
Faculty of Mathematics,
Computer Science, and
Natural Sciences

Research Group
Software Construction

Master Thesis

Tool-Supported Project
Prediction

Werkzeugunterstütze
Projektprognose

submitted by

Elena Emelyanova

born in Belgorod

on May 5, 2015

Reviewers

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisors

Dipl.-Inform. Matthias Vianden

Dipl.-Inform. Andreas Steffens

I, Elena Emelyanova, hereby affirm in lieu of oath that the Master Thesis at hand is
my own written work and that I have used no other sources and aids other than those
indicated. All passages quoted from publications or paraphrased from these sources are
properly cited and attributed.

The thesis was not submitted in the same or in a substantially similar version, not even
partially, to another examination board and was not published elsewhere.

Aachen, May 5, 2015 (Elena Emelyanova)

Acknowledgment

First and foremost, I would like to thank Prof. Dr. rer. nat. Horst Lichter for offering
me the opportunity to carry out my thesis. Additionally, I would like to thank
Prof. Dr. rer. nat. Bernhard Rumpe for reviewing this thesis.
I am very grateful to Matthias Vianden and Andreas Steffens for being my supervisors,

who have guided me with useful comments, feedback, and engagement thoughout my
thesis.
Many thanks go to the team of the SWC Research Group of RWTH Aachen University

for establishing a friendly and cheerful atmosphere to work in.
I would like to express an special thank you to Andrej Dyck for patient reading my

thesis, asking me challenging questions, and giving me valuable advices. Also I would
like to thank him for providing many laughs, insightful discussions, and sharing a few
beers with me. Thanks for keeping me going during my hard work.
Last but not the least, I am indebted to my family and all my friends who have

supported me during my studies.

Elena Emelyanova

Abstract

Dealing with an increasing complexity of software, and thus, software projects, managing
those projects become more and more difficult. While monitoring a software project is
a necessary task to identify potential failures or quality loss, often projects managers
can only react. On the other hand, predicting the project’s progress can help project
managers to avoid certain pitfalls. For this purpose, they often rely on their experience.
In order to support unexperienced managers or help in new situations, a tool-based
prediction using historical project data were proposed.
To the best of our knowledge, all proposed prediction methods deal with metrics such

as lines of code, number of defects, etc. As project managers are usually more interested
in metrics such as CPI and SPI, in this thesis, we contribute with a framework that
facilitates prediction for all kinds of metrics. This framework uses data mining methods
to gain knowledge from past projects, and with that, predict the progress for an ongoing
project. Moreover, we implemented a prediction tool that forecasts CPI and SPI values,
and evaluates and visualizes the prediction results.
We evaluated the prediction tool with the historical data of ITERGO. The evaluation

shows promising results. Moreover, the framework is designed for adaptability and
extendability. Each knowledge discovering step is encapsulated in a single component
with a clear API. Moreover, the visualization as well as the data mining library are
loosely-coupled and can be easily replaced. Thus, enabling the framework to be used in
different problem domains.

Contents

1 Introduction 1
1.1 Objectives . 1
1.2 Structure of this Thesis . 2

2 Background 5
2.1 Software Project Management . 5
2.2 Frameworks . 8
2.3 Data Mining . 12

3 Requirements 19
3.1 Stakeholders and Requirements of the PredictionTool 19
3.2 Stakeholders and Requirements of the DataMiningFramework 22

4 Related Work 25
4.1 Software Project Schedule Prediction Using Bayesian Network 25
4.2 Prediction of Defects in Software Projects 26
4.3 Discussion . 36

5 Concept 37
5.1 Idea of the Framework . 37
5.2 Processes Modeling . 38
5.3 GUI Prototyping . 46
5.4 Domain Model . 50

6 Realization 53
6.1 JavaEE Technologies . 53
6.2 Architecture . 55
6.3 WEKA Java API . 64
6.4 Visualization . 71
6.5 Evaluation of Clustering Performance . 73

7 Evaluation 79
7.1 Evaluation of the DataMiningFramework 79
7.2 Evaluation of the PredictionTool . 82

8 Conclusion 99
8.1 Summary . 99

i

8.2 Future Work . 100

9 Appendix 103
9.1 Experiment 1: Box Plot Diagrams . 103
9.2 Experiment 2: Box Plot Diagrams . 103

Bibliography 113

1 Introduction

The increasing complexity of software projects is making the management of those
projects more difficult. While planning software development, managers need to take in
account a variety of factors; including effort requirements, project costs, defect density,
schedule delay, etc. Usually, managers have to make decisions regarding future project’s
events based on their personal experience, which is often problematic or impossible
due to missing experience. With the objective to support mangers in decision making,
several prediction techniques and tools for a project’s progress have been proposed. Still,
a reliable prediction is one of the most challenging issue that concerns software project
managers and is still underexplored.
Most research suggests prediction methods for project metric values based on historical

data, i.e., of past projects, as well as the experience of specialists. In other words, the
information from past projects, namely a collection of measured metrics, is used to derive
metric value trends for an ongoing project. To this end, the information is differentiated
and classified according to certain criteria. Here, often data mining techniques like
clustering and classification are applied. Then, the ongoing project is assigned to one of
the classes, and with that, the progress is assumed to be similar to the characteristics of
this class.
To the best of our knowledge, all of the proposed methods deal with metrics such

as lines of code, number of bugs, etc. However, project managers are usually more
interested in metrics such as CPI and SPI, and thus, in the prediction of a project’s
behavior. In this thesis, we tackle the project metric values prediction of any kind by
proposing a framework of data mining steps that can be used within various problem
domains. Additionally, as a proof of concept, we present a tool to predict CPI and SPI
values for an ongoing project based on historical data. With this, we support project
managers in their decision making.

1.1 Objectives

The endeavor of this thesis is to develop framework for automatic prediction of future
project’s metric values. Thereby, we focus on designing a forecasting system that is
based on the collaboration of software engineering solutions and data mining methods.
The system calculates a prediction based on various performance evaluation metrics,
e.g., CPI, SPI, the total number of tickets, etc. The metrics are transformed into
discrete values that compose the input of the system. The framework must facilitate
the transformation of the discrete values into time series that are used for a further
data mining processing. Consequently, the framework must provide a data mining

1

1 Introduction

component that is needed to identify similarity patterns in time series for prognosis
creation. For further analysis, the results obtained from the data mining component,
must be processed by the visualization component of the framework.
The forecasting framework must enable the user to apply various computing

components to different time series in order to discover data knowledge. To specify
the goals of of this thesis, we summaries the objectives of this work as follows:

Performing of practice-oriented research to determine whether a similar ‘best
practice’ method for meaningful clustering of time series already exists. Based
on this research, we want to identify which regression and clustering algorithms
can be selected for the core steps of the forecasting tool.

