. Springer Berlin / Heidelberg,
2005, pp. 17–32.

[4] Clemens Reichmann and Daniel Gebauer and Klaus D. Müller-Glaser,
“Model Level Coupling of Heterogeneous Embedded Systems,” RCBS
Workshop on Model-Driven Embedded Systems 04, 2004.

[5] Elena Litani and Ed Merks and Dave Steinberg, “Discover the Eclipse
Modeling Framework (EMF) and Its Dynamic Capabilities,” Website,
2008. [Online]. Available: http://www.devx.com/Java/Article/29093

[6] MetaCase, “MetaEdit+®Workbench and Modeler,” Website, 04 2008.
[Online]. Available: http://www.metacase.com/mwb/

[7] Detlef Streitferdt and Philipp Nenninger, “Quality Assurance Challenges
in the Industrial Automation Domain,” in Business Process Engineering
(CONQUEST proceedings). Dpunkt Verlag, 2007.

[8] Thomson Haydn, “Flexible Control Systems Development and
Integration Environment for Distributed Systems,” ATP International,
Engineering Embedded Systems, 2007. [Online]. Available: http:
//www.atp-international.de

[9] Inchron, “Real-time simulator chronSim,” Website, 2008. [Online].
Available: http://www.inchron.de

[10] Esterel Technologies, “Scade Suite (TM) and IEC 61508 - Certified
Code Generation),” Website, 2008. [Online]. Available: http://www.
esterel-technologies.com/

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4591784

Computer Software and Applications, 2008. COMPSAC '08. 32nd Annual IEEE International , pp.1372-1375, July 28 2008-Aug. 1 2008
doi: 10.1109/COMPSAC.2008.156

