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Abstract— A variety of reference models such as CMMI, COBIT 
or ITIL supports IT organizations to improve their processes. 
Although these process improvement reference models (IRM) 
cover different domains they also share some similarities. There 
are organizations that address multiple domains and want to take 
the guidance of different IRMs. As IRMs overlap in some 
processes, we present an approach to compare parts of IRMs (the 
IRMs’ procedures) that is based on a common IRM integration 
model and on similarity metrics. Our approach enables 
organizations to efficiently adopt and assess multiple IRMs by 
automatically identifying similarities and specific details of the 
different IRMs. 
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I.  INTRODUCTION 

Nowadays, clients are requesting better and cheaper 
software products. However, the Standish Group regularly 
reports a high failure rate of IT-projects: 68% of IT-projects 
neither meet the deadlines nor achieve the requested quality or 
are cancelled [1]. One important factor to project success is the 
quality of the applied processes. Hence, more and more 
organizations want to establish and improve their processes 
systematically. Because the process improvement road is quite 
long and expensive it needs to be guided. To support process 
improvement different improvement reference models (IRM) 
such as CMMI (2010), ISO/IEC 15504 (2007) or COBIT 
(2007) can be considered and applied. IRMs are collections of 
best practices (often called procedures) based on experience 
and knowledge of many organizations.  

The adoption and assessment of multiple IRMs bring 
additional benefits to organizations. The adoption allows 
organizations to exploit IRM synergy effects. On the one hand 
organizations can coordinately address different and common 
areas of IRMs. On the other hand the weaknesses of a single 
IRM can be overcome by the strengths of others. Furthermore, 
the assessment of the organizations’ internal processes 
according to multiple IRMs increases the competition strength 
on the IT market. 

One premise for organizations to be able to exploit the 
synergy effects of multiple IRMs and to efficiently assess them 
is an integrated view of IRMs allowing to compare procedures 

from different IRMs and to identify dependencies between 
them. Thus, organizations can effectively and efficiently adopt 
and assess multiple IRMs; the efficiency increases through an 
automated comparison approach. 

II. CHALLENGES AND GOALS

According to ISO/IEC 24744 [2] different IRMs “vary in 
format, content and level of prescription”. Therefore, an 
automated comparison cannot be done without some 
preparatory steps. Our approach, MoSaIC (Model based 
Selection of Improvement Concepts), enables a fine granular 
integration of multiple IRMs based on a common structure and 
terminology. Our comparison approach is based on this fine 
granular integration, i.e. we compare IRMs by comparing their 
concepts, such as activities, outputs, inputs, roles and purposes. 
Similar concepts from the different IRMs are stored in a 
different model (Integrated Concept Model-ICM) and 
connected by similarity relations, such as composedOf or 
generalizationOf [3]. The uniqueness of the ICM concepts, 
their consistent identification, the similarity relations between 
them and their traceability back to the original concepts of the 
IRMs allows to automatically identify similarities of different 
IRMs. A natural language processing tool for the extraction of 
such concepts according to predefined rules was developed to 
model these concepts consistently. An automated comparison 
would not be possible without a consistent normalization of the 
structure and of the terminology. 

III. RELATED WORK

Although considerable research has been devoted to the 
comparison of IRMs, the existing approaches do either not 
compare IRMs fine-grained or the comparison is done 
manually based on bilateral relations between parts of IRMs. 

Ferreira, Machado and Paulk [4] define metrics to measure 
“size” and “complexity” of IRMs. To measure the “size”, the 
shared scope of the IRMs’ process areas (the number of 
common process areas) and their differences in the description 
detail are considered. The complexity is measured based on the 
internal coupling and the dependencies of the process areas. 
Therefore, this approach roughly compares several IRMs but 
does not consider their content. Content based comparisons are 
often provided by the publishers of IRMs which offer 
mappings between process areas or procedures (e.g. ISACA 
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offers mappings between COBIT/CMMI and COBIT/ITIL). 
However, the similarities are subjective and only rough 
indicated, i.e. do not provide enough details about 
commonalities and differences necessary to support 
organizations in the adoption of multiple IRMs.  

