
The ARAMIS Workbench for Monitoring, Analysis and
Visualization of Architectures based on Run-time

Interactions

Ana Nicolaescu, Horst Lichter,
Artjom Göringer

RWTH Aachen University
Research Group Software Construction

Aachen, Germany
{nicolaescu, lichter}@swc.rwth-aachen.de,

artjom.goeringer@rwth-aachen.de

Peter Alexander, Dung Le
The Sirindhorn International Thai-German

Graduate School of Engineering
King Mongkut’s University of Technology

{peter.a-sse2013,
le.t-sse2013}@tggs-bangkok.org

ABSTRACT
Up-to-date software architecture models dramatically ease
the understanding and meaningful evolution of a software
system. Unfortunately they are rarely available. Mostly the
static view of the architecture is modeled and only stipula-
tions are made regarding how architecture units should com-
municate. However, a software system tends to evolve inde-
pendently from its description. This results in violations of
the previously stipulated communication rules. A plethora
of tools to recover up-to-date architecture models have been
proposed, but little emphasis has been put on analyzing and
validating the run-time interactions on various abstraction
levels defined in the static view of the architecture. In our
previous work we have presented ARAMIS - a conceptual
infrastructure for the analysis and monitoring of data ex-
tracted during run-time - and some first evaluations thereof.
This paper presents the current state of the ARAMIS Work-
bench, which automatically validates if the communication
between the units of a software system matches its archi-
tecture model, provides visualizations of these interactions
on higher and more understandable abstraction levels, and
presents evaluations of the various units involved in the an-
alyzed communication. We exemplify its capabilities on a
case study based on the Carcass system used in teaching
activities at our research group.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture

Keywords
Software architecture reconstruction, software architecture
monitoring, software architecture evaluation

1. INTRODUCTION
The importance of a system’s architecture is indisputable:

”you don’t need architecture to build a dog kennel, but you’d
better have some for a skyscraper” [8]. While the same func-
tional requirements can be achieved by implementing several
possible architectures, the chosen one represents the sys-
tem’s skeleton and enables and/or hinders it to achieve its
non-functional requirements (e.g., maintainability, perfor-
mance, etc.)[30]. Thus, having an overview and understand-
ing the architecture of a system is critical for supporting a
reasonable evolution, in-line with the desired system quali-
ties. Consequently, a considerable emphasis (e.g., [18], [14])
has been put on the need to elaborate software architecture
descriptions that depict important views of the considered
system from various viewpoints and even two international
standards have been released to sustain and systematize the
documentation effort ([3], [1]).

However, in a recent talk at ICSE 2015 [16], Rick Kaz-
man compared the evolution of software systems and the
work of software architects with the efforts of a sailor driv-
ing a leaking boat. The “boat” is “leaking”, because the
architecture degrades over the time, with the addition of
ever new functionality while minimizing time to market and
making compromises to ensure fast development. This phe-
nomenon has been widely referred to as architectural drift or
architecture erosion [27]. The “descriptive architecture” pro-
gressively drifts away from the “prescriptive architecture” -
documented in the initially created architecture description
-, creating a so-called architecture gap. Outdated architec-
ture descriptions lead to situations where changes are made
ad-hoc, previously defined architectural rules are often vio-
lated and are useless or even erroneous to support evolution
decisions [19].

Therefore, support to recover up-to-date architecture views
and to (semi-) automatically evaluate them is needed. Cur-
rent solutions mainly focus on the recovery and evaluation of
static views. But the understanding, validation and evalua-
tion of the behavior of software is at least as important. The
actual interactions inside a running system are the ones that
support its use cases. Therefore, we proposed ARAMIS (the
Architecture Analysis and Monitoring Infrastructure [11],
[12]) - a tool-supported framework for run-time monitoring,
communication integrity validation, evaluation and visual-
ization of the behavior view of software architectures. In

© ACM 
http://doi.acm.org/10.1145/2797433.2797492 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW '15). ACM, New York, NY, USA, , Article 57 , 7 pages. 
DOI=10.1145/2797433.2797492 



the context of this paper we refer to the concept of archi-
tectural communication integrity, as defined by Luckham et
al. [20] as being a “property of a software system in which
the system’s components interact only as specified by the
architecture”.

