
Systematic Architectural Decision Management
A process-based Approach

Ana Dragomir, Horst Lichter, Tiberiu Budau
RWTH Aachen University, Research Group Software Construction

Aachen, Germany
{adragomir, lichter}@swc.rwth-aachen.de

tiberiu.budau@rwth-aachen.de

Abstract— The documentation of architecture and design
decisions lies at the backbone of building a comprehensive
architectural knowledge basis within a company. As a
consequence, a plethora of supporting frameworks has been
lately proposed by the research community. The existing
frameworks focus on capturing the rationale that lies behind a
certain decision, but less on sustaining the collaborative process
that architects employ when making decisions. In this paper, we
propose an innovative architectural decision making process that
sustains the collaboration of architects, the timely notification of
involved stakeholders, the inclusion of feedback cycles to improve
the overall quality of the architecting process and a tag-based
traceability system that leverages informal learning. The analysis
of the current state of the practice in the industry has been
conducted within various workshops and interviews with our
industry cooperation partner – the software provider of one of
the biggest insurance trusts worldwide. Based on these results, we
have identified various improvement potentials that are still not
addressed by existing research in the field. (Abstract)

Keywords—architecture decisions; process-based; feedback
cycles; collaboration; architectural decisions making process;

I. INTRODUCTION
According to the generally accepted Lehman’s Laws of

Increasing Complexity and Decreasing Quality, unless proper
measures are taken, over time the complexity of a system
increases and its quality tends to diminish [1]. To ensure a
sustainable evolution of software systems and avoid increasing
complexity and declining quality, important decisions need to
be taken at an architectural level. The set of architectural-level
decisions taken during a software system’s lifecycle represent
the rationale of its architecture. As early as the 1990s it was
already acknowledged that, along with elements and their
form, rationale is a crucial facet of software architecture [2].
Rationale has since gained ever more importance, architecture
being often described as the set of architectural decisions that
were made through the lifecycle of a software product ([3],
[4]).

Although many approaches to document architectural
decisions have been proposed, we have recognized based on
interviews and workshops undergone with architects and
process managers of Generali Deutschland Informatik
Services (GDIS) (the IT provider of one the biggest insurance
service groups worldwide) that important practice-relevant
requirements are still not covered by the existing state of the
art. We have identified four important improvement potentials

that are not thoroughly addressed by the current state of the art
and concretized them in a new, innovative concept.

The remainder of this paper is organized as follows: in
Section II we give an overview of the related work. Section III
presents our research goals. Section IV summarizes the current
state of the practice in the industry, as opposed to the state of
the art in academia (covered in Section II) and highlights the
identified improvement potentials. Section V presents our
solution concept. Section VI concludes and gives an outlook
of our work.

II. RELATED WORK

Kruchten has emphasized the importance of documenting
decisions, rationale being present in all the views of the well-
known “4+1 Model” [5]. Later on, he has developed an
ontology of architectural decisions [6], being the first that
described them as first class entities. In [6], a preliminary, yet
still actual, analysis of the typology of architectural decisions,
their attributes, and relations to one another and to other
external artifacts is presented.

The notion of rationale has been later refined in the well-
known ISO/IEC/IEEE 42010 [7] standard, to which we also
adhere: “architecture rationale records explanation,
justification or reasoning about architecture decisions that
have been made”. The rationale for a decision can include the
basis for a decision, alternatives and trade-offs considered,
potential consequences of the decision and citations to sources
of additional information” [7].

While Kruchten posed the question “what should be
considered when documenting architecture decisions?” later
research focused more on the “how” aspect. As remarked in
[8], there are currently three well-established approaches for
documenting decisions: decision templates, architectural
annotations and decision models. Our concept focuses on a
life-cycle process for architectural decisions that should be
built on top of a well-defined decision model. In comparison
to a template- or annotations-based approach, this may add
increased overhead, however, the benefits outweigh the costs,
as automation and sound tool support can pave the way to
several advantages and to enforcement of quality attributes –
at the architectural decisions level ([21]).

