© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6986008

Release Readiness Measurement: A Comparison of
Best Practices

Nico Koprowski
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany
Email: nico.koprowski@rwth-aachen.de

Abstract—A crucial part of software project management
consists of deciding when the software in development is ready
to be released. We call this property of a software system release
readiness. This work clarifies the meaning of release readiness
by giving a presentation of three selected approaches which
measure this property. This work distinguishes these approaches
according to the criteria which they use to determine the release
readiness: (1) Defect tracking uses the number and distribution
of discovered defects inside the software for estimating release
readiness. (2) The Software Readiness Index (SRI) makes use
of quality and reliability metrics in order to determine release
readiness. (3) Shiplt describes an elaborate measurement for
release readiness which uses the development progress of the
software product as an underlying metric A comparison between
these three approaches shows that defect tracking is simple but
limited in its application while ShipIt comes to short in measuring
the important criteria of quality and reliability. Finally, SRI
renders to be the most versatile and detailed approach for release
readiness measurement.

Keywords—release readiness measures, quality measures, reli-
ability measures, release engineering.

I. INTRODUCTION

A very important decision in software development projects
is when to release the product. Generally, the project manager
has to make a tradeoff between software quality and keeping
the schedule. Deciding arbitrarily on instincts may lead to a
poor quality release or unnecessary additional costs.

Besides that, the delivered product also has an influence
to market share (i.e., the reputation of the software). As
investigated by [1] on selected Web browsers (Chrome, Firefox
and Internet Explorer), they found that by implementing a
proper release engineering, there are significant benefits on
software reputation.

Several techniques and approaches have been developed
to support the decision for the perfect release time. Project
estimation models give a rough prediction of the overall effort
needed to finish a software project. Therefore, managers can
anticipate the approximate project duration and with this,
the release time of the product. However, predictions are
just accurate in so far and may get useless if unexpected
events occur. In the later phases of the development process
descriptive measurements are needed to make a decision about
the right release time.

M. Firdaus Harun
RWTH Aachen University
Research Group Software Construction Research Group Software Construction
Ahornstr. 55
52074 Aachen, Germany
Email: tharun@swc.rwth-aachen.de

Horst Lichter
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany
Email: lichter @swc.rwth-aachen.de

In addition, current research on when the right release time
(i.e., when-to-release) in an iterative development has been
studied by [2]. They developed a plugin tool (called W2RP)
which estimates the tradeoff relationship between number of
features implemented and quantified quality prediction from
related effort investment. The tool supports managers to ana-
lyze the impact of release dates on the product development.
However, the quality quantification formulated in this tool
lacks of measurements on code quality and technical debt.
To deliver such high quality software, both measurement
parameters important to consider without investing too much
effort (i.e., time and cost consuming for refactoring) in the
future.

The release readiness is a property of a software product
indicating whether the product is (or in how far it is) ready
to be released. For a start, like the properties maintainability,
efficiency or reliability the release readiness is a qualitative
property and needs to be quantified to have a useful meaning.
While traditional software properties have established stan-
dards, the way of correctly measuring release readiness is still
a matter of research.

This work presents and compares three approaches to mea-
sure the release readiness of a software. Section II discusses
our main goal of this research, a brief of research methodology
and explanation of three criteria selected. Section III introduces
several techniques which use the estimated number of remain-
ing defects in code as a criterion for the software readiness.
Section IV presents an approach which uses a selected set of
software quality and reliability metrics for measuring release
readiness. Next, section V deals with a third approach which
associates the release readiness of the software with the overall
progress of its development. In section VI this work compares
the presented approaches to selected criteria. Finally section
VII gives a short evaluation of the three approaches based on
the comparison.

II. OUR APPROACH

The goal of our research is to compare release readiness
measurements which published in scientific papers and have
been used in industrial setting. Then, we describe these mea-
surements and discuss the components, metrics or indexes that
required for when-to-release software in Section III, IV and V.

To compare these release readiness measurements, we start

Software Engineering Conference (MySEC), 2014 8th Malaysian , vol., no., pp.166,171, 23-24 Sept. 2014
doi: 10.1109/MySec.2014.6986008

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6986008

searching with the main term ’release readiness’ and check the
relevant papers based on the research goal. Then, we classify
these papers based on three criteria defined. It results a few
papers related with release readiness measurement that applied
in industry.