While the concepts and components of ARAMIS were pre-
sented in previous publications, a holistic view thereof that
also mentions the various integrated data visualizations is
still missing. The purpose of this paper is to present the
current status of the ARAMIS Workbench and to exemplify
its use with a running example.

The remainder of this paper is organized as follows: in
Section 2 we present our goals. In section 3 we introduce
the concepts and implementation underlying ARAMIS. We
discuss its meta-model, architecture and the visualizations
it offers. In Section 4 we give overview of the related work.
Section 5 concludes the paper and presents the directions of
our future work.

2. GOALS
The main goal of ARAMIS is to support the software ar-

chitects to efficiently and effectively evolve the architecture
of a software system, while keeping it aligned with its archi-
tecture description and avoiding future erosion. Currently,
ARAMIS supports the first step of the evolution process:
understanding the software system. It supports this goal
by monitoring and analyzing the run-time of the systems
of interest to answer questions such as: “how do the archi-
tecture units interact with each other upon performing a
certain episode (e.g., running a test-case, interacting with
the graphical user interface of the system, etc.)?”, “which
are the architecture units that need a redesign?”, “which are
the various hot spots of the system (e.g., in terms of re-
ceived calls, outgoing calls, caused violations, etc.)?”, “are
there violations against the architecture description?”, etc.
ARAMIS thus pursues the following sub-goals:

G1 Unobtrusively monitor software systems during their
run-time.

G2 Map the captured behavior on architecture-level units
(e.g., components, layers, etc.). The number of captured
low-level interactions is typically very large, making the un-
derstanding of the behavior very intricate. Supposing that
the architecture description contains hierarchies of architec-
ture units, one can reduce the complexity involved in analyz-
ing the behavior, by mapping it on this hierarchy. Thus, one
can first focus on the interactions between the highest level
architecture units, then move down in the hierarchy and an-
alyze the interactions between specific second-highest level
units, and so on.

G3 Detect violations against the communication integrity
of the analyzed system. By automatically identifying the vi-
olations that occurred during the system’s monitoring phase,
architects can immediately plan and/or perform corrective
actions. These actions can either imply changing the ar-
chitecture description, because of realizing that some of the
restrictions imposed by it were not meaningful and should
not be considered violations or by eliminating the violations
from the system.

G4 Identify units that potentially expose low architec-
tural quality. According to the monitored interactions, the
various architecture units should be analyzed from a cou-
pling and cohesion point of view. Are these behaving in a
low coupled, high cohesive manner? If not, what are the

reasons behind it and do they require a redesign? In one
of our previous studies [12] we have shown that the role of
a given unit plays an important role in deciding its quality
when having information about its coupling and cohesion.

G5 Support the visualization and understanding of cap-
tured interactions and detected violations.

G6 Offer an evolutionary overview of the monitored sys-
tems together with useful statistics and quantification re-
garding, e.g., the number of episodes that were monitored
for each system, the number of captured interactions, the
number of violations, etc.

3. APPROACH

3.1 ARAMIS: Architecture
In [12] we presented the initial architecture that sup-

ports the monitoring of software systems and allows the
mapping of low-level interactions on architecture-level units
(G2).

For understandability reasons, but also because along with
the development of a new visualization layer the archi-
tecture has evolved, we present its current status, as de-
picted in Figure 1. The Architectural Information Bus
(AIB) is a core component of ARAMIS, responsible for col-
lecting run-time traces from Java- or J2EE-based systems.
Within the AIB, we use the Kieker [28] monitoring tool.
We chose Kieker because it is an open-source, mature and
low-intrusive framework that enables the interception of run-
time information via compile- or runtime-weaving of Java-
based systems (G1). The logs produced by Kieker are then
processed and transformed in an independent JSON-based
format by the AIB monitoring component. We took this
decision in order to reduce the impact caused by employing
a different monitoring framework than Kieker.

