
Towards a Maintainable Federalist
Enterprise Measurement Infrastructure

Matthias Vianden, Horst Lichter, Andreas Steffens
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

{vianden, lichter, steffens}@swc.rwth-aachen.de

Abstract — Large scale measurement systems are hard to build
and to maintain. In this paper we propose an architecture
blueprint for a federalist Enterprise Measurement Infrastruc-
ture (EMI) which helps to address these typical weaknesses of
centralistic measurement systems. The EMI is based on the
ideas of Service Oriented Measurements. We combined these
with modern ideas from the area of Enterprise Application
Integration and extended the ISO 15939 data flow to allow a
more flexible and elegant solution. The current prototypes of
EMI implementations and field studies prove the benefits of
the architecture blueprint over existing solutions. We strongly
belief that the EMI can help to build better, extendible, and
maintainable measurement systems which are integrated and
aligned with modern business needs.

Keywords — Measurement Infrastructure; Enterprise
Application Integration; Metric; Dashboard; Service Oriented
Architecture

I. INTRODUCTION

Software metrics are an important means to measure the
quality of both the development processes and software
systems. Improvement reference models such as CMMI
require that software development organizations build up
abilities to systematically apply metrics to support project
management [1]. Based on quantifiable metrics process
managers are able to identify processes that contribute to
project success or failure. Hence, metrics are a necessity for
objective process optimization. However, it is often difficult
to integrate measurement values from a large variety of dif-
ferent software systems used in software development pro-
jects.

Resulting in the different application scenarios for dash-
boards and measurement systems (strategic, analytical, or
operational [2]) modern measurement systems use new inte-
gration approaches. Most recently considerable research was
devoted to using service oriented (SOA) and agent based
architectures for measurement systems [3]. New loosely
coupled integration architectures are researched in the area of
enterprise architecture integration (EAI) [4], [5], [6], [7], [8],
[9]. Unfortunately, these ideas are not systematically used in
measurement infrastructures. Most of the solutions found in
the industry right now are based on BI (Business Infor-
mation) systems. However, all of the proposed solutions
(even the new SOA and agent based approaches) use a cen-
tral database or system to store and integrate the measure-

ment data. Hence, they suffer from well known centralized
integration problems; like the need for a common data sche-
ma to integrate different applications. Additionally, not every
data should or can be measured (and stored) by means of
relational data schemata [10].

In this paper we propose the central requirements for a
loosely coupled architecture blueprint of an Enterprise
Measurement Infrastructure (EMI) that is aligned with the
needs of the different measurement stakeholders as well as
the ISO 15939 measurement model. Additionally, the pro-
posed infrastructure uses federalist data storage and meas-
urement systems to overcome the weaknesses of a central
measurement repository.

The following chapter II introduces a typical application
scenario for an enterprise measurement infrastructure. This is
based on an example taken from our industrial experience.
Based on this example we derive three distinct stakeholders
with different requirements to the infrastructure in chapter
III. Based on this we investigate existing integration and
measurement infrastructures in part IV. Chapter V explains
in detail the architecture and components of the proposed
federalist enterprise measurement infrastructure. Chapter VI
provides first experiences with the infrastructure. The paper
is concluded in chapter VII.

II. APPLICATION SCENARIO

Project managers and other cross sectional roles in large
organizations typically require a lot of information from
different systems. For example they are required to control
the budget, schedule, costs, quality, requirements, tests, risks
and so on. All these control tasks lead a large variety of
information needs for the project manager. The answer to a
single information need can often be derived from a set of
information stored in a certain repository. Different types of
information are typically stored in different repositories and
often even the same type of information is stored in various
repositories. From our experience this problem is not only
limited to large organizations. Even project managers in
medium sized organizations may need to look into five dif-
ferent Change Request Management (CRM) systems (prod-
uct development, service, custom solutions, and customer
issue tracking (products and custom solutions)) to gather all
relevant information.

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

The following example is used to understand the re-
quirements from a business point of view and aligns the
different parts of the enterprise measurement infrastructure.
We assume a company that established an ISO 15939 com-
patible measurement process. In this company projects typi-
cally last for a year. A project manager needs to keep a close
eye on the budget of the project, the schedule, the overall
quality and the risks of the project. She likes to utilize a
measurement dashboard that provides charts for the devel-
opment of the measurers per month.