Due to few papers related with the research goal and no
relevant existing comparison published paper, the three criteria
have been selected based on bottom-up approach to build our
own classification. As a result, the classification can be distinct
into three categories and they are:

1) Defect Tracking: A measurement of how many de-
fects (will be) remained in the software before re-
lease.

2) Quality Measurement: A measurement of software
and hardware readiness based on specific quality
attributes before release.

3) Progress Measurement: A measurement of activities
or components progress in software development
process.

III. DEFECT TRACKING

One of the key purposes of the verification phase in
software development is to increase the reliability of the
product. Software reliability is the probability of executing
a software without failure for a specified time period [3].
Hence, the less defects hide inside the software the higher
is its reliability. Typically, the verification phase ends and
is succeeded by the release process as soon as the manager
assumes a satisfiable software reliability. Therefore, we are
able to measure release readiness by measuring the reliability.
The time when to release the software equals the time it takes
to acquire a satisfiable reliability. As a result, the estimation of
remaining defects inside the product is an important criterion
for measuring release readiness.

McConnell [4] presents three defect tracking techniques
which are suitable for measuring the release readiness of a
software product:

1) Defect Density: The defect density is the average
number of defects per line of written code. By taking
into account the defect density of former software
products the development team is able to estimate
the number of defects in their current product.

2) Defect Pooling: In this technique two test teams
gather found defects in separate pools A and B.
Each team operates independently from one another
and tests the whole software. From this on, we can
further group the defects in the pools into unique
and common defects, i.e. defects which are only
present in one pool or defects which are present
in both. The approximate number of total defects
inside the software is given by defectsrora; =
defectsa xdefectsp/defectssyp. Finally, we sub-
tract the number of unique defects (i.e. defects which
are only present in one pool and not in the other) to
acquire the estimated number of remaining defects
inside the software.

3) Defect Seeding: During this approach one team in-
tentionally creates defects inside the product. Another
team performs the actual testing. The idea is, that the

ratio between seeded defects which have been found
and the well known total number of seeded defects
implies this ratio between the actual defects.

Quah et al. [5], [6] present another alternative for predicting
defects and, in turn, the release readiness of a software. Here,
the authors consider the architecture of the product to be a
good index of the number of its defects. They present an
architectural defect tracking approach. This method assumes
that the software architecture can be divided into 3 functional
tiers:

1) Data Access Tier: This software tier provides inter-
faces for accessing and modifying the application. A
SQL library is an example of a data access tier.

2) Business Logic Tier: Here are functions located
which make up the actual behaviour of the software.
The business logic tier acquires the data from lower
tiers and manipulates it according to the defined logic
of the software product. For example, an algorithm
calculating the shortest path between a starting point
and a destination can make up a business logic tier.

3) Presentation Tier: Handles the visualization and pre-
sentation of the data which the business logic tier
manipulates. Additionally, the presentation tier acts
as an interface through which the end user can
interact with the system. This tier is what generally is
perceived to be the view component (as in the model-
view-controller model of software development) of
a software. An example for this tier is a GUI of a
software.

The approach of architectural defect tracking suggests
that certain architectural properties of a software tier directly
correlate to the number of defects in that very tier. For this
reason, the approach introduces metrics for each tier from
which one is able to deduce the number of defects. Table I
summarizes these metrics according to the corresponding tier.
These metrics are processed in a two-layered neural network
approach. For each software component the first layer receives
the presented software metrics as input values. For data access
components the network receives the data access metrics, for
a business logic component the business logic metrics and so
forth.

From these metrics the layer determines whether the com-
ponent is ready to be released or whether it contains defects
that have to be removed. If the component actually contains
defects the second layer calculates the number of lines of
code that have to be changed and the time it takes to change
them. The amount of change necessary indicates the release
readiness of each component and, in total, indicates the release
readiness of the whole software. In order to acquire the desired
behaviour of the neural network, training is necessary. In
training the network has access to the actual data on the
number defects, the changed lines of code and the change time
for each component. By comparing the calculated output to the
actual data the network is able to learn and adapt itself on its
own. With long enough training the neural network is able
to effectively predict flawed components and the amount of
change necessary to fix them.

