
Towards an Architecture Quality Index for the
Behavior of Software Systems

Ana Dragomir, Horst Lichter
RWTH Aachen University

Research Group Software Construction

Aachen, Germany

{ana.dragomir, horst.lichter}@swc.rwth-aachen.de

Abstract—Software architecture lies at the backbone of any
software system and its choice directly influences important non-
functional characteristics such as maintainability, extensibility,
etc. Up-to-date software architecture descriptions should be at
any time available to support the analysis and evaluation of the
current state of the architecture. However the current state of the
art lacks both methodologies and tools for ensuring availability
of architecture descriptions and fails to offer objective means
for evaluating software architectures. Currently, no generally
accepted method for comparing software from an architecture
point of view exists. In this paper, we present our current
results towards creating a so-called architecture quality index
that includes a bidirectional architecture quality model as well
as a quality benchmark created for the context of the ARAMIS
research project. The proposed architecture quality index aims to
support the architects to evaluate and compare the architecture
of software systems based on information extracted during the
considered systems’ run-time.

Keywords—Architecture Quality Index; Software Architecture
Reconstruction; Communication Integrity; Software Architecture
Evaluation;

I. INTRODUCTION

In software projects, the maintenance phase overtakes more
than half of the total development effort. To reduce the
maintenance effort, sound software architectures should be
employed and their degeneration should be carefully avoided.
For this, architecture analysis and evaluation means should be
available. Furthermore, to be able to control the evolution of
a given architecture towards improving its quality it should be
possible to define and compare to each other various evolution
scenarios proposed by the architects. However, in order to
make any two architectures or evolution variants thereof be
comparable from a quality perspective, architecture quality
definition, assessment and prediction models should be used.
The compared architectures can then be assessed according to
given criteria of interest. Furthermore, predictions regarding
the evolution of their quality can be made. According to the
results, a comparison can be performed.

The code quality index introduced in [1] has been defined
to aid the continuous monitoring and comparison of technical
quality of software systems and to support decisions like
software acquisition by defining a means to easily assess
and benchmark the quality of the considered systems. The
code quality index relies on a bidirectional quality model that
realizes a mapping between subjective technical quality char-
acteristics of interest (e.g., stability, maintainability, etc.) and

objectively measurable attributes of a system (e.g., number of
classes, lines of code, etc.). Based on this, a quality benchmark
containing five levels has been defined. Any analyzed software
can then be assigned to a quality benchmark level according
to the scores that it gets when mapped on the bidirectional
quality model. The higher the assigned benchmark level lies,
the better the technical quality is.

The code quality index proposed in [1] only addresses
the technical quality of a system. We consider that a similar
index could be useful for assessing and comparing software
architectures as well. The goal of this paper is to explore the
creation of an architecture quality index for the context of our
research project ARAMIS [2].

The current paper is structured as follows: in Section II
we briefly introduce the concept of a quality index and its
constituent elements. In Section III we explain the context for
which we create the architecture quality index and give an
overview of the resulted bidirectional quality model and quality
benchmark. In Section IV we exemplify the applicability of
the developed index to assess the well known JHotDraw
framework. Section V gives an overview of related work.
Section VI summarizes the paper and gives an insight for our
future work.

II. BUILDING AN ARCHITECTURE QUALITY INDEX

A. Bidirectional Quality Model

In order to evaluate software architecture quality, this
must first be defined. According to the context in which the
evaluation takes place, different quality characteristics might
be of interest. However, these are often rather intangible and
subjective (e.g. “architecture changeability”). On the other
hand the evaluated entity (in this case the software architec-
ture) exposes measurable attributes that can be relatively easy
computed but do not directly give information about quality.

The problem that arises is to achieve a mapping between
the measurable attributes on the one hand and the subjective
quality characteristics on the other hand.

