
Lessons Learned on Systematic Metric System
Development at a large IT Service Provider

Matthias Vianden∗, Horst Lichter†
Research Group Software Construction

RWTH Aachen University

{matthias.vianden∗, horst.lichter†}@swc.rwth-aachen.de

Abstract—Even though a lot of work was contributed to extend
and enhance metric requirements gathering techniques, metric
systems are often developed chaotically and a solid dedicated
metric system engineering approach is still missing. This paper
provides our experiences at developing a metric system together
with a large IT service provider and presents an overview on
our reference architecture for enterprise measurement infrastruc-
tures. Furthermore we give some insights into our metric systems
engineering approach which integrates software engineering best
practices, modern ideas like micro services, and well established
metric related techniques such as GQM.

Index Terms—Metric Systems; Reference Architecture; Field
Study

I. INTRODUCTION

By analyzing metrics, process managers are able to identify

processes that contribute to project success or failure. There-

fore, process improvement models such as CMMI encourage

software development organizations to build up abilities to

systematically apply metrics and measure the quality of the

development processes and software systems [1]. This makes

metrics the key necessity for objective process and product

optimization. However, the research community agrees that it

is often difficult to find the ”right” metrics and provide ”good”

measurements.

Well established methods like Basili’s GQM [2] or its

modern variations like GAM [3] may help to gather re-

quirements for metrics and dashboards but they are far away

from a complete engineering approach which should include

requirements engineering, development, testing, operation, and

maintenance. Münch and Heidrich successfully worked on

metric dashboards [4] and proposed a GQM based devel-

opment method [5]. Unfortunately, this and several other

proposed approaches follow a waterfall processes model and

tend to not utilize modern software engineering ideas such as

incremental and iterative development, SOA, or prototyping.

Also the maintenance and operation phase is not addressed.

We have organized this paper as follows. Section 2 presents

the basic concepts of metric systems. We present the core

ideas of a reference architecture for enterprise measurement

infrastructures in section 3 followed by a description of the

environment for the presented field study in section 4. Section

5 gives an overview of the main stakeholders that our metric

system engineering approach addresses. We describe the most

important activities and tasks of the development process that

we applied during the field study in section 6. Section 7

lists major recommendations extracted from this field study.

Finally, section 8 concludes this paper.

II. CORE CONCEPTS

Dashboard

Monitor Measurement 
Value

Metric

Visualizes

Define Measurement
and Interpretation of

Information Need

Answers

Measurement
Customerhas

*

*

*

*

Metric System

Fig. 1. Relationships of the central metric system concepts

Fig.1 depicts the central metric system concepts and re-

lationships. It is a simplified version of a common metric

and measurement ontology, e.g. the ones published by Olsina,

Staron, and many others [6]–[9], and aligns well with ISO

15939 [10]. The core of a metric system are dashboards
containing monitors that answer information needs of a mea-
surement customer. Monitors visualize measurement values
from various sources. The measurement or calculation of the

values as well as their interpretation is defined by a metric.

Unlike GQM we don’t believe that the information needs

should be fairly distinct from each other. On the one hand,

two different monitors can answer the same need. For example

the information need ”How is the ratio between known and

addressed defects?” could be answered by a monitor showing

a bar chart of the new, known, and answered defects per week

and a monitor showing a bullet graph of the open defects. On

the other hand, an information need may be only answered

by a combination of monitors. E.g., the information need ”If

we are behind the planned schedule, are staffing problems the

reason?” could be answered by a monitor showing a bullet

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091215&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.47,50, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.92



graph for the current schedule variance and a second monitor

showing a list of staffing problems per day.

III. EMI REFERENCE ARCHITECTURE

From the core concepts in the previous section we derived a

flexible, specific, and micro service-based reference architec-

ture for enterprise measurement infrastructures (EMIs) [11],

[12]. The most important services and layers are depicted in

Fig.2.

Data
Adapter

Data
AdpaterData Adapter

Data Transport
and Integration

Calculation
and Storage

Visualization

...

Enterprise Measurement Data Bus (EMDB)

Metric
Kernel

Metric
Kernel

Dashboard

...

Data
Adpater

Data Provider

...