The base data for the dashboard is stored in different sys-
tems and the data derived from the systems is not uniform.
The initial budget (measured in person days) and schedule
(measured in calendar days) is stored in a procurement man-
agement system per work package. Hence, the budget for the
complete project is a sum of all the budget of all work pack-
ages assigned to the project. The overall schedule can be
derived from the work packages as well. The project utilizes
a Change Request Management (CRM) system to store the
requirements which are associated to work packages. This
system also keeps track of the working hours per require-
ment. The sum of all the time spend on the project can there-
fore be derived from the work packages in the CRM system.
The current schedule can be derived from these work pack-
ages as well using a project management tool. The overall
quality of the project is monitored using a tool for static
source code analysis that measures metric and rule viola-
tions. Additionally, the amounts of errors in the system
(which are stored in a different CRM system) are used to
monitor the overall quality as well. The project manager
might want to filter the errors according to their priority
(only high priority errors or all errors). The risks are stored in
a spreadsheet which is updated regularly and when address-
ing certain risks.

This very simple scenario already shows five different
systems (procurement management system, project man-
agement tool, task CRM system, error CRM system, risk
spreadsheet) that need to be integrated to provide measures
for the dashboard.

III. REQUIREMENTS FOR AN ENTERPRISE MEASUREMENT
INFRASTRUCTURE

The measurement infrastructure needs to address the
needs from different stakeholders. After carefully examining
the literature and based on our experience we identified the
following three main stakeholders:

� Measurement Customer

� Developer

� Operator

Each of these stakeholders provides a unique and specific
set of requirements regarding the architecture and the pro-
vided functionality of the underlying measurement infra-
structure. First we investigate the requirements of the meas-
urement customer which holds the main set of functional
requirements. Later the developer and operator roles add

mainly non-functional requirements for the measurement
infrastructure.

A. Measurement Customer
A project manager is a typical example of a measurement

customer. She is interested in the actual status of her project
and does not care (and should not!) about the way the data is
collected or metrics are calculated. Like in the example
above, measurement customers have a brought variety of
information needs. Unfortunately, the answers to the differ-
ent information needs are stored in various repositories. The
scenario introduced above includes different systems for
budget, scheduling, tasks and risk information. The resulting
central requirement of the measurement customer for an EMI
is the integration of these systems in a way that a compre-
hensive calculation of metrics is possible.

To achieve this goal, the infrastructure has to cope with
the heterogeneity of those systems. Heterogeneity appears on
various levels of a software information system. Wache et al.
[11] define structural and semantic heterogeneity of data.
Structural differences lead to the problem of schema-
mapping, a quite well known field of research in the database
community [12]. Hence, data heterogeneity is challenging
for a successful integration of those systems as well.

Additionally, measurement customers demand correct
and up-to-date data because old or incorrect data lead to
wrong conclusions and wrong decisions. Hence, an EMI
should provide mechanisms that guarantee a fast recognition
and processing of relevant events inside the system land-
scape. Additionally, this requires a robust and highly availa-
bility infrastructure.

Our experience with many industry partners shows that
the information needs of measurement customers often
change over time. For example development tools and sys-
tems are replaced by other tools or systems (tool evolution).
Of course, the new tools and systems need to be integrated in
the infrastructure. Additionally, processes and organization
schemas of enterprises often evolve as well. Especially reor-
ganizations lead to new and changed responsibilities of indi-
vidual measurement customers and roles which inevitably
lead to changes in information needs. Concluding from this,
an important requirement for an enterprise measurement
infrastructure is to support the evolution of metrics, integrat-
ed systems, and visualizations.

B. Developer
The developer needs to implement metrics, visualizations

and tools to gather data. The infrastructure needs to support
the developer with a clear structure and concepts for all spe-
cific tasks. The task to integrate a new system into the infra-
structure to gather its data is completely different from the
implementation of a new metric calculation algorithm or the
implementation of a new visualization. Hence, a requirement
for the infrastructure is the clear separation of system inte-
gration, calculation, and visualization.