To overcome these problems, some authors try to integrate 
IRMs using formal models on a fine granular level. Ferchichi 
and Bigand [5] and Liao, Qu and Leung [6] define a common 
structure to link IRMs and reveal their similarities. For this 
purpose similar procedures of IRMs are connected manually. 
However, no information about common and different 
elements of the similar procedures is provided. The need of a 
process architecture in a multi-model context on a more fine-
grained level is mentioned in a series of articles from SEI [7]. 
Fine granular elements mentioned in [8], [9], [10] or [11] such 
as inputs, outputs, roles are connected to identify similar 
procedures. However, they consider only the bilateral semantic 
equivalence between these elements. Our approach uses 
different similarity relations to get all the similar procedures 
and not only the ones that share exactly the same elements. 
Furthermore, we do not connect elements by bilateral similarity 
relations but use a new model that contains all the IRMs’ 
elements and the relations between them to allow a multiple 
comparison between the procedures [3].  

As our approach is based on an ontology of IRMs’ 
elements (activities, artifacts, roles and purposes), we analyzed 
also ontology- or schema-based matching approaches that 
might be applied to support the identification of similar 
elements. Many diverse solutions have been proposed so far 
(mentioned in [12] or [13]). To match different schemas their 
terminology and structure can be compared by using e.g. 
linguistic resources, such as lexicons, thesauri resp. graph 
matching algorithms or structure meta-data. We evaluated 
some online dictionaries tools (e.g. WordNet [14], Rensselaer 
MSR Server [15], Wikipedia Miner [16]). Unfortunately, their 
ability to identify similar elements was not satisfactory. 
Reasons could be, that the dictionaries mostly contain general 
terms and not the specific IRMs terminology or that the 
similarity relations between the specific terms are not 
documented. Furthermore, we used OntoGen [17] to generate 
an ontology from the IRMs’ context that can be also used to 
verify if two elements are similar or not. As this automation 
also did not delivered good results, we have created our own 
ontology based on the information extracted from IRMs and on 
predefined guidelines. As already mentioned, we added to the 
ontology all IRMs’ fine grained elements and their similarity 
relations to allow an automated comparison between the IRMs’ 
procedures (that contain these fine grained elements). 

The remaining of this paper is organized as follows. In the 
fourth section, relevant aspects of similarity theory are 
presented. Based on these aspects, we describe our approach to 
identify similarities between IRMs. In the fifth section we 
discuss the results of an evaluation done by professional 
CMMI, COBIT and SPICE experts. Furthermore, we give an 
overview of our future work. Conclusions and a summary 
conclude this paper in the last chapter. 

IV. DETERMINING SIMILARITY BETWEEN IRMS

In the following we present the MoSaIC similarity 
algorithm. First, we give a brief introduction to similarity 
theory. Then, we present our algorithm that is based on 
similarity metrics. Finally, we illustrate our comparison 
approach by some examples. 

A. Similarity Theory 
In general, similarity is an important property because it is 

fundamental for our cognition. According to Goldstone and 
Son [18] similarity plays a key role in problem solving, 
remembering, prediction, and categorization. In fact, if there 
were no similar objects and events, an individual would 
perceive each situation as a new one and would have to learn 
how to use each particular object. The notion of similarity is 
applied in different domains. For instance, in geometry two 
objects are similar if they have the same shape; in psychology 
they are similar if they can be put into the same category. As 
there is no common definition of “similarity” we refer to the 
definition of Goodman [19]: Objects are similar if they have a 
set of common features. 

