
Adapting Heterogeneous ADLs for Software Architecture Reconstruction Tools

Dung Tien Le

Thai German Graduate School of Engineering,
King Mongkut’s University of Technology North Bangkok

Bangkok - Thailand
Email: le.t-sse2013@tggs-bangkok.org

Ana Nicolaescu, Horst Lichter

Software Construction Research Group
RWTH-Aachen University

Aachen - Germany
Email: ana.nicolaescu@swc.rwth-aachen.de,

horst.lichter@swc.rwth-aachen.de

Abstract—Architecture reconstruction tools were proposed to
enable the extraction of descriptive architecture models based
on prescriptive input models. A limitation of these tools is that
they employ specific meta-models to which the input prescriptive
models must adhere. These are often incompatible with the
languages or notations that architects use in practice, leading
to substantial effort to overcome terminology differences, to
transform possibly already existing prescriptive models in tool-
compatible ones and interpreting the results. To alleviate this
problem we propose to leverage model engineering techniques in
order to enable heterogeneous prescriptive and descriptive models
as input and output artifacts of reconstruction tools. We exem-
plify our proposal by extending the Architecture Analysis and
Monitoring Infrastructure (ARAMIS) - an approach developed
within our previous work for the reconstruction and evolution of
software architectures with a strong focus on the behavior view.

Keywords–Software Architecture; Architecture Reconstruction;
Model-To-Model Transformation; Architecture Description Lan-
guage; Unified Modeling Language.

I. INTRODUCTION

It is generally acknowledged that the architecture greatly
affects the quality of a given software and that its description
is crucial to support understanding, decision making, etc. For
example, Bass et al. stated that the software architecture is
essential because of three main reasons: it is the basis for com-
munication among stakeholders, it encompasses the important,
early design decisions and it is a transferable abstraction of a
system [1]. Because of its importance, over the years numerous
attempts and even standards [2] have been proposed to support
the description of the software architecture. A plethora of
methods, tools and languages covering a very wide spectrum
of formality were proposed and used to serve this purpose.
Architects often use informal descriptions in the form of text,
boxes and lines diagrams and alike but also employ more
formal languages like the Architecture Description Languages
(ADLs) or Unified Modeling Language (UML) when more
formality is needed and/or required. Nowadays, there are more
than 100 published ADLs available for use [3]. The use of
UML to describe architectures has also increased, especially
after the introduction of UML Profiles in UML 2.0 [4]–
[7]. When considering the wide pallet of choices and the
uncertainty regarding their suitability for use in a given context,
it can seem natural to consider unifying these in one single
highly-expressive architectural language. However, in a recent
journal publication [8], Malavolta et al. stated that such an
universal language is unlikely to become popular. Instead,
each architectural language will be created based on specific
stakeholders requirements.

Due to the numerous possibilities to describe architec-
tures, their purpose and the various involved stakeholders, it
is common that even in the same project or company, the
software architecture is described differently using various
tools and languages. Typically, most of the effort to document
architectures is invested in the early phases of the software
development process and the result thereof is the so-called
”prescriptive architecture”. Although descriptions are in later
phases very useful to support the system’s further development,
these usually go out of date soon because of the relatively high
effort that should otherwise be invested to keep them consistent
to the actual architecture [9].

To approach this problem, several architecture reconstruc-
tion (AR) techniques were proposed. These aim to identify ”the
descriptive architecture” which is the actual description that
reflects the system’s reality. In order to use these approaches,
usually the architects must specify the prescriptive architecture
in advance. The descriptive architecture model is then derived
by correcting the prescriptive one with information extracted
from the real system. However, for defining the prescriptive
architecture, the architects are bound to use the meta-model of
the employed AR tools [10]. These meta-models are usually
stiff and cannot be extended. For example, even though the
architects have initially used UML Profiles or a given ADL to
describe a prescriptive architecture, if the tool that they cur-
rently want to employ only defines layers, then the architects
must re-describe the architecture using only this concept. As
our previous work has shown [10], this situation can lead to
misunderstandings and in the end, prohibit the wide adoption
of the considered AR tool. While the meta-models of other
AR tools are extendible, there might still be gaps between
what the architects are familiar with and the new meta-models.
Furthermore, effort must be invested in order to understand and
extend a given AR meta-model.

In our opinion, there is a need for reconstruction tools that
address this heterogeneity problem. The architects should
be able to model the prescriptive architecture using their
familiar languages or tools. Then, by employing such an AR
tool, a descriptive architecture model should be retrieved that
adheres to the same meta-model as the prescriptive one. In
this paper, we present an approach to extend the ARAMIS
Workbench - developed during our previous work to evaluate
the communication between the architecture units composing
software systems - with the possibility to allow the input and
output of heterogeneous prescriptive and descriptive architec-
ture descriptions respectively.

