
Experience on a Microservice-based Reference

Architecture for Measurement Systems

Matthias Vianden, Horst Lichter, Andreas Steffens

Research Group Software Construction

RWTH Aachen University

Aachen, Germany

{Matthias.Vianden, Horst.Lichter, Andreas.Steffens}@swc.rwth-aachen.de

Abstract — In our former work we proposed a microservice-
based reference architecture for Enterprise Measurement In-
frastructures (EMI) which received encouraging feedback. The
reference architecture supports the systematic development of
measurement systems. This paper provides deeper insight into
the application of the reference architecture by presenting the
results of two field studies after an examination of the most im-
portant requirements that drove the development of the refer-
ence architecture. The two selected field studies were conducted
with large cooperation partners from industry and research and
addressed real problems. Using our reference architecture, de-
velopment process, and requirements gathering technics we
were able to successfully build the EMIs presented in this paper.
These results further ease the application of microservice inside
our reference architecture and support practitioners with spe-
cific examples.

Keywords — Reference Architecture; Microservice; SOA;
Field Study; Measurement System;

I. INTRODUCTION

Improvement reference models such as CMMI require
software development organizations to build up abilities to
systematically apply metrics to support project management
[1]. Based on quantifiable metrics process managers are able
to identify processes that contribute to project success or fail-
ure. Hence, metrics are a necessity for objective process opti-
mization. However, it is often difficult to integrate measure-
ment values from a large variety of different software systems
used in software development projects.

Resulting in the different application scenarios for dash-
boards and measurement systems (strategic, analytical, or op-
erational [2]) modern measurement systems use new integra-
tion approaches. Most recently, considerable research was de-
voted to using service oriented (SOA) and agent based archi-
tectures for measurement systems [3]. New loosely coupled
integration architectures are researched in the area of enter-
prise architecture integration (EAI) ([4]–[9]).

Unfortunately, these ideas are not systematically used to
build flexible, maintainable, and robust measurement infra-
structures. Most of the solutions found in the industry right
now are based on BI (Business Intelligence) systems. How-
ever, all of the proposed solutions (even the new SOA and
agent based approaches) use a central repository to store and
integrate the measurement data. Hence, they suffer from well-
known centralized integration problems; like the need for a

common data schema and the well-known schema mapping
problem. All of these leads to stiff, unmaintainable, and fragile
measurement systems which are very rarely altered. Addition-
ally, not every data should or can be measured (and stored) by
means of relational data schemata [10]. Our reference archi-
tecture for Enterprise Measurement Infrastructures (EMIs)
[11] tackles these core problems using dedicated micro-
services for measurement, calculation and visualization.

We organized this paper as follows. Section II reflects on
the requirements for the reference architecture and describes
the central roles involved with enterprise measurement infra-
structures. Section III describes the core design or the refer-
ence architecture. Section IV.a and IV.b contain two selected
field studies on the application of the reference architecture.
We summarize and conclude the paper in section V.

II. REFERENCE ARCHITECTURE REQUIREMENTS

A measurement infrastructure needs to address the re-
quirements of different stakeholders. After an elaborated ex-
amination of the literature and based on our experience we
identified five main stakeholders. Each of these stakeholders
provides a unique and specific set of requirements regarding
the architecture and resulting measurement infrastructure.

A. Measurement Customer
A project manager is a typical example of a measurement

customer. She is interested in the actual status of her project
and does not care (and should not!) about the technology be-
hind data collection, integration, calculation, and visualiza-
tion. Measurement customers have a brought variety of infor-
mation needs. Unfortunately, the answers to the different in-
formation needs are typically stored in many different tools.

Most importantly, measurement customers demand cor-
rect and up-to-date data because old or incorrect data leads to
wrong conclusions and wrong decisions. Hence, an EMI
should provide mechanisms that guarantee a fast recognition
and processing of relevant events. Additionally, up-to-date
data requires robustness and high availability of the EMI.

Our experience with many industry partners shows that the
information needs of measurement customers often change
over time. For example, development tools are replaced by
other tools or processes and organization schemas are
changed. Especially reorganizations lead to new and changed
responsibilities of individual measurement customers and

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

roles which inevitably lead to changes in information needs.
Concluding from this, another important requirement for an
EMI is to support the evolution of metrics, integrated systems,
and visualizations.