There are several methods to determine similarity between 
objects. Based on measurement theory we distinguish the 
following four categories: a) Spatial methods consider objects 
as points or vectors in the n-dimensional space [20]. Well-
known examples of spatial methods are the Cosine Similarity 
Measure or the Euclidean Distance; b) Feature-based 
methods consider objects as a finite unsorted set of features; 
they calculate the similarity with respect to their features. For 
example, Tversky [21] combines the numbers of similar and 
different features of different objects to calculate their 
similarity; c) Transformational methods, e.g. the Levenshtein 
Distance [22], consider the features of two objects and their 
order. They count the transformations needed to convert one 
object into the other; i.e., the smaller the number of 
transformations, the higher their similarity; d) Alignment 
methods like Structure Mapping Engine [23] use features of 
objects and their relations to determine similarity. 

As in our case the order of concepts (objects’ features) 
should not be considered, the transformational methods could 
not be applied. Furthermore, the alignment methods compare 
two objects that are represented as hierarchies of features 
related by a certain relation. As we have different relations 
between the concepts, these methods could not be applied too. 
The feature-based methods consider only common and 
different concepts but not concepts that have something in 
common (that are not equal but also not different). This issue is 
considered by the spatial methods because they regard the 
distance between the features of compared objects. We used 
two similarity metrics in our approach:  

TABLE I. SIMILIARITY METHODS 

Cosine-Distance Variant Weighted EuclideanDistance 

��� ����� 	 
 ��
�� ������������
����� � ��
����� ���� 	 ����� ��� � 
����
�� 
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Ganesan et al. [24] proposed a variant of the Cosine 
Distance method to consider hierarchy information of the 
features and thus the similarity distance between these in the 
hierarchy. As ICM concepts may be related by the 
generalizationOf-relation they may form hierarchies as well. 
The LCA(n, m) is the Lowest Common Ancestor. The depth(n) 
is the number of edges from LCA(n, m) to n. The Weighted 
Euclidean Distance considers two features vectors with their 
corresponding feature pair weights. In our approach the 
procedures are composed of different element types that also 
have different weights (see next sections).  

B. The MoSaIC Comparison Approach 
The MoSaIC similarity algorithm considers IRMs’ 

procedures. As we found reasonable similarities between 
COBIT control objectives, COBIT control practices, CMMI 
specific-goals, generic-goals, -practices, sub-practices, SPICE 
practices and Functional Safety objectives and requirements, 
we consider these procedures.  

Procedures (PROCs) are similar, if their parts, called AUs 
(AUs) are similar.  An AU contains concept elements (CEs): 
one activity and all its associated inputs, outputs, purposes and 
roles. Analogously, AUs are similar, if their concept elements 
(CEs) are similar. Hence, the basic idea of our similarity 
algorithm is to determine similarity on different levels (on the 
concept, AU and procedure level). A first similarity metric 
calculates the similarity of the concepts. Another similarity 
metric t aggregates these results to compute the similarity of 
the considered AUs. Finally, on the procedure level, some hints 
about the similarity of procedures are given. All metrics 
calculate a value between 0 and 1. The metric specifications are 
based on assumptions (A1-4) and have to meet some 
requirements (R1-3). 

TABLE II.  ASSUMPTIONS AND REQUIREMENTS 

A1  Activity is the most important concept type. 

A2  Role, Input and Purpose are the less important concepts 
types. 

A3  Output is more important than Role, Input and Purpose, but 
less important than Activity. 

A4  All part-concepts of a common whole-concept are not similar. 

R1 Each metric should be differentiable (different inputs cause 
different results), comparable, reproducible (the same input 
always leads to the same value) and plausible (the values meet 
the representative condition) [25] [26]. 

R2 The calculated similarity values should reflect the importance 
of the conceptual elements. 

R3 The number of conceptual elements of an AU should not 
influence its similarity value. 

As the activities and outputs reflect the procedure’s actual 
work, which is expected to be performed, we consider them as 
the most important elements of a procedure. Role, input and 
purpose are also important but only give additional information 
about how to perform an activity to produce an output. We 
consider the process of achieving an output (the activity) more 
important than its result (the output).  

The last assumption (A4) refers to the composition of 
concepts. As in real world, part-concepts building a whole-
concept are semantically different (e.g. “wheel”, “door”, 
“engine”, “seat” are elements of a “car” and are not similar). If 
concepts share some properties, they are modeled as 
specializations of their parent (“generalizationOf”-relation). 

