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Abstract—Architecture descriptions greatly contribute to the
understanding, evaluation and evolution of software but despite
this, up-to-date software architecture views are rarely available.
Typically only initial descriptions of the static view are created
but during the development and evolution process the software
drifts away from its description. Methods and corresponding tool
support for reconstructing and evaluating the current architec-
ture views have been developed and proposed, but they usually
address the reconstruction of static and dynamic views separately.
Especially the dynamic views are usually bloated with low-level
information (e.g. object interactions) making the understanding
and evaluation of the behavior very intricate. To overcome this,
we presented ARAMIS, a general architecture for building tool-
based approaches that support the architecture-centric evolution
and evaluation of software systems with a strong focus on their
behavior. This work presents ARAMIS-CICE, an instantiation
of ARAMIS. Its goal is to automatically test if the run-time
interactions between architecture units match the architecture
description. Furthermore, ARAMIS-CICE characterizes the in-
tercepted behavior using two newly-defined architecture metrics.
We present the fundamental concepts of ARAMIS-CICE: its
meta-model, metrics and implementation. We then discuss the
results of a two-folded evaluation. The evaluation shows very
promising results.

Index Terms—Software Architecture Reconstruction; Software
Architecture Monitoring; Communication Integrity; Software
Architecture Evaluation; Software Architecture Metrics;

I. Introduction

The software architecture influences to a great extent most

of its non-functional characteristics. The importance of archi-

tecture descriptions to aid the understanding, evaluation and

evolution of software has been widely accepted. As Grady

Brooch stated: “you don’t need architecture to build a dog

kennel, but you’d better have some for a skyscraper” [1].

However, even if considerable effort is dedicated into defining

the software architecture in the initial development phase,

in later phases - because of reasons such as time-pressure,

commodity, etc. - the software tends to evolve independently.

This process has been called software architecture drift and

leads to the emergence of a gap between the initially intended

architecture and the currently implemented one. If the gap is

not closed soon enough, the architecture description becomes

worthless. Architects cannot rely on it, when important evolu-

tion decisions need to be taken. Furthermore, developers can

not consider it to understand the system they are currently

working on. Outdated architecture descriptions can even easily

lead to confusions and encourage the emergence of chaotic

situations where changes are made ad-hoc and previously

defined architectural rules are often violated.

Given this situation, support must be offered to easily

recover up-to-date architecture views and to (semi-) automati-

cally evaluate them. Already existing solutions focus primarily

on the recovery and evaluation of static views. We argue that

the understanding, validation and evaluation of the behavior

of a software is at least as important, since it is actually the

one representing its use cases. To address these issues we

proposed ARAMIS (the Architecture Analysis and Monitoring

Infrastructure) [2] - a process-oriented approach to evolve

and evaluate software architecture. It relies on a run-time

monitoring infrastructure to reconstruct the behavior of the

analyzed software. In our previous work [3] we presented

an initial version of ARAMIS focusing on the real-time

visualization of inter-object interactions.

This paper presents an extension of the approach presented

in [3] supporting the behavior analysis on more architec-

ture abstraction levels, together with its validation based on

specified architecture communication rules. Furthermore, we

enriched ARAMIS with a series of architecture metrics that

assess the quality of the architecture from a behavior-oriented

perspective.

We evaluated our approach on two software systems and

have obtained very promising overall results.

The remainder of this paper is organized as follows: in Sec-

tion II we present our research goals. Section III highlights the

ARAMIS-CICE meta-model and metrics. Section IV focuses

on the implementation of ARAMIS-CICE. Section V discusses

the evaluation of our results. Section VI offers an overview of

related work and Section VII concludes the paper.

II. Goals

Our main goal is to sustain the systematic and meaningful

evolution of software. To reasonably evolve software, archi-

tects must first understand it. They need answers to questions
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like: are the architecture units (e.g., layers, components, etc.)

interacting as specified? How are the various architecture units

interacting when a certain scenario is performed? Furthermore,

support should be given to assess the quality of the architecture

and to find answers to questions like: how complex is the

behavior of the software? Are the components cohesive and

loosely coupled?