As shown in Figure 1, a bidirectional model includes
both a top-down quality decomposition as well as a bottom-
up approach for crystallizing quality indicators based on
measurable attributes. During the top-down decomposition,
the quality characteristics are refined to more tangible ones
(e.g., reliability is refined in fault tolerance). The bottom-up
approach takes as input the measurable attributes and analyzes

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97



Fig. 1: Bidirectional Quality Model [1]

their correlation to discover anomalies (attribute values that
have a significant deviation from their expected value, e.g.,
“number of violations over 50%”) and anti-patterns (anomalies
with justified negative effects, e.g., “many violations make
the architecture hard to maintain”). Anti-patterns are then
related to quality indicators, which are factors that have been
proved to influence the achievement of one or more quality
characteristics. Thus the top-down and bottom-up analyses
meet at the level of the quality indicators, closing the gap
between what is needed and what is measurable.

We consider that a bidirectional quality model is also
useful for evaluating the quality of software architecture. The
following arguments support our assumption:

• it is a very pragmatic approach. It is often the case
that a pure top-down approach leads to the necessity
of measuring attributes that are not available or for
which the measurement effort is too high and does
not pay off. On the other hand, a pure bottom up
approach suffers from the problem that the obtained
results are not relevant to give insight about the quality
characteristics of interest. The bidirectional model
offers a solution to these problems, by concentrating
on the quality characteristics but only making use of
quality indicators that are crystallized from attributes
that could have been originally measured.

• it is context-specific and extendable. Only the quality
characteristics important in a specific context can be
taken into account. If others need to be later added,
the effect of the already existing quality indicators on
the newly added ones must be studied and based on
the measurable attributes new relevant anomalies, anti-
patterns and quality indicators can be added.

B. Quality Benchmark Levels

After creating a quality definition model, we shift the focus
towards defining an assessment model. Because decision mak-
ers often require semaphore-like evaluations (the architecture
of system A is green/yellow/red), we also consider that a

benchmarking approach as proposed in [1] could be useful.
A benchmarking-based evaluation assigns each evaluated ar-
chitecture a quality level. The higher the assigned level, the
better the architecture is. Thus, the levels are constructed to be
gradually harder to be achieved. In the lower levels, only basic
measured attributes are considered. Also, the thresholds of the
anomalies are chosen generously. Further on, the higher the
benchmarking level, the more attributes are considered and the
harder it is, to achieve the values of the anomalies thresholds
(see Figure 2).

Fig. 2: Quality Benchmark Levels

III. AN ARCHITECTURE QUALITY INDEX FOR

ARAMIS-CICE

In this section we will exemplify the construction of an
architecture quality index in the context of the ARAMIS-CICE
(the Architecture Analysis and Monitoring Infrastructure
for Architectural Communication Integrity Checking and
Evaluation) infrastructure presented in [2]. ARAMIS-CICE
is an instantiation of ARAMIS, a general architecture for
building tool-based approaches that support the architecture-
centric evolution and evaluation of software systems with a
strong focus on their behavior.

ARAMIS [3] offers a concept for monitoring software on
different levels of abstraction. It has a components-oriented

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97



architecture, as depicted in Figure 3. The Architectural
Information Bus (AIB) collects run-time architecture-relevant
information from the analyzed software systems. The AIB
then redirects the collected information to an Architectural
Information Broker (AIBR) to which several Architectural
Information Processors (AIP) are registered. After receiving
the information relevant for their analysis purposes, the AIPs
process it and consequently redirect it to specific Architecture
Information Viewers (AIV) to visualize the results.

Fig. 3: ARAMIS - General Architecture [2]

Built as an instantiation of ARAMIS, the goal of ARAMIS-
CICE is to map the intercepted communication on architecture
units from the static view of the architecture description,
validate it according to specified architecture communication
rules, and offer metrics to characterize the architecture units
from a behavior-oriented point of view.

A simplified version of the meta-model that enables within
ARAMIS-CICE the definition of the static architecture de-
scription, its contained units and the rules governing their
communication is depicted in Figure 4. The meta-model
is explained in detail in [2] and thus we limit ourselves to
explaining only its main characteristics.