Normally, a software development project manager does
not aim to remove all defects inside the product. This is

Software Engineering Conference (MySEC), 2014 8th Malaysian , vol., no., pp.166,171, 23-24 Sept. 2014
doi: 10.1109/MySec.2014.6986008

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6986008

TABLE 1. THE METRICS USED FOR DEFECT TRACKING NEURAL
NETWORK GROUPED BY APPLICATION TIER ADOPTED FROM [5], [6].

[Tier [

Data Access

[Metric |

#
1 Total number of select-SQL commands
2 Total number of insert/update operations
3 Total number of delete operations

4 Average number of search conditions in where-
clauses found in all data manipulation statements

5 Total number of subqueries in data retrieval state-
ments

6 Total number of group by clauses in data retrieval
statements

Lack of cohesion in methods

Number of parents

Number of children

Depth of inheritance tree

Coupling between objects

Response for a class

Number of methods added

Number of attributes

Weighted methods per class

Average method complexity

Total number of user interface objects

Total number of messages between user interface
objects

Business

Presentation

S = e U N

because a lower defect density leads to a higher search time for
finding defects. In turn, this means that the cost for detecting
the next defect increases steadily (assuming no new bugs are
introduced meanwhile). Therefore, the decision whether to
release the software may not only depend on the number of
remaining defects but also on the costs for removing them. As
a result, the software development manager has to decide on
a threshold which he sees to be acceptable.

IV. QUALITY MEASUREMENT

An alternative approach for measuring release readiness
is the consideration of software quality criteria. According to
established standards [7] criteria for software quality include
among others:

1) Reliability

2) Functionality
3) Efficiency

4) Usability

In [8], [9], Olivieri et al. argue that commonly used
standards do not specify how these criteria can be quantified
and thus, developer cannot comparably measure them. Also,
developers can only measure some of these specified criteria
post-development and hence, are useless for release readiness
estimation. As a result the authors introduce the Software
Readiness Index (SRI). SRI is a collection of metrics based
on established quality criteria to measure the release readiness
of a software product. These metrics spread on the five
vectors Software Functionality, Operational Quality, Known
Remaining Defects, Testing Scope & Stability and Reliability.
The SRI covers the whole development life cycle with a heavy
focus on defect related criteria.

SRI comes in a basic and an enhanced version which
depends on the used metrics for each vector. Fig.1 illustrates
an overview of the full version. Here, 22 metrics determine the
five vectors of the SRI. The basic version reduces the number
of metrics to the six most important ones. Table II shows the
six chosen metrics of the basic version categorized according
to their respective vectors.

. Software Functionality 2.OperationalQuality 3.Known Remaining Defects

+ Development Defect e
“Tag Dnsity (CI & UT) 53:;,':’;&':"‘“
Implementation + Deviation from the + NotReproducible
Accuracy estimated KLQC - defects SOA
+ CR Volatility Index * Resource Availability + Notto be Fixed
+ Deviation of Rating i defects SQA
forward merges + Process C + Non rep i
from Initial Rating | Crash Defects
3 + Technical Documentatio Software
Planning 3
Readiness
5 perability Test 7% e Factors
+ Defect Closure during Availability (minfyr)
SQA
« CBT Testcase coverage i g /
+ Code Breakages during Defects (N)
regression cycle (Quality
of BugFix) :)
 Code Churn during Failure Rate (fail'yr)
regression (RT)
« Stability Index Fault Coverage Factor
4. Testing Scope Stability 8. Reliability
Fig. 1. Fish bone diagram of SRI taken from [9].
TABLE II. THE BASIC SRI VERSION ADOPTED FROM [8], [9].
[Vector [Metric

1. Software Functionality Tag implementation accuracy

2. Operational Quality Development defect density

3. Known Remaining Defects Deferred defects during software quality as-
surance

Non-reproducible crash defects

4. Testing Scope and Stability Total number of subqueries in data retrieval

statements

5. Reliability Residual defects

For reasons of calibration the manager can assign different
weights to each criterion as well as to each vector. The
overall release readiness is a value between 0 and 1 where
1 corresponds to a product which has maximum quality. To
determine the release readiness the authors offer three different
calculation models:

1) The additive model calculates the sum of each
weighted(W) criterion/vector(V):
SRI = Z?:O(Wi * Vi)

2) The multiplicative model calculates the product of
each weighted criterion/vector:
SRI = [[;_5(Wi * Vi)

3) In the hybrid model the manager can specify additive
groups of weighted criteria/vectors which are then
multiplied. For example:

SRI = (S (Wi Vi) (350 (Wi = V7))
The authors prefer this model since it showed to be
most suitable during their evaluation.