The information collected in the AIB is then sent to a
so-called Architecture Information Broker (AIBR) imple-
mented using RabbitMQ messaging. Next, various Architecture
Information Processors (AIPs) that are registered as AIBR
listeners are forwarded with data relevant for their analy-
sis purposes. The Architecture Mapper Processor maps the
various interactions on architecture-level units and redirects
the result back to the AIBR. The Integrity Validator Pro-
cessor receives this input and further analyzes if the mapped
interactions represent any violation against the architecture
description and, if so, marks the interaction as such prior
to redirecting it to the broker. Last, a Metric Processor re-
ceives the already mapped and validated data and computes
coupling- and cohesion-based metrics for the various archi-
tecture units involved in the monitored communication. The
formal definition of the implemented metrics is given in [12].

Furthermore, we have implemented a web-based visual-
ization layer to enable a more comfortable user-interaction
with ARAMIS. In order to be able to trigger the processing
of previously monitored Kieker logs from the user interface,
we have implemented a REST Interface that is responsible
for initializing the various ARAMIS processors to parse logs
collected by the employed monitoring tool. The logs are
then processed according to a given architecture and rules
description. For actually visualizing the processed interac-
tions we have implemented a series of so-called architecture
information visualizers (AIVs), that we will present in more
detail in the next section.

The underlying meta-model of ARAMIS is depicted in

© ACM 
http://doi.acm.org/10.1145/2797433.2797492 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW '15). ACM, New York, NY, USA, , Article 57 , 7 pages. 
DOI=10.1145/2797433.2797492 



Figure 1: ARAMIS - Architecture

Figure 2. A system is analyzed through various monitoring
episodes. These can be test cases, interactions with the GUI,
etc. The monitored episodes are versioned in order to facil-
itate the future analysis of the behavior evolution. A mon-
itoring episode produces traces within the running software
that are basically ordered lists of so-called execution record
pairs. The execution record pairs are tuples and represent
actual calls within the system, each call having a caller and
callee code building block. The code building blocks are spe-
cific for the programming language(s) in which the system
is written and depend on the granularity on which we want
to perform the analysis, e.g., Java methods, classes, pack-
ages, C++ name spaces, etc. A monitoring episode is then
analyzed according to a pre-specified prescriptive architec-
ture description. The prescriptive architecture description
consists of code and architecture units.

The architecture units describe tree-like hierarchies in which
one architecture unit can consist of further architecture units
and/or of code units. In order to enable ARAMIS to moni-
tor also other systems than Java-based ones, the code units
were designed to be untyped and thus programming lan-
guage independent. To actually map these on the previously
mentioned programming-language dependent code building
blocks (e.g., packages, classes, methods, etc.) we define fil-
ters. Filters can specify exact or regular expressions-based
mappings, according to the system’s programming language
syntax.

Last but not least, the communication between architec-
ture units is governed by communication rules. In Figure 2
we used view inheritance to depict their classification accord-
ing to two criteria: permission and emergence type. Accord-
ing to the permission type, the communication between two
architecture units can be allowed or denied. Furthermore,
according to the emergence type the rule can be specified
(explicitly given by the architect) or derived. A derived com-
munication rule between a pair of architecture units emerges
from the explicit specification of a rule between architecture
units containing the units in the considered pair.

The structure of the architecture units and the corre-
sponding communication rules can be specified either using
xml files (that can be generated using an eclipse plugin for an
easier code to architecture mapping) or using an ARAMIS
model editor.

Next, by determining which execution record pairs de-
scribe interactions in line with the prescriptive architecture

description and which ones violate this, we obtain the de-
scriptive (actual) architecture description.