O
pe

ra
tio

n 
Su

pp
or

t

...
Data Flow Control FLow

Fig. 2. Condensed static view on the EMI reference architecture

The information needs are addressed by specialized anal-

ysis or dashboard tools in the Visualization Layer. The data

required for the calculation of metrics is provided by systems

in the Data Provider Layer in the bottom. These systems are

connected to the infrastructure using Data Adapters in the

Data Adapter Layer.

Visualization tools often require aggregated information

besides pure base values. This information is produced and

provided by services in the Calculation and Storage Layer, so

called Metric Kernels. The Data Transport Layer realizes a

common communication infrastructure for all services of the

Calculation and Storage Layer and of the Data Provider Layer.

The Operations Support Layer contains services to operate and

monitor the infrastructure.

IV. ENVIRONMENT

This field study was conducted in co-operation with a large

IT provider for insurance companies which needs to deal

with legacy systems as well as provide modern services. As

this IT provider is CMMI Level 3 certified, all development

projects need to apply the organization’s standard development

process. We worked together with the engineering-process

group and were supported by two metric experts from within

the company. In the later stages of the field study the company

started a dedicated project to support the development and

pre-production stages of the metric infrastructure including

development and operation teams as well.

V. STAKEHOLDERS

A metric system needs to address the requirements of differ-

ent stakeholders. Based on a literature review and our former

experience we identified the following five main stakeholders

each providing a specific set of requirements regarding the

architecture and the resulting measurement infrastructure.

Measurement Customer: A typical example of a mea-

surement customer is a project manager who is interested in

the actual status of a project. Measurement customers have

a brought variety of information needs. Unfortunately, the

answers to the different information needs are often stored in

different tools. Typically, the information needs of measure-

ment customers change over time. Especially reorganizations

lead to new and changed responsibilities of measurement

customers which inevitably lead to changes in information

needs. Hence, a metric system and its development process

has to support the evolution (i.e. constant change) of metrics,

integrated systems, and visualizations.

Metric Expert: The metric expert is responsible to assist

metric customers in finding the right metrics, maintaining

metric best practices and managing organizational wide met-

rics and measurement programs. Typically, large organizations

have dedicated metric experts whereas in smaller ones process

managers, software architects, or lead developers fill up this

role. Metric experts like to provide common and generic

solutions to the metric customers that best fit their needs.

Architect: They are responsible to design the metric ser-

vices and the actual enterprise measurement infrastructure us-

ing established reference architectures and concepts as guides.

They require a broad set of tools and concepts to deal with

the integration of different systems and data and also like to

maintain and use clear guidelines for architectural decisions.

Developer: They implement metrics, visualizations, and

tools to gather data. They need a clear structure of all specific

tasks during the metric system development. Furthermore they

need development support for debugging during development

as well as core services like a dedicated logging service.

The micro service-based reference architecture requires that

the development process addresses different integration stages

in order to allow the developer to test the metric services

incrementally.

Operator: This stakeholder is often ignored when designing

and implementing metric systems. The operations depart-

ment’s most important task is to guarantee that all (metric)

systems are working inside their operational parameters. This

requires a set of operation tools as part of a metric system as

well as addressing these operation needs in the requirements

phase for the metric system.

VI. DEVELOPMENT PROCESS

Obviously, using a specific reference architecture implies

specific steps in the development process. These steps align

with the services in the layers of the reference architecture,

most importantly the dashboard and visualization tools that

satisfy the information needs. As it is always hard to define

the right metrics and visualizations, we performed several

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091215&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.47,50, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.92



iterations on prototypes. This provided a solid base for the

construction of the metric system. The construction itself was

cut into increments to decrease complexity and receive early

feedback. As mentioned before we involved the operation de-

partment early and addressed their requirements by specialized

operation services in the metric infrastructure.

A. Requirements Analysis and Conception
Fig.3 depicts the main steps of the requirements phase

and the two construction increments of the metric system.