Designing a component-based data mining framework that offers solutions for
specific problem domains. The framework must provide a loosely-coupled
architecture, where each step of the data mining processing is encapsulated by a
single component. Furthermore, the framework must be open for the extendability
and changeability of components by providing extension points. Hereafter, we
refer to this framework as DataMiningFramework.

Creating a prototype of project prediction tool. The prototype must provide the
following functions:
• Import of historical metric data.
• Processing the row data and transformation into the form of time series.
• Providing different clustering methods and their configuration.
• Providing different visualization possibilities of the clustering results.
• Enabling interpretation and evaluation of clustering results.

Hereafter, we call the prediction tool the PredictionTool. Here, the
PredictionTool serves as a proof of concept of the DataMiningFramework

Evaluating the approach with industry data. This objective includes evaluation and
analysis of different regression and clustering algorithms based on the empirical
database of the company ITERGO.

1.2 Structure of this Thesis
This thesis is divided into the following seven chapters:

Chapter 2 - Background This chapter addresses the theoretical foundations of this
thesis. Since our prototype targets a software project manager’s needs, we start
by explaining the term of software project management in section 2.1. Thereby,
we define the terms of project life-cycle and earned value analysis (see sections
2.1.1 and 2.1.2). Then, in section 2.2, we explain essential terms, characteristics,
and types of software frameworks. Last, in section 2.3, we outline the data mining
approach and its important terms and definitions.

2

1.2 Structure of this Thesis

Chapter 3 - Requirements In this chapter, we formulate the capabilities and properties
that must be provided by our prototype. Thereby, we identify the stakeholders
and derived the requirements from their needs. Additionally, we differentiate
the stakeholders and their requirements into two groups: the stakeholder
needs and requirements for the PredictionTool in section 3.1 and for the
DataMiningFramework in section 3.2.

Chapter 4 - Related Work In this chapter, we present an overview of previous work on
prediction of software project progress. Thereby, we list the a number of related
papers and discuss their results as well as the pros, cons, and areas of improvement
in context of project prediction. Moreover, we emphasize the contributions of our
work.

Chapter 5 - Concept This chapter describes the main idea and details of the software
prototype designed in this work. First, we concentrate on the main components
of the whole prediction process in section 5.1. After that, we present the process
model and explain the single activities and processes of the system by using flow
diagrams in section 5.2. Then, in section 5.3, we design a GUI prototype for
the PredictionTool. Finally, we present the domain model of the system’s
architecture in section 5.4.

Chapter 6 - Realization Subsequently, in chapter 6 we provide the implementation
details of the prototype. Thereby, we start with describing the JavaEE techniques
and tools used for the realization task in section 6.1. After that, we present the
component architecture of the prototype and describe its details in section 6.2.
Furthermore, we describe the integration details of the data mining tool used in
the computation core in section 6.3. Finally, we lay out the visualization techniques
that are used in our prototype in section 6.4.

Chapter 7 - Evaluation This chapter describes evaluation methods and their results
used to estimate the performance of the prototype. Thereby, we split the chapter
into two main parts. In the first part, we present the techniques used to evaluate
DataMiningFramework and discuss the obtained results. In the second part,
we describe several experiments that we designed and performed to evaluate the
PredictionTool.

Chapter 8 - Conclusion Finally, we summarize and discuss the results of this thesis in
section 8.1 and give an outlook on future work in section 8.2.

3

2 Background

Contents
2.1 Software Project Management . 5

2.1.1 Project Life-cycle . 6
2.1.2 Earned Value Analysis . 6

2.2 Frameworks . 8
2.2.1 White-box and Black-box Frameworks 9
2.2.2 Hook and Template Methods . 11

2.3 Data Mining . 12
2.3.1 Supervised and unsupervised learning 13
2.3.2 Regression Analysis . 14
2.3.3 Clustering Analysis . 14
2.3.4 Weka Data Mining Software . 17

The endeavors of this thesis address the development of a data mining framework
with the main purpose to help extracting information from the data set of completed
projects and predict development progress of ongoing projects. To this end, we first
briefly recall terms and definitions of software project management in section 2.1. In
section 2.2 we explain the main characteristics and special futures of the architecture
of software frameworks. The last section of this chapter 2.3 handles the data mining
topic, where we give background information and theoretical foundations on data mining
analysis techniques.

2.1 Software Project Management

In this section we present software project management and describe the key
characteristics of a project and the project management process. The term project
management is closely linked to the term project. In literature exist several definitions
for the term project. We choose the definitions of project proposed by Kerzner and the
Project Management Institute (PMI) in [Ker09] and [PMI04], respectively. According
to the both definitions, the project term can be summarized as a “sequence of organizing
activities and tasks which have to be performed according to a certain specification
and constrain in order to create a unique product or service.” Each project has an
objective, as well as a start and an end date. Furthermore, certain amount of human
and non-human resources are assigned to each project.
In order to introduce the term software project, we use the definition proposed

by Thayer, explaining software project as a project with the objective to develop a

5

2 Background

software system [You00]. Ludewig and Lichter define in [LL10] further characteristics of
software project; namely, the presence of project owner and project purchaser, as well
as the establishment of relationship between staff, a projects’ output, and the projects’
resources.
PMI defines software project management as “the application of knowledge, skills,

tools and techniques to project activities to meet project requirements” [PMI04]. Thayer
outlines five main functions of the project management process: planning, organizing,
staffing, directing and controlling. Planning and organizing comprise activities that are
needed to complete organizational objectives, e.g., developing strategies and polices,
preparing specification of procedures, rules and documentation, forming teams and
defining responsibilities of their members. Staffing and directing deal with hiring and
motivating the staff who performs the project activities. Controlling covers evaluation
of the performance of the project activities. A detailed explanation of each function and
its activities can be found in [You00, Ker09].