A plethora of related approaches have been developed or
are being developed by the scientific community in this
direction. In [9] a “rationale-based architecture model” has
been introduced. Central to this approach is the traceability of

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6827128

Software Architecture (WICSA), 2014 IEEE/IFIP Conference on , vol., no., pp.255,258, 7-11 April 2014
doi: 10.1109/WICSA.2014.39

the architecture rationale – embodied in decisions – to
architecture elements such as requirements or software
components. Traceability plays also in [10] a central role: the
decisions are documented using a template intertwined with
elements extracted from a self-developed requirements model
(traceability to requirements) and from ACME [11]
component descriptions. Other approaches further focus on
creating traceability links between decisions, the static
architecture view (described using ADLs [12] or reconstructed
from the source code [13]) and eventually the corresponding
source code. However, we have observed that in practice
traceability is often not considered and, when asked, architects
always prefer very flexible solutions that do not assume
complicated integrations of various heterogeneous repositories
(code repositories, requirements repositories, etc.). As a
consequence, in contrast to the above mentioned approaches,
our solution offers a flexible tag-based mechanism that allows
the easy definition of new traceability types whenever
necessary.

In [14], three inter-decision relationship types are
proposed: “restricts”, “associate/implies”, and “refines”.
However, an elaborate industry evaluation is missing.
According to our industry case study, the architects could not
always envision the usability of the inter-decision
relationships and militated also here for an extension of the
tag-based approach, which we have developed for the
traceability feature.

One of the most generic, yet comprehensive and complete,
architectural decision models is defined in [8] and basically
includes three sections: general information, alternatives and
their argumentation and traceability to other artifacts and AD-
relationships. Our solution goes one step further by including
more advanced collaboration and feedback features as well as
tag-based traceability and inter-decision relationships. In [8] a
decision process including an innovative decision refinement
cycle (“approve/challenged”) is also proposed. However, this
cycle does not include feedback from other stakeholders, nor
does it document feedback explicitly. Furthermore, the authors
do not specifically state whether this refinement is done
collaboratively or in isolation, whether the architects are peers
in a network or they answer to a higher authority.

Tool-based approaches (e.g., [12], [15] and [16]) focus
also on the pure documentation or reuse of decisions, offering
minimal or no support for the collaboration of the involved
architects. The ArchiTech tool described in [17] aims to offer
more support for the architects, by giving them
recommendations that best suit their quality requirements and
constraints. The “facts” on which the recommendations are
based need to be modeled by a domain engineer, this leading
to a rather centralistic approach. By contrast, we plan to offer
support by enhancing the collaboration of architects, offer
hints based on past experience and include feedback cycles.

Last but not least, to the best of our knowledge, the explicit
notification of interested stakeholders regarding the decision’s
change of status has not been mentioned in any research paper
yet published.

III. GOALS

Considering the problems stated in the first section and
keeping into account that the current state of the art fails to
address them, our main goal is to develop a concept that
efficiently sustains the decision making process of software
architects. To achieve this, we have pursued the following
sub-goals:

• G1: Analyze the existing decision making process
that architects are following in practice

• G2: Identify improvements of the previously
identified process

• G3: Develop an enhanced process that addresses the
previously identified improvements

IV. CURRENT STATE OF THE PRACTICE

The state of the practice described in this section is based
on our experiences with GDIS. Being CMMI Level 3 certified,
GDIS implements the “Decision Analysis and Resolution”
[18] process area and documents the wide majority of
decisions taken within various projects.

We have recorded the state of the practice in three main
steps: (1) an initial meeting with three GDIS employees to get
an overview of the decision making process in the company,
(2) a thorough analysis of the decision artifacts of two large-
scale projects (45000 and 9000 IT person days respectively),
and (3) 12 follow-up discussions with further employees
where the results of step 2 were presented and discussed upon
– thus gaining new insights.