This paper is structured as follows: in Section II, we
present the ARAMIS concepts that are the foundations of

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 71 / 512

the ARAMIS Workbench. Section III presents our solution
to enable different types of architecture descriptions within
ARAMIS. Section IV discusses the related work and Section V
concludes the paper.

II. ARAMIS
The Architecture Analysis and Monitoring Infrastructure

(ARAMIS) is ”a tool-supported framework for run-time mon-
itoring, communication integrity validation, evaluation and
visualization of the behavior view of software architectures”
[11], [12]. ARAMIS allows the architects to validate the
communication between the hierarchies of architecture units
that constitute a given system. In order to do so, ARAMIS
maps extracted low-level run-time traces on architecture units
and validates the mapped communication according to the
rules given in the prescriptive architecture. The ARAMIS
meta-model (ARAMIS-MM) [12] to which the prescriptive
architecture should adhere to, although developed for flexibility
is still specific. The ARAMIS Workbench offers technical
mechanisms for the mapping and validation of the communica-
tion and the visualization of the result using various interactive
views.

One of the major limitations of this concept is that both the
prescriptive and descriptive architecture models must adhere
to the ARAMIS-MM. The visualizations are also ARAMIS-
specific. This leads to situations in which architects must
first (1) re-describe their prescriptive, e.g., component-based
diagram using the ARAMIS Architecture Modeller and then
(2) interpret the result as displayed in an ARAMIS-specific vi-
sualization that has no traceability links with their prescriptive
architecture model from step (1).

In order to loosen this limitation and increase the ac-
ceptability of ARAMIS, we currently work on enhancing
ARAMIS so that it allows flexible input and output architecture
descriptions. In such a scenario the architect would merely
upload, e.g., a component diagram and receive as output the
same diagram, augmented with run-time information (e.g.,
frequency with which one component accesses another one)
and information regarding occurred architecture violations.

III. GOALS AND SOLUTION CONCEPT
Our main goals that we pursue with our approach are:
• enable the architects to reuse their prescriptive archi-

tecture models even though these might not necessar-
ily conform to ARAMIS-MM.

• enable the generation of outputs that conform to the
same meta-model as the input. Preferably, the output
should be obtained by simply augmenting the prescrip-
tive input model, in order to boost understanding by
leveraging recognition effects.

In order to solve the heterogeneity problem mentioned in
the introduction, we developed a solution concept to fill in
the gap between the popular architectural languages - that are
being used by the architects - and ARAMIS. The core of the
concept is to transform an existing architecture description
(AD) of a software system into an AD that conforms to
the ARAMIS meta-model and subsequently to reverse the
transformation to present the output.

Model-to-model (M2M) transformation is the process of
producing one or more output (target) models based on one or
more input (source) models. Based on the modeling languages
used for the input and output, we can differentiate between

two types of transformation: exogenous - the input and output
languages are different, endogenous - the input and output
languages are the same [13]. To enable the transformation, a
so-called transformation definition consisting of transformation
rules must be created. The transformation rules are specified
at meta-model level and prescribe how one or more elements
from the output model must be produced based on one or
more elements from the input model. Upon performing the
actual transformation, the application of these rules leads to
the emergence of transformation links between the elements
of the input and output models. If the transformation rules are
bidirectional, then the transformation is also named bidirec-
tional, otherwise it is called unidirectional.

A M2M transformation suitable to solve the problem
described before must be (1) exogenous - because the in-
put models are probably not ARAMIS-specific - and (2)
unidirectional. Given that the ARAMIS-MM is very general
(see Figure 1), we assume that the probability that more

Figure 1. Excerpt from the ARAMIS-MM

elements from the input meta-model (e.g., box, component)
must be transformed to the same ARAMIS-MM element (e.g.,
architecture unit) is relatively high. In such a scenario, defining
bidirectional transformation rules can be complex. Instead, in
order to enable the architects to analyze the result on their
own architecture description, we propose to store the concrete
links resulted during the transformation and reuse them after
the ARAMIS validation results are available in order to map
these on the input model. This leads to the same effect as the
bidirectional transformation.

Another important aspect deals with the nature of the
input and output models. The output model expresses the
architecture from a behavior point of view. More explicitly,
the communication of two architecture units is assigned a
frequency and is possibly marked as a violation. If the in-
put model offers a structural overview of the architecture,
then there are probably no dedicated meta-model elements
to express these behavioral aspects. There are at least two
options to address this problem. We can either reuse general
purpose elements with a loose semantic from the input meta-
model (e.g., in UML we can append the results using UML
comments) or, alternatively, we can extend the input meta-
model with additional suitable elements, (e.g., a new property
called ”frequency” can be added to an already existing element
called ”DirectedLine”).