2.1.1 Project Life-cycle

In order to reduce managerial effort and improve management control, software projects
are typically divided into several project phases. In general, the composition of project
phases forms the project life-cycle. Each phase has a predefined start and end dates,
where the latter is assigned to a milestone within the project. Milestone can be defined
as a set of phase objectives. A phase is considered successful completed if a project
phase ends within its deadline and satisfies all criterions defined for the corresponding
milestone. As a consequence, a milestone helps to represent an progress point of the
project development process, and supports the examination task. The activity of
splitting a project into phases should be performed carefully. In practice, too short
as well too long phases negatively affect the project development process [LL10].
There exists no general agreement on how to organize a projects’ lifecycle. However,

PMBOK R©Guide defines five theoretical life-cycle phases of a project, which are
conceptual, planning, testing, implementation, and closure [PMI04]. In software
project management, this concept is extended through various software process models,
e.g., Waterfall model, iteration model, Spiral model, etc. A software process model
is used to define a software development process and its phases in an abstract
manner. Each software process model typically include analysis, specification, design,
implementation, testing, evaluation, and maintenance phases. For more information see
[Ele90, Som06, LL10].

2.1.2 Earned Value Analysis

Project control includes monitoring and reporting the work performance of project
activities according to its scope, schedule, costs, and risks. For instance, the
Earned Value Analysis (EVA) is an approach to monitor and control of project costs
performance. EVA has been originated by the U.S. government in 1967 to be integrated
into government cost and scheduler control systems. Due to its success, it was adapted by

6

2.1 Software Project Management

private industrial companies and set the standard for measurement project performance
against its costs and schedule [FK02].
The earned value technique is a key performance indicator of a project w.r.t. earned

value management. The EVA is performed for a specific task or work at a certain point
of time. The results are used to prognosticate total project costs and date of project
completion. EVA is based on the variance of the three main key values: earned value
(EV), planned value (PV), and actual cost (AC). Earned value addresses the amount
of the work actually performed during a given time period. Planed value describes the
budgeted costs of the work according to the project schedule up to a given point in
time. Actual costs are the total effective costs resulting from the performed work on
the scheduled activity. Accordingly, the EV, PV, and AC measurements are used to
determine whether a project task is completed according to project schedule or not. For
this purpose, cost and schedule variance are computed as follows:

• Cost variance: CV = EV −AC

• Schedule variance: SV = EV − PV

Cost variance provides information whether a project is under or over budget. Here,
a negative value of cost variance indicates that project is over budget for the work
performed. The positive value of CV refer to the project under budget and the CV
equal to null indicates that the cost spent for the work corresponds the planned value.
Schedule variance shows whether a project is ahead of or behind schedule. In particular,
a negative value of schedule variance hints that the planned work has not been completed
and a positive value indicates a favorable state of project.
While cost and scheduler variance are absolute values, cost performance index (CPI)

and schedule performance index (SPI) represent project performance as relative values.
Here, CPI helps to estimate the cumulative cost efficiency of a project and indicates how
efficiently the project resources has been using. CPI is computed using EV and AC:

CPI = EV
AC

Typically, the CPI value, which is within interval [0, 1), indicates unfavorable conditions
of projects’ budget, i.e., spent more than planned. The CPI value that is equal to
one implies that the cost for completing a task or work is less than initially planned.
Consequently, the CPI value that is equal to one indicates that the costs spend
correspond to the planned value.
Scheduler performance index (SPI) shows how efficiently the project time is used and

is computed using EV and PV:

SPI = EV
P V

The SPI value determines that on average for each 8-hour day the percentage of time used
to perform the work. The SPI value, which is within interval [0, 1), indicates inefficient
usage of working time (performed less than planned). SPI that is nearly or equal to 1
shows that the project is in time, otherwise if the SPI value is grater than one mens that
it is performed more than initially planned [Ins04, Ker09].

7

2 Background

2.2 Frameworks

The construction of large-scale software systems often rely on reusable software
components, since the application of already implemented and tested parts of a program
significantly increase reliability. Furthermore, the software development that is based
on a component-based approach lowers implementation efforts and maintenance costs
[BR90].
For component-based software development, there exists several definitions trying to

explain the meaning of a software component. Intuitively, a software component is
conceived as an independent and replaceable software part that encapsulate a certain
functionality. Typically, each component provides a predefined interface and conforms
to an established behavior in the software system. In the IEEE Standards Definition a
software component is defined as a “general term used to refer to a software system or
an element, such as module, unit, data, or document” [faSQMM15]. Szyperski explains
the term of software component as a “unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be deployed
independently and is subject to third-party composition.” [SGM02]. Here, the important
characteristic is the separation of interfaces and their implementation.
In contrast to reusing a single component, a more effective reuse is one of a

pre-defined software architecture, a so-called framework. Framework is collection of
software components with the pre-defined interaction between them [FPR00]. Hence,
the term component-based development is closely-related to the term framework-based
development. Thereby, frameworks can be applied for developing software components
by implementing an interface to access the internal framework’s architecture. Another
way is to use the framework as a black-box, i.e., the components of the frameworks are
used as pluggable ready-to-use components. The common application of the framework
concept is to enhance and facilitate the development of infrastructure and middleware
software. The component-based approach supports end-user software development
[FS97].
Pree defines a framework as a “reusable semifinished architectures for various

application domains. Such frameworks represent a real breakthrough in software
reusability: not only single building blocks, but also the design of (sub)systems can
be reused” [Pre95c]. The framework concept enhances past reuse techniques, such
as methods that are based on class libraries and introduces the new approach of
semi-complete application for particular business units and application domains. Figure
2.1 reflects the difference between function calls in the application that uses several
libraries (a) and framework (b). Opposite to an application involving class libraries,
a framework provides the crucial library components by itself and calls back specific
application procedures and functions [FPR00].
Application of a framework in software development carries with it several advantages

regarding the quality of software; namely, it targets to improve modularity, reusability,
extendability, and implementing inversion of control [FS97]. The terms can be explained
as follows:

8

2.2 Frameworks

Figure 2.1: Call-down (a) and call-back (b) style of programming [FPR00]

Modularity A better modularity of the system is achieved by frameworks due to
encapsulating the functionality behind interfaces. A modular system is broken
into self-contained modules that are developed separately without affecting other
modules. The latter issue lows the effort that is needed to comprehend and
maintain existing software.

