
Automated Comparison of Process Improvement
Reference Models based on

Similarity Metrics
Simona Jeners, Horst Lichter, Elena Pyatkova

RWTH Aachen University, Research Group Software Construction
Aachen, Germany

{simona.jeners, horst.lichter, elena.pyatkova}@rwth-aachen.de

Abstract— A variety of reference models such as CMMI, COBIT
or ITIL supports IT organizations to improve their processes.
Although these process improvement reference models (IRM)
cover different domains they also share some similarities. There
are organizations that address multiple domains and want to take
the guidance of different IRMs. As IRMs overlap in some
processes, we present an approach to compare parts of IRMs (the
IRMs’ procedures) that is based on a common IRM integration
model and on similarity metrics. Our approach enables
organizations to efficiently adopt and assess multiple IRMs by
automatically identifying similarities and specific details of the
different IRMs.

Keywords— reference models; software process improvement;
comparison; meta-models; similarity metrics

I. INTRODUCTION

Nowadays, clients are requesting better and cheaper
software products. However, the Standish Group regularly
reports a high failure rate of IT-projects: 68% of IT-projects
neither meet the deadlines nor achieve the requested quality or
are cancelled [1]. One important factor to project success is the
quality of the applied processes. Hence, more and more
organizations want to establish and improve their processes
systematically. Because the process improvement road is quite
long and expensive it needs to be guided. To support process
improvement different improvement reference models (IRM)
such as CMMI (2010), ISO/IEC 15504 (2007) or COBIT
(2007) can be considered and applied. IRMs are collections of
best practices (often called procedures) based on experience
and knowledge of many organizations.

The adoption and assessment of multiple IRMs bring
additional benefits to organizations. The adoption allows
organizations to exploit IRM synergy effects. On the one hand
organizations can coordinately address different and common
areas of IRMs. On the other hand the weaknesses of a single
IRM can be overcome by the strengths of others. Furthermore,
the assessment of the organizations’ internal processes
according to multiple IRMs increases the competition strength
on the IT market.

One premise for organizations to be able to exploit the
synergy effects of multiple IRMs and to efficiently assess them
is an integrated view of IRMs allowing to compare procedures

from different IRMs and to identify dependencies between
them. Thus, organizations can effectively and efficiently adopt
and assess multiple IRMs; the efficiency increases through an
automated comparison approach.

II. CHALLENGES AND GOALS

According to ISO/IEC 24744 [2] different IRMs “vary in
format, content and level of prescription”. Therefore, an
automated comparison cannot be done without some
preparatory steps. Our approach, MoSaIC (Model based
Selection of Improvement Concepts), enables a fine granular
integration of multiple IRMs based on a common structure and
terminology. Our comparison approach is based on this fine
granular integration, i.e. we compare IRMs by comparing their
concepts, such as activities, outputs, inputs, roles and purposes.
Similar concepts from the different IRMs are stored in a
different model (Integrated Concept Model-ICM) and
connected by similarity relations, such as composedOf or
generalizationOf [3]. The uniqueness of the ICM concepts,
their consistent identification, the similarity relations between
them and their traceability back to the original concepts of the
IRMs allows to automatically identify similarities of different
IRMs. A natural language processing tool for the extraction of
such concepts according to predefined rules was developed to
model these concepts consistently. An automated comparison
would not be possible without a consistent normalization of the
structure and of the terminology.

III. RELATED WORK

Although considerable research has been devoted to the
comparison of IRMs, the existing approaches do either not
compare IRMs fine-grained or the comparison is done
manually based on bilateral relations between parts of IRMs.

Ferreira, Machado and Paulk [4] define metrics to measure
“size” and “complexity” of IRMs. To measure the “size”, the
shared scope of the IRMs’ process areas (the number of
common process areas) and their differences in the description
detail are considered. The complexity is measured based on the
internal coupling and the dependencies of the process areas.
Therefore, this approach roughly compares several IRMs but
does not consider their content. Content based comparisons are
often provided by the publishers of IRMs which offer
mappings between process areas or procedures (e.g. ISACA

© IEEE http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6462739

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific, Vol. 1, 743-748

offers mappings between COBIT/CMMI and COBIT/ITIL).
However, the similarities are subjective and only rough
indicated, i.e. do not provide enough details about
commonalities and differences necessary to support
organizations in the adoption of multiple IRMs.