Choosing one calculation model, the manager is able to first
calculate the readiness value of each vector separately from its
criteria. In a second step he calculates the total software release
readiness from the vector readiness values.

Like reliability, perfect quality scores are generally un-
reachable. Using SRI the manager has to aim for a certain
threshold for the release readiness value. For this, the authors
introduce the thresholds Green, Yellow and Red for each
criterion, vector and the final release readiness. A value above
the Green threshold means that the corresponding criterion
fulfills the requirements and a value under the Red threshold
is not acceptable. The manager determines thresholds by
evaluating the data of previous projects, industry standards

Software Engineering Conference (MySEC), 2014 8th Malaysian , vol., no., pp.166,171, 23-24 Sept. 2014
doi: 10.1109/MySec.2014.6986008

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6986008

and user expectations. If the overall release readiness value
reaches the Green section and no sub-criterion is below the
Red threshold the software product can be considered to be
ready for release.

V. PROGRESS MEASUREMENT

Satapathy [10] introduces a release readiness metric called
Shiplt based on the overall development progress of the
software. The author is guided by the development life cycle
of the waterfall model. From there on this approach identifies 7
essential components of the software development process and
introduces criteria on how to measure their overall progress.
Table III gives an overview of this. Shiplt uses a layered
approach in which progress measurements on a lower layer
are accumulated to obtain the overall progress of the higher
layer. In this way, the approach introduces criteria to measure
the progress of subcomponents which, in turn, are used to
measure the respective component. From the obtained progress
of all components the authors then measure the progress, and
therefore the release readiness, of the whole product.

This approach is based on assumption that the development
team finishes the gathering as well as analyzing of require-
ments and software designing first before they start the coding
and testing of the software. This excludes models like agile
development, for example. Further on, the authors consider
the software ready to be released after it has been deployed at
the customer. Therefore, they also consider the components
supervision and support to be part of a release readiness
estimation.

Like in SRI the release readiness is a value between
0 and 1 where 1 corresponds to a software product which
cannot be enhanced any more for the release. Furthermore,
the manager can calibrate the measurements by weighting each
component. These weights represent experience from previous
projects and personalize the importance of each component
from the viewpoint of the manager. Shiplt measures each
component according to quantifiable criteria. From the values
gained for each component the model calculates the overall
release readiness value as the sum of its weighted components:
ShipIt = (32;_o(Wi * Ci))/100

The following explanations present the criteria for each of
the 7 components. The component requirement analysis and

TABLE III. OVERVIEW OF THE SHIPIT COMPONENTS FOR PROGRESS

MEASUREMENT ADOPTED FROM [10].

[Index [Component [Subcomponent]

C1 Requirements Requirements gathered
Requirements analysed
Software design

Co Coding Modules created
Objects created
Build times

Cs Testing Test coverage
Debugging

Cy Quality Test hours

Chs Documentation Requirements
Design
Implementation
Test Plan
User Guide

Ce Supervision Installation
Training

C7 Support Beta test bugs

design essentially consists of the three software development
processes: Gathering of requirements, analysis of requirements
and software design. Shiplt provides metrics for each of these
processes which are, in turn, used for calculating the value of
the whole component. These metrics measure the progress of
these development processes in the following way:

1) Requirements Gathering: The ratio between the re-
quirements demanded by the customer and the al-
ready developed requirements.

2) Requirements Analysis: The ratio between already
analysed requirements and those which still need to
be analysed.

3) Software Design: The ratio between the requirements
for which the design is done and those yet remain to
be done.

Like for the overall readiness value the sum of the weighted
measured processes is calculated as a value for C. Likewise,
the value for the coding component Cs is calculated. It consists
of the three processes module creation, object creation and
building:

1) Module Creation: The completed system, application
and GUI modules in relation to the respective mod-
ules still to be done.