B. Metric Expert
The responsibility of the metric expert is to assist metric

customers in finding the right metrics, maintaining metric best
practices and managing organizational wide metrics and
measurement programs. Typically large organizations have
dedicated metric experts whereas in smaller organizations pro-
cess managers, software architects, or lead developers fill up
this role. Metric experts like to provide common and generic
solutions to the metric customers that best fit their needs. This
often requires to integrate data from a lot of different tools.
They are also responsible for specifying requirements for the
metric applications.

C. Architect
Architects are responsible for the design of the metric ser-

vices and the actual enterprise measurement infrastructure.
They use established reference architectures and concepts as
guides during the specification phase. They require a broad set
of tools and concepts to deal with the integration of different
systems and data. They also like to maintain and use clear
guidelines for architectural decisions. During the design of a
metric services they need to work closely with metric experts
who specify the requirements for the services. They also need

to include additional requirements regarding operation from
the operators.

The architect needs to be able to design an EMI that inte-
grates different tools in a way that a comprehensive and flex-
ible calculation of metrics is possible. To achieve this goal, the
infrastructure has to cope with the heterogeneity of those tools.
Heterogeneity appears on various levels. Wache et al. [12] de-
fine structural and semantic heterogeneity of data. Structural
differences lead to the problem of schema-mapping, a quite
well known field of research in the database community [13].
Hence, data heterogeneity is challenging for a successful inte-
gration of those systems as well. The architects are also re-
sponsible for the alignment of an EMI to the system landscape
of the organization. Hence, the infrastructure should be com-
patible with service oriented architectures found in modern or-
ganizations.

D. Developer
The developer implements metrics, visualizations and

tools to gather data. The reference architecture needs to sup-
port the developer with a clear structure and concepts for all
specific tasks. A developer also requires extensive develop-
ment support for debugging during development. One of the
core services required is a logging service to quickly access
log information from all services. The task to integrate a new
system into the infrastructure to gather its data is completely
different from the implementation of a new metric calculation
algorithm or the implementation of a new visualization.

Data
Adapter

Data
AdpaterData Adapter

Data Transport
and Integration

Calculation
and Storage

Visualization

...

Enterprise Measurement Data Bus (EMDB)

Metric
Kernel

Metric
Kernel

Message Cache

DashboardSpecial
Analysis Tool

...

Data
Adpater

Monitoring
Service

Service
Registry

Domain
Synonym
Repository

Data Provider

... ... Operation

...
Data Flow Control FLow Monitor, Use

...

Message Gateway

Logging
Service

Fig.1. Enterprise Measurement Infrastructure (EMI) reference architecture services, layers, data flow, control relations, and monitor/use relations

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

Hence, a requirement for an EMI is the clear separation of sys-
tem integration, calculation, and visualization.

E. Operator
This role is often ignored while building and conceptual-

izing or measurement infrastructures. The operations depart-
ment has two main responsibilities. First, it has to guarantee
that all systems are working inside their operational parame-
ters. This requires a dedicated set of operation tools as part of
an EMI. The infrastructure should at least provide or support
a monitoring tool which allows analyzing the amount of data
that is transported and stored in the infrastructures compo-
nents. Second, the operations department has to solve upcom-
ing problems in the infrastructure without disturbing the inte-
grated systems as these systems are often of crucial im-
portance for the company.

F. Requirements List for the Reference Architecture
The sections above motivate the following main functional

and non-functional requirements for an enterprise measure-
ment infrastructure:

R1. Integration of heterogeneous systems to provide the
basis for different metrics and visualizations.

R2. Fast and up-to-date recognition and update of the met-
rics on a change in an integrated system.

R3. Clear separation of system integration, calculation
and visualization.

R4. Be robust to avoid a complete system failure if a small
part of the system fails. Additionally, the failure of the
infrastructure should not result in a failure of the inte-
grated systems.

R5. Be flexible to support evolution of metrics, integrated
systems, and visualizations.

R6. Offer dedicated operation and development support.

