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Abstract— The architecture of software systems should be well 
documented and up to date. Knowledge about the software 
architecture of a software system enables reasoning regarding 
the software’s qualities such as modifiability, extensibility, 
security, etc. However, very often the architecture is only 
described during the initial phases of a software project and 
then undergoes progressive degradation. A degenerated 
architecture description cannot be used for reasoning 
regarding the qualities of the software, even if it possibly 
conveys the required functionality. This paper proposes an 
approach for a continuous model-based monitoring and semi-
automatic evaluation of software architectures, meant to 
support the architecture-based evolution of software systems at 
various abstraction levels. (Abstract) 
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I.  INTRODUCTION AND MOTIVATION 
The architecture of software systems directly influences 

crucial quality attributes and therefore should be considered 
whenever important decisions regarding their evolution must 
be taken. However, even though the importance of software 
architectures is widely acknowledged, complete and/or up-
to-date architecture descriptions rarely exist [1], [2], [3]. We 
consider that a complete software architecture description 
corresponds to the one presented in [1] and assumes the 
existence of information regarding at least the static, the 
dynamic and the deployment view of the system. 
Furthermore, we claim that an architecture description is up 
to date if it correctly reflects the described software 
system.  

Even if they are initially conformant with their software 
architecture description, software systems tend to evolve 
independently from it. As a result, the architecture 
description is usually not updated and becomes useless for 
supporting further architecture-based decisions.   

As we will discuss in Section IV, multiple solutions have 
been proposed to recover, visualize and evaluate the 
software architecture of a system. However, most of the 
existing methods focus only on the extraction and 
visualization of the static architecture view from the 
underlying system. The dynamic view of the architecture is 
often neglected, although it is crucial to understand and 
further evolve the considered system. E.g., for SOA-based 
systems, the interplay of the various service-providing 
elements is more important than their mere static structure. 
Moreover, methods to evaluate software architectures are 
also available, but a (semi-) automatic approach was not 
implemented.  

The remainder of this paper is organized as follows: in 
Section II we present the goals that underlie our research 
project. Section III highlights the approach that we plan to 
develop for achieving our goals. Section IV gives an 
overview of related work and Section V concludes the paper. 

II. GOALS

Considering the aforementioned problems, our main goal 
is to develop a systematic approach for software architecture 
evolution and evaluation. 

To achieve this, we first aim to develop a model-based 
method to monitor the evolution of software 
architectures. The following sub-goals need to be fulfilled: 

• Develop a meaningful and extendable architecture
meta-model that comprises relevant architectural 
information at various abstraction levels of interest.  

• Develop a method to link a software system with its
architecture description, to allow the continuous 
monitoring of the later.  

• Provide support for a view-based visualization of
the monitored architecture. The visualization 
should occur at various levels of detail and from 
various perspectives, to answer the different needs of 
all the “architecture stakeholders”, e.g., clients, 
software architects, programmers, etc.  

Secondly we will investigate how to evaluate the 
monitored architecture. Methods to define and compare 
various architecture evolution variants will also be 
developed. 

III. PROPOSED APPROACH

Our approach, as represented in Figure 1, consists of two 
main phases that correspond to the two major goals 
formulated in the previous section:  

• Phase 1: architecture monitoring and visualization
• Phase 2: architecture evolution and evaluation
The first phase commences with mapping the source 

code artifacts of a software system to architecture elements 
originating from the system’s static architecture view, by 
tagging the source code accordingly. We use the static 
architecture view as input because, as outlined in Section 1, 
in most of the cases only this view is available or retrievable 
by employing established extraction tools (e.g., the ones 
presented in Section IV). Activity 1 has therefore a holistic 
character, as it employs the tagging of the entire source code 
of the system. During consequent evolutions of the system 
and its architecture, only the newly introduced parts or the 
ones affected by changes will need to be tagged or re-tagged. 
Once the system has been architecturally enriched, during 
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Activity 2 we monitor its runtime to extract runtime 
architecture information. This information reflects important 
architecture aspects such as: the control flow between the 
architecture elements, their time-dependencies and 
dependencies caused by runtime reconfigurations, etc. Next, 
in Activity 3 the runtime architecture information is 
combined with the structural information reflected in the 
static architecture view to extract new architecture views of 
the system, e.g., dynamic architecture views at various levels 
of abstractions. Given that the extraction is based on runtime 
information, the dynamic views only reflect the behavior that 
the system exhibits during its monitoring. Thus, the architect 
can consequently create mappings between the performed 
use cases and the resulted dynamic views, to better 
understand the dynamics of the considered system.  