2) Object Creation: The ratio between the overall time
needed to implement all objects and the already spent
time on that. For the time estimation the authors
propose either to use a combination of COCOMO
[11] with Albrecht’s Functional Points [12].

3) Building Process: The completed percentage of the
times spent for compiling, handling warnings and the
incremental build time as per platform dependency as
well as per compiler dependency.

Component Cs, the testing, consists of the processes bug
detection and debugging. ShipIt measures the progress of bug
detection by evaluating the completed percentage of covered
features in unit testing, the covered interactions between fea-
tures in integration testing and the executed overall integration
tests which are required. The progress of the debugging process
corresponds to the closed percentage of total issues.

Before measuring the quality assurance process Shiplt
requires a value for the desired software quality to be reached.
Generally, this value is decided by the manager who must
choose between quality and economic reasons. Having this
value it is possible to estimate the required time necessary
to attain the desired quality by applying appropriate models.
As an example the authors propose the zero failure test hour
method [13] which measures the reliability of a program by
the occurrence of observed software bugs. From there on, the
progress of software quality assurance can be measured by
taking the spent percentage of total test hours the applied
software quality model propose.

The documentation process is divided into creating re-
quirement, design, implementation, test plan and user guide
documents. For each of these documents we consider the
percentage of created documents. The total number of respec-
tive documents needed can be directly calculated after the
corresponding process has been completed.

Software Engineering Conference (MySEC), 2014 8th Malaysian , vol., no., pp.166,171, 23-24 Sept. 2014
doi: 10.1109/MySec.2014.6986008

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6986008

The processes installation and training make up the com-
ponent supervision. For the installation progress Shiplt con-
siders the overall distribution of the software, the installation
of the software and the executed acceptance tests. The training
process progress is measured by evaluating the fraction of
completion of developing training materials, validation of
the training program and the implementation of the training
program.

Finally, the last component, support, consists of the beta
test process. Here, the development team receives and handles
bug reports sent by beta customers. The crucial metric is the
maintainability index for this component. Like for the quality
the manager needs to agree with the customer on a required
value. The progress of the support is then measured by taking
into account the ratio between the actual and the required
maintainability index.

VI. COMPARISON

This work presented three different approaches to estimate
the release readiness of a software product. These approaches
based on different techniques which are defect tracking, soft-
ware quality measurement and progress measurement. In the
following sections, we compare these approaches according
to the scope of used criteria, the complexity of the software
readiness estimation, the time when the estimation can be
executed and finally possible restrictions of these approaches.
Table IV shows a summary of these comparisons.

A. Scope

There is a great overlap between the scopes of the three
approaches. Defect tracking concentrates on estimating the
remaining defects in the software. By this, argue that the
approach strongly focuses on a criterion for estimating reli-
ability. Hence, defect tracking connects the release readiness
of a software product with its reliability. The software is
ready to be released when the probability of failure occurrence
is satisfyingly low. The SRI, on the other hand, contains
a vector especially dedicated to reliability. In this way the
scope of the SRI includes the scope of the defect tracking
approaches. Explicitly, the authors of SRI emphasis on quality
and reliability criteria for the release readiness estimation. In
fact, quality enhances the scope of reliability by additional
criteria for maintainability, usability, etc. According to SRI
(and all quality measurement based approaches) the software
is ready for release when the software is able to meet the
specified requirements. Shiplt measures the whole progress of
the software development in regard to its release readiness.
Therefore its scope includes quality aspects. As we mentioned
before, the quality aspects include the aspect of reliability.
In this regard, Shiplt has the broadest range of criteria of
all three approaches: Progress measurement covers quality
measurement which in turn covers defect tracking in scope.

Having a look at the actual criteria used for release readi-
ness estimation this ratio does not necessarily hold up. SRI
does not measure reliability by estimating remaining defects
but uses other criteria for calculation, like the availability in
minutes per year and the failure rate in failures per year.

However, it is possible to use defect tracking in order to
estimate these criteria if the actual data is not present.

Shiplt uses established techniques to estimate the time
which is necessary to spend in order to acquire a certain
software quality. Therefore, the approach differs significantly
from SRI: While Shiplt estimates a time frame for when the
metric expects the quality to be met, SRI only measures the
current quality of the product.