The three main requirements sub-processes are located in the

left. They were executed iteratively (indicated by the loop-

icon). Additionally, the whole requirements process could

be executed iteratively as well if excessive flaws would be

detected during the ”Prototype and Evaluate” or the ”Plan

Increments” sub-process.
The requirements gathering sub-processes started with an

assessment of existing metric systems used by the IT service

provider. Because we noticed that the information needs of

the project managers were changing we conducted interviews

to systematically gather these changes [13]. We then analyzed

the changed information needs and developed a prototype for a

new metric-based monitoring dashboard which was evaluated

by the project managers. Furthermore, we developed some

prototypes focusing on specific monitors. After some iterations

we arrived with the central visualizations and diagrams re-

quired for the project managers. Then we analyzed all gathered

requirements and specified the realization increments. The first

one focused on metrics to analyze project risks, the second

focused on metrics based on error and enhancement tickets.

B. Risk Metrics Increment
We started the increment by identifying and planning the

design of the required metric services (data adapters, metric

kernels, visualizations, and dashboards). The design was again

performed iteratively. We first created a rough version of the

EMI and specifically focused on the integration part. Then, we

started the detailed design of the required data adapters and

metric kernel. In parallel we conducted several workshops to

discuss possible failures and exception behavior in order to

define meaningful test scenarios and test cases. We evaluated

the design and did some minor changes after the first iteration.
Then we started the construction of the metric services. The

integration of the developed services worked flawless due to

the good and thorough design before we started construction.

Every service could be tested in a local EMI environment.

We also tried to continuously deploy the current versions

of the metric services to a pre-production environment. This

enabled continuous testing by the metric experts and provided

important feedback to the developers. This construction of the

metric services was finished after 1.5 months and we were

able to release a first version and start pre-production tests

with metric customers.

C. Ticket Metrics Increment
The focus of the second increment was to implement a dash-

board for monitoring ticket-based metrics. It was also started

by identifying the required metric services. Unfortunately, due

to resource constraints the design activities were skipped.

Hence, the developer had to perform the design ”on the fly”.

The local development of the metric services again worked

smoothly due to the well designed reference architecture and

development and operation tool support. The deployment and

test in the pre-production environment, however, did not work

as flawlessly as anticipated. The reasons were problems with

the deployment configuration and incompatible interfaces as

well as configuration issues within the dashboard services. The

development also took longer than anticipated. A lot of these

problems, from our point of view, are due to the missing design

phase.

VII. RECOMMENDATIONS

Throughout the field study we gathered a lot of experience

with the development of metric systems. In this section we

present the most important lessons learned supporting an

effective an efficient development of metric systems.

Apply appropriate requirements gathering techniques!
Mind mapping, for example, is a appropriate technique

to order and arrange goals and information needs. This

is especially helpful in workshops. We also recommend

using mind maps to document information needs because

they allow space saving documentation of hierarchical

data.

Involve metric experts from the beginning! We rec-

ommend that at least one metric expert participates in

the interviews or workshops because metric experts

become particularly useful if the discussion is to

one-sided or stuck.

Apply best practices to identify metrics! We typically use

GQM to analyze the information needs. However, we

very rarely use the formalized goal definition as this

typically leads to unnecessary and narrow discussions.

Furthermore, we try to align the metrics with the mea-

surement information model of ISO 15939. We recom-

mend to keep your set of metrics as simple and small

as possible without sacrificing metrics for a dedicated

information need.

Develop prototypes iteratively and incrementally! We rec-

ommend developing the monitors incrementally one after

the other. Each monitor itself should be developed iter-

atively. After a new monitor is added the dashboard has

to be evaluated to ensure that all monitors together cover

the information needs addressed so far.

Always perform a design phase! This is very obvious and

well known! Especially if the development team does

not have a solid understanding of the the reference

architecture it is important to include a design phase and

to evaluate the designs.

Provide tool support and frameworks! Using a framework

according to a reference architecture can drastically re-

duce the development effort and increase reference ar-

chitecture compliance. It supports the development with

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091215&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.47,50, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.92



Risk Metrics Increment

Ticket Metrics Increment

Specification

Requirements 
Gathering

Prototype and Evaluate

Plan Increments

Identify Metric 
Services and Plan 

Design

Design Metric 
Services

Design Tests
and Exceptions

Evalutate Design
Construct Metric 

Services

Deploy and Test in 
Local Environment

Deploy and Test in Pre-
Production Environment

Release and Start 
Operation

Identify Metric 
Services

Construct Metric 
Services

Deploy and Test in 
Local Environment

Deploy and Test in Pre-
Production Environment

Release and Start 
Operation

Fig. 3. BPMN diagram of the main process steps used to develop the metric system at the IT service provider

dedicated hot-spots and pre-fabricated solutions for typ-

ical problems and can provide ready-to-use services as

well.