Reusability A framework’s architecture defines components that are designed and
implemented with the objective to be reused in the other applications. The
motivation behind the concept of reusability is avoiding re-creation of common
solutions and using instead pre-defined components or architecture that are
designed based on previous experience.

Extensibility A framework’s architecture provides a further crucial function: namely,
extendability of the software, i.e., it specifies extendable interfaces that offer
adoption for new features. This extensibility ensures customization of new
application services and functionality.

Inversion of control The classical call-down principal defines hard-wired interaction
between components that excludes any dynamic alteration of code. In contrast,
frameworks inverse the control of the program’s flow that is not dictated by the
framework caller, but by the framework. Inversion of control allows a component
to decide at the run time which dependencies have to be injected.

2.2.1 White-box and Black-box Frameworks

Frameworks allow variation of functionality for a particular software application by
providing extension points or specialization. Pree defines a framework as “a high level
language” that enables creation of reusable software solution through specialization using

9

2 Background

hot-spots [Pre95a]. Moreover, Pree explains two types of specialization techniques: the
specialization performed through composition that is called black-box, and specialization
conducted by using inheritance that is defined as white-box [Pre95b].

Figure 2.2: Framework class hierarchy [Pre95b]

Hot-spots are either abstract classes or interfaces that provide an abstract
implementation of features, and so, offer the adaption of features through a
concrete implementation in a certain application. The concept of hot-spots enables
standardization of the application structure and defines collaboration behavior between
components inside a framework.
Figure 2.2 illustrates an example of a white-box framework architecture with a

pre-defined adoption point, i.e., a hot-spot: the gray rectangle of class A, which, here, is
an abstract method. Here, the method of superclass A is overridden by the subclass A1
by applying inheritance mechanisms. An alternative to the methods where the abstract
method is applied is using of an interface. In this case, any class that implements the
interface A can is used to adapt the framework.
Consequently, white-box components are semi-complete classes that contains methods

with default implementation (hot-spots), which must be rewritten by a concrete adaptee
class. This requires the developer to understand the architecture and implementation of
the framework, and implies a good documentation of framework’s extension points.
In contrast to white-box, the black-box approach of a framework defines ready-to-use

components. In this case, hot-spots are implemented by composition and parameter
definition. Figure 2.3 (a) demonstrates a black-box specialization with two extension
points A and B of a component. The class of type B is an abstract class that has
two concrete implementations (subclasses), B1 and B2. The adaption is performed by

10

2.2 Frameworks

instantiating classes A1 and B2 and plugging in the corresponding objects (cf. figure 2.3
(b)). The developer can directly use class B for the adaption, while in the case of class
A, a concrete subclass A1 must be created first.

Figure 2.3: Framework: Balck-box approach before (a) and after (b) specialization
[Pre95b]

In practice, frameworks are neither designed as pure a black-box, nor as a pure
white-box framework. Typically, it is designed as a combination of both component
types. However, black-box components facilitate reusability of framework. Hence, the
framework’s maturity is reflected by the quota of black-box components.

2.2.2 Hook and Template Methods

The hot-spot-driven framework development defines two types of hot-spot methods,
namely, the hook and the template methods. Hook methods are typically abstract
methods, i.e., they have no implementation, and serve as place holder (hooks) for
a particular implementation. Hook methods are invoked then by the more complex
methods that are called templates. Templates are methods that set abstract behavior
of objects as well as interaction between them. The hook methods enable modification
of object’s behavior without modification of the corresponding class by overriding hooks
through inheritance [Pre95b].
Figure 2.4 (a) demonstrate invocation of a hook method by the template method.

Since the hook method is suppose to be an abstract method it must be overridden in a
subclass A1 implementing abstract class A (see figure 2.4 (b))
In practice, hook and template methods are separated in two classes. The class that

contains hook method is called hook class and the class containing template method
is denoted as template class. Typically, the template class is represented through
an abstract class (or interface) that is extended (or implemented) by the hook class.
Separation of template and hook class through a inheritance relationship provides better
software modularity and extendability. Furthermore, separation of template and hook
classes offers run-time adaptation which implies that the same template method can

11

2 Background

Figure 2.4: Template and hook methods (a) and hook overriding (b) [Pre95b]

invoke multiple hook methods during the system execution.

2.3 Data Mining
A key aspect of data mining is prediction of behavior, performance, or properties
if subjects. Hence, cluster analysis can be used to identify groups, and thus, draw
conclusions for a single subject. In this section, we explain the term data mining first.
After that we discuss the techniques used in data mining and define essential terms
related to the data mining area. Finally, we present various clustering methods as well
as a prediction method using data mining.
Data mining comprises a big range of techniques and methods that are applied to large

amounts of data in order to extract patterns or structure. Kamber et al. [HK00] defines
the term data mining as “extracting or mining knowledge from large amounts of data
[..] mining is a vivid term characterizing the process that finds a small set of precious
nuggets from a great deal of raw material”. The term data mining is often understood
as a synonym for knowledge discovery from data, or KDD.
The knowledge discovery process can be explained as a iterative sequence of the

following steps:

1. Data selection where only the data necessary for the analysis is chosen

2. Data pre-processing

3. Data transformation in representation form needed for analysis

4. Data mining where different methods are applied to discover patterns from data

5. Pattern evaluation and representation of obtained knowledge

First, data selection filters the data considering the importance for the current analysis.
Then, the data pre-processing task is responsible for cleaning data from noises and
inconsistencies. Third, data transformation is performed in order to convert data into
the input format required by the data mining step. This step includes various methods
to discover patterns in the data. Last, the gained knowledge is represented by applying

12

2.3 Data Mining

various visualization and knowledge representation techniques to enable interpretation
of the result.
The data input in data mining takes the form of instances and attributes. An instance

is an individual, independent peace of information that is typically associated with the
database typles represented by an n-dimensional attribute vector. Each instance is
characterized by one or more attributes that describes different aspects of the instance.
There are many different types of attributes, e.g., numeric, nominal, categorical, etc. A
set of instances forms the data input. In data mining we distinguish between training
and test sets of instances. The former is set of instances that is used to build clusters.
The test set is a set of “unseen” instances, i.e., the test instances that are not included
in the train set neither during model training nor during model usage.