Architecture units can contain lower-level architecture units
(e.g., a component can be divided in layers). The units
themselves are untyped, to preserve the full flexibility of the
definition language, but contain an optional role attribute with
no semantics attached to it. The role simply conceives the de-
signed purpose of that unit (e.g., layer, pipe, filter, subsystems,
etc.). Furthermore, to achieve the code to architecture mapping,
the architecture units can include code units, which are pro-

Fig. 4: ARAMIS-CICE - Meta-Model [2]

Fig. 5: ARAMIS-CICE Architecture

gramming language-independent, untyped representatives of
code building blocks (e.g., packages, namespaces, structures,
etc.) extracted from the run-time traces of the analyzed soft-
ware. To map the code building blocks on code units, we use
filters that can specify either exact or regular expressions-based
mappings, according to the analyzed system’s programming
language syntax and the structure of the run-time traces. The
communication between various architecture units is governed
by communication rules. A communication rule is defined for
an ordered pair of architecture units in which the first archi-
tecture unit is allowed or denied to call the second architecture
unit, e.g.,: it is denied for the architecture unit “system model”
to call the architecture unit “system controller”.

The resulted architecture of ARAMIS-CICE is presented in
Figure 5. As sub-components of the AIB we used the Kieker
monitoring framework [4] to collect the run-time traces and
an additional Monitoring component that reads the Kieker log
files, replays them, translates the data in a more convenient for-
mat and sends them to an instantiation of AIBR (the ARAMIS
Information Broker). The AIBR is implemented using the
extensible messaging and presence protocol (XMPP). Next, we
instantiated the Architecture Mapper AIP that subscribes itself
to receive the data produced by the Monitoring component
and then maps the intercepted communication on code units
and architecture units. We model the static architecture view
in an xml file, whose schema adheres to the ARAMIS-CICE
meta-model. Next, we built two ARAMIS-CICE specific AIPs:
the Integrity Validator and the Metrics Processor. The Integrity
Validator validates the mapped communication against its gov-
erning communication rules. The mapped and validated data is
then resent to the AIBR and eventually rerouted to a Metrics
Processor, that computes for each of the involved architecture
units the values of two metrics used to characterize the current
unit’s behavior [2]. Note that the metrics computed within
ARAMIS-CICE are merely offering a characterization of the
behavior of the units (low vs. medium vs. high behavioral
cohesion and coupling), but are not suitable for evaluating the
quality of the analyzed behavior.

In order to enable an evaluation of the monitored and
analyzed behavior from an architecture point of view, we
define in the next sections a bidirectional quality model and
a suitable benchmark to support the creation of an ARAMIS-
CICE quality index.

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97



A. A bidirectional quality model for ARAMIS-CICE

In the following, we first introduce the quality characteris-
tics (Q) of interest in the context of ARAMIS-CICE and the
quality indicators (QI) that influence these. Next, we present
the measurable attributes (A), the anomalies (An) and the anti-
patterns (AP) to which the anomalies can lead to. These are
visually depicted in Figure 6.

1) Quality characteristics and quality indicators: Having
validated the various calls inside the monitored system and
characterized their behavior using ARAMIS-CICE, the next
question that arises is regarding the quality of the analyzed
architecture. Given the behavior focus of ARAMIS, an evalu-
ation that builds on its output will also obviously be behavior-
specific: a system will be evaluated only according to its
monitored behavior. Therefore, the evaluation of any system S
will depend on the subset Sc of scenarios that are performed
by the system while being monitored.

In the context of this paper, we define the following top-
level quality characteristics of concern:

• architecture conformity (Q1)- is the architecture of the
system still conforming to its architecture description
to a reasonable extent?

• architecture changeability (Q2) - is the architecture
of the system open for changes? can the architecture
units of the system be replaced easily, if needed?

We chose the architecture conformity characteristic be-
cause it is strongly related to the goal of ARAMIS-CICE
to validate the communication integrity of a software system.
Furthermore, we chose changeability, the ISO/IEC 9126-1 sub
characteristic of maintainability, because we consider that -
given the dynamics of modern software systems to rapidly
accommodate new and changing user requirements - this is
a frequent goal that architects nowadays strive for. However,
the model is not complete and should only be regarded as an
example of applying the presented concept in the context of
the ARAMIS project.