To achieve this, we developed ARAMIS-CICE a software

behavior monitoring, analysis and evaluation approach that

pursues the following sub-goals:

• G1: Monitor the run-time behavior of software. The

employed monitoring technique must extract run-time

information, based on which class-level interactions ob-

tained from aggregated object-level interactions can be

reconstructed. The necessary code instrumentation must

be done in a minimal obtrusive manner, avoiding the

modification of the source-code.

• G2: Map the monitored behavior on architecture
units. To achieve this, our approach must allow to define

the static view and to map its composing architecture

units on code building blocks (e.g. classes) from the

system’s run-time traces.

• G3: Automatically detect violations of communica-
tion rules. To achieve this, our approach must allow to

specify the architecture communication rules. Based on

these rules the monitored behavior will be analyzed and

violations detected.

• G4: Support the evaluation of the software’s behavior.
Using metrics we aim to characterize the software’s

behavior and thus to support the architects to identify

problematic architecture units that might require a re-

design.

III. Concept

A. ARAMIS - General Architecture

In our previous work [3] we presented ARAMIS, a concept

for monitoring software on different levels of abstraction. Its

main components are represented in Figure 1. ARAMIS col-

lects architectural information of a software during run-time by

means of an Architectural Information Bus (AIB) that further

redirects the collected information to a central Architectural

Information Broker (AIBR). Various architectural Information

Processors (AIP) register to the AIBR, which consequently

forwards them information relevant for their analysis purposes.

Based on our initial concept and on first experiences,

ARAMIS now defines a single AIP (the Architecture Map-

per), responsible for mapping all the interactions on all the

matched architecture units. Other AIPs can then be added that

receive the architecturally mapped data produced previously

and perform various analyses on it, such as: determining

violations against specified rules or computing metrics based

on the analyzed behavior. To visualize the results, several

Architecture Information Viewers (AIV) can be attached to

a given AIP. The various ARAMIS components are loosely

coupled, in order to easily integrate new AIPs and AIVs.

Fig. 1. ARAMIS - General Architecture

Thus, ARAMIS with its Architectural Information Bus and

the Architecture Mapper AIP already foresees the necessary

components to achieve our first two goals (G1 and G2).

However, a meta-model to allow the definition of the static

architecture view was still missing and had to be developed.

Last, due to ARAMIS’ extension points, further AIPs can be

attached to support the achievement of G3 and G4.

In the following, we present a conceptual and tool-

supported instantiation of ARAMIS, called ARAMIS-CICE

(ARAMIS for architectural communication integrity checking

and evaluation) that maps the intercepted communication on

architecture units from the static view, validates it according

to specified architecture communication rules, and offers met-

rics to assesses the quality of the architecture units from a

behavior-oriented point of view.

Therefore, central to ARAMIS-CICE is the concept of

architectural communication integrity, a term first defined by

Luckham et al. [4] as being a “property of a software system

in which the system’s components interact only as specified

by the architecture”.

B. ARAMIS-CICE Meta-model

To support the goals G2 and G3 formulated in Section II, we

constructed a meta-model that can be used to easily describe

the static view of the architecture (G2) and the communication

rules that should govern the software’s interactions (G3). In

order to support the generality of the concept and avoid any

limitations for its applicability, only very few assumptions

regarding the meta-model were made. These assumptions are

very similar to the following characterization of software

architecture formulated by Reekie and McAdam [5]: (1) the

whole consists of smaller parts; (2) the parts have relations
to each other; (3) when put together, the parts form a whole

that has some designed purpose and fills a specific need. The

created meta-model is depicted in Figure 2.

The architecture description is a central, container that

acts as a repository for code and architecture units. Each unit

has an identifier attribute that distinguishes it from the other

defined units (e.g., “controller layer”).

The architecture units correspond to the smaller parts
mentioned in [5] and are the means to model the static view.

Unlike in the case of most architecture description languages,
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Fig. 2. ARAMIS-CICE - Meta-Model

we defined architecture units as untyped. Many restrictions

are thus eliminated leading to a more relaxed semantics. We

chose this option, because we observed [6] that architects tend

to use varying architecture meta-models in different projects:

sometimes layers consist of components, some other times

components are themselves layered, etc. We considered that

imposing a strict meta-model would reduce the applicability

of our solution. Instead, the architecture units have an optional

role attribute that has no semantics attached to it but simply

conceives the designed purpose [5] of that unit (e.g., layer,

pipe, filter, subsystems, etc.).