III. ENTERPRISE MEASUREMENT INFRASTRUCTURE (EMI)

- ARCHITECTURE AND COMPONENTS

The previous set of requirements will inevitably lead to a
loosely coupled federalist (decentralized and distributed) in-
frastructure. Especially due to requirements R4 and R5 we de-
cided not to rely on a central database to store all measurement
values and no central data schema to avoid schema-mapping
problems. Each service should decide for itself what to store.
This leads to some data redundancy in the infrastructure which
is fine because this makes the infrastructure more robust. Also
we decided to favor small micro services [14] over large full
scale SOA services because they drastically improve main-
tainability, robustness, and flexibility of the infrastructure and
seem to be very successful during the last years [15], [16].

The core services and layers of the reference architecture
for enterprise measurement infrastructures (EMIs) is depicted
in figure 1. The information needs of different measurement
customers are addressed by specialized analysis or dashboard
tools in the Visualization Layer at the top. The actual data
needed to calculate metrics is provided by different systems in
the Data Provider Layer in the bottom. These systems are con-
nected to the infrastructure using dedicated data adapters
(R1).

Visualization tools often require complex and aggregated
information besides pure base values. This information is pro-
duced and provided by specialized services in the Calculation
and Storage Layer, the Metric Kernels. The Data Transport
Layer realizes a common communication infrastructure for all
services of the Calculation and Storage Layer and of the Data
Provider Layer. The Operations Layer contains services that
ease operating and monitoring the infrastructure (R6). In the
following we recapitulate the core concepts of the EMI refer-
ence architecture.

A. Dataflow and Core Services
The EMI data flow depicted in Fig. 2 is based on the ISO

15939 standard. In this ISO standard data always flows from
base measures to derived measures which are then combined
in an analysis model to form an indicator that answers a par-
ticular information need. In the EMI we added important ex-
tensions, since even base measures (provided by data adapt-
ers) can form indicators (e.g. data from a tool like Sonar).
Most importantly, derived measures can not only use base
measures but the results of other derived measures as well as
a combination of the two.

The Enterprise Measurement Data Bus (EMDB) realizes
an event-based integration between the services of an EMI
[17], [18]. Most importantly it transports measurement mes-
sages between data adapter and metric kernels. To support
separation of concerns, an EMDB can implement several pub-
lish/subscribe channels for different integration tasks. The
Message Cache is a central infrastructure service strongly
coupled to the EMDB. It stores all measurement messages for
operation tasks like the setup of a new Metric Kernel or data
recovery (R5, R6). The Message Cache together with the Mes-
sage Gateway also provide the backbone for systematic sys-
tem and integration testing of the Metric Kernels and Data
Adapters.

Provide Base
Measure

Store Necessary
Data

Calculate Derived
Measure

Metric Kernel

Message Cache

Data Adapter

Derived
Measures

Store
Message

EMDB

Visualization

Indicators

Base
Measures

Send Message

Message Gateway

Resend
Message

Visualize Measure

Fig. 2. Measurement and data flow in the EMI reference architecture

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

B. Data Adapter Patterns
The heterogeneity of the systems that are integrated into

the infrastructure calls for flexible data provision mechanisms
(R1, R3, and R5). Additionally the data from the data provid-
ers should be integrated as fast as possible (R2). We developed
the following three core data adapter pattern to work as design
guides for concrete data adapters.

� Push-Forward
The data is pushed to the EMI using a Gateway as data
adapter and a plugin in the data provider. The Gateway
typically just sends the received data as a specific message
over the EMDB. However, it can also perform additional
consistency checks. The gateway typically exposes a
REST API [19] to allow easy and uniform access from dif-
ferent data provider. This adaption pattern has the lowest
latency between data change in the data provider and data
arrival in the EMDB (R2).

� Pull-Forward
The data is pulled from the data provider to the EMI in
defined intervals (e.g. every five minutes). This adaption
mechanism is used if the data provider does not support a
plugin mechanism that is called whenever some data is
changed. However, it obviously requires an API to access
the data from the data provider. Ideally, the API allows to
access only the changed data during the last interval. Due
to typical intervals in the range of some minutes this adap-
tion pattern has the highest latency.