Figure 1.  General Approach 
The second phase addresses the evolution and evaluation 

of the architecture of a software system. The trigger of any 
evolution is a change request. The change request can be 
caused, e.g., by the addition of new requirements or by the 
decision to architecturally re-factor degenerated parts of the 
system. Before modifying the software architecture, the 
available architecture views must be analyzed during 
Activity 4, to understand where the changes must be 
performed. As a result, the architect might develop more 
possible architecture variants, that could be used to address 
the given change request. An architecture variant results by 
consistently changing a set of relevant architecture views, to 
accommodate the necessary changes. During Activity 5, the 
variants are evaluated, to decide which the best one is. Next, 
in Activity 6, the best architecture variant is consequently 
used to evolve the architecture. After all the necessary 
changes have been performed the system is again monitored 
and thus the cycle continues.  

Alternatively, even if no change request needs to be 
handled, the architecture views are also automatically 
evaluated, in Activity 4a, to document their current quality. 
The monitoring then continues with Activity 2. 

By consistently applying this method, the architect would 
immediately observe the occurrence of degenerations and 
would have the opportunity to undergo corrective steps. 
Because the architecture would be evaluated at regular time-
intervals, the architect could also draw conclusions regarding 
the quality (and the quality trend) of the analyzed 
architecture, by observing the evolution trend of the 
evaluation results. Furthermore, when the architecture should 
to be changed, the architect could first develop various 
alternatives, evaluate and compare them, and consequently 
choose the best one.  
A. Phase 1: Architecture Monitoring and Visualization 

Our approach for the continuous monitoring of the 
software architecture is based on unobtrusively tagging the 
source code with architecturally relevant information. To 
make the monitoring and views-extraction possible, the 
tagging of the code should be formalized. To achieve this, a 
tagging-language will be developed. The language (and 
hence the meta-model describing it) must contain relevant 
architectural information that is usually not directly reflected 
in the source code, but which is important for the 
understanding of the architecture of a software system. 
Example of such information is the component belonging 
and layer belonging of a certain source-code entity, e.g., a 
Java or a C++ class. In a first iteration of our research, we 
will develop tagging methodologies based on editing the 
source code. In later iterations we will inquire possibilities 
for “hot-tagging” a running system, to avoid any operation 
discontinuities. 

Our research will also address modeling context-related 
information, e.g., the fact that - due to reuse - a component 
can be a part of different architecture elements. This situation 
is illustrated in Figure 2, where the “Component X” is 
simultaneously a part of “Filter 1” of a “Pipes and Filters” 
architecture and of “Layer 2” of a “Layers” architecture.  

Figure 2.  Multiple-Context Belonging of a Component 
When building dynamic architecture views for different 

abstraction layers, it must be clear if the behavior of 
“Component X” should be attributed to “Filter 1” or “Layer 
2”.  Because the software landscape can change itself 
dynamically (e.g., “Component X” might become part of 
further architecture elements), this context information 
should not be tagged directly in “Component X”. To address 
this issue, we will model two types of information: 

• private information – not changeable and specific to
the architecture element (e.g., element type, required
interface, provided interface, etc)

• context information – dependable on the system’s
dynamics (e.g., the mapping of the behavior of the
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architecture element to elements at higher levels of 
abstractions).  

To achieve this, several important questions will need to 
be answered: Is there a clear separation between private and 
context information? How/where should the context 
information be tagged in the system? Is private/context 
information relevant for all types of architecture elements? 

After the architectural knowledge is inserted in the 
considered software system, the various views will be 
extracted. In this paper we concentrate on the extraction of 
the dynamic view.  

Figure 3.  ARAMIS Overview 
For creating the dynamic views of the system, we will 

develop the Architecture Analysis and Monitoring 
Infrastructure (ARAMIS), to be used in Activity 2 of our 
approach (Figure 1).  

ARAMIS, presented in Figure 3, will collect architectural 
runtime information of a software system, via an 
Architectural Information Bus (AIB). The AIB will send the 
collected architectural information to a central Architectural 
Information Broker (AIBR).  

The AIBR will simultaneously contain various facets of 
the same information, such as: inter-layer communication 
(e.g., how are the layers collaborating to achieve a certain 
behavior?), intra-layer components communication (e.g., 
how are the components in a certain layer interacting to 
achieve a certain behavior), intra-component behavior (e.g., 
how is a component performing its task?), etc. 

Based on the information contained in the AIBR, views 
corresponding to the facets described above will be 
extracted. To achieve this, several Architectural Information 
Processors (AIP) will register themselves to the AIBR and 
the AIBR will consequently forward them only information 
relevant for their analysis purposes. An AIP will process the 
received information and then push it further, to so-called 
Architecture Information Viewers (AIV) that are responsible 
to visualize a certain behavior facet. It will be possible to 
connect more AIVs to a given AIP, because the same 
information can be represented in various ways (e.g., state-
chart representation, sequence diagram, timing diagram, 
etc.). 