To overcome these problems, some authors try to integrate
IRMs using formal models on a fine granular level. Ferchichi
and Bigand [5] and Liao, Qu and Leung [6] define a common
structure to link IRMs and reveal their similarities. For this
purpose similar procedures of IRMs are connected manually.
However, no information about common and different
elements of the similar procedures is provided. The need of a
process architecture in a multi-model context on a more fine-
grained level is mentioned in a series of articles from SEI [7].
Fine granular elements mentioned in [8], [9], [10] or [11] such
as inputs, outputs, roles are connected to identify similar
procedures. However, they consider only the bilateral semantic
equivalence between these elements. Our approach uses
different similarity relations to get all the similar procedures
and not only the ones that share exactly the same elements.
Furthermore, we do not connect elements by bilateral similarity
relations but use a new model that contains all the IRMs’
elements and the relations between them to allow a multiple
comparison between the procedures [3].

As our approach is based on an ontology of IRMs’
elements (activities, artifacts, roles and purposes), we analyzed
also ontology- or schema-based matching approaches that
might be applied to support the identification of similar
elements. Many diverse solutions have been proposed so far
(mentioned in [12] or [13]). To match different schemas their
terminology and structure can be compared by using e.g.
linguistic resources, such as lexicons, thesauri resp. graph
matching algorithms or structure meta-data. We evaluated
some online dictionaries tools (e.g. WordNet [14], Rensselaer
MSR Server [15], Wikipedia Miner [16]). Unfortunately, their
ability to identify similar elements was not satisfactory.
Reasons could be, that the dictionaries mostly contain general
terms and not the specific IRMs terminology or that the
similarity relations between the specific terms are not
documented. Furthermore, we used OntoGen [17] to generate
an ontology from the IRMs’ context that can be also used to
verify if two elements are similar or not. As this automation
also did not delivered good results, we have created our own
ontology based on the information extracted from IRMs and on
predefined guidelines. As already mentioned, we added to the
ontology all IRMs’ fine grained elements and their similarity
relations to allow an automated comparison between the IRMs’
procedures (that contain these fine grained elements).

The remaining of this paper is organized as follows. In the
fourth section, relevant aspects of similarity theory are
presented. Based on these aspects, we describe our approach to
identify similarities between IRMs. In the fifth section we
discuss the results of an evaluation done by professional
CMMI, COBIT and SPICE experts. Furthermore, we give an
overview of our future work. Conclusions and a summary
conclude this paper in the last chapter.

IV. DETERMINING SIMILARITY BETWEEN IRMS

In the following we present the MoSaIC similarity
algorithm. First, we give a brief introduction to similarity
theory. Then, we present our algorithm that is based on
similarity metrics. Finally, we illustrate our comparison
approach by some examples.

A. Similarity Theory
In general, similarity is an important property because it is

fundamental for our cognition. According to Goldstone and
Son [18] similarity plays a key role in problem solving,
remembering, prediction, and categorization. In fact, if there
were no similar objects and events, an individual would
perceive each situation as a new one and would have to learn
how to use each particular object. The notion of similarity is
applied in different domains. For instance, in geometry two
objects are similar if they have the same shape; in psychology
they are similar if they can be put into the same category. As
there is no common definition of “similarity” we refer to the
definition of Goodman [19]: Objects are similar if they have a
set of common features.

There are several methods to determine similarity between
objects. Based on measurement theory we distinguish the
following four categories: a) Spatial methods consider objects
as points or vectors in the n-dimensional space [20]. Well-
known examples of spatial methods are the Cosine Similarity
Measure or the Euclidean Distance; b) Feature-based
methods consider objects as a finite unsorted set of features;
they calculate the similarity with respect to their features. For
example, Tversky [21] combines the numbers of similar and
different features of different objects to calculate their
similarity; c) Transformational methods, e.g. the Levenshtein
Distance [22], consider the features of two objects and their
order. They count the transformations needed to convert one
object into the other; i.e., the smaller the number of
transformations, the higher their similarity; d) Alignment
methods like Structure Mapping Engine [23] use features of
objects and their relations to determine similarity.

