
Model-based Software Architecture Evolution and Evaluation

Ana Dragomir, Horst Lichter
RWTH Aachen University, Research Group Software Construction

Aachen, Germany
{adragomir, lichter}@rwth-aachen.de

Abstract— The architecture of software systems should be well
documented and up to date. Knowledge about the software
architecture of a software system enables reasoning regarding
the software’s qualities such as modifiability, extensibility,
security, etc. However, very often the architecture is only
described during the initial phases of a software project and
then undergoes progressive degradation. A degenerated
architecture description cannot be used for reasoning
regarding the qualities of the software, even if it possibly
conveys the required functionality. This paper proposes an
approach for a continuous model-based monitoring and semi-
automatic evaluation of software architectures, meant to
support the architecture-based evolution of software systems at
various abstraction levels. (Abstract)

Keywords- software architecture; monitoring; evaluation;

I. INTRODUCTION AND MOTIVATION
The architecture of software systems directly influences

crucial quality attributes and therefore should be considered
whenever important decisions regarding their evolution must
be taken. However, even though the importance of software
architectures is widely acknowledged, complete and/or up-
to-date architecture descriptions rarely exist [1], [2], [3]. We
consider that a complete software architecture description
corresponds to the one presented in [1] and assumes the
existence of information regarding at least the static, the
dynamic and the deployment view of the system.
Furthermore, we claim that an architecture description is up
to date if it correctly reflects the described software
system.

Even if they are initially conformant with their software
architecture description, software systems tend to evolve
independently from it. As a result, the architecture
description is usually not updated and becomes useless for
supporting further architecture-based decisions.

As we will discuss in Section IV, multiple solutions have
been proposed to recover, visualize and evaluate the
software architecture of a system. However, most of the
existing methods focus only on the extraction and
visualization of the static architecture view from the
underlying system. The dynamic view of the architecture is
often neglected, although it is crucial to understand and
further evolve the considered system. E.g., for SOA-based
systems, the interplay of the various service-providing
elements is more important than their mere static structure.
Moreover, methods to evaluate software architectures are
also available, but a (semi-) automatic approach was not
implemented.

The remainder of this paper is organized as follows: in
Section II we present the goals that underlie our research
project. Section III highlights the approach that we plan to
develop for achieving our goals. Section IV gives an
overview of related work and Section V concludes the paper.

II. GOALS

Considering the aforementioned problems, our main goal
is to develop a systematic approach for software architecture
evolution and evaluation.

To achieve this, we first aim to develop a model-based
method to monitor the evolution of software
architectures. The following sub-goals need to be fulfilled:

• Develop a meaningful and extendable architecture
meta-model that comprises relevant architectural
information at various abstraction levels of interest.

• Develop a method to link a software system with its
architecture description, to allow the continuous
monitoring of the later.

• Provide support for a view-based visualization of
the monitored architecture. The visualization
should occur at various levels of detail and from
various perspectives, to answer the different needs of
all the “architecture stakeholders”, e.g., clients,
software architects, programmers, etc.

Secondly we will investigate how to evaluate the
monitored architecture. Methods to define and compare
various architecture evolution variants will also be
developed.

III. PROPOSED APPROACH

Our approach, as represented in Figure 1, consists of two
main phases that correspond to the two major goals
formulated in the previous section:

• Phase 1: architecture monitoring and visualization
• Phase 2: architecture evolution and evaluation
The first phase commences with mapping the source

code artifacts of a software system to architecture elements
originating from the system’s static architecture view, by
tagging the source code accordingly. We use the static
architecture view as input because, as outlined in Section 1,
in most of the cases only this view is available or retrievable
by employing established extraction tools (e.g., the ones
presented in Section IV). Activity 1 has therefore a holistic
character, as it employs the tagging of the entire source code
of the system. During consequent evolutions of the system
and its architecture, only the newly introduced parts or the
ones affected by changes will need to be tagged or re-tagged.
Once the system has been architecturally enriched, during

© IEEE http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462728

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific , vol.1,pp. 697-700,
4-7 Dec. 2012, doi: 10.1109/APSEC.2012.118

Activity 2 we monitor its runtime to extract runtime
architecture information. This information reflects important
architecture aspects such as: the control flow between the
architecture elements, their time-dependencies and
dependencies caused by runtime reconfigurations, etc. Next,
in Activity 3 the runtime architecture information is
combined with the structural information reflected in the
static architecture view to extract new architecture views of
the system, e.g., dynamic architecture views at various levels
of abstractions. Given that the extraction is based on runtime
information, the dynamic views only reflect the behavior that
the system exhibits during its monitoring. Thus, the architect
can consequently create mappings between the performed
use cases and the resulted dynamic views, to better
understand the dynamics of the considered system.