We further refine architecture conformity in two concrete
quality characteristics:

• architecture communication integrity (Q1.1). This
term was proposed by Luckham et al. [5] to be a
“property of a software system in which the system’s
components interact only as specified by the architec-
ture”. In the context of ARAMIS-CICE we can derive
that a system exposes communication integrity, if the
defined architecture units communicate according to
the communication rules in which they are involved.

• adherence to architecture roles (Q1.2). We consider
that an architecture unit adheres to its role, if its
behavior is in accordance to the characteristics of its
role. We note here the fact that even if an architecture
unit does not violate any communication rules, it can
still be possible for it to behave “atypically”: e.g.,
a facade that only forwards very few of the calls it
receives and resolves the others within itself.

We refine architecture changeability in the quality char-
acteristic modular architecture units (Q2.1), because if the

architecture units that compose the architecture are exposing
this property, then their interfaces and responsibilities are well
defined and can therefore be easily exchanged, if needed.

Having refined the quality characteristics into more con-
crete ones, we now analyze some quality indicators that can
be used to check the achievement of these characteristics.

The number of violations (QI1) is a quality indicator that
can be directly linked with the architecture communication
integrity quality characteristic. Obviously, the smaller the
number of violations, the better the communication integrity
is and vice versa.

The role-conformant behavior (QI2) is a quality indicator
that points if the behavior of a given architecture unit corre-
sponds to the characteristics of its role. E.g., if the role of an
architecture unit is “facade”, then the architecture unit should
have a relatively low behavioral cohesion and a relatively
high behavioral coupling [2]. More precisely, the number
of external calls received by the architecture unit should be
relatively close to the number of calls issued by this unit and
much higher than the number of calls occurring in the unit
itself. This is because a facade is supposed to merely redirect
external calls to other architecture units for which the facade
stands for. Evidently, this indicator can be directly linked with
the adherence to architecture roles quality characteristic but
also with the architecture communication integrity because we
assume that if the unit behaves as specified by its role, then it
probably also does not cause violations in the architecture.

The modularity of the architecture units is obviously indi-
cated by these having well defined interfaces (QI3) and a good
internal structure (QI4). These two indicators are the premises
of achieving low coupled and highly cohesive architecture
units.

2) Measurable attributes, Anomalies and Anti-patterns:
Using ARAMIS-CICE we are currently able to determine the
values of the following attributes for a given system S, during
the execution of a given set of scenarios Sc :

• number of calls inside the system (A1)

• number of architecture violations that occurred in the
system (A2)

• number of violations in which a given architecture unit
has been involved (A3)

• number of received calls of an architecture unit com-
ing from external architecture units (A5)

• number of calls towards external architecture units
issued by a given architecture unit (A6)

• number of calls that have occurred inside an archi-
tecture unit (A7)

Furthermore, based on the architecture description of a
system S, we can determine what is the architecture role of a
given architecture unit (A4).

The anomalies and anti-patterns exposed by a monitored
software system can be detected when analyzing possible value
combinations of the various attributes mentioned before:

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97



Fig. 6: Bidirectional Quality Model for ARAMIS

• a high percentage of violations (An1) can be observed
if studying the relation between the total number of
violations and the total number of calls. Furthermore
this anomaly can indicate that the architecture has
degenerated (AP1), which is an anti-pattern that we
want to avoid.

• an atypical architecture unit behavior (An2) can be
ascertained if the architecture unit is involved in too
many violations. Also, if the number/percentages of
received and issued external calls and the number of
internal calls occurring inside the architecture unit
is not in accordance with the characteristics of its
role, then the architecture unit behaves atypically. An
atypical behavior anomaly helps detect an anti-pattern
that we call degenerated architecture unit behavior
(AP2).

• The relation between the internal calls occurring in
an architecture unit and the number of received or
issued external calls, can indicate that the percentage
of external calls is too high (An3). This is an anomaly
because it contradicts the well known “lose coupling,
high coherence” principle. Naturally, the anti-patterns
that can be related to this anomaly are high coupling
(AP3) and low cohesion (AP4).