As in our case the order of concepts (objects’ features)
should not be considered, the transformational methods could
not be applied. Furthermore, the alignment methods compare
two objects that are represented as hierarchies of features
related by a certain relation. As we have different relations
between the concepts, these methods could not be applied too.
The feature-based methods consider only common and
different concepts but not concepts that have something in
common (that are not equal but also not different). This issue is
considered by the spatial methods because they regard the
distance between the features of compared objects. We used
two similarity metrics in our approach:

TABLE I. SIMILIARITY METHODS

Cosine-Distance Variant Weighted EuclideanDistance

��� ����� 	
 ���� ����������������� � ������� ���� 	 ����� ��� � ����
��

© IEEE http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6462739

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific, Vol. 1, 743-748

Ganesan et al. [24] proposed a variant of the Cosine
Distance method to consider hierarchy information of the
features and thus the similarity distance between these in the
hierarchy. As ICM concepts may be related by the
generalizationOf-relation they may form hierarchies as well.
The LCA(n, m) is the Lowest Common Ancestor. The depth(n)
is the number of edges from LCA(n, m) to n. The Weighted
Euclidean Distance considers two features vectors with their
corresponding feature pair weights. In our approach the
procedures are composed of different element types that also
have different weights (see next sections).

B. The MoSaIC Comparison Approach
The MoSaIC similarity algorithm considers IRMs’

procedures. As we found reasonable similarities between
COBIT control objectives, COBIT control practices, CMMI
specific-goals, generic-goals, -practices, sub-practices, SPICE
practices and Functional Safety objectives and requirements,
we consider these procedures.

Procedures (PROCs) are similar, if their parts, called AUs
(AUs) are similar. An AU contains concept elements (CEs):
one activity and all its associated inputs, outputs, purposes and
roles. Analogously, AUs are similar, if their concept elements
(CEs) are similar. Hence, the basic idea of our similarity
algorithm is to determine similarity on different levels (on the
concept, AU and procedure level). A first similarity metric
calculates the similarity of the concepts. Another similarity
metric t aggregates these results to compute the similarity of
the considered AUs. Finally, on the procedure level, some hints
about the similarity of procedures are given. All metrics
calculate a value between 0 and 1. The metric specifications are
based on assumptions (A1-4) and have to meet some
requirements (R1-3).

TABLE II. ASSUMPTIONS AND REQUIREMENTS

A1 Activity is the most important concept type.

A2 Role, Input and Purpose are the less important concepts
types.

A3 Output is more important than Role, Input and Purpose, but
less important than Activity.

A4 All part-concepts of a common whole-concept are not similar.

R1 Each metric should be differentiable (different inputs cause
different results), comparable, reproducible (the same input
always leads to the same value) and plausible (the values meet
the representative condition) [25] [26].

R2 The calculated similarity values should reflect the importance
of the conceptual elements.

R3 The number of conceptual elements of an AU should not
influence its similarity value.

As the activities and outputs reflect the procedure’s actual
work, which is expected to be performed, we consider them as
the most important elements of a procedure. Role, input and
purpose are also important but only give additional information
about how to perform an activity to produce an output. We
consider the process of achieving an output (the activity) more
important than its result (the output).

The last assumption (A4) refers to the composition of
concepts. As in real world, part-concepts building a whole-
concept are semantically different (e.g. “wheel”, “door”,
“engine”, “seat” are elements of a “car” and are not similar). If
concepts share some properties, they are modeled as
specializations of their parent (“generalizationOf”-relation).

On the CE-level, we compute similarity values for all pairs
of concept elements (ce1, ce2) of the same type of two AUs. If a
certain type (e.g. Role) is present only in one AU, a pair with
the existing concept element and a null-element is created.
Obviously, the similarity of such a pair is 0. The SimCE
similarity metric takes into account possible semantic relations
between the CEs in the ICM. We define SimCE as follows:

To better understand the SimCE metric, we explain its
application based on the following example (see Figure 1).