On the CE-level, we compute similarity values for all pairs 
of concept elements (ce1, ce2) of the same type of two AUs. If a 
certain type (e.g. Role) is present only in one AU, a pair with 
the existing concept element and a null-element is created. 
Obviously, the similarity of such a pair is 0. The SimCE 
similarity metric takes into account possible semantic relations 
between the CEs in the ICM. We define SimCE as follows: 

 

 

 

 

 

 

 

 

 

To better understand the SimCE metric, we explain its 
application based on the following example (see Figure 1). 

Figure 1.  Example of CE structures 
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SimCE(ce1, ce2) = 1, iff ce1 and ce2 refer to the same concept. ?@ABC�DEF� DEG� 	 G HEIJK��LBM�DEF�DEG��HEIJK�DEF�NHEIJK�DEG�, iff ce1 and ce2 
refer to concepts connected by generalizationOf-relations. SimCE 
is computed acc. to a variant of the Cosine Distance (see section 
2). I.e., SimCE is high if CEs are located deeply in the 
generalizationOf-hierarchy (the hierarchy root does not 
specializes any other element) and LCA is close to both CEs. ?@ABC�DEF� DE2� 	 O IPQJREQDESJPTE�U@�@�FS �, iff ce1 
and ce2 refer to concepts that are connected by composedOf-
relations. Based on assumption (A4), SimCE is the percentage a 
part (ce2) represents of its whole (ce1). Thus, each part has its own 
weight defined by experts that model the concepts. As there may 
be n part-of-levels li between ce1 and ce2 (l1 = ce1), SimCE is 
calculated by multiplying the similarity values of all part-of-
levels between ce1 and ce2.  

SimCE(ce1, ce2) = SimCE(ce1, ceint) V SimCE(ceint, ce2), iff ce1 
and ce2 refer to concepts that are connected by both composedOf- 
and generalizationOf-relations. SimCE is calculated according to 
the corresponding formulas until their intersection (the element 
ceint) in the hierarchy tree and then the results are multiplied. 

SimCE(ce1, ce2) = 0, otherwise. 
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For each cei of au1 and au2 the pair (cei, x) with the highest 
SimCE-value (best pair) is determined. 

For each t in Type the SimCE average value of the best pairs 
is calculated (AVGt). There is one exception: if an au1 contains a 
concept ce and au2 contains all part-concepts of ce the similarity 
should 1. Therefore, we consider all pairs (whole-concept, part-
concept) as a united pair and take the SimCE sum value instead of 
the SimCE average value of all these pairs.  

The number of different CE types occurring in au1 and au2 
are determined. For each t in Type, a type weight is calculated. 
According to assumptions (A1, A2, A3) we define type 
importance constants as follows: IMPact = 4; IMPout = 3;  IMPinp = 
IMProle = IMPpurpose =1. If one type is not present, its IMP-value is 
0. Furthermore, as the number of occurring CE types should not
influence the SimAU-value (R3), we calculate the weight for each 
t in Type dynamically as follows: W%XYZ[\ 	 � ]^_̀]^_ab`N]^_cd`N�]^_efgN]^_hcijN�]^_gdhgckj

The similarity value of the AUs au1 and au2 is calculated:!"#lm�.- � .-�� 	 �n W%XYZ[\ < loY\\�p�qrst

On the AU-level, the similarity of two AUs au1 and au2 is 
calculated based on the SimCE-values for all type-equal pairs 
of contained concepts (calculated on concept level). This is 
done by applying a variant of the Weighted Euclidian Distance. 
We consider the difference between two elements in the 
Euclidean Distance as the average between the SimCE-values 
of all CEs of the same type. 

Let Type = {act, out, inp, role purpose} be the set of all CE 
types. The algorithm performs the following steps: 

 

 

 

 

 

 

 

 

 

As procedures of IRMs are described differently (one can 
contain only one AU, the other several AUs), the aggregation 
of all SimAU-values could lead to low similarity values 
although the compared procedures contain very similar AUs.  