Different programming languages provide different code
building blocks (e.g. namespaces, packages, functions, meth-

ods, structures, etc.) that can be used for the implementation.

Constraining the meta-model to a particular set of types is not

desirable as it requires potential target systems to be imple-

mented using only these. To overcome this problem, we de-

fined code units that are programming language-independent,

untyped representatives of code building blocks extracted from

the run-time traces of the analyzed software. To map code

building blocks on code units we use filters. Filters can specify

either exact or regular expressions-based mappings, according

to the analyzed system’s programming language syntax and

the structure of the run-time traces. E.g., in the case of run-

time traces extracted from a Java system, an exact match

filter could be used to map the code building block “public

int PackageA.ClassA.doA()” (a Java method) on a Java-

independent code unit called “Code Unit 1”. If, instead, “Code

Unit 1” should represent all the methods defined in “ClassA”,

one could use a regular expression-based filter that maps all

building blocks of the form “PackageA.ClassA*” on the

desired “Code Unit 1”.

Unlike architecture units, we modeled code units as self-

contained, atomic elements. Even in the case where the code

unit depicts a code building block (e.g., package) that itself

contains further code building blocks (e.g., classes), the code

unit will not contain further units but will be considered as

a placeholder/representative for all the referenced building

blocks. We took this decision in order to keep the meta-model

as simple and flexible as possible and to reduce the effort spent

for modeling. Code units are mere representatives of code

building blocks, whose inner structure have no importance.

Should the structure play a role, then an architecture unit

should be built instead - this can then contain as many

architecture or code units as necessary.

In our meta-model, we considered two important “relations
between parts” [5]: the contain relations and communication
rules between architecture units.

The contain relations are realized by the “composed of”

association in the meta-model between architecture unit and

unit. Thus, (1) an architecture unit is composed of architec-

ture units and (2) an architecture unit is composed of code

units. The first composition allows the description of various

abstraction levels usually depicted in an architecture descrip-

tion (e.g., a component is organized in layers). Furthermore,

because code units are representatives of code building blocks,

with the second composition relation we achieve the code

to architecture mapping. The “contains” relation is depicted

as follows: X �→ Y ,i.e., the architecture unit X contains

the code/architecture unit Y. The relation has the following

important properties:

• it is transitive: if A �→ B and B �→ C, then A �→ C. In

this case, we say that A indirectly contains C.

• it is acyclic, since units can not contain each other via

transitive relations (i.e., situations like A �→ B and B �→
C and C �→ A are considered erroneous).

The communication rules are very important for the val-

idation of a system’s architectural communication integrity.

Within our concept we assumed that the communication is

realized by concrete calls (e.g. method calls, function calls)

happening between code building blocks and recorded in the

system’s run-time traces. In other words, according to the

run-time traces, an architecture unit A communicates with an

architecture unit B, if the run-time traces contain at least two

building blocks BBA and BBB, such that BBA calls BBB and

BBA and BBB have been both mapped on code units that are

directly or indirectly (through transitivity) contained in A and

B respectively. In the meta-model (Figure 2), we used view

inheritance to depict the classification of communication rules

according to two criteria: permission and emergence type.

Accordingly, we define four types of communication rules:

• specified allowed (−−→)

• specified disallowed (−−→× )

• derived allowed, with the derivation degree k (
k−−→)

• derived disallowed, with the derivation degree k (
k−−→× )

The semantics of the specified allowed (A −−→ B) and

disallowed communication rules (A −−→× B) is straight forward:

specified rules are formulated explicitly by the architect,

based on his knowledge and/or on the architecture descrip-

tion. According to their permission type, the communication

between the architecture units A and B is considered to respect
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Fig. 3. Derived Communication Rules - Example

(allowed rule) or violate (disallowed rule) the architecture’s

communication integrity.

The derived rules require some extra explanations. Unlike

the specified ones, derived rules are not formulated explicitly

by the architect but can be inferred by combining specified

rules with contain relations. An explanatory example thereof

is given in Figure 3 (a) that gives an informal depiction of two

architecture units, A and B, both including further units, A’

and B’ respectively. According to the architecture description,

A is specifically allowed to communicate with B (rule sR1).