Figure 1. Example of CE structures

!"#$%�&'()"*+*� ,-./01'2)"*+*�
	�
�34506��)"*+�34506�&'()"*+� � 34506�,-./01'2)"*+� 	 �789

!"#$%�,-./01'2)"*+*� 1'2)"*+$:/0� 	 78;� < 78; 	�0.25 !"#$%�&'()"*+� 1'2)"*+1':=�	 !"#$%�&'()"*+� 1'2)"*+�< !"#$%�1'2)"*+� 1'2)"*+1':=��
9 < 78
; 	 78>
;

SimCE(ce1, ce2) = 1, iff ce1 and ce2 refer to the same concept. ?@ABC�DEF� DEG� 	 G HEIJK��LBM�DEF�DEG��HEIJK�DEF�NHEIJK�DEG�, iff ce1 and ce2
refer to concepts connected by generalizationOf-relations. SimCE
is computed acc. to a variant of the Cosine Distance (see section
2). I.e., SimCE is high if CEs are located deeply in the
generalizationOf-hierarchy (the hierarchy root does not
specializes any other element) and LCA is close to both CEs. ?@ABC�DEF� DE2� 	 O IPQJREQDESJPTE�U@�@�FS �, iff ce1
and ce2 refer to concepts that are connected by composedOf-
relations. Based on assumption (A4), SimCE is the percentage a
part (ce2) represents of its whole (ce1). Thus, each part has its own
weight defined by experts that model the concepts. As there may
be n part-of-levels li between ce1 and ce2 (l1 = ce1), SimCE is
calculated by multiplying the similarity values of all part-of-
levels between ce1 and ce2.

SimCE(ce1, ce2) = SimCE(ce1, ceint) V SimCE(ceint, ce2), iff ce1
and ce2 refer to concepts that are connected by both composedOf-
and generalizationOf-relations. SimCE is calculated according to
the corresponding formulas until their intersection (the element
ceint) in the hierarchy tree and then the results are multiplied.

SimCE(ce1, ce2) = 0, otherwise.

© IEEE http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6462739

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific, Vol. 1, 743-748

For each cei of au1 and au2 the pair (cei, x) with the highest
SimCE-value (best pair) is determined.

For each t in Type the SimCE average value of the best pairs
is calculated (AVGt). There is one exception: if an au1 contains a
concept ce and au2 contains all part-concepts of ce the similarity
should 1. Therefore, we consider all pairs (whole-concept, part-
concept) as a united pair and take the SimCE sum value instead of
the SimCE average value of all these pairs.

The number of different CE types occurring in au1 and au2
are determined. For each t in Type, a type weight is calculated.
According to assumptions (A1, A2, A3) we define type
importance constants as follows: IMPact = 4; IMPout = 3; IMPinp =
IMProle = IMPpurpose =1. If one type is not present, its IMP-value is
0. Furthermore, as the number of occurring CE types should not
influence the SimAU-value (R3), we calculate the weight for each
t in Type dynamically as follows: W%XYZ[\ 	 �]^_̀]^_ab`N]^_cd`N�]^_efgN]^_hcijN�]^_gdhgckj

The similarity value of the AUs au1 and au2 is calculated:!"#lm�.- � .-�� 	 �n W%XYZ[\ < loY\\�p�qrst

On the AU-level, the similarity of two AUs au1 and au2 is
calculated based on the SimCE-values for all type-equal pairs
of contained concepts (calculated on concept level). This is
done by applying a variant of the Weighted Euclidian Distance.
We consider the difference between two elements in the
Euclidean Distance as the average between the SimCE-values
of all CEs of the same type.

Let Type = {act, out, inp, role purpose} be the set of all CE
types. The algorithm performs the following steps:

As procedures of IRMs are described differently (one can
contain only one AU, the other several AUs), the aggregation
of all SimAU-values could lead to low similarity values
although the compared procedures contain very similar AUs.

Therefore, on the PROC-level, we define a simple
categorization metric which maps two compared procedures to
one of the following three similarity categories: equal, similar,
different. They are defined as follows:

These categories give information about the similarity of
two procedures. Although these categories are not very precise,
it still gives relevant information to organization that need to
adopt multiple IRMs. Procedures that are equal or similar need

to be further analyzed to discover their commonalities and
differences. Procedures that are different do not need to be
considered.