Figure 1. General Approach
The second phase addresses the evolution and evaluation

of the architecture of a software system. The trigger of any
evolution is a change request. The change request can be
caused, e.g., by the addition of new requirements or by the
decision to architecturally re-factor degenerated parts of the
system. Before modifying the software architecture, the
available architecture views must be analyzed during
Activity 4, to understand where the changes must be
performed. As a result, the architect might develop more
possible architecture variants, that could be used to address
the given change request. An architecture variant results by
consistently changing a set of relevant architecture views, to
accommodate the necessary changes. During Activity 5, the
variants are evaluated, to decide which the best one is. Next,
in Activity 6, the best architecture variant is consequently
used to evolve the architecture. After all the necessary
changes have been performed the system is again monitored
and thus the cycle continues.

Alternatively, even if no change request needs to be
handled, the architecture views are also automatically
evaluated, in Activity 4a, to document their current quality.
The monitoring then continues with Activity 2.

By consistently applying this method, the architect would
immediately observe the occurrence of degenerations and
would have the opportunity to undergo corrective steps.
Because the architecture would be evaluated at regular time-
intervals, the architect could also draw conclusions regarding
the quality (and the quality trend) of the analyzed
architecture, by observing the evolution trend of the
evaluation results. Furthermore, when the architecture should
to be changed, the architect could first develop various
alternatives, evaluate and compare them, and consequently
choose the best one.
A. Phase 1: Architecture Monitoring and Visualization

Our approach for the continuous monitoring of the
software architecture is based on unobtrusively tagging the
source code with architecturally relevant information. To
make the monitoring and views-extraction possible, the
tagging of the code should be formalized. To achieve this, a
tagging-language will be developed. The language (and
hence the meta-model describing it) must contain relevant
architectural information that is usually not directly reflected
in the source code, but which is important for the
understanding of the architecture of a software system.
Example of such information is the component belonging
and layer belonging of a certain source-code entity, e.g., a
Java or a C++ class. In a first iteration of our research, we
will develop tagging methodologies based on editing the
source code. In later iterations we will inquire possibilities
for “hot-tagging” a running system, to avoid any operation
discontinuities.

Our research will also address modeling context-related
information, e.g., the fact that - due to reuse - a component
can be a part of different architecture elements. This situation
is illustrated in Figure 2, where the “Component X” is
simultaneously a part of “Filter 1” of a “Pipes and Filters”
architecture and of “Layer 2” of a “Layers” architecture.

Figure 2. Multiple-Context Belonging of a Component
When building dynamic architecture views for different

abstraction layers, it must be clear if the behavior of
“Component X” should be attributed to “Filter 1” or “Layer
2”. Because the software landscape can change itself
dynamically (e.g., “Component X” might become part of
further architecture elements), this context information
should not be tagged directly in “Component X”. To address
this issue, we will model two types of information:

• private information – not changeable and specific to
the architecture element (e.g., element type, required
interface, provided interface, etc)

• context information – dependable on the system’s
dynamics (e.g., the mapping of the behavior of the

© IEEE http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462728

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific , vol.1,pp. 697-700,
4-7 Dec. 2012, doi: 10.1109/APSEC.2012.118

architecture element to elements at higher levels of
abstractions).

To achieve this, several important questions will need to
be answered: Is there a clear separation between private and
context information? How/where should the context
information be tagged in the system? Is private/context
information relevant for all types of architecture elements?

After the architectural knowledge is inserted in the
considered software system, the various views will be
extracted. In this paper we concentrate on the extraction of
the dynamic view.

Figure 3. ARAMIS Overview
For creating the dynamic views of the system, we will

develop the Architecture Analysis and Monitoring
Infrastructure (ARAMIS), to be used in Activity 2 of our
approach (Figure 1).

ARAMIS, presented in Figure 3, will collect architectural
runtime information of a software system, via an
Architectural Information Bus (AIB). The AIB will send the
collected architectural information to a central Architectural
Information Broker (AIBR).

The AIBR will simultaneously contain various facets of
the same information, such as: inter-layer communication
(e.g., how are the layers collaborating to achieve a certain
behavior?), intra-layer components communication (e.g.,
how are the components in a certain layer interacting to
achieve a certain behavior), intra-component behavior (e.g.,
how is a component performing its task?), etc.