The reader of such a description expects that, unless otherwise

specified (as in situation (b)) communication rules defined on

architecture units which contain other architecture units imply

that these rules apply to all contained units as well. In situation

(a) this means that two derived allowed communication rules

emerge: A’ is allowed to communicate with B (rule dR1) and

A’ is allowed to communicate with B’ (rule dR2).

The derived communication rules are further characterized

by their so-called derivation degree. We say that X is allowed

or disallowed to communicate with Y according to a k-order

derived communication rule (X
k−−→ Y or X

k−−→× Y respectively),

if there exist two other architecture units A and B such

that A and B are indirectly containing X and Y respectively

(through k contain relations), and if A is specifically allowed

or disallowed to communicate with B.

Next, we formally define the derived allowed relation (the

derived disallowed relation can then be defined similarly):

Let AUS be the set of all defined architecture units of a

software system S.

∀ X, Y ∈ AUS

(1) if k ∈ N>0, then X
k−−→ Y ⇐⇒ ∃A, B ∈ AUS ∧ ∃i, j ∈ N

such that:

i+j=k ∧ A �→ · · · �→︸�������︷︷�������︸
i times

X ∧ B �→ · · · �→︸�������︷︷�������︸
j times

Y ∧ A −−→ B

(2) if k = 0, then X
0−−→ Y ⇐⇒ A −−→ B, i.e., X is

allowed to communicate with Y according to a 0-order derived

allowed communication rule if it is specified that X is allowed

to communicate with Y.

The derivation degree k can be used to determine the priority

of the rules that must be applied in a given context. Thus

we eliminate apparent contradictions that might occur during

the derivation process: the higher the derivation degree, the

lower the priority of the rule is and the less likely this rule

will apply. As depicted in situation (b) of the Figure 3, it

has been specified that the architecture unit A is allowed to

communicate with the architecture unit B (rule sR1). However,

it is also specified that the inner component A’ is not allowed

to call the architecture unit B’ (rule sR2). The contradiction

results now by deriving the rule dR2 from the rule sR1,

thus obtaining that A’ is allowed to communicate with B’.

Intuitively, one expects that in this case the specified rule sR2

should take precedence over the derived one. Indeed, because

sR2 has not been derived, it will consequently have an order of

0. In contrast, the order of the derived rule dR2 is 2 (A �→ A′

and B �→ B′ and A
0−−→ B ⇒ A′

2−−→ B′). Hence, sR2 will take

precedence over dR2. While we are aware that this priority

system is not infallible, we think that it is applicable in most of

the real world scenarios, until otherwise proven during further

evaluations.

C. ARAMIS CICE - Behavior Metrics
Until now we provided the means to describe the constituent

parts of the architecture whose behavior view we are interested

in and the rules against which the architecture communication

integrity will be validated during run-time. The next questions

that need to be answered have a more qualitative nature: do

architecture units behave in an architecturally reasonable way?

which of them might require a redesign?
Although their advantages over mere static metrics have

been acknowledged (e.g., [7]), most of the existing behavior

metrics were not adopted by the software engineering practice

and mostly refer only to the interactions between objects

or objects aggregated to classes. While we also understand

the importance of low level behavior metrics, we argue that

metrics regarding the behavior of higher level architecture

units (e.g., layers) are also necessary and should actually be

analyzed first when striving to understand the overall quality

of a considered system.
We proposed a series of behavior metrics [8]1 that aim

to support the architects in identifying weak points of the

analyzed behavior. These metrics are categorized as: (1) be-
havior execution hotspots metrics - help the architect to answer

questions, such as: which are the most “active” architecture

units that receive and/or issue most of the calls during a

considered execution scenario? Given two units, which method

calls mostly increased their coupling? (2) Violations-based
metrics - support tasks like the identification of violations

against communication integrity that occurred most frequently,

their prioritization according to their severity, etc. (3) Behavior
coupling and cohesion metrics - characterize the behavior of

a unit according to coupling and cohesion measurements.
Due to space limitations, we present a single metric from

the last category, namely the scenario-based unit behavior

metric (SUB). This metric aims to assess how cohesively an

architecture unit behaves (behavioral cohesion) in comparison

to how it is coupled (behavioral coupling) with other archi-

tecture units during the execution of certain scenarios. It is

1Due to our first experiences, the names and definitions of the presented
metrics have been adjusted
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a derived, model-based metric taking into consideration the

important principles of low coupling and high cohesion. The

metric model can be summarized as follows:

• if the architecture unit displays no/little behavioral cohe-

sion, the metric value is low

• if the architecture unit displays low/no behavioral cou-

pling, the metric value is high

• the bigger an architecture unit’s behavioral cohesion with

respect to behavioral coupling is, the higher the metric

value becomes.

Before defining the SUB metric, we first formalize the

previously introduced concepts of behavioral cohesion (BCh),

and behavioral coupling (BCo).

Let:

• S be a software system

• ScenS be the set of all possible subsets of scenarios of S

• Sc ∈ ScenS, i.e., a set of scenarios

• AUS be the set of all architecture units of S

• au ∈ AUS, i.e., an architecture unit

• CUS be the set of all code units of S

• #calls(Sc, x, y) denote the total number of calls that were

issued by code building blocks mapped on the code unit

x to code building blocks mapped on the code unit y,

during the execution of the scenarios in Sc

• InCU(au) be the set of all code units contained (directly

or indirectly) in the architecture unit au

• ExCU(au) = CUS \ InCU(au), i.e., the set of all build-

ing blocks not contained (directly or indirectly) in the

architecture unit au.

BCh, BCo : S cenS × AUS 
→ N

BCh(S c, au) =
∑

x,y∈InCU(au)

#calls(S c, x, y)

BCo(S c, au) =
∑

x∈InCU(au)
y∈ExCU(au)

(#calls(S c, x, y) + #calls(S c, y, x))

Formalizing the described metric model, we now define
SUB as follows:

S UB : S cenS × AUS 
→ [0, 1]

S UB(S c, au) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, ⇐⇒ BCh(S c, au) = 0

1, ⇐⇒ BCo(S c, au) = 0 ∧ BCh(S c, au) � 0
BCh(S c,au)

BCh(S c,au)+BCo(S c,au)
, otherwise

According to the metric model, the SUB value (element of

the rational scale [0, 1]) can be interpreted as follows: the

bigger the behavioral cohesion with respect to the behavioral

coupling is, the better this unit adheres to the “low coupling,

high cohesion” principle. The lower the behavioral cohesion

of an architecture unit with respect to its behavioral coupling

is, the more similar its behavior is to that of a facade or

utilities-provider unit. Indeed, facade units typically receive

requests from different client units and in response, they

delegate this requests further to other units, leading to a

high behavioral coupling. The facade themselves typically

do not implement a very complex functionality, leading to a

small behavioral cohesion and consequently a low SUB value.

Similarly, utilities-provider units are also often called by the

other units, to perform general functionalities and calculations

and thus exhibit a big behavioral coupling. On the other hand,

a call to these units is generally resolved in a single method

or within few method calls, leading to few interactions within

the considered architecture unit, and thus to an expected low

behavioral coupling and consequently a low SUB value.

As the SUB values are built on a rational scale, a simple

3-value based behavior characterization seems to be useful to

ease the interpretation. For this we introduce the characteriza-

tion metric SUBC as follows:

Let:

• “L/H” denote the behavior of an architecture unit exhibit-

ing a much lower behavioral coupling than its behavioral

cohesion. Such a component respects the “low coupling

and high cohesion” principle.

• “H/L” denote the behavior of an architecture unit exhibit-

ing a much higher behavioral coupling than its behavioral

cohesion, i.e., that the architecture unit’s behavior resem-

bles that of a facade/utilities-provider unit.

• “M/M” denote the behavior of an architecture unit ex-

hibiting comparable behavioral coupling and behavioral

cohesion. In this case, we say that the unit’s behavior is

moderately coupled and cohesive.