3.2 ARAMIS: Visualizations

3.2.1 Example System
We exemplify the ARAMIS visualizations using an exam-

ple system called Carcass, developed within a third party
project. Carcass is a J2EE application that we use in our
Object Oriented Software Construction lecture to exemplify
the development of component-based software systems. Car-
cass is a simple information system that simulates the col-
lection and processing of animal residuals (referred to as
“materials”) from various material gathering points (such as
farms, research laboratories, etc.). It basically consists of
three components: the “GatheringCore” component is re-
sponsible for the collection of materials; the “Processing-
Core” is responsible for the processing of collected materials
(e.g., production of gelatine, etc.); the “Application” com-
ponent is responsible for simply unifying the functionality
offered by the previous two components in a single inter-
face.

The components are further refined, each of them con-
sisting of facades, controllers, domain access and transport
objects (DAOs and DTOs) and domain architecture units.
The architecture of the Carcass application was partially
generated and adheres to some explicit design rules that are
expressed in the generator itself (each call to the facade is
redirected to a controller; the controllers never call the fa-
cade but only their corresponding DAOs, etc.). Because the
system is then further developed by various teams of stu-
dents, the generated architecture is likely to be violated.

3.2.2 Visualizations
The web-based visualization layer (G5) for ARAMIS con-

sists of two main areas: the dashboard and the workspace.
The dashboard gives an overview of all the projects mon-

itored with ARAMIS. For each monitored system we define
a “project” to which we attach versioned architecture and
rules descriptions (G6). When later parsing collected Kieker
logs, the architect will then be able to specify the versions
of architecture and rules descriptions according to which the
processing should be performed. In the dashboard, one can
visualize statistical information of a given project, such as:
number of episodes that were monitored, number of map-
pings on architecture units that were/were not possible (e.g.,
due to incompleteness of the architecture description), num-
ber of validated calls, and number of identified violations.

By loading a project in the workspace, the architect can
then visualize and analyze the interactions inside the episodes
monitored within the loaded project. Various visualization
alternatives are provided:

Sequence diagram view.
Standard UML sequence diagrams depict interactions at

object level. Because of obvious scalability reasons, we have
chosen to depict the sequences on various abstraction lev-
els, as specified in the prescriptive architecture description.
However, even with this improvement, the sequence diagram
visualization is useful only when analyzing a small number
of architectural units and interactions but does not scale well
when dealing with more complex scenarios because of los-
ing the overview when horizontally and vertically scrolling

© ACM 
http://doi.acm.org/10.1145/2797433.2797492 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW '15). ACM, New York, NY, USA, , Article 57 , 7 pages. 
DOI=10.1145/2797433.2797492 



Figure 2: ARAMIS Meta-Model

Figure 3: Circle-Based Visualization

through the diagram.

Circle-based hierarchical view.
We created this view for facilitating the understanding of

the loaded episode(s). First, the highest-level architecture
units - from the prescriptive architecture description version
that was used when processing the episode - and the interac-
tions that could be mapped on this level are displayed as cir-
cles and directed lines respectively. The different high-level
units are depicted using different colors. The interactions
that represent violations are drawn in red. By clicking on a
given architecture unit, its contained units also become vis-
ible, depicted as inner circles having the same color as their

parent unit, but with a deeper tone, symbolizing the idea
that these are “more concrete”, i.e., closer to the source-code
level. Along with displaying the inner units of the selected
architecture unit, the inner units of the units that inter-
act with it and the communication to and from these are
also displayed. In order to understand the interaction flow,
a “step by step” modus is available as well, in which the
various calls are first completely removed and then drawn
one after the other (either automatically or user-triggered)
thus making their sequencing easier to analyze. In order
to avoid information cluttering, various options are avail-
able: group the interactions by method name or by “source
and target”, hide self-loops, hide interactions that could not

© ACM 
http://doi.acm.org/10.1145/2797433.2797492 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW '15). ACM, New York, NY, USA, , Article 57 , 7 pages. 
DOI=10.1145/2797433.2797492 



