
On Bridging the Gap between Practice and Vision for
Software Architecture Reconstruction and Evolution

- A Toolbox Perspective

Ana Dragomir, M. Firdaus Harun, Horst Lichter
RWTH Aachen University

Research Group Software Construction
Aachen, Germany

{ana.dragomir, firdaus.harun, lichter}@swc.rwth-aachen.de

ABSTRACT
Up-to-date architecture views help to better understand and
meaningfully evolve software systems. Despite their impor-
tance, the views are typically either not defined or not mon-
itored and updated when changes to the actual systems are
performed. They thus become subject of continuous degra-
dation. To reconstruct the views, architecture monitoring
and reconstruction tools have been developed and proposed.
However, according to our analysis of the state of the art and
state of the practice, we have identified that existing tools
still lack some important ingredients needed to meaning-
fully monitor and reconstruct the architecture description
of software systems. This paper gives an insight of these
improvement potentials and proposes a vision for the devel-
opment of a stronger industry-oriented software architecture
monitoring, reconstruction and evolution tool.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Documentation, Design

Keywords
Software Architecture Reconstruction; Software Architec-
ture Monitoring; Software Architecture Evaluation

1. INTRODUCTION
The architecture of software systems directly influences

crucial quality attributes and therefore should be considered
whenever important decisions regarding their evolution must
be taken. However, even though the importance of software
architectures is widely acknowledged, complete and/or up-
to-date architecture descriptions rarely exist ([4], [3], [5]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICSA ’14, April 07-11 2014, Sydney, NSW, Australia
Copyright 2014 ACM 978-1-4503-2523-3/14/04 ...$15.00.

While methods and corresponding tool support for recon-
structing the current views of a system’s architecture have
been developed and proposed, there are still important im-
provement potentials that need to be addressed by these in
order to meaningfully support the needs of the architects
employing them.

2. GOALS
The primary goal of this paper is to discuss new potential

ideas for improvement of software architecture reconstruc-
tion tools.

To achieve this we first give an overview of the current
state of the art (Section 3). Secondly, we share our ex-
periences and challenges that we have faced with our in-
dustry cooperation partners - two software companies op-
erating in two very different domains, having different sizes
and employing very different internal processes (Section 4).
We then identify six possible improvement potentials that
should be addressed by the future work in the field (Section
6) and present a vision on how these potentials should be
applied in the practice (Section 7).

3. CURRENT STATE OF THE ART
The idea of extracting up-to-date software architecture

descriptions from the source code of software systems is not
new. E.g., a comprehensive, yet not exhaustive, list of soft-
ware architecture reconstruction tools can be found in [4].
While scalable solutions for retrieving the structural view
of the architecture do exist (e.g., Sonargraph-Architect [2],
SAVE [5], etc.), most of the current state of the art addresses
“exemplary” situations and is usually not appropriate to be
applied on large-scale, heterogeneous systems. Even if some
tools do offer technology bindings for various programming
languages (e.g., [3], [5], [2], [7]), the considered heteroge-
neous systems are analyzed separately and their inter-play
within a complex landscape is not recovered.

In order to allow the architects to define high-level archi-
tectural elements (e.g., layers, modules, etc) and communi-
cation rules between them, the reconstruction tools imple-
ment specific meta-models that can be instantiated accord-
ingly. E.g., Sonargraph-Architect [2] allows the definition
of layers, layer groups, vertical slices, vertical slices groups
and subsystems. The LISA [3] toolkit allows the definition of
modules, subsystems and layers or of components, ports and
contracts - in the case of component-based architectures. To
assess the quality of the reconstructed views some tools offer

Figure 1: Information Flow Diagram - Example

metric dashboards. However, these metrics are usually hard-
coded and thus inflexible (e.g., [1]). Sonargraph-Architect
[2] differentiates itself from the other tools by offering a built-
in dashboard containing size- and structure-related metrics.
The dashboard can be easily customized to include addi-
tional metrics that were not considered previously.

Last but not least, while some solutions ([2]) do allow
the simulation of evolution (e.g.: simulate moving a class in
another package), to the best of our knowledge no tool offers
the possibility to document alternative evolution variants
and to compare them to each other.

4. CURRENT STATE OF THE PRACTICE
The state of the practice described in this section is based

on our experiences with two industry cooperation partners.
Because of confidentiality reasons, we will use fictive names
to refer to our partners in the context of the current paper.