• Co(SUB) denote the co-domain of the metric SUB

S UBC : Co(S UB) 
→ {L/H,H/L,M/M}

∀S c ∈ S cenS ∧ au ∈ AUS :

S UBC(S UB(S c, au)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H/L ⇐⇒ S UB(S c, au) ∈ [0, 0.5)

M/M ⇐⇒ S UB(S c, au) ∈ [0.5, 0.66)

L/H ⇐⇒ S UB(S c, au) ∈ [0.66, 1]

The SUBC metric is based on two important assumptions

that remain to be validated/invalidated upon using it in real-

world projects:

• the behavior of an architecture unit is highly coupled and

low cohesive (H/L), if there are more interactions of this

unit with other units as there are interactions inside the

unit itself, i.e.: BCo(Sc,au) > BCh(Sc,au)

• we assume that the behavior of an architecture unit is

low coupled and highly cohesive (L/H), if there are at

least twice as many internal interactions in au as interac-

tions that au has with other units, i.e., if BCh(Sc,au) ≥
2*BCo(Sc,au)

• otherwise, we assume that the behavior of the architecture

unit is moderately coupled and moderately cohesive.

We conclude this section by drawing attention to the fact

that, as in the case of all behavior metrics, the SUB value is

dependent on the considered scenarios and the result should

also be eventually interpreted by the architects as such.
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Fig. 4. ARAMIS-CICE Architecture

A deeper analysis is needed especially for the boundary

values. We shortly exemplify the case where the value of

SUB(Sc,au) is 1. In this case SUBC(SUB(Sc,au)) = “L/H”.

Thus, au has a cohesive behavior and it is not coupled. Because

au adheres to the “low coupling, high cohesion” principle, this

situation can be naively interpreted as being “good”. However,

the “goodness” of the situation is determined by the set of

scenarios Sc, during which the behavior of au was monitored:

• if, similar to a unit test, Sc contains only scenarios that

exclusively cover the responsibilities of au and of no

other architecture unit, apart from the ones contained in

au, participated in the execution of the scenarios (i.e.,

BCh(Sc, bu) = 0, ∀ bu ⊂ AUS ∧ bu � au ∧ ¬ au �→ bu),

then the obtained result is indeed a very good one.

• however, if the choice of Sc corresponds rather to a

system test and contains relevant scenarios of the whole

considered software, then this value is problematic, since

it indicates that the software has a rather monolithic

structure centered around au.

IV. ARAMIS-CICE Implementation

In the following, we present a brief overview on the imple-

mentaion of ARAMIS-CICE. ARAMIS-CICE is built as an

instantiation of the ARAMIS general architecture (see Figure

1) and is currently able to analyze only Java- and J2EE-based

systems. The architecture of ARAMIS-CICE is depicted in

Figure 4.

As a core component of the AIB we used the Kieker
monitoring framework to collect the run-time traces (G1). We

took this decision, because Kieker is a mature framework that

allows both compile- and run-time-weaving and because, as

concluded in [3], sending the intercepted messages for further

processing in real-time may lead to sometimes not acceptable

delays. With Kieker, the intercepted communication is instead

saved in log files that can be processed at a later time.

For this, we built another AIB component called Monitoring
that reads the Kieker log files, replays them, translates the

data in a more convenient format and sends them to an

instantiation of AIBR (the ARAMIS Information Broker).

The AIBR is implemented using the extensible messaging

and presence protocol (XMPP). Next, we instantiated the

Architecture Mapper AIP that subscribes itself to receive the

data produced by the Monitoring component and then maps

the intercepted communication on code units and architecture

units. We model the static architecture view in an xml file,

whose schema adheres to the ARAMIS-CICE meta-model.

Next, we built two ARAMIS-CICE specific AIPs: the

Integrity Validator and the Metrics Processor. The Integrity
Validator validates the mapped communication against all

specified and derived communication rules. The specified rules

are also defined in an xml file, whose schema adheres to the

ARAMIS-CICE meta-model. To ease the modeling effort, the

rules xml-schema additionally offers the possibility to specify

default rules that should apply if not otherwise specified. For

efficiently generating the derived communication rules and for

checking their applicability on a given interaction, we used the

Drools Expert rule engine [9]. Next, the mapped and validated

data is resent to the AIBR and eventually rerouted to a Metrics
Processor, that computes the SUB/SUBC metric values of the

involved architecture units.