B. Connecting the quality characteristics with the anti-
patterns

Having decomposed the architecture characteristics that
interested us in the context of ARAMIS-CICE and having
aggregated the measurable attributes to anomalies and anti-
patters, it is now necessary to close the gap between the top-
down and bottom-up analyses by connecting the anti-patterns
with the quality indicators that are affected by these. The
connections are mostly obvious.

A degenerated architecture (AP1) most probably contains
many architecture violations and it therefore negatively influ-
ences directly the “no violations” (QI1) quality indicator.

Furthermore, if the architecture of a given architecture unit
has degenerated (AP2), then its behavior will not be role-
conformant any longer (QI2).

A high coupling between the architecture units (AP3)
indicates that the interfaces between these are not very well
designed and responsibilities are not clear (QI3).

Last, an architecture unit with low cohesion (AP4) is
probably not having a good internal structure (QI4), because
its constituting parts do not seem to belong together, affecting
other important properties such as understandability, stability,
etc.

The complete resulted bidirectional quality graph is de-
picted in Figure 6.

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97



C. A quality benchmark for ARAMIS

Based on the previously described ARAMIS bidirectional
quality model, we can now create a quality benchmark to
support the comparison of the quality of various software
architectures. The benchmark can be used for various purposes:

• compare the software architectures of different sys-
tems. In an enterprise architecture context, this com-
parison could help architects understand what are
the most important improvement potentials and what
systems need to be improved first, in order to increase
the quality of the overall landscape. Comparing the
architecture of different systems can also support
acquisition decisions, by making explicit the quality
difference between otherwise functionally equivalent
products.

• analyze the evolution history of a system. By pe-
riodically benchmarking a given system, architects
can discover improvements, quality drops and trends
thereof. In case of quality drops, corrective actions
can be taken before serious architecture degradations
might occur.

• make evolution predictions. Based on the benchmark-
ing history of a given system, predictions could be
made regarding the future evolution of the system.
Furthermore, if evolution scenarios are created and
formally described, the benchmark could be used
to understand which scenario leads to the biggest
improvement of the quality characteristics considered
in the model.

Next, we propose a possible quality benchmark for
ARAMIS-CICE. As explained in Subsection II-B, the higher
the benchmarking level, the more restrictive the accepted
anomalies thresholds are and the more attributes are taken
into consideration. The conditions that an architecture needs
to meet to belong to a given benchmark level are summarized
in Table I. Note, that in order to belong to a certain level all
the conditions of the current level and of all the previous ones
need to be met.

As we have designed the benchmark, the first level (“de-
generated”) indicates a highly degenerated architecture where
more than half of the calls occurred during the execution of a
set of scenarios Sc represent violations.

In order to define the conditions that need to be met
on the next levels, a preliminary prioritization of the top-
level quality characteristics was done. We considered that
architecture conformance is more important than changeability
and should be met sooner. If the architecture of the system
were changeable but did not conform to its description, than
architects and developers can be prevented from taking ad-
vantage of the systems changeability, because they do not
understand the system.

Thus, the anomalies related to architecture conformity
(the high percentage of violations - An1, and the atypical
architecture unit behavior - An2) are considered sooner, in
the lower benchmark levels (rudimentary and acceptable). For
the last level (good) we then imposed further conditions for
the threshold of the anomaly related to changeability (i.e., the

TABLE I: Quality benchmark for ARAMIS

Level Name Conditions

Degenerated -

Rudimentary
< 50% violations
< 50% of the architecture units have degenerated behavior

Acceptable
< 25% violations
< 25% of the architecture units have degenerated behavior

Good

< 5% violations
< 5% of the architecture units have degenerated behavior
< 40% of the architecture units are highly coupled
< 40% of the architecture units are low cohesive

proportion of units exposing a high percentage of external vs.
internal calls - An3). Thus, an architecture is benchmarked as
“good” if, additionally to conforming to its description, it is
also changeable.