Figure 4: GatheringCore Facade - Context Menu

be completely mapped on architecture units (source and/or
target not included in any of the architecture units from the
architecture description), hide return messages, hide var-
ious units and their associated interactions and highlight
only the occurred violations. The left side of Figure 3 dis-
plays the interactions of the “gather new material” episode,
grouped by source and target and mapped only on three of
the Carcass system’s higher level components. From this di-
agram, the architect can easily see that the“ProcessingCore”
component was not used when performing this episode and
that no high-level architectural violations have occured dur-
ing run-time. However upon selecting the “GatheringCore”
component (Figure 3, right side), we identify 4 inner vio-
lations (G3): the GatheringController has called the Gath-
eringFacade 4 times, thus violating a previously specified
communication rule.

In this view, upon selecting a given unit, a context menu
(Figure 4) is shown in which unit-specific information is pre-
sented, such as: the name of the chosen unit, its inclusion
hierarchy in other units, its number of internal calls (behav-
ioral cohesion), number of external calls (behavioral cou-
pling), and the value for the SUBC metric (Scenario-based
Unit Behavior Characterization) [12]. The SUBC metric
maps the proportion of a unit’s behavioral cohesion within
its overall communication on a nominal scale that charac-
terizes the overall unit behavior: “highly coupled/low cohe-
sive”, “medium coupled/medium cohesive” or “low coupled,
highly cohesive” (G4). In Figure 4 the result of the SUBC
metric is in line with the role of a facade: it simply redirects
received calls, therefore it is highly coupled but not cohe-
sive and does not implement any business functionality. An
important remark is that in this case the violation of the
low coupling and high cohesion principle does not imply a
low architectural quality of this unit but it is even an indi-
cator of the contrary: in general, facades are designed and
expected to be low cohesive and highly coupled due to the
many forwardings that they are performing.

We consider that the circle-based hierarchical view is more
suitable than the sequence diagram to display large chunks
of data. Furthermore, the choice of circles over other geo-
metrical forms is motivated by several usability studies that
show that the human brain processes circles much faster
than other shapes [22]. However, according to some first
evaluations, architects are initially reluctant, since circles
do not seem to be the natural choice for depicting architec-
ture units, but rectangles - as in the well-known UML com-
ponent diagrams. This effect disappears after some further
interactions with the visualization, which is then regarded as
intuitive. Furthermore, our first experiments show that even
when the interactions are grouped by source and target, the
current layout is not producing very readable results. Im-
proving this is part of our future work.

Figure 5: Heat Map View of Outgoing Calls

Heat-map view.
Heat-maps have been successfully used in various domains

(financial analysis, biology, etc.) and are an effective means
for the discovery of hot-spots. We implemented a heat map
view to depict the various hot spots of the system upon per-
forming a given episode (or sets of episodes). It is created
based on the circle-based hierarchical view, by re-coloring
the currently displayed units according to various criteria:
number of incoming calls, number of outgoing calls and num-
ber of incoming or outgoing violations (G3). Figure 5 depicts
the heat map corresponding to the number of outgoing inter-
actions within the right hand side of the Figure 3. One can
thus quickly discover that most of the calls are originating
from the Facade of the Application component. Further-
more, the Controller of the GatheringCore is also producing
many outgoing calls: indeed, because it implements most
of the business functionality, the Controller often calls the
DAO unit to retrieve domain elements from the database
and then operates on them to achieve the desired outcome.

Adjacency matrix-based view.
After presenting a demo of the circle-based hierarchical

visualization at an invited talk in the industry, we received
the feedback that, although intuitive and interactive, a tab-
ular view of the interactions is also desirable in order to
quickly overview the distribution of interactions within the
analyzed system. Accordingly we have implemented an ad-
jacency matrix view (Figure 6) that can be used to achieve
a fast overview of the number of violations, valid calls and
total number of calls between any pair of architecture units.
A cell in the matrix gives information about the interac-
tions originating from the architecture unit on the column
and targeting the architecture unit on the row. In this view,
by further clicking on the name of an architecture unit (re-
gardless if on the row or column) its contained architecture
units are shown as well by expanding the adjacency matrix
accordingly (adding new rows, or adding new columns re-
spectively).