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

C. Operator
This role is often ignored while building and conceptual-

izing a measurement system or measurement infrastructures.
The operations department has two main responsibilities.
First, it has to guarantee that all systems are working inside
their operational parameters. This requires a dedicated set of
operation tools as part of the infrastructure. The infrastruc-
ture should at least provide or support a monitoring tool
which allows analyzing the amount of data that is transported
and stored in the infrastructures components. Second, the
operations department has to solve upcoming problems in
the infrastructure without disturbing the integrated systems
as these systems are often of crucial importance for the com-
pany. The operation department is also responsible for the
alignment of the system landscape of the organization.
Hence, the infrastructure should be compatible with service
oriented architectures found in modern organizations.

D. Requirements
The sections above motivate the following main func-

tional and non-functional requirements for an enterprise
measurement infrastructure:

R1. Integration of heterogeneous systems to provide the
basis for different metrics and visualizations.

R2. Fast and up-to-date recognition and update of the
metrics on a change in an integrated system.

R3. Clear separation of system integration, calculation
and visualization.

R4. Be robust to avoid a complete system failure if a
small part of the system fails. Additionally, the fail-
ure of the infrastructure should not result in a failure
of the integrated systems.

R5. No central database to store the measurement values.

R6. No central data schema to avoid schema-mapping
problems.

R7. Support evolution of metrics, integrated systems,
and visualizations.

R8. Offer dedicated operation tools.

R9. Be compatible to Service-Oriented-Architectures.

This set of requirements will inevitably lead to a loosely
coupled federalist infrastructure.

IV. EXISTING INTEGRATION ARCHITECTURES AND
MEASUREMENT INFRASTRUCTURES

The integration of heterogonous data sources is the main
requirement of an enterprise measurement infrastructure.
Throughout the last decade several approaches have been
proposed to deal with the emerging problems faced by de-
velopers and architects of dealing with heterogeneous sys-
tems and software landscapes. In the following we present
and analyze four existing types of enterprise application
integration approaches and distributed measurement infra-
structures based on the proposed set of requirements.

A. File based integration
The simplest integration approach uses files to exchange

data between applications. One application exports the data
needed by another as a dedicated file. This file is imported
by the other application and processed. This form of integra-
tion has certain disadvantages. Most importantly there is no
real communications between the applications. Additionally,
the export and import of data has to be synchronized. This
directly violated the requirements R1, R7, R8, R9, and most
importantly R2.

B. Common Database
This integration approach uses a common database for all

integrated systems. This provides a low latency to recognize
and process relevant events. The main drawback is the ne-
cessity of an additional database management system. Suc-
cessful implementations of this integration type are data
warehouse systems. They provide an integrated database
organized in a star schema [13], which includes multi-
dimensional aggregated data cubes.

Integration via a common database or a data warehouse is
the most common used integration approach chosen by re-
cent measurement systems like Rational Insight. Hackystat1
and sonarqube2 are other examples for measurement tools
that use a common database to integrate measurement data.
However, as these systems are based on centralized data
bases they directly violate requirement R3. Additionally,
they are not able to guarantee requirement R2 and R7.

C. Service Oriented Architecture
Service-Oriented-Architecture (SOA) also offer a com-

mon used infrastructure pattern for integration solutions.
Systems following the service-paradigm [14], [15] provide a
stable self-describing interface for accessing internal data
and functionalities. Web services are a prominent example
for service-based software systems, which uses XML or
JSON over HTTP for their communications. Kunz et al. [16]
propose a measurement infrastructure based on SOA-
inspired service center. Even thought SOA based integration
is quiet common a pure SOA solution typically does not
provide the required set of operation tools. Hence, this vio-
lates requirement R8. Additionally most of the integration
solutions use SOA only for the communication between the
visualization clients and a central data base server which
violates requirement R5 and R6.

Enterprise Information Integration (EII) is a special case
of SOA based enterprise application integration. The main
goal of EII is to avoid a central database [17]. EII adds a
central query processor to an infrastructure of loosely cou-
pled services. This central processor divides a query into sub
queries to the services and aggregates their results. Even
though this is an elegant solution to avoid a central database
it violates requirement R4 and since the central processor
needs to wait for all the sub queries to finish before returning
an aggregated result it can take a while before the system

1 https://code.google.com/p/hackystat/
2 http://www.sonarqube.org/

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

answers which violates R2. Additionally, this still requires a
central data schema in the query processor which violates
requirement R6.