GDIS uses a template to document architectural decisions.
The template includes many of the attributes proposed in the
literature (e.g. [6], [8], [15], [19], [22], etc.), such as: title,
problem description and motivation, complete list of identified
alternatives, selected alternative, invoked stakeholders,
derived requirements and related decisions. Unlike most of the
state of the art (exception making very few, e.g., [20]), GDIS
went one step further to prioritize the criteria considered for a
given decision and then quantify the selected alternatives
based on these. However, within the context of the same
project, the quantification of identified criteria occurred
differently: using either numbers from 1 to 10, or “--“, “-
“,”0”,”+”,”++”, etc. Even more, the analyzed projects were
using different project-specific locations (CVS repositories,
Wiki pages, etc.) to store the decisions and often apply the
template very differently or even change it.

Traceability links to other artifacts are not documented,
but architects considered that including these might be useful.

Next, we have analyzed through elaborate discussions with
managers and architects how the current decision making
process occurs. The main six steps that constitute it are: S1: A
problem/issue at the architectural level is identified, and a
decision needs to be made how to solve it. S2: The architects
identify and discuss the various alternatives that could be
considered. S3: The architects quantify all alternatives,
using a set of relevant criteria. S4: The architects determine
the best alternative based on the quantification performed in

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6827128

Software Architecture (WICSA), 2014 IEEE/IFIP Conference on , vol., no., pp.255,258, 7-11 April 2014
doi: 10.1109/WICSA.2014.39

the previous step. S5: The architects discuss the implications
of the chosen alternative. S6: Only now, that is after the
decision has been analyzed and made, one of the previously
involved architects is designated to document it in the
project’s template instantiation. When asked, the architects
mentioned that they rarely analyze past decisions for their
impact nor do they use decisions taken in other projects to
learn from and accused the bad decisions retrievability as the
main factor that leads to this. Feedback cycles are rarely
present in the decision making process. Furthermore, they
mentioned that the lack of proper notification mechanisms
leads to the fact that employees often oversee the outcome of
some decisions that they might have been previously
interested in.

 At any time during the steps S2 to S5, if the issue proves
itself to be beyond the expertise, knowledge or authority of the
involved architects the decision can be escalated to other,
higher-level, decision forums defined within the company.

 Based on the performed analysis we have identified the
following improvement potentials: (I1) The decisions should
be documented in a central location based on a well-defined
domain model imposed across all projects; the decision
making process should be tool-supported and include various,
optional feedback loops; (I2) Decisions should be easily
retrievable; (I3) It should be possible to flexibly add
traceability links to other artefacts; (I4) Notification
mechanisms to communicate the outcome of decisions should
be employed.

V. PROPOSED APPROACH
In our opinion, the collaborative process ([23]) that

architects employ when making decisions should be sustained
by proper tool-support based on a common data repository and
used across projects. To achieve this, the decision making
process should be first defined and described. We consider,
that this is possible by defining and describing the lifecycle of
a decision, which corresponds to the automaton shown in
Figure 1. We have chosen an automaton over a flow-chart
based model, in order to abstract away from the actors. This is
because we deliberately wanted to create a process generic
enough to be implemented as a workflow in companies with
varying guidelines and policies (I1).

The automaton contains six states that we have grouped
according to the phases of the well-known Deming cycle in
order to underline that continuous improvement should be one
of the major goals of the decision making process.

During the “initializing” state, the architect initiating the
decision specifies the decision’s title and formulates its
problem description. Once this is completed the available
alternatives need to be identified, and so the decision moves in
the “in progress” state. In this state, the initiating architect
can involve other architects by notifying them and request
their collaboration. The invited architects can then
collaboratively work on the set of alternatives by deleting,
editing or adding new ones. To avoid long waiting times, the
refinement is time-framed, the time until which the refinement
is possible being communicated to the architects during the
notification. Once the time for collaborative refinement