IV. EVALUATION

We exemplify the applicability of the created ARAMIS-
CICE quality index using the open-source framework JHot-
Draw, because this was widely acknowledged to have an
exemplary architecture and design, being built as a show case
for important design patterns. JHotDraw consists of 126068
LOC, 529 classes and 38 packages.1

To monitor JHotDraw with ARAMIS-CICE we used the
“draw samples” application of the JHotDraw framework to
monitor the execution of a simple, but JHotDraw-specific
scenario, ScJH: we created two rectangles, added a label on
each of them and created an arrow between them. For the
architecture mapping, we created code units for all the 12
top-level packages of the framework and assigned them to 12
corresponding architecture units.

After analyzing ScJH with ARAMIS-CICE we remarked
that only 7 architecture units were involved to a reasonable
extent in the realization of this scenario. We have thus defined
architecture rules only between these units, according to our
understanding of JHotDraw. Furthermore, we have confirmed
that our understanding of the architecture is correct by com-
paring the rules defined by us within ARAMIS-CICE with the
structure resulted when analyzing the considered JHotDraw
packages with the STAN structural analysis tool [8]. According
to the structure analysis depicted in Figure 7 there are
only 4 violations within the analyzed packages, between the
jhotdaw.gui and jhotdraw.app. Using ARAMIS-CICE none of
these violations has been detected in the scenario ScJH. Thus,
according to our analysis, there are 0% violations occurring
in the JHotDraw system, making it a candidate for the “good”
benchmark level.

Furthermore, according to the results that we presented in
[2] we can also draw the conclusion that all the involved archi-
tecture units are behaving in conformity with their architectural
role:

1The LOC were counted using the CodeStats [6] tool. The number of Java
classes and packages were counted using Sonargraph [7].

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97



• the jhotdraw.geom architecture unit is having a utility
character, exposing general two-dimensions geometry
computations. Its utility character is very well sup-
ported by its behavior: in the calls in which this unit
is involved, the unit is called by other ones in 71%
of the cases and only 29% of the calls are occuring
inside the unit itself.

• the jhotdraw.util architecture unit is also having a
utility character, reflected by very low rate of internal
calls (5%) compared to the rate of calls issued by
external components (95%).

• from all the method calls in which the jhot-
draw.samples.draw architecture unit was involved in,
only 0.02% of them were internal ones. The others
99.98% were calls that the this unit has issued to-
wards other units. Since the jhotdraw.samples.draw
is described to be “just a drawing application” built
on top of the JHotDraw framework, then its role is
mostly that of an interface, often calling other units
that implement the actual logic.

• from the calls in which the jhotdraw.draw and jhot-
draw.beans architecture units are involved into, 81%
and 73% respectively are internal ones. These units
are central to the jhotdraw architecture and these high
values highlight their highly cohesive and low coupled
nature.

• the jhotdraw.gui and jhotdraw.app expose a moder-
ate cohesive behavior (57% and 63% respectively
are internal calls). They are described in the JHot-
Draw documentation as providing “general purpose
graphical user interface classes” and as “a framework
for document oriented applications that provides de-
fault implementations” respectively. Since no further
assumptions about their roles are being made, we
conclude that their moderate cohesive and coupled
behaviors conform to their role as well.

Since all the architecture units exposed a role-conformant
behavior, the only condition that needs to be checked for
assigning JHotDraw the best benchmark level is that more
than 40% of the considered architecture units are changeable.
However, given that only 2 (jhotdraw.draw and jhotdraw.beans)
out of the 7 considered units (i.e., 28.5%) exposed a highly
cohesive and low coupled behavior, this condition is not met.

Hence, according to the ARAMIS-CICE quality index, the
JHotDraw application, as demonstrated during the execution
of the scenario ScJH, has an “acceptable” architecture quality.

Before concluding this section, we stress again the impor-
tance of the chosen set of scenarios during which the execution
of the considered system is monitored. The result is directly de-
pendent of this choice and thus, representative scenarios should
be used. While this can be seen as a disadvantage, important
benefits can arise as well, because the result reflects the quality
of the architecture, as it is given by its representative scenarios:
possibly outdated or irrelevant parts of the architecture do not
influence the result of the evaluation.