D. Agent based integration
Some modern integration approaches use agents to com-

municate between different applications [18], [19]. Agents
where first used in artificial intelligence systems [20]. An
agent acts in a certain environment, uses sensors to get in-
formation about it, and can use this information for its deci-
sions. Wille and Dumke et al. propose agent based measure-
ment tools [6], [21]. Even though agent based systems satisfy
a large subset of the requirements they violate some of them.
For example they are not compatible with SOAs. Additional-
ly, they cannot provide central monitoring functionalities on
their own because they are loosely coupled and are often
hard to integrate into existing or new systems. Hence, agent
based systems violate requirements R7, R8, and R9.

V. ENTERPRISE MEASUREMENT INFRASTRUCTURE (EMI)
- ARCHITECTURE AND COMPONENTS

Based on the requirements and typical usage scenarios
we propose a layered architecture blueprint for the architec-
ture of an enterprise measurement infrastructure which is
depicted in Fig. 1. The information needs of different meas-
urement customers are addressed by specialized analysis or

dashboard tools in the Visualization Layer. The actual data
needed to calculate metrics is provided by different systems
in the Data Provider Layer. These systems are connected to
the infrastructure using dedicated data adapters. Often visual-
ization tools require complex and aggregated information
besides pure base values. This information is produced and
provided by specialized components in the Calculation and
Storage Layer. The Data Transport Layer realizes a common
communication infrastructure for all components of the Cal-
culation and Storage Layer and of the Data Provider Layer.
The Operations Layer contains components required to oper-
ate and monitor the complete infrastructure. In the following
we explain the core concepts of the EMI architecture.

A. Dataflow
The EMI data flow depicted in Fig. 2 is based on the ISO

15939 data flow. There measurement data always flows from
base measures to derived measures which are then combined
in an analysis model to form an indicator that answers a
particular information need. In the EMI we added important
extensions, since even base measures (provided by data
adapters) can form indicators (e.g. data from a tool like So-
nar). Most importantly, derived measures can not only use
base measures but the results of other derived measures as
well as a combination of the two. ErrorDensity as defined in
(1) is a typical example:

Data
Adapter

Data
AdpaterData Adapter

Data Transport

Calculation and Storage

Visualization

...

Enterprise Measurement Data Bus (EMDB)

Metric
Kernel

Metric
Kernel

Measurement
Cache

DashboardSpecial
Analysis Tool

...

Data
Adpater

Monitoring

Service
Registry

Domain
Synonym
Repository

Data Provider

... ... Operation

...
Data Flow Control Monitor, Use

...

Fig. 1. Enterprise Measurement Infrastructure (EMI) components, layers, data flow, control relations, and monitor/use relations

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

� ���������	
� =
�
������������∗�.���

�������������� �!�
� ���

� � �

To calculate this metric the respective metric kernel
needs the current NumberOfErrors and the OverallLines-
OfCode. Often, lines of code are provided by a code analysis
tool like Sonar. However, these systems typically only count
lines of code on a component or build fragment level. To
calculate the overall ErrorDensity another metric kernel
needs to sum up all the lines of code values from all the build
fragments or components to provide a new derived measure
OverallLinesOfCode. The NumberOfErrors could be calcu-
lated by a CRM metric kernel. This example shows the need
of a circular data flow between different metric kernels.

The Measurement Cache located in the Calculation and
Storage Layer is a central infrastructure component. It stores
all measurement values so they are immediately accessible
for visualization components. This also allows the visualiza-
tion components to directly access base measures if needed.
However, the tradeoff of this architectural decision is that the
visualization components have to use the stored values.

B. Data Transport: Enterprise Metric Data Bus
The Enterprise Measurement Data Bus (EMDB), an im-

plementation of an Enterprise Service Bus ([15], [22]),
needs to transport the measurement values. Either from a
Data Adapter (Base Measure) or from a Metric Kernel (De-
rived Measure) to all the Metric Kernels and the Measure-
ment Cache of the system.