Based on the information contained in the AIBR, views
corresponding to the facets described above will be
extracted. To achieve this, several Architectural Information
Processors (AIP) will register themselves to the AIBR and
the AIBR will consequently forward them only information
relevant for their analysis purposes. An AIP will process the
received information and then push it further, to so-called
Architecture Information Viewers (AIV) that are responsible
to visualize a certain behavior facet. It will be possible to
connect more AIVs to a given AIP, because the same
information can be represented in various ways (e.g., state-
chart representation, sequence diagram, timing diagram,
etc.).

For example, a pair of information items that could be
sent through the AIB to the AIBR during runtime could be:

“Layer client has sent the message displayAllUsers to the
layer server at timestamp 1335790899” (1), “Component
clientUserManagement has sent the message displayAllUsers
to the component serverUserDatabase at timestamp
1335790899” (2). Obviously, these two messages represent
the same information, at different abstraction levels (inter-
layer vs. inter-component communication). The inter-layer
communication AIP will only receive the information item
(1), and process it by, e.g., inserting it at the correct position
of a chronologically ordered list. The information in the
inter-layer communication AIP will be further used by its
associated AIVs to create various visualizations of it: e.g., the
sequence-chart AIV will use available information to create a
sequence diagram of the communication between the client
and the server layer.
B. Phase 2: Architecture Evolution And Evaluation

The architecture views created during the first phase can
be further used to evaluate the architecture and define
evolution variants. The variants can be created from scratch
or by changing the monitoring results, using the same model-
based environment.

Furthermore, we will analyze which relevant metrics can
be reused or developed to support the semi-automatic
evaluation and comparison of the model-based architecture
views and their variants. Also, as previously explained, the
architect will be able to conduct various analyses regarding
the current state or the evolution of the quality of the
observed architectures, such as understanding to what extent
the architecture degenerated, or if it improved or worsened.

Moreover, we also intend to support the architect in
choosing and applying other available architecture evaluation
methods. Currently, the selection of such a method depends
on the experience of the architect in charge with performing
the evaluation. Our approach will offer guidance, to
objectively choose the best suitable evaluation
methodologies, based on the properties that need to be
evaluated and the particularities of the underlying software
product.

IV. RELATED WORK

Pioneer approaches for architecture extraction (e.g.,
DALI [4], Alborz [13], etc.) are based on the recovery of
structural architectural information from the source code of
software systems, followed by refinements performed by
human experts. Later work, such as SAVE [2] and Sotoarc
[14] further compare the extracted architecture for
compliance with user-provided models and rules regarding
the “targeted-architecture”. In [8] the authors present a
method for extracting architectural views, by applying
viewpoints on recovered models. While the approach is also
model-driven, the proposed architecture meta-model lacks
various elements that we want to introduce, e.g.,
“component” and “layer”. Also, none of the mentioned
approaches offers a real monitoring of the runtime
architectural behavior of the system.

The authors of [15] acknowledge the need of monitoring
the evolution of software architectures. However, [15] also
only exclusively considers the static view of the system and
the dynamic view is not taken into account.

© IEEE http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462728

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific , vol.1,pp. 697-700,
4-7 Dec. 2012, doi: 10.1109/APSEC.2012.118

DiscoTect [10] analyses the system’s runtime traces to
extract architectural information, based on assumed naming
conventions of the code entities (classes, methods, etc). Next,
rules must be written to parse the logged information. Unlike
our approach, no central meta-model is used and a single
view of the running system is extracted. In contrast, our
approach will offer as many views as necessary on different
abstraction levels, to enhance the understanding of the
analyzed architecture.

SoftArch [12] presents dynamic information based on
modified “copies of the recovered static views” of the
system. Dedicated behavior-related views (e.g., sequence
diagrams) are not offered. The SoftArch meta-model is also
very coarse and lacks important architectural elements such
as “layer” and “component”.

Kieker is “an extensible framework for monitoring and
analyzing the runtime behavior of concurrent and distributed
software systems” ([16]) that applies aspect-oriented
techniques to extract various visualizations (e.g., sequence
diagrams, dynamic call trees, etc) of the dynamic view of the
studied system. Kieker studies the interplay of the various
components that build the system, but does not refer to
architecture elements from higher abstraction levels that we
will consider (e.g., layers, pipes, filters, etc.). Also,
programming language extensions should be written when
analyzing legacy code written in languages that lack aspect
orientation. In contrast, we will focus on developing a
programming language independent approach.