expires, the notified architects are no longer allowed to add
new alternatives, unless a new collaborative refinement
session is initiated and they are again invited to contribute.
The reason for this is to encourage architects to propose their
alternatives in due time and thus to encourage collaboration.
After the decision has been collaboratively refined, it moves to
the “in debate” state. In this state the involved architects can
select the relevant criteria to be considered and they can
initially quantify the alternatives according to them. Proactive
feedback types, such as criteria estimation hints based on the
past decision making history can be offered here in order to
ease the quantification effort. Furthermore, if additional
feedback from other architects is needed, or if the decision
needs to be escalated, then it can be transferred for a given
period of time in the “in review” state, during which the
newly notified collaborators can make amendments, i.e., by
adding or deleting criteria or modifying the scores of existing
ones. If the reviewers consider that the proposed alternatives
need changes, the decision can return in the “in progress”
state. Otherwise, when the set time expires, the decision
returns automatically in the “in debate” state, from where it
can be subject to another review/escalation phase (i.e. returns
in the “in review” state) or finally closed, ending in the
“decided” state. In this state, the decision, although made
and thus immutable, can still be commented upon, by anyone
who wishes to do so. These comments will not change, in any
way, the decision’s final state, their sole purpose being to
allow the retrospective knowledge sharing.

Figure 1. Lifecycle of a decision

Finally, while in the “in progress” or in the “in debate”
state, the decision can be dropped, i.e., it is decided that the
decision must not be further considered nor implemented
anymore (e.g. because the upper management decided so). In
this case, the decision ends in the “dropped” state where it is
saved in its current form together with the reason why it was
discarded.

Regardless of its state, traceability links to other artifacts
(such as risks, requirements, etc.) can be defined or the
decision can be involved in relationships with other decisions.
Also, at any time during the process, the architects can search
for related decisions that could help them improve the current
one, by discovering new alternatives, understanding past
rationale, etc. To make decisions easily retrievable but also to
easily add new traceability types and inter-decisions relations,

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6827128

Software Architecture (WICSA), 2014 IEEE/IFIP Conference on , vol., no., pp.255,258, 7-11 April 2014
doi: 10.1109/WICSA.2014.39

we propose the use of semantic tags, ordered by semantic tag
types (I2, I3). The main advantage of our tag-based approach
is that new types of traceability (risk traceability, software
components traceability, etc.) and inter-decision relations
types (implication, refinement, etc.) can be added very easily
in the system, by simply defining new semantic tag types.
These tags and tag-types can then be easily used to define
complex search queries that can potentially improve the
decisions retrievability to a great extent. Thus, complex
queries of the type: “search all decisions of the PROJECT
PRJ11 that affect the COMPONENT CRM and violate the
COMPANY-GUIDELINE CG10” or “retrieve all the
alternatives that expose the RISK of running over-budget” are
now becoming possible. Note that words in capital letters are
tag-types while words in italics are concrete tags.

Last but not least, once the decision has been decided upon
or dropped, notification mechanisms should be employed in
order to communicate its outcome to interested stakeholders.
At the decision level one should be able to specify what
stakeholders or groups of stakeholders should be notified
when a change occurs. Furthermore, stakeholders should be
able to also subscribe themselves to various topics, using the
same tag mechanism specified above (e.g.: “notify me when
decisions in the context of PROJECT PRJ11 are made”).
Again, note that words in capital letters are tag- or inter-
decision relationship types while words in italics are concrete
tags (I4).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose a new concept that capitalizes on
the current state of the and further focuses on enhancing the
collaboration of involved architects and boosting informal
learning by including feedback cycles and tag-based
traceability and inter-decision relationships. Throughout our
work, we have closely collaborated with our industry partner.
We claim that this has conferred our concept a very
pronounced “industry touch”.

In our future work, we plan to evaluate our concept in the
industry. Furthermore, we will analyze what metrics could be
used to determine the quality of the decision making process.
According to discussions with our industry partner, metrics in
this field are highly desirable.

ACKNOWLEDGMENT
The authors want to thank our partners from Generali

Deutschland Informatik Services for their continuous support
throughout our work.

REFERENCES
[1] M. M. Lehman, “Programs, life cycles, and laws of software evolution”,

IEEE, vol. 68(9), pp. 1060–1076, 1980.
[2] D.E. Perry, A.L. Wolf, “Foundations for the study of software

architecture”, ACM SIGSOFT Software Engineering Notes, vol. 17(4),
pp. 40–52, 1992.