4. RELATED WORK
The extraction of up-to-date views of the software archi-

tecture has been for long in the focus of the software ar-
chitecture community. A comprehensive, yet not complete,
overview of the existing work in this field can be found in
[13].

Most of the already existing approaches focus primarily
on the extraction of static views of the architecture and are
based on the well-known software reflexion model [21]. The
first tools proposed (e.g., Alborz [26]) focused mainly on

© ACM 
http://doi.acm.org/10.1145/2797433.2797492 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW '15). ACM, New York, NY, USA, , Article 57 , 7 pages. 
DOI=10.1145/2797433.2797492 



Figure 6: Adjacency Matrix

retrieving basic structural information of the examined sys-
tem and then relied on the human experts for further refine-
ment and assessment. Newer approaches (e.g., [4], [19], [6],
[9], [23], [5], etc.) allow also the computation of metrics
and/or the specification of architecture models and rules
against which architecture conformance can be automati-
cally checked. A comparison of tool-support available for
checking architecture compliance has been offered in [17]
and more recently in [24]. In order to allow the specifi-
cation of the architecture, most of these tools implement
specific meta-models that can be instantiated accordingly
(e.g., Sonargraph-Architect [6] allows the definition of layers,
layer groups, vertical slices, vertical slices groups and subsys-
tems). According to our remarks from the industry [10] re-
stricting the architects to use only the architectural concepts
defined in the architecture meta-model can be problematic.
More generic approaches are required, that enable architects
to use the exact terminology that they prefer. This is why
in our solution we have untyped architecture units with a
very loose semantic that allow the specification of roles (e.g.
layer, component) in order to accommodate virtually any
desired terminology.

Proposals regarding the reconstruction of behavior were
also made. Based on priory specified naming conventions,
DiscoTect [31] analyses a system’s run-time traces to ex-
tract architectural information (method calls, calling ob-
jects, etc). The run-time monitoring is achieved via logging.
The information is then visualized in textual form, based on
which corresponding state diagram can be manually created.
In [15] an approach is given to present dynamic information
based on modified “copies of the recovered static views” of
the system. The static view is modeled using an extendible
visual editor in which components, associations and anno-
tations can be defined. In [7] architecture view-points are
extracted based on system’s logs and visualized using se-
quence diagrams and/or matrix models. The Kieker tool [28]
also performs behavior analysis and displays the information
using sequence diagrams and call-trees. None of these ap-
proaches support the specification of communication rules
between the architecture units and are rather intrusive be-
cause they rely on instrumenting the analyzed system with
information to be logged at run-time. In [25], an approach
for the automotive domain is presented. A method is given
for monitoring the state transition of an embedded system
and checking if these transitions occur as specified. The ap-
proach we use in ARAMIS is similar, but we do not check
state transitions but inter-architecture units communication

integrity. A solution for monitoring the communication with
“systems of systems” has been proposed in [29] but focuses
only on the discovery of communication and not on its in-
tegrity check as in the case of ARAMIS.

5. CONCLUSION AND FUTURE WORK
In this paper we presented the ARAMIS workbench for

understanding, communication integrity validation and eval-
uation of the behavior view of a software architecture. We
exemplified ARAMIS for the analysis of the “Carcass” soft-
ware system.

Currently, we are re-developing ARAMIS to support the
simulation and comparison of future evolution scenarios. In
doing this, we aim to enable the architects to perform“what-
if” analyses (e.g., “how does the number of violations evolve
if we merge two architecture units?”, “how does the coupling
evolve if we move a given package from one architecture unit
to another?”, etc.) on the architecture level, before actually
changing the system. To achieve this, we are redesigning
the persistence component, by leveraging graph databases
to (partially) replace the current document-based MongoDB
solution.