C. Examples
In the following we explain how the algorithm and the

proposed similarity metrics are applied. As an example we
consider the following procedures both having only one AU:
Proc1 (COBIT 4.1, PO10.8.2): Staff the roles based on
available skills information and Proc2 (CMMI-Dev, PP, SP
2.6): Plan the involvement of identified stakeholders.

Figure 2. MoSaIC ISM and ICM models representing two CMMI and
COBIT procedures

The activity “Plan involvement of stakeholders” is
composedOf the activity “Staff the roles” with weight 0.2 in the
ICM. As COBIT refers to all IT stakeholders while CMMI
only refers to development stakeholder, the concepts of proc1
and proc2 are connected by the generalizationOf-relation.
Furthermore, the activity “Plan involvement of stakeholders” is
composedOf the activities “Map stakeholders to activities” and
“Identify activities” with weights 0.6 resp. 0.2. The relations
between the outputs are defined analogously. Obviously, both
procedures contain only one AU.

CE-level: All possible CE pairs of the same type are
generated and their similarity values are calculated.

TABLE III. COMPARISON CONCEPT LEVEL

Type Content SimCE

act (staff prj. roles, plan involv. of prj. dev.
stakeholders)

78>u

out (staffing plan, prj. dev. stakeholder involv. plan) 0.13

inp (prj. skills information, null) 0

role (prj. stakeholder, prj. dev. stakeholder) 0.67

As there is exactly one pair for each CE type, it is also the
best pair and averages are not needed.

AU-level: First, the weight value for each CE type is
computed: vwxyz{|}�� 	� >~u�� vwxyz{��� 	� >~��� vwxyz{�|��� 	�>~���vwxyz{|���� 	� 9~�8� �The similarity value SimAU of the only
AU pair is the following:

!"#lm�.-s��� � .-s������9�� < 78>u ��>u� < 78>u � >� < 78�� ��>� < 7 	 78>�

SimPROC(proc1, proc2) � equal, iff for each AU auproc1 of
proc1 there is an AU auproc2 of proc2 with SimAU(auproc1, auproc1) =
1 and vice versa (for each AU auproc2 of proc2 there is an AU
auproc1 of proc1 with SimAU(auproc1, auproc2) = 1). This means that
the procedures are equal if all best AU pairs are also equal; iff each
AU auproc1 of proc1 is composed of several AUs of proc2 and no
other AU is a part of auproc1and vice versa. An AU auproc1 is
composed of another AU auproc2 if for all type-equal pairs of
contained concepts (ce1, ce2) SimCE(ce1, ce2) = 1 or ce1 is
composedOf ce2. To summarize, the procedures are equal if one
contains the whole-AU and the other all its part-AU.

SimPROC(proc1, proc2)=similar, iff there is at least one AU
pair (auproc1, auproc2), with SimCE(auproc1, auproc2) >= 0.

SimPROC(proc1, proc2) � different, otherwise.

© IEEE http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6462739

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific, Vol. 1, 743-748

PROC-level: As the two procedures contain only one AU,
the value of SimPROC depends on the value of SimAU(auproc1,
auproc2 then the SimPROC(proc1 , proc2) =similar.

The similarity between the considered AUs is low due to
the different contexts (IT and development) and to the low
weighted whole-part relation between the concepts. The
commonalities and the differences can be easily identified.
Both AUs consider “stakeholder involvement” but in different
contexts. One AU defines only one aspect of the other AU.

Furthermore, the essence of these two AUs can be easily
extracted by identifying the abstract concepts: the activity
“plan the involvement of project stakeholder” receives as an
input the “project skills information”, involves the role “project
stakeholder” and produces the output “project stakeholder
involvement plan”. Therefore, the organization can adopt this
abstract AU to be conformant to both IRMs. Another usage
scenario would be the assessment of this abstract AU only once
to verify its conformance.