The first industry partner, LC, is a large software
company that has more than 1000 IT employees in Europe
and is CMMI Level 3 certified.

LC is developing and maintaining very heterogeneous soft-
ware systems that are written in programming languages
such as Cobol, Java and even Smalltalk.

Being CMMI Level 3 certified, LC implements the “Deci-
sion Analysis and Resolution” process area and documents
the wide majority of decisions taken within various projects
- i.e. including the most important architectural decisions.
In addition to this, all the software development projects in
the company are required to create an architecture descrip-
tion document. According to the established development
process in LC, the architecture documentation is created
very early in the development lifecycle. On the other hand,
architecture decisions can be taken at any time throughout
the entire process. While decisions do change the actual ar-
chitecture of the developed systems, the actual architecture
documentation and the architecture decisions are kept sepa-
rately. Since traceability links between the two are currently
not maintained (e.g.: Which components/part of the archi-
tecture are affected by the current decision? What later
decisions have affected a given part of the architecture de-
scription?), the architecture documentation will eventually
become outdated and can only be understood if analyzing
all the decisions taken after its definition.

Furthermore, LC has been investing in the recent years ef-
forts into documenting their enterprise architecture. One of
the key documented aspects is the inter-systems information
flow. An obfuscated example of an information flow diagram
can be seen in Figure 1. Here, we can observe all the infor-
mation flows that the application depicted in the middle
has with other applications in LC’s application landscape.
Unfortunately, this data is inputted only manually. Archi-

tecture reconstruction and/or monitoring techniques are not
employed. This induces a huge overhead that needs to be in-
vested into (1) initially describing all the information flows
and (2) maintaining these consistent with the actual soft-
ware landscape.

The second industry partner, MC, is a small to medium
company employing more than 200 developers, distributed
geographically in Europe, Asia and Australia. They do not
rely on certified processes, but rather work according to es-
tablished internal process fragments. With few exceptions
that are employing C++ and .Net technologies, most of the
systems developed at MC are Java-based and use the OSGi
technology.

To help developers understand the detailed design of the
systems, a reference book called the developer handbook
(DHB) is provided. The DHB contains very low-level de-
scriptions of the applications and modules. Also, this docu-
mentation is not linked or traceable to any existing software
artifacts and source code. Even more, because the DHB
contains the descriptions of all the systems and all their ver-
sions and because all developers are entitled to edit it, its
size increases rapidly while the quality of the content de-
grades fast, even leading to the presence of contradictory
information and thus to misunderstandings and confusions.

Furthermore, MC is lacking an abstract view of all their
systems. Since the complexity of the systems is constantly
increasing, maintenance and refactoring activities are in-
creasingly more complicated. In a joint project with MC, we
have started to analyze their system structures in order to
define an up-to-date architectural description that can sus-
tain their further refactoring and evolution activities. We
have used functional decomposition techniques for defining
the most important architectural elements (modules, com-
posite modules, subsystems, etc.). Next, we have explored
the corresponding source code to determine what the possi-
ble candidates for the aforementioned architecture elements
are. To ease our work, we have employed the Sonargraph-
Architect reconstruction tool and created an architecture de-
scription based on layers - the central architectural element
defined in the Sonargraph-Architect’s meta-model. How-
ever, the layered presentation led to misunderstandings: the
MC developers and architects do not consider that their sys-
tem is a layered one. This led to confusions due to terminol-
ogy differences. The efforts for defining a clear architecture
description are still ongoing.

We can conclude that the current state of the practice an-
alyzed by us does not employ or employs very late architec-
ture reconstruction tools. Terminology differences between
the employed tool and the concepts used by the architects
to express their architecture can lead to misunderstandings.
Furthermore, the inter-systems information flows and their
attributes are modelled manually causing important disad-
vantages. Last but not least, the architecture- and architec-
ture decisions documentation are done manually and there-
fore important traceability relations are typically missing.

5. STATE OF THE ART VS. STATE OF THE
PRACTICE

As depicted in Section 4, the problems faced by the indus-
try are very complex. No single reconstruction tool solves
all these problems, but typically addresses a subset thereof.
However, there exist also problems (e.g., reconstructing the

architecture of heterogeneous systems) that are not addressed
by any of the existing tools. We propose the creation of
a modular reconstruction toolbox that facilitates the plug-
in-based integration of reconstruction tools as well as the
addition of new ones. We thus aim to facilitate the tools’
interoperability towards addressing the specific goals and
needs of the architects. A brief description of our vision will
be given in Section 7.