Figure 2. The model transformation chain in ARAMIS.

In order to enable the exogenous, unidirectional trans-
formations, we implemented a solution that uses Epsilon

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 72 / 512

[14], a fully integrated environment for model engineering
that, among other features, supports meta-model design, cre-
ating inter-model links, generating model editors, and M2M
transformations. Also, because of its active community and
provided documentation with comprehensive examples, its
learning curve is reduced. The model transformation chain that
resulted when we extended ARAMIS with our Epsilon-based
solution is represented in Figure 2.

To use Epsilon, we first converted the ARAMIS-MM
[11] into an equivalent Ecore model representation. When a
prescriptive architecture model with a new, previously not
analyzed meta-model must be considered, this meta-model
must first also be documented in an Ecore model and then
the transformation rules between it and the ARAMIS-MM
can be defined. By applying the transformation rules, a set
of transformation links emerges.

Assuming that each model element can be uniquely iden-
tified and differentiated (e.g., by its ID), we can keep track of
every transformation with the exact source and target model
elements. The result of the transformation, i.e., the ARAMIS
input model, will further undergo a subsequent endogenous
transformation performed by the ARAMIS Workbench which
will then create the ARAMIS output model. This endogenous
transformation creates an important issue: the ARAMIS output
model might contain elements that were not present in the
input model and thus are not linked to the prescriptive model
(e.g., unforeseen communication between architecture units).
This issue is a sign of a mismatch between the prescriptive
and descriptive architecture. The architects can use this result
to further investigate the considered software system.

Figure 3. The ARAMIS ADL transformation process

The process encompassing all activities necessary to em-
ploy ARAMIS using a new ADL is depicted in Figure 3.
This process consists of four major steps: 1. Preprocessing,
2. Model to Model Transformation, 3. ARAMIS Processing,
4. Result augmentation.

In the following, we exemplify the steps 1,2 and 4 using
an example based on a simple boxes-and-lines ADL. Step 3 is

not further detailed in this paper, since it was covered by our
previous work [11].

A. Preprocessing
To exemplify our approach, we have implemented an

example using a boxes-and-lines ADL. Figure 4 shows its
meta-model (BL-MM). As mentioned above, the preprocessing
step prepares the prescriptive meta-model (in this case BL-
MM) for the next steps, by creating a corresponding Ecore
meta-model.

Architecture DirectedLineBox
1..*

1..*

+source1 +out *

+target

1 +in
*

Comment
*

Figure 4. Meta-model of a simple boxes-and-lines ADL

In this case, an extension of the BL-MM that permits
the addition of behavior-related information is not necessary,
because we can use for this purpose the Comment BL-MM ele-
ment. The validation results from ARAMIS,i.e., the frequency
of the calls and their validity, will be augmented in the initial
model using Comment elements.

B. Model transformation
Based on the ARAMIS-MM (see Figure 1) and the BL-

MM, we define the transformation rules. In our example, we
want to create transformation rules for (1) mapping Box in
BL-MM on ArchitectureUnit in the ARAMIS-MM and (2)
mapping DirectedLine of BL-MM on AUCommunication of
ARAMIS-MM. Figure 5 presents a simple boxes-and-lines

Figure 5. Example of a model transformation

model (on the left hand side) and the ARAMIS model elements
that are the result of the M2M transformation. Facade and Con-
troller are transformed to the AUFacade and AUController re-
spectively. The call from Facade to Controller is transformed to
an AUCommunication Facade2Controller that has AUFacade
as caller, AUController as callee, an initial frequency unknown
and a true isAllowed attribute. These correspondences are then
saved as transformation links.

C. Augmenting the ARAMIS results
The ARAMIS output model is presented on the left side

of Figure 6. First, we can see that, after running ARAMIS,
Facade2Controller now has the updated frequency value of
100. Second, there is a new element that did not exist in the
input model: Controller2Facade. This element appears because
ARAMIS detected that AUController has also accessed the

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 73 / 512

Figure 6. Example: ARAMIS augmented result

AUFacade during run-time. Based on this result, the prescrip-
tive architecture model is augmented. Based on the previously
generated transformation links, we know that our M2M trans-
formation transformed the prescriptive model element Facade
into the ARAMIS AUFacade; transformed Controller into AU-
Controller; and transformed the directed line between Facade
and Controller into Facade2Controller. We can now use this
information to augment the prescriptive model. For this we
create in the input model a new Comment element that we at-
tach to the DirectedLine from Facade to Controller as shown in
the left side of Figure 6. This comment contains the isAllowed
and frequency attributes that characterize the communication
between Facade and Controller. Furthermore, since there is
no transformation link for the ARAMIS Controller2Facade, a
new DirectedLine is added to the initial model for the detected
communication from Controller to Facade. To this, we also
attach a corresponding comment with information regarding
its frequency and permission.