In the future, we plan to integrate ARAMIS with static ar-
chitecture recovery and clustering-based approaches, to de-
crease the effort needed to specify the prescriptive architec-
ture description.

Also, another important aspect is the enrichment of ARAMIS
with more complex communication rules, e.g., that describe
communication patterns between the various architecture
units (e.g., each call to the facade is redirected to the con-
troller) or that also involve deployment information (e.g.,
architecture units that are completely decoupled should not
be deployed on the same node).

Furthermore, because Kieker, as the employed AIB com-
ponent of ARAMIS, is currently not supporting the easy
monitoring of the communication within heterogeneous sys-
tems written in various programming languages (via, e.g.,
web-service calls) we are currently considering leveraging
and testing other monitoring tools, e.g., the industrial Dy-
natrace [2].

Last but not least, we plan to evaluate ARAMIS in a real-
world context, in which various systems are involved that
primarily communicate with each-other via web-services. In
large-scale environments it is often unclear how are the vari-
ous business processes or activities reflected in the inter-play
of software systems. By applying ARAMIS in such a set-up,
we will extract information regarding the adherence to rules
and behavior hotspots but also about the actual interactions
in the software systems that sustained the set of evaluated
usage scenarios.

Acknowledgment
We want to thank our cooperation partners from Generali
Deutschland Informatik Services who support the ARAMIS
research project.

6. REFERENCES
[1] 1471-2000 - IEEE Recommended Practice for

Architectural Description for Software-Intensive
Systems. https://standards.ieee.org/findstds/
standard/1471-2000.html.

© ACM 
http://doi.acm.org/10.1145/2797433.2797492 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW '15). ACM, New York, NY, USA, , Article 57 , 7 pages. 
DOI=10.1145/2797433.2797492 



[2] The dynatrace performance monitoring tool.
http://www.dynatrace.com/de/index.html.

[3] ISO/IEC/IEEE 42010 Systems and software
engineering - Architecture description.
http://www.iso-architecture.org/42010/.

[4] The STAN project. http://stan4j.com.

[5] The structure101 project. http://structure101.com/.

[6] The sonargraph-architect project. https://www.
hello2morrow.com/products/sonargraph/architect,
2014.

[7] T. B. C. Arias, P. America, and P. Avgeriou. A
top-down approach to construct execution views of a
large software-intensive system. Journal of Software:
Evolution and Process, 25(3):233–260, 2013.

[8] G. Booch. The future of software (invited
presentation) (abstract only). In Proceedings of the
22Nd International Conference on Software
Engineering, ICSE ’00, pages 3–, New York, NY, USA,
2000. ACM.

[9] G. Buchgeher and R. Weinreich. Connecting
architecture and implementation. In OTM Workshops,
volume 5872 of Lecture Notes in Computer Science,
pages 316–326. Springer, 2009.

[10] A. Dragomir, M. F. Harun, and H. Lichter. On
bridging the gap between practice and vision for
software architecture reconstruction and evolution: A
toolbox perspective. In Proceedings of the WICSA
2014 Companion Volume, WICSA ’14 Companion,
pages 10:1–10:4, New York, NY, USA, 2014. ACM.

[11] A. Dragomir and H. Lichter. Model-based software
architecture evolution and evaluation. In Proceedings
of the 21th Asia-Pacific Software Engineering
Conference, pages 697–700. IEEE, 2012.

[12] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen.
Run-time monitoring-based evaluation and
communication integrity validation of software
architectures. In Proceedings of the 21th Asia-Pacific
Software Engineering Conference. IEEE, December
2014.

[13] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. IEEE
Transactions on Software Engineering, 35(4):573–591,
2009.

[14] D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass,
P. Clements, and P. Merson. Documenting Software
Architectures: Views and Beyond. Addison-Wesley
Professional, 2nd edition, 2010.