In order to use ARAMIS-CICE an architect typically needs

to perform the following steps:

• decide upon the scenarios that need to be monitored and

then monitor their execution using Kieker

• specify the static architecture view of the studied system

• specify the architecture communication rules

• run ARAMIS-CICE and analyze the results

V. Evaluation

We performed the ARAMIS-CICE evaluation in two phases:

(1) we evaluated the application of the meta-model and the

communication rules validation results using the MosAIC

software [10], because an accurate architecture description was

available and the MosAIC developer wanted to use the result

of the communication integrity validation in the final project’s

evaluation report; (2) we evaluated the application of the SUB

and SUBC metrics on the open-source framework JHotDraw,

because it has been widely acknowledged as having a good

modular decomposition. Thus, the goal was to validate if the

metrics are also indicating a good behavior quality.

The size of these systems is also not negligible: MosAIC

has 111753 LOC, 166 classes and 10 packages; JHotDraw

consists of 126068 LOC, 529 classes and 38 packages.2

A. Evaluation of the Meta-Model Application

This evaluation part was done in the following steps:

1. We executed a central MosAIC usage scenario and

collected the log files. 2. Without modeling any static view

or communication rules, we replayed the logged data to get a

mere overview of the identified code building blocks. 3. Based

on the provided architecture description [13], we modeled

the architecture units (4 top-level and 16 contained units),

defined filter-based mappings on code units for the previously

identified code building blocks and eventually inserted these in

the corresponding architecture units, thus creating the needed

architecture file. 4. Based on the architecture description we

2The LOC were counted using the CodeStats [11] tool. The number of Java
classes and packages were counted using Sonargraph [12].
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iteratively identified 20 allowed communication rules spec-

ified in the rules file. Because all relevant rules for the

contained architecture units were either explicitly depicted in

the architecture description or communicated by the MosAIC

developer, these were all specified and no derived rules were

later generated. 5. Using the architecture and rules files, we

replayed the scenario and collected the validation results. 6.
We presented the results to the MosAIC developer, who agreed

to our findings.

Upon applying ARAMIS-CICE on a single MosAIC sce-

nario, we discovered 3 communication violations, having the

occurrence frequencies of 1, 2 and 22. The first violation has

been then removed, whilst the others were just documented

in the project’s evaluation. Because the scenario caused more

than 100000 interactions, the result was useful to increase

confidence in the conformance of MosAIC to its architecture.

Thus, using ARAMIS-CICE we successfully monitored Mo-

sAIC (G1), mapped its behavior on architecture units (G2) and

automatically discovered violations against the architectural

communication integrity that occurred during the execution of

a central scenario (G3).

B. Evaluation of the Metrics

We used the “draw samples” application of the JHotDraw

framework to monitor the execution of a very simple scenario:

we created two rectangles, added a label on each of them and

created an arrow between them.

We did not define communication rules, since our goal was

to validate or invalidate the interpretation of the proposed SUB

and SUBC metrics. We created 12 architecture units in which

we inserted code units representing the 12 top-level packages

of the framework. After analyzing the occurred interactions,

we obtained the results presented in Table I. Hence, only 7

architecture units were in the end considered, because the other

5 either didn’t participate in the scenario or participated only

to a negligible extent.

Since JHotDraw is well designed, we consider that the L/H

(low coupled, highly modular) and M/M (moderately coupled,

moderately cohesive) values obtained for the units app, draw,

gui and beans are plausible. However, since we obtained H/L

values for 3 of the units and since this contradicts to the low

coupling and high cohesion principle, we further present a

deeper analysis of these units:

1. The samples.draw unit is just “a simple drawing editor”.

Therefore, it delegates most of its calls towards other units

implementing the actual logic. This leads to a higher BCo

value compared to the BCh value and therefore resulting in

a low SUB value. The unit samples.draw is well designed

exhibiting a facade-like behavior, thus justifying the H/L value.

2. The units geom and util provide classes to perform two-

dimensional geometry computations and JHotDraw-specific

general purpose computations respectively. A call to these

units is generally resolved in a single method, leading to few

internal interactions and thus to an expected low BCh value.