� Invoke-Push
This is to a certain extend a combination of the two pat-
terns from above. The data is pulled from the data provider
like in the pull-forward pattern. The trigger for the pull,
however, is not a timer but another message or event on
the EMDB that got adapted (optimally pushed) before. The
latency depends on the latency of the triggering message.
If it is pushed the latency is also very low.

More details on the EMI reference architecture and addi-
tional details and documentation can be found on the EMI
webpage and former publications [11], [20], [21].

IV. APPLICATION OF THE EMI REFERENCE

ARCHICTECTURE IN SELECTED FIELD STUDIES

In the following sections we present the results of two field
studies that we conducted with different industrial and aca-
demic cooperation partners using the EMI reference architec-
ture. Each section starts with a short introduction of the envi-
ronment and the main requirements for the specific EMI. Af-
terwards we provide some details on the respective EMI de-
sign. We conclude each field study with a condensed list of
gained experiences.

A. Project management metrics for SSELab
SSELab is a management infrastructure mainly supporting

software development projects at RWTH Aachen University
[22]. It integrates key services like version control systems (git
and SVN), wikis, and change request management systems
(TRAC) into one coherent platform. Currently SSELab hosts
over 700 projects. Our analysis showed a very heterogeneous

project environment which is dominated by software develop-
ment projects. However, SSELab is also used for the admin-
istration of organizational projects and scientific projects such
as paper or theses writing projects as well as teaching projects
like lab courses. Even though SSELab offers a lot of features
and functionality it lacks the support for measurements.
Hence, the goal of this field study was to investigate what met-
rics are required for the project managers of SSELab projects
and to develop a maintainable, robust, and flexible measure-
ment infrastructure that enables the calculation and measure-
ment of the metrics.

1) Development Process
The main goal was to develop a metric-based monitoring

dashboard template for project managers. We conducted inter-
views as requirements gathering technique to get a broad feed-
back on the information needs of different project managers.
We managed to interview 11 project managers. We used a
questionnaire to keep the managers focused on the important
aspects. However, some of the most interesting information
needs where not directly related to our questions.

Afterwards, the results of the interviews were integrated
into a large mind map following the GQM principle. From this
we derived key information needs and their corresponding
metric-based monitors to be included in the dashboard proto-
type depicted in figure 5. This prototype is designed following
the dashboard design principles proposed by Few [23], [24]
with the most important visualizations (Bullet Graphs) on the
top left. The dashboard features visualization of source code
metrics and statistical metrics on version control activities
(e.g. number of commits per week) and issue tracking (e.g.
number of open and closed issues per week). We then sent the
dashboard prototype to the project managers to ask for feed-
back and conducted follow-up interviews with selected project
managers.

Based on the feedback we changed the user interactions
and updated some of the metrics and visualizations. The mod-
ified prototypes were again evaluated by the project managers.
We then started the design phase because everybody was quiet
satisfied with the new design. The goal of this phase was to
come up with an EMI-based design for the integration of the
data providers and calculation of the metrics [25].

Fig. 5. SSE-Lab metric-based monitoring dashboard prototype

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

Based on these results we iteratively and incrementally de-
veloped the data adapters, the integration layer (messages) and
the metric kernels. We started with the integration and data
adaption on the version control systems and then moved to the
issue tracker (TRAC). We also implemented a special dash-
board application which can be integrated seamlessly into the
SSE Lab architecture. After each increment we did a quick
evaluation of the metrics and dashboard in a test environment.

2) SSE Lab Enterprise Measurement Infrastructure
The EMI for SSE Lab is depicted in figure 6. Contrasting

the layout of the reference architecture in figure 1 the data flow
in this figure is turned 90° going from left to right.

The three central data providers: git version control sys-
tem, TRAC issue tracking, and sonar qube for source code
metrics are located on the left. The data adapters for these sys-
tems implement the push-forward adapter pattern (see III.b).
We build specific EMI-plugins for TRAC and sonar which
hook into existing extension points in the two systems to call
the respective REST-API in the data adapter on data change
in the data provider. For git we used a bash script that is called
in a commit hook to call the REST-API of the commit gate-
way.