B. Complexity

This section compares the number of required criteria to
estimate the release readiness and the effort to acquire these
criteria between the three approaches.

Shiplt is by far the most complex of the presented ap-
proaches: 30 end criteria are used to calculate the final release
readiness value. Furthermore, several intermediate metrics
have to be calculated and weighted for this approach. In addi-
tion to that Shiplt relies on estimation models like COCOMO
for measuring the coding effort and the zero fail test hour
method for measuring the software reliability.

In its full version SRI specifies 22 criteria with an overall
much simpler calculation model than Shiplt. Only five interme-
diate metrics must be calculated for the final release readiness
value. The criteria are based on direct project data at hand
(Deviation from the actual KLOC) or standards for quality
assurance (Stability Index). The basic version of SRI further
simplifies the measurement process: The manager only has to
consider 6 criteria. Whereby the method of calculation does
not change for the basic version.

The complexity of defect tracking differs according to the
used technique for defect estimation. Defect density, pooling
and seeding are by far the simplest approaches for measuring
release readiness. The necessary criteria are minimal and the
effort for acquiring them is relatively low. However, when
employing defect pooling the efficiency of the test team is
basically halved since both teams have to cover the whole
software separately. Likewise, there is an additional effort for
seeding defects which is not to neglect. Defect tracking by
architectural analysis, on the other hand, considers only 18
criteria which are comparatively easy to measure. All in all are
the defect tracking techniques the least complex approaches for
estimating release readiness.

C. Availability

Defect tracking is only available from the verification phase
of software development. That is, when the implementation
of the software has finished and testing starts. Comparatively,
SRI only delivers meaningful values in the later phases of
the development. This is because the approach is heavily
focusing on defect related criteria. Shiplt on the other hand
is designed to be available in every phase of the development
- from the beginning to the release. The approach can measure
the progress to release readiness at any point in the project.
Missing actual data (for the lines of code for example) can
be estimated fairly early. Also, since absent data resembles
0 percent of completion, Shiplt can still deliver meaningful
readiness values with missing criteria.

Software Engineering Conference (MySEC), 2014 8th Malaysian , vol., no., pp.166,171, 23-24 Sept. 2014
doi: 10.1109/MySec.2014.6986008

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6986008

TABLE IV. SUMMARY OF THE COMPARISON BETWEEN THE THREE RELEASE READINESS METRICS.
[[Scope [Complexity [Availability [Restrictions |
[Approach [Measurements [Focus [Thresholds [# Criteria [Dev. Phase [Architecture [Environment [Dev. Model]
Defect Tracking | Reliability Reliability | No T[4 718 [5], (6] | Testing All [4] 7 N-Tier [5], [6] | Al [417 00 [51, (6] | Al
[41-[6]
SRI [8], [9] Reliability Quality Yes 22 Coding All All All
Quality
Shpilt [10] Reliability Progress No 30 Analysis All All Waterfall
Quality
Progress

D. Restrictions

Due to their simplicity defect density, pooling and seeding
can be applied in any software project which employs testing.
Architectural defect tracking on the other hand clearly requires
an object-oriented environment in contrast business logic met-
rics cannot be raised. Furthermore, the technique assumes a
software can be divided into data access, business logic and
presentation tiers. While the architecture is common in current
software projects, in general, a clear separation between such
tiers are hard to recognize.

Shiplt requires a software development process which ori-
entates on the waterfall model. However, today agile processes
become much more common. As a result the necessary con-
ditions that the requirement analysis or the designing process
is strictly separated from the coding may not be given.

SRI neither requires a specific development process model
nor does its criteria require object orientation. In this way the
approach is valid for any kind of software product.

VII. CONCLUSION

All three approaches come with advantages and disadvan-
tages. In the end the best approach to choose depends on the
situation of the project. Defect tracking has the least criteria
to measure for release readiness determination. However, it
should only be used in a project phase when everything besides
software testing is out of question. Here, also the architectural
defect tracking is an option if the software is implemented in
an object oriented environment and sticks to the required n-tier
model.

Shiplt is the most complex and at the same time the
shallowest of the three approaches. Shiplt covers practically
the progress of the whole development process but does
not detail important aspects like quality and reliability. The
approach supports giving an overview over the progress of the
project but loses its usefulness for release readiness estimation
in later phases where quality and reliability aspects become
increasingly important.