VIII. CONCLUSION

We received a lot of positive feedback from the metric

customers on the thorough requirements gathering phase and

inclusion of several dashboard and monitor prototypes. The

resulting solid requirements also eased increment planning

and design as well as construction of the two increments.

On the one hand, we described the problems which raised in

the second increment when skipping the design phase. On the

other hand, we also saw that a solid reference architecture and

supporting framework as well as ready-to-use services ease

and streamline the development even without a solid design

as a foundation.

We are currently conducting further field studies utilizing

our metric systems engineering approach (i.e. reference archi-

tecture and process model) to further improve our approach.

We are also enhancing our framework to a full-fledged soft-

ware development kit (SDK) for multiple development plat-

forms to support the construction of enterprise measurement

infrastructures even further.

REFERENCES

[1] C. P. Team, “CMMI for Development, Version 1.3 CMMI-DEV, V1.3,”
Tech. Rep. November, 2010.

[2] V. R. Basili, “Software modeling and measurement: the
Goal/Question/Metric paradigm,” p. 24, 1992. [Online]. Available:
http://portal.acm.org/citation.cfm?id=137076

[3] L. Cyra and J. Górski, “Extending GQM by Arguement Structures,” in
CEE-SET 2007, vol. 44, no. 5. Springer, Sep. 2008, pp. 26–39.

[4] J. Heidrich and J. Münch, “Software project control centers: concepts
and approaches,” Journal of Systems and Software, vol. 70, no. 1-2, pp.
3–19, 2004. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V0N-49KH2NM-4/2/b4f711c4ad0a0614f67ea2a1b1947eee

[5] ——, “Goal-oriented setup and usage of custom-tailored
software cockpits,” in PROFES ’08: Proceedings of the 9th
international conference on Product-Focused Software Process
Improvement. Springer-Verlag, 2008, pp. 4–18. [Online]. Available:
http://www.springerlink.com/index/e13058u041024759.pdf

[6] L. Olsina and M. D. L. A. Martı́n, “Ontology for Software
Metrics and Indicators: Building Process and Decisions Taken,”
in Web Engineering, 2004, p. 778. [Online]. Available: http:
//www.springerlink.com/content/vk22y143djyhpgrx

[7] M. Staron and W. Meding, “A Modeling Language for Specifying and
Visualizing Measurement Systems for Software Metrics,” 2007, pp. 300–
307.

[8] J. A. McQuillan and J. F. Power, “Towards re-usable metric definitions
at the meta-level,” in PhD Workshop of the 20th European Conference
on Object-Oriented Programming (ECOOP 2006), 2006.

[9] L. Chirinos, F. Losavio, and J. Bø egh, “Characterizing a data model
for software measurement,” Journal of Systems and Software, vol. 74,
no. 2, pp. 207–226, 2005.

[10] ISO, “ISO/IEC 15939: 2002 Software Engineering - Software Measure-
ment Process,” International Organization for Standardization, Geneva,
Switzerland, Tech. Rep., 2002.

[11] M. Vianden, H. Lichter, and A. Steffens, “Towards a Maintainable
Federalist Enterprise Measurement Infrastructure,” in Joint Conference
of the 23nd International Workshop on Software Measurement (IWSM)
and the 8th International Conference on Software Process and Product
Measurement (Mensura), Ankara, Turkey, 2013.

[12] M. Vianden, “EMI Homepage,” 2014. [Online]. Available: http:
//www.enterprise-measurement.com

[13] M. Vianden, H. Lichter, and S. Jeners, “History and Lessons Learnt from
a Metrics Program at a CMMI Level 3 Company,” in Proceedings of
20th Asia-Pacific Software Engineering Conference, APSEC 2013, Vol.
2, no. CMMI, 2013.

© IEEE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7091215&isnumber=7091193

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific , vol.2, no., pp.47,50, 1-4 Dec. 2014
doi: 10.1109/APSEC.2014.92