The main concept of the EMDB, a publish/subscribe
channel, is depicted in Fig. 3. It also shows two Data Adapt-
ers (as generic endpoints) and a Metric Kernel (as a Java API
client). The messages that are broadcasted over the channel
are of type EMDB Message (or a subtype of this). The next
section describes these messages types.

C. EMDB Measurement Messages
The main design principles for the EMI are separation of

concern and loose coupling. Hence, metric kernels and data
adapters need to be completely separated. A metric kernel
just needs to know what measures it requires for its calcula-
tions. The data provider just provides specific measures
(values) for specific entities (Entities of Measurement –
EOMs). Consequently the messages send over the EMDB
need to inherit from a general EMDB Message type (see Fig.
4) which just defines three important attributes:

metricRefId represents the identifier (name) of the
measure. We propose using a name space schema for the
identifiers like

{globalNamespace}.{msgClass}. {msgSubClass}*.{metric}.

An example would be emi.crm.NumberOfErrors or emi.ev.ev
or emi.ev.pv as well as emi.ev.cv for the Earned Value
Analyis metrics earned value, planed value, and cost vari-
ance. This identifier is used by the metric kernels to filter the
EMDB messages according to their measurement require-
ments.

eomId is the identifier of the EOM. It is used to provide
a brought variety of measures for the same entity. The data
providers typically use an internal eomId from the base sys-
tems which they adapt. The metric kernels typically reuse the
eomIds from the base measures. The domain synonym re-
pository in the operations layer can be used to build groups
of eomIds. This is necessary if different systems which are
adapted to the EMI use different identifiers for the same
business entity.

value represents the actual measurement value. It is de-
signed as a string to allow a brought variety of values to be
transported over the bus instead of just numerical values.

Pub/Sub

JAVA

Metric
Kernel

Data
Adapter 1

Data
Adapter 2

EMDB
Message

Fig. 3. Concept of the EMDB (Notation by Chappell [5])

Provide Base
Measure

Store Necessary
Data

Visualize
Measure

Calculate
Derived

Metric Kernel

Mesurement Cache

Data Adapter

Derived
Measures

Store Measure

EMDB

Visualization

Indicators

Base
Measures

Fig. 2. Measurement and data flow in the EMI

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

Fig. 4 depicts the general EMDB Message with two spe-
cialized messages (CRM Message and VCS Message). The
general EMDB Message can be extended by every data
adapter or metric kernel that is connected to the EMDB to
form specific messages that include additional information
required by specific metric kernels. In general the data pro-
vider should include as much additional information with the
message as possible to give the metric kernels as much addi-
tional information (for example for filtering) as possible. The
CRM Message for example requires additional ticketId and
status attributes. This information is useful for specialized
metric kernels like our RIFFLE3 Kernel which analyses and
provides ticket flows from CRM systems.

D. Data Provision Mechanismns
The heterogeneity of the systems that are integrated into

the infrastructure calls for flexible data provision mecha-
nisms. We investigated three core provision concepts: Push-
Forward, Pull-Forward, and Invoke-Push. We describe the
main ideas and possible application scenarios in the follow-
ing subsections.

1) Push-Forward

The Push-Forward data provision mechanism guarantees
the best latency between change event in the adapted system

3 The RIFFLE Metric Kernel can use this information to identify unique
tickets and provide status flows for the RIVER visualization tool to allow
a detailed analysis of flows in CRM systems.

and the visualization. The sequence diagram in Fig. 5 shows
the flow of interactions. Because a plug-in mechanism in the
adapted system is needed, a custom build EMI plug-in is
then able to hook onto the desired change events in the
adapted system. The system calls the plug-in on every data
change event. Then, the plug-in creates a (specialized)
EMDB message and adds specific data to the message. The
message is send to the EMDB using a standard JMS Mes-
sage Gateway. The data is then transported to the metric
kernels and the measurement cache. Hence, the visualization
components could immediately update the visualizations to
reflect the new data.