Conversely, being utility-providers, it is expected that these

units are called often, thus having high BCo values. To sum up,

TABLE I
Metric values of JHotDraw

Architecture Unit SUB SUBC Plausible?

samples.draw 0.002 H/L yes

beans 0.73 L/H yes

util 0.05 H/L yes

app 0.63 M/M yes

draw 0.81 L/H yes

geom 0.29 H/L yes

gui 0.57 M/M yes

both units are well designed, conform to the expected behavior

of utility-providers and therefore, the H/L value is also very

plausible.

The evaluation has shown that the SUB and SUBC metrics

provide plausible results and can be considered to understand

and analyze the quality of software architectures. It is im-

portant to notice that the SUBC metric does not assess the

goodness of the behavior but simply offers a characterization

that should be further interpreted by the architects.

VI. RelatedWork

Obviously, we are not the first ones proposing a software

architecture recovery and evaluation approach. On the one

hand, numerous approaches were published to reconstruct up-

to-date architecture views, both by the industry and research

community. A comprehensive, yet not complete, listing of

these can be found e.g., in [14]. Most of these methods focus

on reconstructing the static view (e.g., [15], [16], [12], [17],

[18], [19], [20]). A comparison of tool-support available for

checking architecture compliance has been offered in [21] and

more recently in [22]. In order to specify the architecture,

most of these tools implement specific meta-models. E.g.,

Sonargraph-Architect [12] allows the definition of layers, layer

groups, vertical slices, vertical slices groups and subsystems.

Other solutions, tightly connect the architecture description

and implementation. E.g., ArchJava [23] extends Java to allow

the expression of architecture information inside the code. The

implementation architecture description should correspond to

the ArchJava component model. According to remarks from

the industry [6] restricting the architects to use only the

architectural concepts from a tool-specific meta-model can

be problematic. More generic approaches are required, that

enable architects to use those concepts that they prefer. This

is why ARAMIS offers untyped architecture units with only

little semantic that allow to define roles (e.g. layer, component)

to use the architectural concepts of choice.

Approaches addressing the reconstruction of architecture

behavior have also been proposed but typically focus on

recovering only the low-level interactions of a system, making

the understanding of the behavior very cumbersome. Based

on specified naming conventions, DiscoTect [24] analyses a

system’s run-time traces to extract architectural information

(method calls, calling objects, etc). The logged messages are

also parsed according to specified rules producing dynamic
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views of the analyzed system, however on a single abstraction

level. In [25] an approach is given to present dynamic informa-

tion based on modified “copies of the recovered static views”

of the system. In [26] the authors present an architecture

meta-model for software-intensive systems. Architecture view-

points are also extracted based on the analysis of the system’s

logs. These approaches do not support the specification of

communication rules and are rather intrusive because they rely

on instrumenting the analyzed system with information to be

logged at run-time. A solution for monitoring the communica-

tion with “systems of systems” has also been proposed in [27]

- however, focusing primarily on the mere communication and

not on its integrity check as in the case of ARAMIS-CICE.

Methods to evaluate software architectures are also pub-

lished but primarily focus on the quality of the structure

rather than of the behavior. However, as acknowledged in

various sources (e.g., [7]) dynamic metrics have advantages

over static metrics and should be considered more often. Var-

ious proposals for architecture behavior metrics have already

been proposed ([28], [29], [30]), but they refer to low-level

interactions and/or are scarcely evaluated.

VII. Conclusions and FutureWork

In this paper we presented ARAMIS-CICE, an instantiation

of the ARAMIS general architecture that was built to support

the understanding, communication integrity validation and

evaluation of the behavior view of a software architecture. We

evaluated ARAMIS-CICE on the MosAIC software system

developed at our research group and on the JHotDraw open

source framework. The evaluation lead to very promising

results.

In our future work, we will integrate ARAMIS with static

architecture recovery approaches, to decrease the effort needed

for creating the input of ARAMIS. Furthermore, we will

extend our approach with behavior visualizations on more

abstraction levels. The assumption that communication is

realized only through concrete calls will be loosened, by

enriching ARAMIS with technologies-specific communication

inference mechanisms (e.g., unit A communicated with unit B

via a restful web-service call). We will also extend ARAMIS-

CICE to allow the specification of so-called expected behavior

patterns for architecture units (e.g.: “unit X should behave

like a facade”) and check run-time deviations from these

by applying the SUB and SUBC metrics (or improvements

thereof).
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