Therefore, on the PROC-level, we define a simple 
categorization metric which maps two compared procedures to 
one of the following three similarity categories: equal, similar, 
different. They are defined as follows: 

 

 

 

 

 

 

 

These categories give information about the similarity of 
two procedures. Although these categories are not very precise, 
it still gives relevant information to organization that need to 
adopt multiple IRMs. Procedures that are equal or similar need 

to be further analyzed to discover their commonalities and 
differences. Procedures that are different do not need to be 
considered. 

C. Examples 
In the following we explain how the algorithm and the 

proposed similarity metrics are applied. As an example we 
consider the following procedures both having only one AU: 
Proc1 (COBIT 4.1, PO10.8.2): Staff the roles based on 
available skills information and Proc2 (CMMI-Dev, PP, SP 
2.6): Plan the involvement of identified stakeholders. 

Figure 2.  MoSaIC ISM and ICM models representing two CMMI and 
COBIT procedures 

The activity “Plan involvement of stakeholders” is 
composedOf the activity “Staff the roles” with weight 0.2 in the 
ICM. As COBIT refers to all IT stakeholders while CMMI 
only refers to development stakeholder, the concepts of proc1 
and proc2 are connected by the generalizationOf-relation. 
Furthermore, the activity “Plan involvement of stakeholders” is 
composedOf the activities “Map stakeholders to activities” and 
“Identify activities” with weights 0.6 resp. 0.2. The relations 
between the outputs are defined analogously. Obviously, both 
procedures contain only one AU. 

CE-level: All possible CE pairs of the same type are 
generated and their similarity values are calculated. 

TABLE III.  COMPARISON CONCEPT LEVEL 

Type Content SimCE 

act (staff prj. roles, plan involv. of prj. dev. 
stakeholders) 

78>u 

out (staffing plan, prj. dev. stakeholder involv. plan) 0.13 

inp (prj. skills information, null) 0 

role (prj. stakeholder, prj. dev. stakeholder) 0.67 

As there is exactly one pair for each CE type, it is also the 
best pair and averages are not needed. 

AU-level: First, the weight value for each CE type is 
computed: vwxyz{|}�� 	� >~u�� vwxyz{��
� 	� >~��� vwxyz{�|��� 	�>~���vwxyz{|���� 	� 9~�8� �The similarity value SimAU of the only 
AU pair is the following: 

!"#lm�.-s��� � .-s������9�� < 78>u ��>u� < 78>u � >� < 78�� ��>� < 7 	 78>� 

SimPROC(proc1, proc2) � equal, iff for each AU auproc1 of 
proc1 there is an AU auproc2 of proc2 with SimAU(auproc1, auproc1) = 
1 and vice versa (for each AU auproc2 of proc2 there is an AU 
auproc1 of proc1 with SimAU(auproc1, auproc2) = 1). This means that 
the procedures are equal if all best AU pairs are also equal; iff each 
AU auproc1 of proc1 is composed of several AUs of proc2 and no 
other AU is a part of auproc1and vice versa. An AU auproc1 is 
composed of another AU auproc2 if for all type-equal pairs of 
contained concepts (ce1, ce2) SimCE(ce1, ce2) = 1 or ce1 is 
composedOf ce2. To summarize, the procedures are equal if one 
contains the whole-AU and the other all its part-AU. 

SimPROC(proc1, proc2)=similar, iff there is at least one AU 
pair (auproc1, auproc2), with SimCE(auproc1, auproc2) >= 0. 

SimPROC(proc1, proc2) � different, otherwise. 
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PROC-level: As the two procedures contain only one AU, 
the value of SimPROC depends on the value of SimAU(auproc1, 
auproc2 then the SimPROC(proc1 , proc2) =similar.  