For example, a pair of information items that could be 
sent through the AIB to the AIBR during runtime could be: 

“Layer client has sent the message displayAllUsers to the 
layer server at timestamp 1335790899” (1), “Component 
clientUserManagement has sent the message displayAllUsers 
to the component serverUserDatabase at timestamp 
1335790899” (2). Obviously, these two messages represent 
the same information, at different abstraction levels (inter-
layer vs. inter-component communication). The inter-layer 
communication AIP will only receive the information item 
(1), and process it by, e.g., inserting it at the correct position 
of a chronologically ordered list. The information in the 
inter-layer communication AIP will be further used by its 
associated AIVs to create various visualizations of it: e.g., the 
sequence-chart AIV will use available information to create a 
sequence diagram of the communication between the client 
and the server layer. 
B. Phase 2: Architecture Evolution And Evaluation 

The architecture views created during the first phase can 
be further used to evaluate the architecture and define 
evolution variants. The variants can be created from scratch 
or by changing the monitoring results, using the same model-
based environment.  

Furthermore, we will analyze which relevant metrics can 
be reused or developed to support the semi-automatic 
evaluation and comparison of the model-based architecture 
views and their variants. Also, as previously explained, the 
architect will be able to conduct various analyses regarding 
the current state or the evolution of the quality of the 
observed architectures, such as understanding to what extent 
the architecture degenerated, or if it improved or worsened. 

Moreover, we also intend to support the architect in 
choosing and applying other available architecture evaluation 
methods. Currently, the selection of such a method depends 
on the experience of the architect in charge with performing 
the evaluation. Our approach will offer guidance, to 
objectively choose the best suitable evaluation 
methodologies, based on the properties that need to be 
evaluated and the particularities of the underlying software 
product. 

IV. RELATED WORK

Pioneer approaches for architecture extraction (e.g., 
DALI [4], Alborz [13], etc.) are based on the recovery of 
structural architectural information from the source code of 
software systems, followed by refinements performed by 
human experts. Later work, such as SAVE [2] and Sotoarc 
[14] further compare the extracted architecture for 
compliance with user-provided models and rules regarding 
the “targeted-architecture”.  In [8] the authors present a 
method for extracting architectural views, by applying 
viewpoints on recovered models. While the approach is also 
model-driven, the proposed architecture meta-model lacks 
various elements that we want to introduce, e.g., 
“component” and “layer”. Also, none of the mentioned 
approaches offers a real monitoring of the runtime 
architectural behavior of the system. 

The authors of [15] acknowledge the need of monitoring 
the evolution of software architectures. However, [15] also 
only exclusively considers the static view of the system and 
the dynamic view is not taken into account. 
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DiscoTect [10] analyses the system’s runtime traces to 
extract architectural information, based on assumed naming 
conventions of the code entities (classes, methods, etc). Next, 
rules must be written to parse the logged information. Unlike 
our approach, no central meta-model is used and a single 
view of the running system is extracted. In contrast, our 
approach will offer as many views as necessary on different 
abstraction levels, to enhance the understanding of the 
analyzed architecture. 

SoftArch [12] presents dynamic information based on 
modified “copies of the recovered static views” of the 
system. Dedicated behavior-related views (e.g., sequence 
diagrams) are not offered. The SoftArch meta-model is also 
very coarse and lacks important architectural elements such 
as “layer” and “component”.  

Kieker is “an extensible framework for monitoring and 
analyzing the runtime behavior of concurrent and distributed 
software systems” ([16]) that applies aspect-oriented 
techniques to extract various visualizations (e.g., sequence 
diagrams, dynamic call trees, etc) of the dynamic view of the 
studied system. Kieker studies the interplay of the various 
components that build the system, but does not refer to 
architecture elements from higher abstraction levels that we 
will consider (e.g., layers, pipes, filters, etc.). Also, 
programming language extensions should be written when 
analyzing legacy code written in languages that lack aspect 
orientation. In contrast, we will focus on developing a 
programming language independent approach.  

In [11] the authors present an architecture meta-model 
for software-intensive systems. Architecture view-points are 
extracted based on the analysis of the system’s logs. 
However, the proposed meta-model is not suitable for 
describing general architectures and mostly contains 
elements specific for software-intensive systems (e.g., 
“system specific code”, “platform code”, “platform 
hardware”).  

Work has also been invested by the research community 
into defining and comparing various software architecture 
evaluation methods and documenting their advantages and 
disadvantages (e.g., [1], [6], [7]). While not neglecting the 
already developed evaluation methods, our research will 
mainly focus on developing metrics relevant for semi-
automatically evaluating and comparing architectures 
described using a common architecture meta-model. In this 
sense, our approach is situated on a higher abstraction level 
than more code-oriented evaluation tools, e.g., ConQAT [9].  

V. CONCLUSION 
This paper sketched our current research topic, which 

aims to offer a solution to sustain the architecture-centric 
evolution and evaluation of software systems, based on an 
architecture meta-model. To sustain our goal, we plan to 
develop a method to continuously monitor software to 
extract various architecture views corresponding to different 

abstraction levels of interest. Metrics for semi-automatically 
evaluating the extracted architecture views and that support 
the choice of the best evolution variant will also be created. 
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