6. IMPROVE POTENTIALS
In this section we identify six improvement potentials that,

if adopted, could help closing or shrinking the gap between
the actual software architecture practice and a visionary sit-
uation where software organizations are applying architec-
ture reconstruction and monitoring tools consistently.

6.1 Traceability Links
Problem Description. “The architecture as a whole

does not exist in any artifact that we actually implement”
[5]. As a consequence, even if an up-to-date architecture
description exists, this is prone to getting out of sync with
the underlying system, if no effort is invested to prevent
this. We consider that the following information should be
made traceable and monitored continuously: (1) The static
and dynamic views of the architecture description should
be linked with the actual underlying systems (currently the
state of the art mostly addresses the static views alone [4],
[3]); (2) If documented separately, the architecture descrip-
tion should be linked with further taken decisions

Targeted benefits. If the description is consistent with
the actual architecture, one could rely on it to systemati-
cally evolve a system, while preserving the architecture re-
strictions and properties. Furthermore, traceability links be-
tween the architecture description and the architecture de-
cisions would ensure a better understanding of the way the
architecture has evolved up to the present situation, the con-
sidered tradeoffs and the rationale behind the made choices.

State of the art status. Many software architecture
reconstruction ([4]) as well as decisions documentation ap-
proaches ([6]) have been proposed. However, a definitive
answer to the traceability problem has not been given.

6.2 Common Terminology
Problem Description. As exemplified in Section 4, ar-

chitects are reluctant to accept the reconstruction results, if
these are described using different concepts than the ones
they are using when referring to their system’s architecture
(e.g.: “layers” instead of “modules”). The architects should
thus be able to first express the architecture meta-model
that they are familiar with and then instantiate it accord-
ingly in the reconstruction tool of their choice.

Targeted benefits. The creation of a common language
basis between the architects and the reconstruction tool will
lead to the reduction of misunderstandings and terminology
misuses when interpreting the reconstructed results. This
will naturally also increase the acceptance of the reconstruc-
tion tools in industry contexts.

State of the art status. “If all you have is a hammer, ev-
erything looks like a nail”. As pointed out in Section 3, when
applying reconstruction techniques, architects usually need
to express their top-level architecture using the constructs
offered by the reconstruction tools they are applying.

6.3 Metrics
Problem Description. Architectural metrics are typi-

cally not available to facilitate the architect’s understanding
of the quality of the reconstructed architecture and the most
important or urgent improvement directions that should be
considered.

Targeted benefits. If similar solutions to the Sonargraph-
Architect’s dashboard were employed on a more frequent
basis allowing the architects to define structural and be-
havioural metrics of relevance for their systems, more in-
sightful information regarding the current status of the ana-
lyzed architecture that could better sustain the further evo-
lution activities could be gained. E.g., consider two archi-
tectural violations V1 and V2. While V1 and V2 might
be considered just as severe from a logical point of view, V1
might occur more often and additionally might cause a more
severe performance problem than V2. Thus, on a priority
list of restructurings V1 should be considered first. How-
ever, this would have possibly not been noticed, if a careful
analysis of the behavior were not employed.

State of the art status. As depicted in Section 3, so-
lutions for flexible architectural metric dashboards have al-
ready been employed - however, just for the static architec-
ture view. To the best of our knowledge, metrics for the as-
sessment of software architecture behavior are not employed
by any reconstruction tool.

6.4 Variants Building
Problem Description. Once an up-to-date architecture

description has been recovered, understood and evaluated,
the problem of meaningfully evolving the system still per-
sists.

By analyzing the repository of architecture decisions doc-
umented by two large-scale projects (the first one comprises
45000 IT person days while the second 9000 IT person days)
undergone in LC, we have acknowledged that, when fac-
ing this issue, architects have typically constructed software
architecture evolution variants or alternatives. These were
then manually assessed in order to identify the variant that
best suits their evolution goals while respecting the prede-
fined established architectural rules and guidelines.

To better sustain the software architecture evolution, re-
construction tools should support the definition and assess-
ment of evolution variants. In particular the assessment
should play a key role, in order to support the architects to
identify out of the defined evolution variants exactly those
that are better aligned with their goals.