The similarity between the considered AUs is low due to 
the different contexts (IT and development) and to the low 
weighted whole-part relation between the concepts. The 
commonalities and the differences can be easily identified. 
Both AUs consider “stakeholder involvement” but in different 
contexts. One AU defines only one aspect of the other AU.  

Furthermore, the essence of these two AUs can be easily 
extracted by identifying the abstract concepts: the activity 
“plan the involvement of project stakeholder” receives as an 
input the “project skills information”, involves the role “project 
stakeholder” and produces the output “project stakeholder 
involvement plan”. Therefore, the organization can adopt this 
abstract AU to be conformant to both IRMs. Another usage 
scenario would be the assessment of this abstract AU only once 
to verify its conformance. 

The identification of similar AUs allows an organization to 
benefit from the synergies between the IRMs. The IRMs do not 
define only procedures but also other additional information 
related to this procedure (e.g. detailed description of the 
procedure, sub-procedures). For example, COBIT adopters 
who want to consider the “stakeholder involvement” can learn 
from the additional information given in CMMI (e.g. that the 
“stakeholder involvement plan” should also contain the 
“rationale for stakeholder involvement”). 

Another representative example is the comparison of the 
procedures: Proc1 (COBIT 4.1, PO9.2.1): Evaluate risks 
qualitatively according to their impact (catastrophic, critical, 
marginal), probability (very likely, probable, improbable) and 
time frame (imminent, near term, far term) and Proc2 (CMMI-
Dev, RSKM, SP 2.2): Evaluate each identified risk using 
defined risk categories and parameters, and determine its 
relative priority. As the contexts and the details are different 
(proc1 considers “organizational risks”, proc1 “project risks” 
resp. proc1 gives more details about risk evaluation than proc1), 
the computed similarity is medium. However, both procedures 
consider “risk evaluation” and CMMI adopters can learn from 
COBIT and vice versa (e.g. risk impact or probability 
categories).  

The final example compares two procedures that are equal 
(and hence shows the need of the similarity category): Proc1 
(SPICE SPL2.BP13): The product is delivered to the intended 
customer with positive confirmation of receipt and Proc2 
(CMMI-Dev, PI SP3.4.5): Deliver the product (..) and confirm 
receipt. These procedures are equal as the AU of proc1 is 
composed of the two AUs of proc2. This is important 
information for the organizations that adopt CMMI and SPICE. 
The comparison on the AU-level does not provide this kind of 
information (further examples in [27]). 

The identification of similar concepts (SimCE) is not the 
sole basis for computing the similarity between procedures but 
also allows identifying dependent procedures in and over the 
borders of an IRM. For instance, consider these procedures: 
Proc1 (SPICE, SPL.1.BP8): Formally confirm the agreement 
to protect the interests of customer and supplier and Proc2 

(CMMI-Dev, SAM SP 1.3.3): Document supplier agreement. 
They share the artifact “supplier document” (SimCE = 1). 
Proc1 depends on proc2, as the artifact must be first created and 
then be shared with the customer and be confirmed. 

V. EVALUATION 
In the following we present the evaluation results of our 

comparison approach. First, we evaluate the proposed 
similarity metrics by applying the metrics to procedures 
defined by CMMI, COBIT and SPICE. Secondly, we present 
the evaluation results of the comparison on the procedure level. 

To evaluate the proposed metrics we validated the defined 
requirements (R1-R3). R3 requires that the number of 
conceptual elements of an AU should not influence its 
similarity value. This is achieved, as in our metric the weight 
for each type is dynamically calculated (see formula (8)). 
Furthermore, the weight for each conceptual element type is 
defined according to its importance (R2). 