Fig. 7: Structure of JHotDraw

V. RELATED WORK

Software architecture recovery and evaluation approaches
have been already proposed by both the research and industry
community. A comprehensive, yet not complete, listing of
software architecture reconstruction approaches as well as a
categorization thereof can be found in [9]. Unlike ARAMIS-
CICE most of these tools focus on the reconstruction and
evaluation of the static view of software architecture (e.g., [8],
[10], [7], [11], [12], [13], [14]).

Behavior reconstruction and analysis approaches have also
been proposed, but they tend to focus on examining the
low-level interactions inside a software system, which leads
to cluttered and often incomprehensible outputs. E.g., based
on specified naming conventions, DiscoTect [15] analyses a
system’s run-time traces to extract architectural information
(method calls, calling objects, etc). A solution for monitoring
the communication within “systems of systems” has also been
proposed in [16] - however, focusing primarily on the mere
communication and not on its integrity check as in the case of
ARAMIS-CICE.

Methods to evaluate software architectures are also pub-
lished but primarily focus on the quality of the structure rather
than that of the behavior. However, as acknowledged in various
sources (e.g., [17]), dynamic metrics have advantages over
static metrics and should be considered more often. Various
proposals for architecture behavior metrics have already been
proposed ([18], [19], [20]), but they refer to low-level interac-
tions and/or are scarcely evaluated.

To assess the quality of the reconstructed views some tools
offer metric dashboards. The STAN structural analysis tool
[8], offers a listing of predefined code-quality and dependency
metrics to ease the evaluation of the considered system.
Sonargraph-Architect [7] also offers a built-in dashboard con-
taining size- and structure-related metrics. The dashboard can
be easily customized to include additional metrics that were

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97



not considered previously. Furthermore, the dashboard displays
semaphore colors for the various values of the computed
metrics for a given system, in order to ease their interpretation.
An architect can compare more systems to one another by
comparing their dashboards. However, a quality index that
would partially automate such a comparison is not available.

An interesting approach that enables the comparison of
various software systems from a quality point of view is
offered in SonarQube [21]. With SonarQube a rules compli-
ance index is being computed for each analyzed system. With
SonarQube, systems can be compared to each other based on
their compliance to code-quality guidelines. However, similar
architecture analyses are not available.

Maturity models for the various facets of enterprise ar-
chitecture (i.e., also for the maturity of IT architecture) have
also been proposed (e.g., [22]). Using such architecture quality
models, the IT architectures of various organizational units can
be compared to each other and improvement potentials can be
identified. In contrast, the architecture quality index proposed
in this paper aims to ease the comparison of the software
architectures of various systems (rather than organization units
as a whole) based on their monitored behavior. Furthermore,
we focus on the quality of the architecture as a product, and
not on its creation and evolution process.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented our first results towards
creating a quality index consisting of a bidirectional quality
model and a corresponding quality benchmark for evalu-
ating and comparing the quality of software architectures
based on monitored interactions during their run-time. We
presented ARAMIS-CICE, an instantiation of the ARAMIS
general architecture that was built to support the understanding,
communication integrity validation and characterization of
the behavior view of a software architecture. We have then
defined two of our quality characteristics of concern and
decomposed them to more concrete ones using a top-down
approach. Next, we have used a bottom-up approach to map the
measurable attributes within ARAMIS-CICE with anomalies,
anti-patterns and finally quality indicators. By connecting the
quality indicators with the decomposed quality characteristics
we have created a suitable bidirectional quality model, that
we have then used to define a quality benchmark consisting
of four levels: “degenerated”, “rudimentary”, “acceptable” and
“good”. We have evaluated our quality index using ARAMIS-
CICE to analyze the JHotDraw framework during the execu-
tion of a representative scenario. We have ranked JHotDraw
as having an “acceptable” architecture.