2.3.1 Supervised and unsupervised learning

Data mining techniques can be separated into two large groups: supervised and
unsupervised learning. Supervised learning refers to data mining algorithms that are
applied to extract model containing important data classes, and is a synonym for
classification. Data classification is performed in two steps: First, we have to built
a classifier, or classification model, from the training set. Second, this model is used for
to classify the test set. Subsequently, we will describe both steps in more detail.
The first step, called training step, aims to describe a predetermined set of data classes.

To this end, a classification algorithm creates the classifier by analyzing the training set.
During classification it is assumed that each instance in the training set belongs to a
to a predefined class, i.e., the classification process requires that the class label of each
training instance is known before the classifier is built (this implies that the learning
of the classifier is “supervised”). The class label is represented by special attribute of
instance, called class label attribute.
In the second step, the classifier obtained in the first step is used for classification,

i.e., assign instances to classes. This step operates the test set of instances that is
independent (unknown) from the train set. The resulting accuracy of the classification
model (or classifier) on a given test set is computed from the percentage of test set
instances that are correctly classified by the classifier.
Another supervised learning process is prediction. In contrast to classification,

prediction does not apply a class label attribute to instances. Instead, it builds a
prediction model, first, and then, uses this model to predict continuous-valued or ordered
attributes for the test set. The accuracy of a prediction model is computed from the
difference between the predicted values and the (latter) known value.
Clustering, on the other hand, is a technique of unsupervised learning. In this case,

the number of classes and their labels for the training instances are unknown. This type
of learning belongs to learning by observation. Kamber defines clustering as “the process
of grouping a set of physical or abstract objects into classes of similar objects” [HK00].
By doing so, a number of clusters is generated. Then, each cluster is characterized as a
collection of similar objects that are dissimilar to the objects in other clusters. There are

13

2 Background

a number of algorithms used for unsupervised learning. We integrated several clustering
algorithms in this thesis for the evaluation purpose, which are described in section 2.3.3.

2.3.2 Regression Analysis

Regression analysis is a statistical method to model the relationship between independent
and dependent continuous valued variables. Typically, independent and dependent
variables are called predictors and response variables, respectively. The simplest form of
regression analysis is linear regression, where the response variable y is a linear function
of the predictor x. The general linear regression model in 2-dimensional space is given
by

y = a0 + a1x,

where a0 and a1 are constant regression coefficients that define the intercept and
slop of the resulting regression line. The constant coefficients can be determined
with the method of least squares: For a training set with n objects of the form
(x1, y1), (x2, y2), . . . , (xn, yn), a0 and a1 is computed as follows:

a0 = y − a1x and a1 =
∑n

i=1(xi−x)(yi−y)∑n

i=1(xi−x)2 ,

where x = 1
n

∑n
i=1 xi and y = 1

n

∑n
i=1 yi are the average values of x1, . . . , xn and

y1, . . . , yn, respectively.
As we can observe in figure ??, a linear regression is not always a fitting model and

a better approximation is desirable. This can be achieved by applying a non-linear
regression analysis; e.g., polynomial regression, where the response variable y is a
polynomial function (of degrees larger or equal two) of the predictor x.

2.3.3 Clustering Analysis

In the context of this work, the class labels are initially unknown, and thus, should
be determined first by applying unsupervised learning or clustering. Clustering is the
process of partitioning similar objects into groups, or so-called clusters. Each cluster is
built according to the following characteristics: maximizing the intra-cluster similarity
and preserving low inter-cluster similarity. As a result, each object within a cluster has
higher similarity, w.r.t. a given similarity function, to the other objects of the same cluster
than to objects of other clusters. There exists a vast amount of clustering methods. In
this thesis, we focus only on k-Means, Expectation Minimization, density-based, and
hierarchical methods. Subsequently, we present those methods

k-Means Clustering

The k-Means clustering algorithm is a partitioning clustering method and is one of
the simplest and commonly used clustering approaches. The input parameters of this
method are a number k, which defines the amount of clusters, and a set of n elements

14

2.3 Data Mining

that need to be assigned to the k clusters. The elements to be clustered are represented
as points p = (xp

1, . . . , x
p
n) in an Euclidean n-dimensional vector space. With this, the

algorithm tries to assign the elements to the clusters according to a similarity function
based on the cluster’s mean, or so-called centroid. The centroid µC represents a mean
value of all points in each cluster C:

µC = (x1(C), x2(C), . . . , xn(C)),

where

xj(C) = 1
|C|

∑
p∈C x

p
j

is the mean value of all points in the j-th dimension in C.
The k-Means algorithm has five steps:

1. Randomly select k points, which will represents a cluster centroid.

2. Assign the remaining points to the cluster with the closest distance between the
point and the cluster mean.

3. Compute the square error E for all clustered points as:
E =

∑k
i=1

∑
p∈Ci
|p−mi|2,

where p represents a point of cluster Ci and mi is the mean of cluster Ci.

4. If the square error function does not converge, re-calculate a new mean for each
cluster and re-assign points.

5. Repeat steps 2 through 4 until the error function converges and the means of all
clusters no longer change.

The algorithm terminates if the square error function converges and no redistribution
of points among clusters occurs. The result of this process are k clusters that minimize
the square error criterion. The algorithm is efficient with large data sets. However, the
algorithm is sensible to noise and outliers, since even small variations in data significantly
affect its mean value. Moreover, outliers cannot be identified by partitioning clustering
methods, since each element is assigned to exactly one cluster. Hence, clusters obtained
by the k-Means algorithm might be non-convex and vary strongly in size. The result of
clustering by using k-Means method depends on initial partition of points in the first
step of the algorithm [HK00, ES00].

Expectation Maximization

Model-based clustering methods use mathematical models, in order to optimize the
clustering process. The Expectation Minimization (EM) method is an example for such
a model-based clustering. It is a variance of the k-Means clustering method. In contrast
to k-Means, the membership of an element in a cluster is not determent by the distance to
another element, but by likelihood of being a member of a particular cluster. Typically,

15

2 Background

the Gauß distribution is used to calculate the likelihood. In general, the algorithm
operates in two steps: expectation and maximization. Before the start of the algorithm,
an initial model M ′ = {C ′1, . . . , C ′k} with k clusters Ci is randomly generated.
First, in the expectation step, the probability of membership is computed for each

point in a cluster. Each probability that a point p belongs to a certain cluster Ci

builds the set of the expected class values. As a consequence, points might belong to
more than one cluster with different likelihoods. Then, in the maximization step, the
algorithm re-distributes points among clusters, using parameters obtained in the first
step, resulting in a new, better matching model M = {C1, . . . , Ck}. Both steps are
repeated until the steps yield no changes to the model or a defined number of iteration
are performed.
In general, the number of iterations of the EM algorithm is large. Hence, the efficiency

of the EM algorithm depends on initial distribution and proper choice of the parameter
k. Note that the EM method allows for a clustered point to be a member of multiple
clusters in the resulting model. In order to get a definite membership, we can use the
highest point-cluster probability as the assignment criteria.