2) Pull-Forward
Standard BI (Business Intelligence) systems use sched-

uled jobs (called ETL – Extract Transform Load) to derive
data from adapted systems. The Pull-Forward data provision
mechanism is inspired by these ETL jobs. Fig. 6 shows the
sequence of messages. The needed EMI Extract Tasks are
triggered by a scheduler who is configured to a certain inter-
val like every minute, hour, or day. The tasks then retrieve
the changed data from the systems. It should then extract the
unique data chunks from the retrieved data and create a mes-
sage for every chunk which is then send like push forward.

Even though this provision mechanism is inspired by the
most popular mechanism – ETL – it has some strong weak-
nesses. The most important one is latency which increases
dramatically. As a result the data in the visualization is only
as up to date as the latest pull interval. One solution would
be to reduce the pull intervals to a minimum. However, pull-
ing data from a system typically generates a high load in the
system. Therefore, shortening the intervals will lead to per-
formance degeneration in the adapted systems. Another
weakness of this solution is the increased effort to implement
the data providers.

EMI Scheduler System

EMDB Message

EMDB Message
Gateway

On Timer

EMI Extract Task

extract
Get changed data

Add Data

Send Message (EMDB Message)

loop

Fig. 6. Concept of the Pull-Forward data provision mechanism

System EMI Plug-In

EMDB Message

On Data Change

EMDB Message
Gateway

Send Message (EMDB Message)

Add Data

Change Data

Fig. 5. Concept of the Push-Forward data provision mechanism

metricRefId : String
eomId : String
value : String

EMDB Message

ticketId : String
status : String

CRM Message

changedFiles : String [1..*]

VCS Message

...

...

...

Fig. 4. Base message type hierarchy

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

3) Invoke-Push
The data stored in the adapted systems typically relate to

each other. For example a good practice in software devel-
opment is to tag a commit into a version control system
(VCS) with the task number of a task in a change request
management system (CRM). The number of changed files
per task could be used as a complexity measure for the task.
Additionally, the number of changed lines of code could be
used to normalize the effort for a task. Of course, every
commit alters the number of changed files for a task. Hence,
after every commit a special data adapter needs to send a
new message to the EMDB containing additional infor-
mation to the task. This then allows a special metric kernel to
calculate the two measures.

Fig. 7 shows the sequence diagram of the Invoke-Push
data provision mechanism which enables EMI developers to
implement a special data adapter for the described situation.
A special EMDB Message Listener is invoked whenever it
receives a certain type of message. It then pulls data from the
adapted system (for example the task from the CRM). The
data is then packed into a new (specialized) EMDB message
and pushed to the EMDB. This mechanism also enables a
combination of Push-Forward and Pull-Forward. For exam-
ple, a VCS message could be used to pull data from a
changed spreadsheet file in the VCS.

E. Communication between Metric Kernels and
Visualization
The measurement customer typically would like to alter

some details in the metric calculation to answer more de-
tailed or slightly tailored questions. For example the question
“Are we able to address all bugs?” could be answered by the
number of open bugs in a CRM system. If the project is
closing in to a release date this question is typically slightly
tailored to the question “Are we able to address all important
bugs?” which is answered by the number of open bugs in the
top categories (priority one and two).

A dashboard should allow a tailoring for these specific
situations. The change in the measurement needs to be re-
flected by the metric kernel. This could either provide both
of these metrics or the visualization component could talk
directly with the metric kernel and alter the calculation of the
specific metric which is feeding a certain diagram. There

exist good arguments for both solutions. Hence, the EMI
should allow both solutions.

Two metrics could be easily implemented in a specific
metric kernel and could then feed the results back to the
EMDB to allow a dashboard to access the values via the
measurement cache. This solution is very elegant because it
only requires the dashboard to fetch the data from the meas-
urement cache. However, it generates additional effort in the
implementation of the metric kernel because this needs to
generate more derived measures. Additionally, it can lead to
an explosion in the number of metrics which are communi-
cated over the EMDB which could lead to difficulties in the
maintenance and operation of the EMI. Also, this makes the
measurement cache a central part in the EMI which contra-
dicts the idea of a federalist infrastructure.