IV. RELATED WORK
Most of the architecture reconstruction tools have rigid ar-

chitecture description meta-models. For example, Sonargraph-
Architect [15] allows users to define the architecture of the
software systems using layers, layer groups, vertical slices,
vertical slices groups and subsystems. The architects cannot
use other types of ADL.

Malavolta et al. [16] proposed the DUALLY framework
that supports architectural and tools interoperability. By using
its intermediate ADL meta-model for architectural language, it
provides ADL interoperability, but no support for architecture
reconstruction or validation is available.

The meta-model of the SoftArch reconstruction tool in-
cludes 3 architecture concepts: components, associations and
annotations. The users can then create customized figures for
the various elements, to simulate the use of various meta-
models [17].

V. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach for enabling

heterogeneous input and output architecture descriptions for
the ARAMIS Workbench. We have implemented an extension
for ARAMIS to leverage a M2M transformation using the
Epsilon framework. Our solution aims to close the gap between
the ADLs that the architects are familiar with and ARAMIS.
To reduce the amount of time/complexity for further model
transformations, we are offering pre-defined transformation
rules for the most popular cases, such as boxes-and-lines and

UML component diagrams. In the future we plan to evaluate
our solution within an extensive case-study on a real-world
system.

An open question related to our work is how to reduce
even more the effort needed to be invested by the architects
when using ARAMIS. For example, if the input boxes and
lines diagram is simply a drawing, we currently expect that
the architect ”translates” the diagram to an Ecore model. A
complete solution would employ image recognition techniques
to directly transform the model. Given that different techniques
might be necessary depending on the type and form of input
model, this represents an important limitation of our approach.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[2] “ISO/IEC/IEEE 42010,” http://www.iso-architecture.org/42010 [ac-
cessed: 2015.10.01].

[3] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “The up-
to-date list of currently existing architectural languages,” http://www.di.
univaq.it/malavolta/al/ [accessed: 2015.10.01].

[4] J. Pardillo and C. Cachero, “Domain-specific language modelling with
UML profiles by decoupling abstract and concrete syntaxes,” Journal
of Systems and Software, vol. 83, no. 12, Dec. 2010, pp. 2591–2606.

[5] M. H. Kacem, A. H. Kacem, M. Jmaiel, and K. Drira, “Describing
dynamic software architectures using an extended uml model,” in
Proceedings of the 2006 ACM Symposium on Applied Computing, ser.
SAC ’06. ACM, 2006, pp. 1245–1249.

[6] P. Selonen and J. Xu, “Validating uml models against architectural
profiles,” in Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2003, pp. 58–67.

[7] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins,
“Modeling software architectures in the unified modeling language,”
ACM TOSEM, vol. 11, no. 1, Jan. 2002, pp. 2–57.

[8] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Trans.
Softw. Eng., vol. 39, no. 6, Jun. 2013, pp. 869–891.

[9] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Trans. Softw. Eng., vol. 35, no. 4,
Jul. 2009, pp. 573–591.

[10] A. Dragomir, M. F. Harun, and H. Lichter, “On bridging the gap
between practice and vision for software architecture reconstruction and
evolution: A toolbox perspective,” in Proceedings of the WICSA 2014
Companion Volume. ACM, 2014, pp. 10:1–10:4.

[11] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in Proceedings of the 2014 21st Asia-Pacific
Software Engineering Conference - Volume 01, 2014, pp. 191–198.

[12] A. Nicolaescu, H. Lichter, A. Göringer, P. Alexander, and D. Le,
“The aramis workbench for monitoring, analysis and visualization of
architectures based on run-time interactions,” in Proceedings of the
2015 European Conference on Software Architecture Workshops, ser.
ECSAW ’15. ACM, 2015, pp. 57:1–57:7.

[13] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers, 2012.

[14] “Epsilon,” http://www.eclipse.org/epsilon/ [accessed: 2015.10.01].
[15] “Sonargraph Architect,” https://www.hello2morrow.com/products/

sonargraph/architect [accessed: 2015.10.01].
[16] I. Malavolta, H. Muccini, P. Pelliccione, and D. Tamburri, “Providing

architectural languages and tools interoperability through model trans-
formation technologies,” IEEE Trans. Softw. Eng., vol. 36, no. 1, Jan.
2010, pp. 119–140.

[17] J. Grundy and J. Hosking, “Softarch: Tool support for integrated
software architecture development,” International Journal of Software
Engineering and Knowledge Engineering, vol. 13, 2003, pp. 125–152.

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 74 / 512