[15] J. Grundy and J. Hosking. Softarch: Tool support for
integrated software architecture development.
International Journal of Software Engineering and
Knowledge Engineering, 13:125–152, 2003.

[16] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao,
S. Haziyev, V. Fedak, and A. Shapochka. A case study
in locating the architectural roots of technical debt.
Proceedings of the International Conference on
Software Engineering (ICSE ’15). In preparation,
2015.

[17] J. Knodel and D. Popescu. A comparison of static
architecture compliance checking approaches. In Sixth
Working IEEE / IFIP Conference on Software
Architecture (WICSA 2007), 6-9 January 2005,
Mumbai, Maharashtra, India, page 12. IEEE, 2007.

[18] P. B. Kruchten. The 4+1 view model of architecture.
IEEE Software, 12(6):42–50, 1995.

[19] M. Lindvall and D. Muthig. Bridging the software
architecture gap. IEEE Computer, 41(6):98–101, 2008.

[20] D. C. Luckham, J. Vera, and S. Meldal. Three
concepts of system architecture. Technical report,
Stanford, CA, USA, 1995.

[21] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source and
high-level models. SIGSOFT Software Engineering
Notes, 20(4):18–28, October 1995.

[22] J. Nanny. Visual Perception: An Interactive Journey
of Discovery through Our Visual System. Verlag Niggli
AG, 2009.

[23] L. Pruijt and S. Brinkkemper. A metamodel for the
support of semantically rich modular architectures in
the context of static architecture compliance checking.
In Proceedings of the WICSA 2014 Companion
Volume, WICSA ’14 Companion, pages 8:1–8:8, New
York, NY, USA, 2014. ACM.

[24] L. Pruijt, C. Köppe, and S. Brinkkemper.
Architecture compliance checking of semantically rich
modular architectures: A comparative study of tool
support. In 2013 IEEE International Conference on
Software Maintenance, Eindhoven, The Netherlands,
September 22-28, 2013, pages 220–229. IEEE, 2013.

[25] M. Saadatmand, D. Scholle, C. W. Leung,
S. Ullström, and J. F. Larsson. Runtime verification of
state machines and defect localization applying
model-based testing. In Proceedings of the WICSA
2014 Companion Volume, WICSA ’14 Companion,
pages 6:1–6:8, New York, NY, USA, 2014. ACM.

[26] K. Sartipi. Alborz: A query-based tool for software
architecture recovery. In 9th International Workshop
on Program Comprehension (IWPC 2001), 12-13 May
2001, Toronto, Canada, pages 115–116. IEEE, 2001.

[27] R. N. Taylor, N. Medvidovic, and E. M. Dashofy.
Software Architecture: Foundations, Theory, and
Practice. Wiley Publishing, 2009.

[28] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitoring
and dynamic software analysis. In Proceedings of the
3rd joint ACM/SPEC International Conference on
Performance Engineering (ICPE 2012), pages
247–248. ACM, April 2012.

[29] M. Vierhauser, R. Rabiser, P. Grünbacher, C. Danner,
S. Wallner, and H. Zeisel. A flexible framework for
runtime monitoring of system-of-systems
architectures. In In Proceedings of the 11th Working
IEEE/IFIP Conference on Software Architecture
(WICSA 2014), Sydney, Australia, 2014.

[30] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer.
Software Architecture - A Comprehensive Framework
and Guide for Practitioners. Springer, 2011.

[31] H. Yan, D. Garlan, B. R. Schmerl, J. Aldrich, and
R. Kazman. Discotect: A system for discovering
architectures from running systems. In In Proceedings
of the 26th International Conference on Software
Engineering (ICSE 2004), 23-28 May 2004,
Edinburgh, United Kingdom, pages 470–479. IEEE,
2004.

© ACM 
http://doi.acm.org/10.1145/2797433.2797492 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Proceedings of the 2015 European Conference on Software Architecture Workshops (ECSAW '15). ACM, New York, NY, USA, , Article 57 , 7 pages. 
DOI=10.1145/2797433.2797492 