The direct communication from a dashboard to a metric
kernel requires additional communication flows in the EMI
(the control arrows in Fig. 1). This also increases the com-
plexity in the configuration of the dashboard because it now
needs to take the (service) source of a metric into account.
However, these problems can be solved by a good and flexi-
ble framework for the communication between the metric
kernels and the visualization components. We propose a
solution in which the metric kernels and the dashboard can
exchange instances of variability models for each metrics.
These variability models include the variability points and
variants for each metric. The measurement customer can
then change these variability points and tailor the metrics to
her specific needs.

VI. EMI PROTOTYPE AND EVALUATION

First prototypes for EMI components and frameworks
were developed in several thesis as part of multiple industry
cooperation projects [23], [24], [25]. Most importantly the
dashboard tool SCREEN and several data adapters4 and
metric kernels are based on the EMI. SCREEN was success-
fully deployed and integrated into the software development
processes and infrastructures at small and medium sized
companies (the results of these field studies are published
separately). We are currently planning to integrate it into
larger companies with more than 250 employees (one with
over 1.200). Also, we are currently starting to integrate
SCREEN (and the EMI) into the software development in-
frastructure used by over 700 research projects at RWTH
Aachen University.

Our change request analysis metric kernel RIFFLE and
the visualization tool RIVER are also based on the EMI.
These tools proved to be very useful to analyze CRM data
(details about the tools and analysis will be published sepa-
rately). Additionally, they helped to research the perfor-
mance of the complete EMI. Our simulations show that a
JMS based EMDB implementation and EJB/JPA based met-
ric kernels are able to operate with over 1.500 (CRM) mes-

4 Until April 2013 we developed Data Adapters for: TRAC, Redmine,
JiRA, git, svn, Excel, ClearQuest CSV dumps, Hudson, Jenkins,
SONAR, generic REST, generic SOAP

EMDB Message
Listener System

EMDB Message

EMDB Message
Gateway

On Message
Get data

Add Data

Send Message (EMDB Message)

Fig. 7. Concept of the Invoke-Push data provision mechanism

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

sages per second and an average of 1.000 messages per se-
cond on a standard notebook running a glassfish application
server with OpenMQ. This allows the tools to import5

ClearQuest CSV dumps with over 28.500 tickets in under 25
seconds which is great for development. Our predictions are
that a productive environment with dedicated message bus
server(s) can dramatically increase these numbers. Hence,
we do not think that the EMDB will become a performance
bottleneck like feared by some of our industry partners.

We are currently working on the operation components
and on the framework for the variability exchange between
metric kernels and the visualizations components. We are
also working on several (generic) metric kernels and on
several additional data adapters. All the work on the EMI
implementation, metric kernels, data adapters, and visualiza-
tion components in the last year showed the strengths of the
infrastructure. The strong separation of concerns due to the
federalist design helped to streamline the development in
several simultaneous projects.

VII. CONCLUSION

In this paper we proposed an Enterprise Measurement In-
frastructure (EMI) which is based on best practices of service
oriented architectures. The EMI is based on a set of federalist
systems rather than on a centralistic system to measure, ana-
lyze and visualize different data. This design decision proved
to work really well in different implementation scenarios. In
addition, the different parts of the EMI are well aligned with
the business needs of measurement customers like proposed
in the application scenario in part II.

The most important (measurement) parts of the EMI are
the data flow and the data provision mechanisms. The flexi-
ble data flow together with separated metric kernels helped
to implement different EMI prototypes for our field studies
in parallel. We strongly belief that we are now able to inte-
grate all the different solutions into a large toolbox that helps
to address upcoming integration problems in new field stud-
ies.

Even though the intermediate results until now are very
promising we still need to prove that the EMI is as maintain-
able and flexible as desired. Unfortunately, to answer this
question we need to have EMI installations running in busi-
ness contexts over a long period of time. Luckily, we already
have some installations running and we are currently plan-
ning larger installations. This will help us to get valid results
about the maintainability and performance of the EMI.

REFERENCES

[1] C. P. Team, “CMMI® for Development, Version 1.3 CMMI-
DEV, V1.3,” 2010.

[2] S. Few, Information Dashboard Design: The Effective Visual
Communication of Data. O’Reilly Media, Inc., 2006.

5 Importing the tickets includes reading the CSV file, parsing the data,
generating messages for every ticket, sending the messages over the
EMDB, receiving the messages in RIFFLE, interpreting the messages,
and storing the data in the internal database of RIFFLE.