The SRI generally seems to be the most comprehensive
approach for most situations. In the later phases, where the
question of release readiness becomes more important, the
SRI offers meaningful criteria for tracking the quality of the
product in term of software and hardware as well, reliability
included. Also the approach supports decision making by
providing Green and Red thresholds. Furthermore, the manager
can trade off between precision and complexity by choosing
the basic version of SRI. All these features and lack of
restrictions make the SRI very versatile and the best practice
of measuring the release readiness in many situations.

Overall, our comparison suggests that the measurements of
release readiness is inadequate and non-holistic measurement
is applied in literature. Consequently, when-to-release software
still remains an unclear question in software organization. Re-
lease readiness measurement will be adequate and acceptable
if the metrics include software quality and progress of the
whole development process. This holistic measurement will
give much better decision to release engineer in when-to-
release software in the future.

REFERENCES

C. Plewnia, A. Dyck, and H. Lichter, “On the influence of
release engineering on software reputation.” Mountain View, CA,
USA: In 2nd International Workshop on Release Engineering, April
2014. [Online]. Available: http:/releng.polymtl.ca/RELENG2014/html/
proceedings/releng2014_submission__3.pdf

(1]

[2] J. Ho, S. Shahnewaz, and G. Ruhe, “A prototype tool supporting when-
to-release decisions in iterative development.”” Mountain View, CA,
USA: In 2nd International Workshop on Release Engineering, April
2014. [Online]. Available: http:/releng.polymtl.ca/RELENG2014/html/

proceedings/releng2014_submission__11.pdf

J. Musa, A. Iannino, and K. Okumoto, Software reliability:
measurement, prediction, application, ser. Software engineering series.
McGraw-Hill, 1990. [Online]. Available: http://books.google.de/books?
id=uctNQAAAAMAAJ

S. McConnell, “Best practices: Gauging software readiness with
defect tracking.” IEEE Software, vol. 14, no. 3, pp. 135-136,
1997. [Online]. Available: http://dblp.uni-trier.de/db/journals/software/
software14.html#McConnell97b

J. Quah and S. Liew, “Gauzing software readiness using metrics,” in
Soft Computing in Industrial Applications. 1EEE, June 2008, pp. 426
—431.

T.-S. Quah and M. M. T. Thwin, “Utilizing computational intelligence
in estimating software readiness.” in IJCNN. IEEE, 2006, pp.
2999-3006. [Online]. Available: http://dblp.uni-trier.de/db/conf/ijcnn/
1jcnn2006.htm1#QuahT06

D. Hoyle, ISO 9000 Quality Systems Handbook: Using the
Standards as a Framework for Business Improvement. Butterworth-
Heinemann, 2009. [Online]. Available: http://books.google.de/books?
id=HWNWdBisJcoC

J. Olivieri, “Hardware and software readiness: A systems approach,” in
Systems Conference (SysCon). 1EEE, March 2012, pp. 1 — 6.

A. Asthana and J. Olivieri, “Quantifying software reliability and readi-
ness,” in Communications Quality and Reliability. 1EEE, May 2009,
pp. 1 - 6.

P. R. Satapathy, “Evaluation of software release readiness metric [0,1]
across the software development life cycle,” 2008.

(4]

(5]

(6]

(71

(8]

(91

[10]
[11] B. Boehm, Software Engineering Economics, ser. Prentice-Hall
Advances in Computing Science & Technology Series. Pearson
Education, 1981. [Online]. Available: http://books.google.de/books?id=
VphQAAAAMAAJ

A. J. Albrecht and J. E. Gaffney, “Software function, source lines
of code, and development effort prediction: A software science
validation,” IEEE Trans. Softw. Eng., vol. 9, no. 6, pp. 639-648, Nov.
1983. [Online]. Available: http://dx.doi.org/10.1109/TSE.1983.235271

H. Sandoh, “Reliability demonstration testing for software,” Reliability,
IEEE Transactions on, vol. 40, no. 1, pp. 117-119, 1991.

[12]

[13]

Software Engineering Conference (MySEC), 2014 8th Malaysian , vol., no., pp.166,171, 23-24 Sept. 2014
doi: 10.1109/MySec.2014.6986008