Hierarchical Clustering

The hierarchical clustering method groups data objects by using tree-based data
structures, which can be constructed according to bottom-up, agglomerative hierarchical
clustering, or top-down, divisive hierarchical clustering, strategies. The former strategy
starts with assigning each object to its own cluster. In the subsequent steps, pairs of
similar cluster w.r.t. a similarity criterion are merged into a single cluster until there
is only one cluster left or some predefined termination conditions are met. In contrast,
the top-down strategy is initiated with one single cluster, containing all objects. The
algorithm then splits the clusters until each cluster contains only a single object or some
predefined termination conditions are satisfied.
Both, bottom-up and top-down, approaches use a distance function between clusters as

similarity criterion. The common distance functions are: minimum distance, maximum
distance, mean distance and average distance. Additionally, the user can, for example,
define a number of clusters as a further termination criterion, or the distance between
clusters exceeds a threashold.
An example for hierarchical clustering is the Single-link algorithm. Single-link uses

a threshold distance among objects in a cluster (in top-down) or between clusters (in
bottom-up) as a termination criterion. The algorithm operates either in bottom-up or
top-down and, in general, has the following steps:

1. Compute the pairwise distances of all objects.

2. Merge the two clusters with the nearest distance (bottom-up) or split a cluster
with the widest object distance (top-down).

3. Compute all distances between the new cluster obtained in step 2 and the remaining
objects and clusters.

16

2.3 Data Mining

4. Repeat steps 2 and 3 until the termination condition is reached.

The more specific and complete information in terms of clustering and regression
analysis, classification, prediction and error estimation can be found in [HK01, HK06,
ES00, WF05, HSM01].

2.3.4 Weka Data Mining Software
Waikato Environment for Knowledge Acquisition, or Weka for short, is a Java-based
toolkit, providing implementation of various algorithms for data mining and machine
learning. It provides a Java API, which allows embedding Weka as a library in
applications for data mining tasks. Weka contains packages to enable data preprocessing,
clustering, classification, regression analysis and association rule mining. Additionally,
Weka offers graphical user interfaces and visualization utilities for algorithm evaluation
and analysis.
For this thesis, we use Weka’s clustering facilities to determine patterns or classes in

the data needed for the prediction task. To this end, Weka provides implementation of
several clustering algorithms in the weka.clusterers package. Table 2.1 shows the
various clustering algorithms and their short descriptions, which are currently part of
the Weka data mining tool.
For more information see [BFK+13, Abe10b, Abe10a, HFH+09, Bel14, WF05].

17

2 Background

Algorithm Name Description

Cobweb A class of clustering functions which implements the Cobweb
and Classit clustering algorithms [Fis87, GLF90].

Canopy A clustering algorithm using the capopy clustering method.
The algorithm runs in batch and incremental modes
[MNU00].

DBScan Nearest-neighbor-based clustering algorithm which allows
automatically determination of the clusters number.

EM Implements expectation minimization methods.
FarthestFirst A clustering algorithm based on the farthest first traversal

method [HS85, Das02].
FilteredClusterer An algorithm which runs an arbitrary clusterer on filtered

data. As a consequence, one can apply filters before the
clusterer is learned [BFK+13].

HierarchicalClusterer A clusterer class which Implements a number of hierarchical
clustering methods.

MakeDensityBasedCluster A class which wraps a clusterer to make it return
distribution and density.

OPTICS An extended DBScan algorithm for hierarchical clustering.
sIB A clustering algorithm based on the sequential information

bottleneck algorithm [SFT02].
SimpleKMeans Implements the simple k-Means algorithm, where the

clusters number is specified.
XMeans An extended k-Means algorithm where the centers are split

in its region.

Table 2.1: Clustering algorithms available in WEKA

18

3 Requirements

Contents
3.1 Stakeholders and Requirements of the PredictionTool 19
3.2 Stakeholders and Requirements of the DataMiningFramework 22

The construction of any software system is doomed to fail without defining
requirements, i.e., what the system must and should do, and what constraints it has
to satisfy. A requirement is a formulation of capabilities and properties of the software
system needed by the user to solve a problem [Ele90]. The process of identifying system
requirements is one of the crucial and important tasks of software development, since it
affects the performance of the whole system in the future. Dorfman et el. states that
“the inability to produce complete, correct, and unambiguous software requirements is
still considered the major cause of software failure today” [DT96].
The requirements identification is based on the user’s needs. Technical realization of

the system is the task of developer. The latter issue addresses the system constraints
that define which tools and techniques are required to design and implement the system.
The system user and the system developer are the classical stakeholders of the software
system to be constructed.
According to the objectives for this work considered in section 1.1, we differentiate

the stakeholders and their requirements into two groups. The first group includes
stakeholders and derived requirements for the PredictionTool and the second group
addresses the DataMiningFramework. The stakeholders of the PredictionTool
are, for example, project manager, project leader, developers. The second group
concerning the DataMiningFramework are, for example, project developers, project
architects, problem domain experts, etc. Subsequently, we give detailed descriptions for
each stakeholder group as well as their requirements.
This chapter is organized as follows: First, we identify the stakeholders and describe

their requirements for the PredictionTool in section 3.1. Then, in section 3.2, we do
the same for the DataMiningFramework.

3.1 Stakeholders and Requirements of the PredictionTool

This work is based on two main groups of objectives: building the
DataMiningFramework that can be applied to generate solutions for different
problem domains, and creating the PredictionTool as a a proof of the
DataMiningFramework concept. According to this, we identified two groups

19

3 Requirements

of stakeholders with their own specific user needs. In this section we describe the group
of stakeholder that are interested in the PredictionTool.