Targeted benefits. By allowing the definition of evo-
lution variants on top of the extracted architecture views,
one can better ensure that the evolution direction really ad-
dresses the architectural problems currently existing in the
system. Furthermore, the metrics (or a subset thereof) used
to evaluate the reconstructed views (see Section 6.3) could
then be also applicable to compare the defined evolution
variants to each other. Consequently, hints or recommen-
dations could be offered regarding which variants are more
likely to bring more benefits if implemented, thus better sus-
taining important architecture decisions.

State of the art status. Some efforts have already been
done (e.g. [2]) to allow the architects specify some modifi-
cations of the recovered architecture and assess their effect.
However, their capabilities are still limited.

6.5 Scalability and Heterogeneity
Problem Description. When considering industry con-

texts, the employed systems are typically large-scale and
heterogeneous ones. Furthermore, these systems are ex-
changing data with each other and therefore their analysis
should not be done in isolation alone. Rather, these large-
scale, inter-communicating systems should be analyzed as
part of a software landscape. Currently, as described in Sec-
tion 4, this is typically done manually, leading to serious
disadvantages.

Scalable solutions for the analysis of heterogeneous sys-
tems should be offered to enhance the understanding of
large systems and landscapes. To deal with the complexity,
we think that up-to-date architecture descriptions on differ-
ent levels of abstraction (inter-systems, inter-components,
inter-layers, inter-classes, etc) and from different perspec-
tives (structural or behavioral) should be provided.

Targeted benefits. If descriptions of the architectural
structure and behavior were available on more abstraction
levels, the architect could adjust the level of complexity he
currently wants to deal with according to his current needs.
From an understandability point of view, once the architect
comprehends the higher abstraction levels, he will then be
able to drill down and require more details that further com-
plete his picture of the system. The reconstruction of the
“interplay” of heterogeneous systems would also bring im-
portant advantages, unburdening architects from manually
documenting this and keeping the documentation synchro-
nized with the real systems.

State of the art status. We are not the first to notice
that scalability and heterogeneity are two crucial aspects
that need to be dealt with when employing software archi-
tecture reconstruction (e.g., [4]). However, this problem still
persists. Reconstruction tools still focus on homogenous sys-
tems and descriptions on different levels of abstraction are
usually available for the static view alone.

7. VISION
We consider that expressing and using a company-specific

common terminology is central for enabling the use of archi-
tecture reconstruction approaches in the industry. Thus, the
architects should be able to adjust the output of the recon-
struction tools (expressed in an “intermediate terminology”
after having been extracted via technology-specific adapters
that address the problem of heterogeneity) and to make it
correspond to the architecture meta-model of their interest.
Having created a common terminology basis, we foresee the
shift from monolithic reconstruction tools to more modu-
lar toolbox-like approaches. Modern techniques should be
employed to allow the easy, on-demand addition and con-
struction of plugins that perform various services based on
the common terminology while ensuring the preservation of
traceability links between the created artifacts. E.g., based
on the reconstructed views, metric plugins can be added to
compute structural and behavioral metrics and/or to
allow the definition and assessment of variants. Last
but not least, to deal with the scalability issue, abstraction
levels can be defined according to the meta-model underly-
ing the intermediate or common terminology and then use
these to better structure the output of the other employed
plugins.

Figure 2: Vision Overview

8. CONCLUSION
In this paper we have presented six important improve-

ment potentials that should be addressed by software ar-
chitecture reconstruction approaches in order to answer the
real needs of the industry. We have identified these poten-
tials based on our experience with two real-world software
companies. We have then sketched a vision regarding how
these improvement potentials should be adopted to create
a reasonable, industry-oriented software architecture recon-
struction toolbox.

9. REFERENCES
[1] The STAN Reconstruction Tool. http://stan4j.com.

[2] Sonargraph Architect. https://www.hello2morrow.
com/products/sonargraph/architect, 2013.

[3] G. Buchgeher and R. Weinreich. Connecting
architecture and implementation. In Proceedings of
OTM Workshops, volume 5872, pages 316–326,
November 2009.

[4] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. In
Proceedings of IEEE Transactions on Software
Engineering, volume 35, pages 573–591, July 2009.

[5] M. Lindvall and D. Muthig. Bridging the software
architecture gap. In Proceedings of Journal of IEEE
Computer, volume 41, pages 98–101, June 2008.

[6] M. Shahin, P. Liang, and M. Khayyambashi.
Architectural design decision: existing models and
tools. In Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on
Software Architecture, pages 293–296, September 2009.

[7] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. In Proceedings of the 3rd
ACM/SPEC International Conference on Performance
Engineering (ICPE 2012), pages 247–248, April 2012.