[3] M. Kunz, A. Schmietendorf, R. R. Dumke, and C. Wille,
“Towards a service-oriented measurement infrastructure,” in
Proc. of the 3rd Software Measurement European Forum
(SMEF), 2006, pp. 197–207.

[4] S. Architecture, “Combining Service-Oriented Architecture and
Event-Driven Architecture using an Enterprise Service Bus,” no.
April, pp. 1–8, 2006.

[5] D. A. Chappell, Enterprise service bus, 1st ed. O’Reilly Media,
Inc., 2004.

[6] R. R. Dumke, “Software-Messung und -Bewertung - Eine
Bilanz.” 2012.

[7] K. Umapathy, S. Purao, and R. R. Barton, “Designing enterprise
integration solutions: effectively,” European Journal of
Information Systems, vol. 17, no. 5, pp. 518–527, 2008.

[8] S. Aier and R. Winter, “Fundamental Patterns for Enterprise
Integration Services,” International Journal of Service Science
Management Engineering and Technology IJSSMET, vol. 1, no.
1, pp. 33–49, 2010.

[9] T. Puschmann and R. Alt, “Enterprise Application Integration -
The Case of the Robert Bosch Group,” vol. 00, no. c, pp. 1–10,
2001.

[10] R. Dąbrowski, K. Stencel, and G. Timoszuk, “Software is a
directed multigraph,” Software Architecture, pp. 360–369, 2011.

[11] H. Wache and T. Voegele, “Ontology-based integration of
information-a survey of existing approaches,” IJCAI--01
Workshop: Ontologies and Information Sharing, pp. 108–117,
2001.

[12] P. a. Bernstein and E. Rahm, “A survey of approaches to
automatic schema matching,” The VLDB Journal, vol. 10, no. 4,
pp. 334–350, Dec. 2001.

[13] S. Chaudhuri and U. Dayal, “An overview of data warehousing
and OLAP technology,” ACM Sigmod record, no. March 1997,
1997.

[14] M. P. P. and D. Georgakopoulos, M. P. Papazoglou, and D.
Georgakopoulos, “Service-Oriented Computing,”
Communications of the ACM, vol. 46, no. 10, pp. 24–28, 2003.

[15] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: a Research Roadmap,”
International Journal of Cooperative Information Systems, vol.
17, no. 02, pp. 223–255, Jun. 2008.

[16] M. Kunz, A. Schmietendorf, R. R. Dumke, and C. Wille,
“Towards a service-oriented measurement infrastructure,” pp.
197–207.

[17] A. Halevy, N. Ashish, and D. Bitton, “Enterprise information
integration: successes, challenges and controversies,” in
Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, 2005, pp. 778–787.

[18] R. Kishore, H. Zhang, and R. Ramesh, “Enterprise integration
using the agent paradigm: foundations of multi-agent-based
integrative business information systems,” Decision Support
Systems, vol. 42, no. 1, pp. 48–78, Oct. 2006.

[19] M. Wooldridge, “Intelligent Agents: The Key Concepts,” in
Proceedings of the 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001,
HoloMAS 2001 on Multi-Agent-Systems and Applications II-
Selected Revised Papers, 2002, pp. 3–43.

[20] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D.
Edwards, Artificial intelligence: a modern approach, Third Edit.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2010.

[21] R. R. Dumke, R. Koeppe, and C. Wille, Software Agent
Measurement and Self-Measuring Agent-Based Systems. 2000,
pp. 1–44.

[22] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The
Enterprise Service Bus: Making service-oriented architecture
real,” IBM Systems Journal, vol. 44, no. 4, pp. 781–797, 2005.

[23] A. Steffens, “Entwurf eines Architekturmodells zur Integration
heterogener Systeme in MeDIC,” 2013.

[24] F. Evers, “Konzeptionelle Erweiterung von Projektdashboards
für unerfahrene Anwender,” 2012.

[25] C. Hans, “Einsatz von Metrik-Dashboards im industriellen
Umfeld,” RWTH Aachen University, 2012.

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693224

Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International Workshop on, pp.63,70, 23-26 Oct. 2013

doi: 10.1109/IWSM-Mensura.2013.20