[3] S. Zörner, “Softwarearchitecture documentation and communication:
Effectively and Reproducible Document Designs, Decisions and

Solutions” (in German: “Softwarearchitekturen dokumentieren und
kommunizieren: Entwürfe, Entscheidungen und Lösungen
nachvollziehbar und wirkungsvoll festhalten”), Hanser, München, 2012.

[4] J. Bosch, “Software architecture : the next step”, European Workshop on
Software Architecture, vol. 3047, pp. 194-199, 2004

[5] P. Kruchten, “Architectural blueprints - the 4+1 view model of software
architecture”, IEEE Software, pp. 42–50, November 1995

[6] P. Kruchten, “An ontology of architectural design decisions in software-
intensive systems”, the 2nd Groningen Workshop on Software
Variability Management, pp. 1–8, 2004

[7] ISO, Systems and Software Engineering – Architecture Description.
ISO/IEC/IEEE 42010, pp. 1–46, May 2011

[8] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation
framework for architecture decisions”, Journal of Systems and Software,
85(4), pp. 795–820, April 2012

[9] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning”, Journal of Systems and Software,
vol. 80(6), pp. 918–934, June 2007

[10] D. Dermeval, J. Pimentel, C. Silva, J. Castro, E. Santos, G. Guedes, M.
Lucena, and A. Finkelstein, “STREAM-ADD - Supporting the
documentation of architectural design decisions in an architecture
derivation process“, IEEE 36th Annual Computer Software and
Applications Conference, pp. 602–611, July 2012

[11] D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural Description
of Component-Based Systems. Foundations of Component-Based
Systems, Gary T. Leavens and Murali Sitaraman (eds), Cambridge
University Press, 2000

[12] A. Jansen, J. van der Ven, P. Avgeriou and D. K. Hammer, “Tool
support for architectural decisions”, the Sixth Working IEEE/IFIP
Conference on Software Architecture (WICSA'07), pp. 44-54, 2007

[13] G. Buchgeher and R. Weinreich, “Automatic tracing of decisions to
architecture and implementation”, the Ninth Working IEEE/IFIP
Conference on Software Architecture, IEEE Computer Society, pp. 46-
55, 2011

[14] B. Michalik, J. Nawrocki, “Towards decision centric repository of
architectural knowledge”, 4th Central and East European Conference on
Software Engineering Techniques, CEE-SET 2009, pp. 3–15, 2009

[15] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas, “A web-based tool for
managing architectural design decisions”, ACM SIGSOFT Software
Engineering Notes, vol. 31(5), 2006

[16] M. A. Babar, I. Gorton, “A tool for managing software architecture
knowledge”, the second ICSE Workshop on Sharing and Reusing
Architectural Knowledge, Rationale, and Design Intent, pp. 11-18, 2007

[17] D. Ameller, C. P. Ayala, J. Cabot and X. Franch, “Non-functional
requirements in architectural decision making”, IEEE Software 30(2),
pp. 61-67, 2013

[18] CMMI Overview: http://www.sei.cmu.edu/searchresults.cfm
[19] J. Tyree, A. Akerman, “Architecture decisions: demystifying

architecture”, IEEE Software, vol. 22(2), pp. 19–27, 2005
[20] A. Herrmann, B. Paech, “Learning from documented decisions” (in

German: “Lernen aus dokumentierten Architektur-Entscheidungen”),
Softwaretechnik-Trends, vol. 26(4), 2006

[21] R. C. de Boer, H. van Vliet, “Experiences with Semantic Wikis for
Architectural Knowledge Management”, 9th Working IEEE/IFIP
Conference on Software Architecture, pp. 32-41, 2011

[22] M. Shahin, P. Liang, and M.R. Khayyambashi, “Architectural Design
Decision: existing Models and Tools”, Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on
Software Architecture, pp. 293-296, 2009

[23] R. Farenhorst, P. Lago, and H. van Vliet, “Effective Tool Support for
Architectural Knowledge Sharing”, Proceedings of 5th European
Conference on Software Architecture, pp. 123-138, 2007

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6827128

Software Architecture (WICSA), 2014 IEEE/IFIP Conference on , vol., no., pp.255,258, 7-11 April 2014
doi: 10.1109/WICSA.2014.39