The identification of similar AUs allows an organization to
benefit from the synergies between the IRMs. The IRMs do not
define only procedures but also other additional information
related to this procedure (e.g. detailed description of the
procedure, sub-procedures). For example, COBIT adopters
who want to consider the “stakeholder involvement” can learn
from the additional information given in CMMI (e.g. that the
“stakeholder involvement plan” should also contain the
“rationale for stakeholder involvement”).

Another representative example is the comparison of the
procedures: Proc1 (COBIT 4.1, PO9.2.1): Evaluate risks
qualitatively according to their impact (catastrophic, critical,
marginal), probability (very likely, probable, improbable) and
time frame (imminent, near term, far term) and Proc2 (CMMI-
Dev, RSKM, SP 2.2): Evaluate each identified risk using
defined risk categories and parameters, and determine its
relative priority. As the contexts and the details are different
(proc1 considers “organizational risks”, proc1 “project risks”
resp. proc1 gives more details about risk evaluation than proc1),
the computed similarity is medium. However, both procedures
consider “risk evaluation” and CMMI adopters can learn from
COBIT and vice versa (e.g. risk impact or probability
categories).

The final example compares two procedures that are equal
(and hence shows the need of the similarity category): Proc1
(SPICE SPL2.BP13): The product is delivered to the intended
customer with positive confirmation of receipt and Proc2
(CMMI-Dev, PI SP3.4.5): Deliver the product (..) and confirm
receipt. These procedures are equal as the AU of proc1 is
composed of the two AUs of proc2. This is important
information for the organizations that adopt CMMI and SPICE.
The comparison on the AU-level does not provide this kind of
information (further examples in [27]).

The identification of similar concepts (SimCE) is not the
sole basis for computing the similarity between procedures but
also allows identifying dependent procedures in and over the
borders of an IRM. For instance, consider these procedures:
Proc1 (SPICE, SPL.1.BP8): Formally confirm the agreement
to protect the interests of customer and supplier and Proc2

(CMMI-Dev, SAM SP 1.3.3): Document supplier agreement.
They share the artifact “supplier document” (SimCE = 1).
Proc1 depends on proc2, as the artifact must be first created and
then be shared with the customer and be confirmed.

V. EVALUATION
In the following we present the evaluation results of our

comparison approach. First, we evaluate the proposed
similarity metrics by applying the metrics to procedures
defined by CMMI, COBIT and SPICE. Secondly, we present
the evaluation results of the comparison on the procedure level.

To evaluate the proposed metrics we validated the defined
requirements (R1-R3). R3 requires that the number of
conceptual elements of an AU should not influence its
similarity value. This is achieved, as in our metric the weight
for each type is dynamically calculated (see formula (8)).
Furthermore, the weight for each conceptual element type is
defined according to its importance (R2).

As our metrics are based on the procedure elements, the
results of the comparison are differentiable, comparable and
reproducible. R1 also requests that the results are plausible. For
this purpose, we performed the following experiment. First, we
manually determined similar CMMI/COBIT and
CMMI/SPICE procedures ([28] for CMMI/COBIT was used).
Second, the ISMs and their corresponding common ICM were
created. Third, we computed the similarity values for 76 pairs
of AUs (36 in CMMI-COBIT and 40 in CMMI-SPICE) in 36
procedure pairs (18 CMMI-COBIT and 18 CMMI-SPICE).
Then, professional experts evaluate the AUs similarity to five
categories and we mapped our results to these categories: [1,1]
as identical; [0.67, 1) as high; [0.3, 0.67) as medium; (0, 0.3) as
low; [0,0] as different. We defined the threshold between high
and medium as 0.67, because the similarity between two AUs
that are equal but occur in different contexts has a similarity
value of 0.67. According to the experts, their similarity is high.
Finally, we asked professional experts to subjectively evaluate
the results on the procedure level.