The SSELab EMI utilizes three busses from the EMDB.
The event bus (EMI.events) to transport event data, the base
bus (EMI.base) to transport almost raw data (base measures)
from the data providers, and the measures bus (EMI.measures)
to transport measurements (derived measures).

The commit event gateway on the top left emits commit
event messages to the event bus of the EMI. These messages
are transported to two metric kernels: Commit Reference Ker-
nel and Event Counter. The latter is a generic component that

calculates a number of count metrics (number of event Y per
X) on events on the event bus.

The Commit Reference Kernel simply checks the commit
message for references to issues and does not store any data
(just static checking, no semantic check!) and then again uti-
lizes the event counter with a different event to count the com-
mit messages without references. This shows the flexibility
and reuse potential of the EMI microservices.

The TRAC ticket data rest gateway produces ticket mes-
sages on the base bus of the EMI. These tickets are analyzed
by the TRAC Kernel. This kernel stores the tickets and imple-
ments the count metrics (e.g. open tickets per week) as well as
the statistical analysis that feeds the box plots. The metric cal-
culation results as well as the calculations from sonar are feed
to the measures bus of the EMI and stored in the measurement
cache.

As mentioned before, we built a special metric-based mon-
itoring dashboard to visualize the metrics in SSELab. The
dashboard accesses the metrics from the metric kernels using
their specific REST-APIs. This allows to include some con-
figuration for the monitors in the dashboard. For example the
calculation algorithm for ticket statistics can be selected. The
dashboard then simply feeds the calculation results to the vis-
ualizations.

The pre-production version of this EMI was operated on a
JavaEE server in our test environment which also hosted the
local databases for the metric kernels. This server was oper-
ated in a secure environment to ensure data privacy. Thanks to
the EMI Monitoring Service it was always very easy to check
the current status of the EMI.

Commit Event
REST Gateway

Git Server

Commit
Hook

ht
tp

ge
t r

eq
ue

st

EMI.events
E

commit.git
Event

EMI.base

Commit Ref Kernel

EMIServer

Data Adapter Data Transport Calculation & Storage

Sonar Server

Measurement GatewayEMI Sonar
Plugin

ht
tp

pu
sh

 re
qu

es
t

EMI.measures

Trac Ticket Data
REST Gateway

Trac Server

EMI Trac
Plugin

ht
tp

pu
sh

 re
qu

es
t

D

Ticket Ticket Kernel

Measurement
Cache

Event Counter

SSE Lab Dashboard

Visualization

E

commit.without.ref
Event

Data Provider

Fig. 6. Static architecture overview of the EMI for SSE-Lab

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

3) Experiences
We gained a lot of experience with using the reference ar-

chitecture on this project. The core expiries where:

� Finding the right metrics is hard
Even though we did extensive prototyping and conducted
several interviews with the metric customers (SSELab pro-
ject managers) we found some problems with the metric
specifications when we started implementing the metric
kernels. Particularly the statistical ticket analysis in the
Ticket Metric Kernel was not well defined and we were
struggling with what alternative to use. In the end the flex-
ibility of the reference architecture allowed us to imple-
mented all the different options in the metric kernel side-
by-side and allow the user to select the calculation mecha-
nism via a specific REST-API on the Ticket Metric Ker-
nel.

� Microservices in an EMI are very easy to reuse
We developed the Event Counter and the Commit Event
Gateway before we started the development on the
SSELab EMI. During the specification of the EMI for
SSELab we realized that we can reuse these services and
it worked fluently without any major issue! It was also
very easy to add additional functionality (counting com-
mits without references) by simply adding another service.

� An EMI is easy to maintain and to operate. We also did
not have any major performance problem
During the iterative and incremental development of the
EMI for SSELab it was very easy to extend and maintain
the services. Thanks to the EMI monitoring service it was
always very easy to check the status of each service and to
investigate performance of the services and the EMI. We
never experienced any problem with performance whatso-
ever. However, the production use of EMI in SSELab is
still ahead of us.