In our future work we plan to revise the quality index,
by considering more quality characteristics and measured at-
tributes. The necessity of different quality models for different
phases of the software’s life cycle will be analyzed. Since
the characteristics result from non-functional requirements that
might be volatile, maintaining the bidirectional traceability
between these should be also explored. Furthermore, a more
extensive evaluation is planned, in which several functionally
equivalent systems resulted from various student projects are
benchmarked in order to assess if their comparison from a
qualitative point of view is possible. Last but not least, we

will assess if the created index can be used to predict which
variant from a set of possible architecture evolution variants
would lead to a better benchmarking position if chosen.

REFERENCES

[1] F. Simon, O. Seng, and T. Mohaupt, Code-Quality-Management -
Making the technical quality of industrial software systems transparent
and comparable (in German). dpunkt.verlag, 2006.

[2] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in Asia-Pacific Software Engineering Confer-
ence (APSEC), December 2014.

[3] A. Dragomir and H. Lichter, “Model-based software architecture evolu-
tion and evaluation,” in Asia-Pacific Software Engineering Conference
(APSEC). IEEE, December 2012, pp. 697–700.

[4] A. V. Hoorn, J. Waller, and W. Hasselbring, “Kieker : A framework for
application performance monitoring and dynamic software analysis,” in
3rd ACM/SPEC International Conference on Performance Engineering
(ICPE), April 2012, pp. 247–248.

[5] D. C. Luckham, J. Vera, and S. Meldal, “Three concepts of system
architecture,” in Technical Report, Stanford University, 1995.

[6] CodeStats, http://sourceforge.net/projects/codestats/, 2013.

[7] Sonargraph-Architect, https://www.hello2morrow.com/products/
sonargraph/architect, 2013.

[8] “The STAN Reconstruction Tool,” http://stan4j.com.

[9] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 4, pp. 573–591, 2009.

[10] M. Lindvall and D. Muthig, “Bridging the software architecture gap.”
IEEE Computer, vol. 41, no. 6, pp. 98–101, 2008.

[11] G. Buchgeher and R. Weinreich, “Connecting architecture and imple-
mentation,” in OnTheMove (OTM) Workshops, ser. Lecture Notes in
Computer Science, R. Meersman, P. Herrero, and T. S. Dillon, Eds.,
vol. 5872. Springer, 2009, pp. 316–326.

[12] L. Pruijt and S. Brinkkemper, “A metamodel for the support of
semantically rich modular architectures in the context of static archi-
tecture compliance checking,” in Proceedings 11th Working IEEE/IFIP
Conference on Software Architecture (WICSA, 2014, pp. 8:1–8:8.

[13] Structure101, http://structure101.com/, 2014.

[14] S. Herold and A. Rausch, “A rule-based approach to architecture
conformance checking as a quality management measure,” in Relating
System Quality and Software Architecture (To Appear). Elsevier.

[15] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “Discotect:
A system for discovering architectures from running systems,” in The
26th International Conference on Software Engineering (ICSE), 2004,
pp. 470–479.

[16] M. Vierhauser, R. Rabiser, P. Grnbacher, C. Danner, S. Wallner, and
H. Zeisel, “A flexible framework for runtime monitoring of system-of-
systems architectures,” in Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2014.

[17] J. K. Chhabra and V. Gupta, “A survey of dynamic software metrics,”
Journal of Computer Science and Technology, vol. 25, no. 5, pp. 1016–
1029, Sep. 2010.

[18] S. M. Yacoub, H. H. Ammar, and T. Robinson, “Dynamic metrics for
object oriented designs,” in IEEE METRICS, 1999, pp. 50–61.

[19] E. Arisholm, L. C. Briand, and A. Fyen, “Dynamic coupling mea-
surement for object-oriented software,” IEEE Transactions on Software
Engineering, vol. 30, no. 8, pp. 491–506, 2004.

[20] A. Mitchell and J. F. Power, “Run-time cohesion metrics: An empirical
investigation.” in Software Engineering Research and Practice, 2004,
pp. 532–537.

[21] SonarQube, http://www.sonarqube.org/, 2013.

[22] T. O. Group, http://www.opengroup.org/subjectareas/enterprise/togaf,
2014.

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091220&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.75,82, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.97