Three experts participated in the evaluation: one employer
of an insurance IT company with over 5 years experience in
CMMI; one consultant with over 20 years experience in
COBIT, ITIL and CMMI; one consultant with over 15 years
experience in CMMI and 5 years in SPICE. We obtained good
results by comparing the similarity metric results (SM) on the
AU level and the experts’ judgments: 0.27 for CMMI-COBIT
(on average less than every third metric result deviates by more
than one point from the given category) and 0.4 for CMMI-
SPICE (on average less than every second metric result
deviates by more than one point from the given category).
Some positive examples of compared AUs showing the SM-
and EJ-values are:

TABLE IV. POSITIVE RESULTS OF PROCEDURES COMPARISON

Result Procedures

SM=0.88
(High)

EJ=High

SPICE ENG.2.BP2 Analyze the identified system
requirements in terms of technical feasibility, risks and
testability, CMMI RD SP3.3.3 Analyze requirements to
ensure that they are complete, feasible, realizable, and
verifiable

© IEEE http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6462739

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific, Vol. 1, 743-748

SM=0.58
(Med)
EJ=Med

SPICE SPL.2.BP8 The packaging for different types of
media is identified, CMMI PI SP3.4.2. Use effective
methods to package the assembled product.

SM=0.09
(Low)
EJ=Low

COBIT PO1.3.3 Define the roles of the stakeholders
involved in the strategic planning process, CMMI PP
SP2.6 Plan the involvement of identified stakeholders.

On the AU-Level, there are some small deviations between
the metric results and the expert judgments. One reason is that
some of the experts weighted the output of an AU as being
more important than the activity. Another reason is, that
sometimes the activity did not count for the experts (e.g.
SPICE SPL.2.BP13 The product is delivered to the intended
customer with positive confirmation of receipt and CMMI PI
SP 3.4.5 Confirm receipt of the delivered product.) Here the
outputs are semantically equivalent and the experts’ judgment
value was 1. As the activities are different, our results were
smaller. We will especially analyze the relation between AUs
and the contained activities in or further evaluations. On the
PROC-level, there was no deviation between the calculated
categories of the compared procedures and the expert
judgment. Moreover, the experts consider this information a
good starting point in the comparison of procedures and thus,
found it valuable and relevant.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we presented an approach to compare
procedures of different IRMs based on their similarity. To
enable the comparison, a normalization of the structure and
terminology of IRMs is needed. Based on the MoSaIC meta-
models and on similarity methods we defined a notion of
similarity and developed an algorithm that uses dedicated
similarity metrics. The results obtained so far are promising.
An analysis of the results of the compared IRMs’ procedures
allows organizations to identify the differences between the
compared procedures and supports organizations to exploit the
synergies between IRMs. By analyzing the similarity relations
between the compared concepts, the organization discovers
what exactly needs to be implemented to be conformant to both
regarded IRMs.

In our future research we intend to develop a dedicated tool
support for all steps of the comparison approach to provide a
much larger integrated model for the most popular IRMs.
Based on further evaluations we want to improve and calibrate
the proposed metrics. This will offer organizations a better
support to indentify similarities of IRMs in order to avoid
redundancies in the adoption of multiple IRMs and their
assessment.

REFERENCES
[1] The Standish Group International: CHAOS Summary 2009. Chaos (pp.

1-4). Retrieved from http://www.statelibrary.state.pa.us/portal/server.pt/
document/690719/, 2009.

[2] ISO/IEC TR 24774: Systems and software engineering – Life Cycle
Management – Guide-lines for process descriptions, 2010.

[3] Jeners S., H. Lichter: Towards an Integration of Multiple Process
Improvement Reference Models based on Automated Concept

Extraction, D. Winkler, R.V. O’Connor, and R. Messnarz (Eds.):
EuroSPI 2012, CCIS 301, pp. 205--216. Springer, Heidelberg (2012).

[4] Ferreira, A.L., Machado, R.J., Paulk, M.C.: Quantitative Analysis of
Best Practices Models in the Software Domain. Proc. of the 17th Asia
Pacific Software Engineering Conference, 433-442, 2010.

[5] Ferchichi, A., Bigand, M.: An Ontology for Quality Standards
Integration in Software Collaborative Projects. Proc. of MDISIS 08
(Model Driven Interoperability for Sustainable Information Systems),
Montpellier, FRANCE, 14, 2008.

[6] Liao, L., Qu, Y., Leung, H.K.N.: A Software Process Ontology and Its
Application. Proceedings of IWFST-2005 (Int.Workshop on Future
Software Technology), Shanghai., 1-10, 2005.