B. Project risk metrics at a large IT provider
This field study was conduction together with a large full

service IT provider for insurance companies which needs to
deal with the legacy of very old systems as well as provide
modern services. While some development projects can be
quite small (about 100 person days), others are very large (up
to 35.000 person days). As the IT provider is CMMI Level 3
certified, all development projects need to stick to the organi-
zation’s standard development process which is a tailored Ra-
tional Unified Process.

This process contains a template for a metric-based moni-
toring dashboards designed for project managers. Because we
noticed that the information needs of the project managers
were changing we initiated interviews with five of them to sys-
tematically gather these changes [26].

1) Development Process
First, we analyzed the changed information needs and de-

veloped a prototype for a new metric-based monitoring dash-
board. This prototype was then evaluated by the project man-
agers that participated in the initial interviews. Then we ana-
lyzed all identified requirements and specified the increments

for the realization phases. The first increment focused on met-
rics to analyze project risks.

We developed prototypes focusing on the visualizations
and diagrams that we wanted to address. After just a few iter-
ations we arrived with the central visualizations and diagrams
required for the project managers. Two of these final diagrams
are shown in figure 7. The first is a classic Cartesian chart with
four bar and one line chart showing the number of risks in spe-
cific states and the overall number of open risks each on a
monthly basis. The second one is an enhancement of a tradi-
tional risk matrix. It shows the impact on the bottom and the
likelihood on the left, each on a four item scale from very low
to very high. The top row contains the risks which did occur
and the lower left square contains closed risks. In addition to
this we added an icon in front of each risk to indicate how it
changed (monthly timing as well).

Project risks were documented using dedicated Excel
sheets. These sheets are based on a template which is part of
the standard development process and mandatory for the pro-
jects. During risk workshops these risk sheets are filled with
new risks and existing risks get updated. Additionally, project
managers update the risks if something that influences the risk
changes (for example a counter measure for the risk is show-
ing to be effective). The risk Excel sheets are stored in CVS
repositories.

Handling risks in an Excel sheet is a risk on its own due to
lack of consistence checks, constraints, and solid workflow
modeling. Hence, it is planned to use Atlassian Jira to model

Fig. 7. Prototypes for metric-based risk monitors

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

and store risks in the future. Unfortunately, Jira does not un-
derstand the semantic of a risk and hence is not able to provide
the risk matrix or bar charts mentioned above. This enforces
the need for an independent visualization of risks.

2) Enterprise Measurement Infrastructure
Figure 8 depicts an overview of the static architecture of

the developed EMI for the risk metrics. Similar to Figure 6 the
view is turned 90 deg. to the right starting with the data pro-
viders at the left hand side.

As described above, the risk Excel sheets are stored in a
central CVS server. Similar to the SSELab EMI we use a small
bash script in a commit hook that again calls the commit event
gateway in the EMI on a change of a file. The Excel list data
adapter implements the invoke-push adapter pattern using this
commit.cvs event. Because the event just contains information
about the file that was changed but not the file itself the Excel-
List adapter accesses a viewvc server via http to get the spe-
cific revision of the Excel file. The data adapter then feeds the
Excel file to each strategy that is configured to accept the spe-
cific sheet. The risk list adapter strategy analyses the risk list
and sends the result, a risk list message, via the base bus of the
EMI. An alternative would be an exclusive data adapter just
for the risk list. We decided to implement a generic adapter
with specific strategies because we anticipated to adapt more
Excel sheets in the near future using the same mechanism.

For Jira we again created a small plugin that is executed
whenever a risk ticket changes. This plugin then calls the
REST API of the risk gateway in the EMI which again creates
a risk message on the base bus.

The risk messages on the base bus are received by the risk
metric kernel. The kernel first checks some consistency con-

strains of the incoming risk against the stored risks due to pos-
sible data corruption in the Excel sheets (duplicated ids, de-
leted risks, etc.). Some of these errors can be corrected by the
kernel some of them result in a rejection of the incoming mes-
sage (and error messages to the central logging service as well
as indications in the monitoring system). If the risk message
passes the check the risk is stored in the data base of the metric
kernel. The metrics are calculated on request via the REST
APIs of the risk metric kernel.