Stakeholders

The stakeholders of the PredictionTool are all persons who use the data mining tools
to gather estimation of future project development. Examples for the PredictionTool
users are project managers or project leaders whose endeavors are planning, organization,
and monitoring ongoing projects. This group of users desire to diagnose potential
problems in current projects as early as possible. Hence, they want a reliable prediction of
future project’s cost and schedule based on historical measurements of already completed
projects. Furthermore, the PredictionTool users are most likely no data mining
experts. Nevertheless, they should be able to use the PredictionTool.
Further, the PredictionTool users desire to obtain calculations of different

predicted metrics in the automatic manner by taking into account historical data. Note
that performance and reliability of prediction depends on the amount of the historical
data: The more historical data is used to create prediction, the more accurate are the
prediction results. Since the data is gathered from the different data sources, e.g.,
databases, Excel spreadsheet, etc., the PredictionTool users need that the data
import methods supports different import options.
Since the PredictionTool users are not required to be the data mining experts,

they want to be able trying out different clustering methods in order to see what works
for them. Hence, they need that different methods for data preparation and clustering
configuration are available. To this end, the configuration should be easy.
The PredictionTool users desire the display of the prediction results, i.e., the

forecasting, to be comprehensible and in various ways, e.g., as a chart or as a
table. Moreover, they want an automatically calculation of the predictor performance
(prediction error rates), which also should be displayed in various ways (chart or table).
The PredictionTool must provide the possibility to generate different clustering

runs according to a given range of clusters number. The PredictionTool users desire
an automatically calculation of the performance of each run according to the different
performance criteria. Based on this evaluation results, the user can decide which clusters
number must be selected for the prediction.

Functional Requirements

FR1.1 PredictionTool enables automatically forecasting of various project metrics
for an ongoing project on the basis of the historical data. Based on this forecasting
the user can estimate future project’s state. The PredictionTool must provide
an easy to use and self-explaining UI.

FR1.2 Straightforward design allowing good usability and configuration of the
PredictionTool. The user should be able to obtain the desired results in an
easy and quick way by performing only few actions.

20

3.1 Stakeholders and Requirements of the PredictionTool

FR1.3 The configuration of PredictionTool does not require expert knowledge in
data mining. The Adjustment of clustering parameters, e.g., the maximum number
of clusters in the end result, the maximum size of each cluster, etc., should be
possible to fine-tune the forecasting.

FR1.4 PredictionTool must provide various import options to allow the import of
the gathered historical data from different sources. Hence, the large data set is
available for better prediction results.

FR1.4.1 The import function must support Excel format.

FR1.4.2 The import function must support SQL databases; e.g., MySQL.

FR1.5 Providing various regression and clustering methods. The PredictionTool
must provide various data mining methods dependent on the input data to
enable trying out various regression and clustering algorithms and identifying the
“best-pactictice" methods combinations.

FR1.5.1 The function for calculation regression must support linear regression methods.

FR1.5.2 The function for calculation regression must support non-linear regression
methods.

FR1.6 Providing evaluation components to enable estimation of prediction errors to
measure the predictor performance.

FR1.6.1 The PredictionTool must support generation of multiple clustering runs for
a given range of clusters number.

FR1.6.2 The PredictionTool must support different evaluation methods to estimate
performance of each clustering run from a given range of clusters number.

FR1.6.3 The PredictionTool must support comparison of the evaluation results for
all clustering runs from a given range of clusters number.

FR1.7 Generation of forecasting according to different project metrics. The system
should enable prediction facilities independent from the used metric.

FR1.8 Providing configuration and visualization components to enable desired
adjustments of PredictionTool as well as the analysis of prediction results based
on different representation methods.

FR1.8.1 The function for presentation of calculation results must support tabular
representation.

FR1.8.2 The function for presentation of calculation results must support graphical
representation.

21

3 Requirements

FR1.8.2.1 The function for presentation of calculation results must support different
line charts.

FR1.8.2.2 The function for presentation of calculation results must support box and
whisker diagrams.

3.2 Stakeholders and Requirements of the
DataMiningFramework

By taking into account the tasks and goals of the underlying software system
that were described in section 1.1, we identified the second group of stakeholders,
namely, those of the DataMiningFramework. We derived the requirements for the
DataMiningFramework based on the stakeholders’ needs.

Stakeholders

The stakeholders of the DataMiningFramework use the framework for a tool in a
domain which might be different from predicting project’s development. Thus, they
need to adapt the framework to a specific problem domain by extending or replacing the
components of the system. The DataMiningFramework users are typically interested
in an easy adaption and ease of use of the framework. In other words, this group
of users is interested in the data mining capabilities of the system. Furthermore, the
DataMiningFramework users might wish to integrate the DataMiningFramework
into an already existing software system.
We identified different stakeholder roles for this stakeholder group: project

developers, architects, and problem domain experts. According to this roles, the
DataMiningFramework users have different needs. The project developers and
architects desire to replace single components of the framework to adapt for the problem
to be solved. All DataMiningFramework users expect that the framework provides
the main steps for discovering data knowledge, i.e., data import, data pre-processing,
data filtering, discovering, evaluation of data patterns, and visualization of obtained
knowledge. The problem domain experts want to be able to apply different data mining
algorithms. Moreover, they desire to be able to adjust the discovering data knowledge
steps according to their needs.
Note that the DataMiningFramework users are not necessarily data mining experts

as well. Nevertheless, they should be able to use the framework. According to
the DataMiningFramework stakeholder and their needs we identified the following
requirements to the DataMiningFramework.

Functional Requirements

FR2.1 Providing loosely-coupled architecture. Each component of the system has little
or no knowledge about other components to obtain better modularity of the system

22

3.2 Stakeholders and Requirements of the DataMiningFramework

and independence of each component from the technology that is used for other
components.

FR2.2 Each step of discovering data knowledge is encapsulated by a component of the
system. Hence, each discovering data knowledge step can be implemented without
considerations regarding the implementation details and the applied technology of
the other steps.

FR2.3 Providing the necessary steps of discovering data knowledge as defined in section
2.3 to enable all tasks of data mining analysis.

FR2.4 Providing extendability and exchangeability of the system. The framework
should offer the possibility to exchange or extend a component with little effort to
support integration of the new data mining solutions.

FR2.5 Integrability of the system. The framework should keep open the possibility to be
integrated into a measurement system. In this case, theDataMiningFramework
serves as a module for different data mining tasks of a larger system.