[7] Siviy, J., Kirwan, P., Marino, L., Morley, J.: Process Architecture in a
Multimodel Envi-ronment. White Paper, Software Engineering Institute,
CarnegieMellon, 2008.

[8] Wang, Y., King, G., Dorling, A., Wickberg, H. (1999): A unified
framework for the software engineering process system standards and
models, Proceedings 4th IEEE International Software Engineering
Standards Symposium and Forum (ISESS'99), Curitiba , Brazil.

[9] Malzahn, D.: Assessing - Learning - Improving, an Integrated Approach
for Self Assessment and Process Improvement Systems. Proc. of ICONS
’09, the Fourth Inter-national Conference on Systems, Gosier, Guade-
loupe, France, 126-130. IEEE. doi: 10.1109/ICONS.2009.31, 2009.

[10] Pardo, C., Pino, J. F., Garcia,.F, Piattini, M., Baldassarre, M.T: An
Onotology for the harmonization of multiple standards and models,
Computer Standards & Interfaces 34, 2012, 48-59.

[11] Soto, M., Münch, J. (2008):Using Model Comparison to Maintain
Model-to-Standard Compliance, Proceedings of the ICSE Workshop
“Comparison and Versioning of Software Models” (CVSM 2008),
Leipzig, Germany, May 17, 2008.

[12] Shvaiko, P., Euzenat, J.: A survey of Schema-based Matching
Approaches, Journal of Data semantics IV:146-171, 2005.

[13] Rahm, E. , Bernstein, P.A.: A survey of approaches to automatic schmea
matching, VLDB Journal 10 (4), 334-350, 2001.

[14] WordNet, available at http://wordnet.princeton.edu/.
[15] Veksler, V.D. ; Gray, W.D.: Rensselaer MSR Server.available at http:

//cwl-projects.cogsci.rpi.edu/msr/
[16] Wikipedia Miner, available at http://wdm.cs.waikato.ac.nz:8080/.
[17] OntoGen: Semi-automatic Ontology Editor. In Smith, M.J. ; Sal-

vendy, G. (editor): Human Interface, Part II, HCII 2007, 309-318, 2007.
[18] Goldstone, R. L., Son, J.: Similarity. In Holyoak, K.J., Morrison R.

(editor): Cambridge Handbook of Thinking and Reasoning, pp 13-36.
Cambridge University Press, Cambridge, 2005.

[19] Goodman, N.: Problems and projects. Hackett Pub Co Inc, 1979.
[20] Groenen, P. J. F.: Past, Present, and Future of Multidimensional Scaling.

http://carme2011. agrocampus-ouest.fr/slides/Groenen.pdf.
[21] Tversky, A., Gati, I.: Studies of similarity. Cognition and categorization,

1: pp 79-98, 1978.
[22] Levenshtein V.: Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady 10: 707–710, 1966.
[23] Goldstone, R. L.: Similarity, Interactive Activation, and Mapping.

Journal of Experimental Psychology: Learning, Memory, and Cognition,
20(1): 3-28, 1994.

[24] Ganesan, P., Molina, H. G., Widom, J.: Exploiting hierarchical domain
structure to compute similarity. ACM Transactions on Information
Systems (TOIS), 21(1), 64-93, 2003.

[25] Fenton, N. E.: Software Metrics. A Rigorous Approach. Chapman &
Hall, 1991.

[26] Ludewig, J., H. Lichter: Software Engineering – Grundlagen, Menschen,
Prozesse, Techniken. 2. Aufl., dpunkt.verlag Heidelberg, 2010.

[27] Jeners, S, Pyatkova, E.: MoSaIC Reference Model Comparison Case
Study, Software Construction Group, 2012, www.swc.rwth-
aachen.de/docs/MOSAIC/APSEC/ComparisonExample.pdf.

[28] IT Governance Institute: COBIT Mapping: Mapping of CMMI for
Development, V1.2, With COBIT 4.1, 2011

© IEEE http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6462739

© IEEE Software Engineering Conference (APSEC), 2012 19th Asia-Pacific, Vol. 1, 743-748