The EMI was operated on a test stage server hosting the
JavaEE implementation of the services as well as all the oper-
ation services. Even though this was a test environment we
already connected the production stage CVS and viewvc
server to test the adaption of risk lists from real projects. The
operation was supported by the operation staff of the organi-
zation and we again received a lot of positive feedback to the
monitoring service as well as system design and composition.

3) Experiences
Again we like to summarize some of the experience that

we gained during this project.

� The reference architecture successfully passed an audit
with the architecture management board
The CMMI level 3 certified organization required an audit
of the reference architecture before we used it inside the
organization. The core goal of this is to check the compli-
ance against existing architecture rules and guidelines. The
EMI reference architecture was reviewed by several archi-
tects and then feed to the architecture management board.
It was very well received by all the reviewers as well as
the board which lead to the reference architecture passing
the audit.

Commit Event
REST Gateway

CVS - Server

Commit
Hook

ht
tp

ge
t r

eq
ue

st

Excel-List Adapter

EMI.events
E

commit.cvs
Event

EMI.base

D

RiskList

EMI Risk
Metric Kernel

EMI Server

Ht
tp

 a
cc

es
s Ri

sk
 C

ou
nt

da
ta

 se
rie

s

Cu
rr

en
t R

isk
s

EM
I S

er
vi

ce
s

Data Adapter Data Transport Calculation & Storage

JIRA Server

EMI Risk
REST Gateway

EMI Risk
on Ticket Change

ht
tp

pu
sh

 re
qu

es
t

Risk

EMI Risk Adapter
Strategy

Data Provider

Fig. 8. Static architecture overview of the Data-Adapter (measurement) and Metric-Kernel (calculation) of the EMI for risk-metrics

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

� Push-Invoke pattern successfully adapts Excel sheets
Initially we were struggling with the decision on how to
adapt the Excel-based risk lists. We thought about devel-
oping dedicated Excel plugins to synchronize the lists
simply via a button click. This would require additional
clicks when working with risk lists though and we believe
that this would lead to some troubles later on. We looked
for an alternative and ended up using our invoke push
adaption mechanism on the risk lists stored in the CVS ver-
sion control system. This does not require additional atten-
tion from anyone working with the risk list and due to a
very open and flexible design of the Excel list adapter it is
easy to adapt other types of Excel sheets.

� Unstructured data requires additional attention
Adapting data from a database or other systems like Jira
requires very little consistency checks because it is very
hard to corrupt the data. Unstructured data like Excel
sheets or CSV files, however, require a lot of attention in
the metric kernel (and maybe the data adapters) because a
lot can (and will!) go wrong. We did an extensive work-
shop session to discuss possible data corruption scenarios.
For some of them we also defined recovery mechanisms
(for example a missing row in an excel sheet which can be
detected by the metric kernel).

� Developing, designing and operating an EMI requires
training and time
The EMI reference architecture provides a very good and
structured overview of the different parts of a concrete
EMI. Using the reference architecture and developing and
operating the specific metric services, however, requires
time and training. During this project we trained two met-
ric experts and a few developers and architects and at the
end they were able to independently specify and imple-
ment an extension to the EMI that uses a pull-forward data
adapter and special metric kernels to analyze ticket data
from IBM Rational ClearQuest.

V. CONCLUSION

In this paper we presented the results of the application of
the EMI reference architecture in the context of a research
infrastructure as well as a large software development organ-
ization. It clearly shows how the central roles benefit from the
different parts of the reference architecture. We also experi-
enced the benefits of having a dedicated EMI framework to
assist with the development of the services. The framework
encapsulate the EMDB communication and provides the core
operation services and interfaces to them.

Currently we are performing long time field studies to fur-
ther evaluate and improve the reference architecture. We are
also working on a complete set of SDKs and improvement of
our EMI framework to support the development of EMIs us-
ing javascript and/or JavaEE.

REFERENCES

[1] C. P. Team, “CMMI® for Development, Version 1.3 CMMI-

DEV, V1.3,” 2010.
[2] S. Few, Information Dashboard Design: The Effective Visual

Communication of Data. O’Reilly Media, Inc., 2006.

[3] M. Kunz, A. Schmietendorf, R. R. Dumke, and C. Wille,
“Towards a service-oriented measurement infrastructure,” in

Proc. of the 3rd Software Measurement European Forum
(SMEF), 2006, pp. 197–207.