As our metrics are based on the procedure elements, the 
results of the comparison are differentiable, comparable and 
reproducible. R1 also requests that the results are plausible. For 
this purpose, we performed the following experiment. First, we 
manually determined similar CMMI/COBIT and 
CMMI/SPICE procedures ([28] for CMMI/COBIT was used). 
Second, the ISMs and their corresponding common ICM were 
created. Third, we computed the similarity values for 76 pairs 
of AUs (36 in CMMI-COBIT and 40 in CMMI-SPICE) in 36 
procedure pairs (18 CMMI-COBIT and 18 CMMI-SPICE). 
Then, professional experts evaluate the AUs similarity to five 
categories and we mapped our results to these categories:  [1,1] 
as identical; [0.67, 1) as high; [0.3, 0.67) as medium; (0, 0.3) as 
low; [0,0] as different. We defined the threshold between high 
and medium as 0.67, because the similarity between two AUs 
that are equal but occur in different contexts has a similarity 
value of 0.67. According to the experts, their similarity is high. 
Finally, we asked professional experts to subjectively evaluate 
the results on the procedure level.  

Three experts participated in the evaluation: one employer 
of an insurance IT company with over 5 years experience in 
CMMI; one consultant with over 20 years experience in 
COBIT, ITIL and CMMI; one consultant with over 15 years 
experience in CMMI and 5 years in SPICE. We obtained good 
results by comparing the similarity metric results (SM) on the 
AU level and the experts’ judgments: 0.27 for CMMI-COBIT 
(on average less than every third metric result deviates by more 
than one point from the given category) and 0.4 for CMMI-
SPICE (on average less than every second metric result 
deviates by more than one point from the given category). 
Some positive examples of compared AUs showing the SM- 
and EJ-values are: 

TABLE IV.  POSITIVE RESULTS OF PROCEDURES COMPARISON 

Result Procedures 

SM=0.88 
(High)  

EJ=High 

SPICE ENG.2.BP2 Analyze the identified system 
requirements in terms of technical feasibility, risks and 
testability, CMMI RD SP3.3.3 Analyze requirements to 
ensure that they are complete, feasible, realizable, and 
verifiable 
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SM=0.58 
(Med)  
EJ=Med 

SPICE SPL.2.BP8 The packaging for different types of 
media is identified, CMMI PI SP3.4.2. Use effective 
methods to package the assembled product. 

SM=0.09 
(Low)  
EJ=Low 

COBIT PO1.3.3 Define the roles of the stakeholders 
involved in the strategic planning process, CMMI PP 
SP2.6 Plan the involvement of identified stakeholders. 

On the AU-Level, there are some small deviations between 
the metric results and the expert judgments. One reason is that 
some of the experts weighted the output of an AU as being 
more important than the activity. Another reason is, that 
sometimes the activity did not count for the experts (e.g. 
SPICE SPL.2.BP13 The product is delivered to the intended 
customer with positive confirmation of receipt and CMMI PI 
SP 3.4.5 Confirm receipt of the delivered product.) Here the 
outputs are semantically equivalent and the experts’ judgment 
value was 1. As the activities are different, our results were 
smaller. We will especially analyze the relation between AUs 
and the contained activities in or further evaluations. On the 
PROC-level, there was no deviation between the calculated 
categories of the compared procedures and the expert 
judgment. Moreover, the experts consider this information a 
good starting point in the comparison of procedures and thus, 
found it valuable and relevant.  

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we presented an approach to compare 
procedures of different IRMs based on their similarity. To 
enable the comparison, a normalization of the structure and 
terminology of IRMs is needed. Based on the MoSaIC meta-
models and on similarity methods we defined a notion of 
similarity and developed an algorithm that uses dedicated 
similarity metrics. The results obtained so far are promising. 
An analysis of the results of the compared IRMs’ procedures 
allows organizations to identify the differences between the 
compared procedures and supports organizations to exploit the 
synergies between IRMs. By analyzing the similarity relations 
between the compared concepts, the organization discovers 
what exactly needs to be implemented to be conformant to both 
regarded IRMs.  

In our future research we intend to develop a dedicated tool 
support for all steps of the comparison approach to provide a 
much larger integrated model for the most popular IRMs. 
Based on further evaluations we want to improve and calibrate 
the proposed metrics. This will offer organizations a better 
support to indentify similarities of IRMs in order to avoid 
redundancies in the adoption of multiple IRMs and their 
assessment. 
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