In [11] the authors present an architecture meta-model
for software-intensive systems. Architecture view-points are
extracted based on the analysis of the system’s logs.
However, the proposed meta-model is not suitable for
describing general architectures and mostly contains
elements specific for software-intensive systems (e.g.,
“system specific code”, “platform code”, “platform
hardware”).

Work has also been invested by the research community
into defining and comparing various software architecture
evaluation methods and documenting their advantages and
disadvantages (e.g., [1], [6], [7]). While not neglecting the
already developed evaluation methods, our research will
mainly focus on developing metrics relevant for semi-
automatically evaluating and comparing architectures
described using a common architecture meta-model. In this
sense, our approach is situated on a higher abstraction level
than more code-oriented evaluation tools, e.g., ConQAT [9].

V. CONCLUSION
This paper sketched our current research topic, which

aims to offer a solution to sustain the architecture-centric
evolution and evaluation of software systems, based on an
architecture meta-model. To sustain our goal, we plan to
develop a method to continuously monitor software to
extract various architecture views corresponding to different

abstraction levels of interest. Metrics for semi-automatically
evaluating the extracted architecture views and that support
the choice of the best evolution variant will also be created.

REFERENCES
[1] R. Reussner, W. Hasselbring, “Handbuch der Software-Architektur”,

dpunkt.Verlag, 2009
[2] M. Lindvall, D. Muthig, “Bridging the Software Architecture Gap”,

Proceedings of Computer, Volume 41, Issue 6, pp. 98-101, June,
2008

[3] C. Del Rosso, “Continuous evolution through software architecture
evaluation: a case study”, Proceedings of Journal of Software
Maintenance and Evolution: Research and Practice, Volume 18, Issue
5, Pages 351 – 383, 2006

[4] R. Kazman, S.J. Carrière, “Playing Detective: Reconstructing
Software Architecture from Available Evidence”, Proceedings of
Automated Software Engineering, Volume 6, Issue 2, April 1999

[5] S. Ducasse, D. Pollet, “Software Architecture Reconstruction: A
Process-Oriented Taxonomy”, Proceedings of IEEE Transactions on
Software Engineering, Volume 35, Issue 4, July/August 2009

[6] M. Ionita, D. Hammer, H. Obbink, “Scenario-based software
architecture evaluation methods: an overview”, Workshop on
Methods and Techniques for Software Architecture Review and
Assessment, International Conference on Software Engineering,
Orlando, Florida, USA, May 2002

[7] L. Dobrica, E. Niemelä, “A survey on software analysis methods”,
Preceedings of IEEE Transactions on Software Engineering, Volume
28, Issue 7, Pages 638 - 652, 2002

[8] A. Razavizadeh, H. Verjus, S. Cimpan, S. Ducasse, “Multiple
Viewpoints Architecture Extraction”, Proceedings of the 16th
Conference on Reverse Engineering, Pages 237-246, Lille, France,
2009

[9] E. Jürgens, B. Hummel, S. Wagner, B. Mas y Parareda, M. Pizka,
“Tool Support for Continuous Quality Control”, Proceedings of IEEE
Software, Volume 25, Issue 5, Pages 60 - 67, 2008

[10] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, H. Yan, „DiscoTect: A
System for Discovering the Architectures of Running Programs using
Colored Petri Nets“, Computer Science Technical Reports, Carnegie
Mellon University, Pittsburgh, USA, 2006

[11] T.B.C. Arias, P. America, P. Avgeriou, “A top-down approach to
construct execution views of a large software-intensive system”,
Journal of Software Maintenance and Evolution: Research and
Practice, 2011

[12] J. Grundy, J. Hosking, “High-level Static and Dynamic Visualization
of Software Architectures”, Proceedings of IEEE Symposium on
Visual Languages, Pages 5-12, 2000

[13] K. Sartipi, „Alborz: A Query-based Tool for Software Architecture
Recovery“, the 9th International Workshop on Program
Comprehension, Toronto, Canada, 2001

[14] Sotoarc – Basic Product Description, available at
http://www.hello2morrow.com/products/sotoarc

[15] G. Buchgeher, R. Weinreich, “Connecting architecture and
implementation”, Proceedings of OTM Workshops, Pages 316 – 326,
2009

[16] A. van Hoorn, J. Waller, W. Hasselbring, “ Kieker: A Framework for
Application Performance Monitoring and Dynamic Software
Analysis”, Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering (ICPE 2012), Boston,
Massachusetts, USA, April 22-25, 2012, ACM, 2012

© IEEE http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462728

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific , vol.1,pp. 697-700,
4-7 Dec. 2012, doi: 10.1109/APSEC.2012.118