[4] S. Architecture, “Combining Service-Oriented Architecture and

Event-Driven Architecture using an Enterprise Service Bus,” no.

April, pp. 1–8, 2006.
[5] D. A. Chappell, Enterprise service bus, 1st ed. O’Reilly Media,

Inc., 2004.

[6] R. R. Dumke, “Software-Messung und -Bewertung - Eine
Bilanz.” 2012.

[7] K. Umapathy, S. Purao, and R. R. Barton, “Designing enterprise

integration solutions: effectively,” Eur. J. Inf. Syst., vol. 17, no. 5,
pp. 518–527, 2008.

[8] S. Aier and R. Winter, “Fundamental Patterns for Enterprise

Integration Services,” Int. J. Serv. Sci. Manag. Eng. Technol.
IJSSMET, vol. 1, no. 1, pp. 33–49, 2010.

[9] T. Puschmann and R. Alt, “Enterprise Application Integration -

The Case of the Robert Bosch Group,” vol. 00, no. c, pp. 1–10,
2001.

[10] R. Dąbrowski, K. Stencel, and G. Timoszuk, “Software is a

directed multigraph,” Softw. Archit., pp. 360–369, 2011.
[11] M. Vianden, H. Lichter, and A. Steffens, “Towards a

Maintainable Federalist Enterprise Measurement Infrastructure,”

in Joint Conference of the 23nd International Workshop on
Software Measurement (IWSM) and the 8th International
Conference on Software Process and Product Measurement
(Mensura), 2013.

[12] H. Wache and T. Voegele, “Ontology-based integration of

information-a survey of existing approaches,” IJCAI--01 Work.
Ontol. Inf. Shar., pp. 108–117, 2001.

[13] P. a. Bernstein and E. Rahm, “A survey of approaches to

automatic schema matching,” VLDB J., vol. 10, no. 4, pp. 334–

350, Dec. 2001.
[14] J. Lewis and M. Fowler, “Microservices,” 2014. [Online].

Available: http://martinfowler.com/articles/microservices.html.

[Accessed: 05-Jul-2014].
[15] H. Kurhinen, “Developing microservice-based distributed

workflow engine.” Mikkelin ammattikorkeakoulu, 2014.
[16] Z. MAHMOOD, “Software Products and Technologies for the

Development and Implementation of SOA,” WSEAS Trans.
Comput. Res., vol. 3, no. 1, pp. 28–34, 2008.

[17] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The

Enterprise Service Bus: Making service-oriented architecture

real,” IBM Syst. J., vol. 44, no. 4, pp. 781–797, 2005.
[18] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: a Research Roadmap,” Int. J.
Coop. Inf. Syst., vol. 17, no. 02, pp. 223–255, Jun. 2008.

[19] R. T. Fielding and R. N. Taylor, “Principled design of the modern

Web architecture,” ACM Trans. Internet Technol., vol. 2, no. 2,

pp. 115–150, May 2002.
[20] A. Steffens, “Entwurf eines Architekturmodells zur Integration

heterogener Systeme in MeDIC,” 2013.

[21] M. Vianden, “EMI Homepage,” 2014. [Online]. Available:
http://www.enterprise-measurement.com.

[22] C. Herrmann, T. Kurpick, and B. Rumpe, “SSELab: A plug-in-

based framework for web-based project portals,” in TOPI 2012,
2012, pp. 61–66.

[23] S. Few, Information Dashboard Design: The Effective Visual
Communication of Data. O’Reilly Media, Inc., 2006.

[24] S. Few, Show Me the Numbers. 2012, p. 343.

[25] A. Otto, “Integration einer Metrik-Infrastruktur in die

Projektverwaltung SSE-Lab,” 2013.
[26] M. Vianden, H. Lichter, and S. Jeners, “History and Lessons

Learnt from a Metrics Program at a CMMI Level 3 Company,” in

Proceedings of 20th Asia-Pacific Software Engineering
Conference, APSEC 2013, Vol. 2, 2013, no. CMMI.

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091309&isnumber=7091273

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.1, no., pp.183,190, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.37