Non-functional Requirements

Additionally, to the functional requirements, we defined non-functional requirements:

NFR1.1 The system should be a web-based application to enable platform independence.

NFR1.2 The architecture of the system should be divided into three layers: the client
layer, the business layer and the data layer.

NFR1.3 The business layer of the system should be implemented with the EJB
framework, described in section 6.1.1.

NFR1.4 For realization of the data layer a MySQL database should be used

NFR1.5 The GlassFish application server has to be used for development and
deployment of the PredictionTool.

23

4 Related Work

Contents
4.1 Software Project Schedule Prediction Using Bayesian Network 25
4.2 Prediction of Defects in Software Projects 26

4.2.1 Theoretical Framework for Defect Prediction 27
4.2.2 Prediction of Defects by Applying Clustering Approach 28
4.2.3 Defect Prediction based on Retrospective Project Analysis 29
4.2.4 Defect Prediction by Using Classification 30
4.2.5 Defect Prediction by Using Support Vector Machines 31
4.2.6 Defect Prediction by Using Belief Networks 31
4.2.7 Prediction of Defects by Using Neural Networks 32
4.2.8 The Cross-project Defect Prediction Model 33
4.2.9 Defect Prediction by Using Method-Level Metrics 35

4.3 Discussion . 36

Increased complexity of software development requires estimation and prediction of
the software projects effort as early as possible. A reliable forecast of software project
progress improves cost control and accuracy of quality. Due to the grown interest in
this topic in academia, there exist a number of approaches investigating the issue of
prediction.
In this chapter, we present an overview of different research papers on this topic,

approaches, and related problem domains. Further, we discuss the benefits and
disadvantages of proposed methods and contrast these to the requirements of this thesis.
Finally, we summarize the introduced approaches and discuss possible application and
enhancements with respect to our work.

4.1 Software Project Schedule Prediction Using Bayesian
Network

Wang et al. present an approach based on a Bayesian network to predict software project
schedule [WWM10]. A Bayesian network is a graphical probabilistic model of causal
relationships which provides structure and parameter learning. The model is defined as
a directed acyclic graph, where the nodes represent a set of variables and edges represent
a conditional dependence of the corresponding variables [HK00].
In their work, Wang et al. use a Bayesian network to model uncertainty of project

schedule. The nodes of the model represent influencing factors of a project schedule. The
proposed method includes three steps. First, the model data is collected and influence

25

4 Related Work

factors of each phase of the software development process are identified. Analysis of
these factors is used to define cause-effect relationships between nodes. The collected
data needs to satisfy such characteristics as truth, synchronization, consistency, and
validity to ensure the accuracy of the Bayesian model. In reality, the values of raw
data may vary from the range of the required feature values listed above. Hence, in
the second phase, the data is processed. In this phase, limits for acceptable variance in
data are established. Additionally, Wang et al. examine the cause of the data variance.
Afterwards, the data is dynamically discretized by transforming the data values into the
interval [0, 1]. In the third and the last phase, two learning algorithms are applied: the
structure learning approach and the parameter learning method.
The proposed approach might be used by project managers when planning a software

project. A project manager might be interested in how the current project schedule
varies from the planned project schedule, i.e., they want to know the project schedule
variance. To analyze the approach’s results, the authors concentrate on several aspects
of the problem domain. Specifically, the calculation of the project schedule variance
from a known node of a project schedule, applying this information to re-plan a project
to finish it in time and identifying variables that are important for the software schedule
variance.
The evaluation results show the validity of the proposed approach. To this end, Wang

et al. applied the approach in two projects. The predicted project schedule implied that
the project duration will exceed the original estimation by less than 10% for the first
project, and between 10% and 20% for the second project. The real values of the first
and second project’s delay are 7.4% and 12.5%, respectively, which proved validity of
the proposed model for both of the experiment’s projects. Furthermore, the authors
performed a sensitivity analysis to discover the influence factors on software schedule.
The identified factors help to decide which node of the Bayesian model should be adjusted
to reduce schedule variance.
In addition, the approach offers an opportunity to identify and filter the factors that

influence the process quality. However, the authors check the validity of the approach by
analyzing only two projects. They also provide a little information about the effectiveness
of the approach with respect to the tools to be used and the metrics to be applied.

4.2 Prediction of Defects in Software Projects

The approaches for prediction faults in software is a large area of interest today. The
ability to predict the defects in software projects helps to achieve effective development
and management processes. As a consequence, a large number of software defects
prediction models can be found in literature. Since the underlying problem domain
is collateral to the endeavor of this thesis, we will present several approaches to software
defects prediction and discuss their results, subsequently.

26

4.2 Prediction of Defects in Software Projects

4.2.1 Theoretical Framework for Defect Prediction

In [WRB08], Wahyudin et al. describe a theoretical framework for software defect
prediction. The authors summarize a number of published studies on defect prediction
and derive common requirements in their work. As a result, a generic framework is given.
Additionally, the authors perform a paper review and analysis in order to evaluate the
framework.
The presented framework for software defect prediction includes three phases. The first

phase is called the preparation phase and consists of three steps, where the prediction
goal-relevant questions and hypotheses are specified, and the feasibility of the initial
goals of the prediction is determined. In the second phase, the data for model training
is collected. Then, the prediction model is trained by applying standard statistical or
machine learning tools, and validated to assess its performance. In the last phase, the
model is used to perform defect prediction and the robustness of the model is analyzed.
Wahyudin et al. carry out a comprehensive literature review to find information

relevant to the research questions and the search process. The observed studies are
summarized according to the framework’s phases and essential steps. As a result, the
authors report that many studies do not explicitly describe the goals and the target
stakeholders of the study. They state that the goal definition and hypotheses formulation
in the first phase of the presented framework are essential for defect prediction with
different levels of detail and presentation. According to the literature review for the
second phase, Wahyudin et al. conclude that most studies use Spearman bivariate
correlation analysis and linear regression for variable selection. The authors suggest that
the second phase of defect prediction model should be extended with internal validation
methods and model performance measures like they have done in their study. Regarding
the third phase, the authors report that most observed studies do not provide external
validation and robustness analysis of the suggested prediction model. In most cases, the
reason is low performance of their prediction model.
Concluding, several implications can be derived as stated by Wahyudin et al. First,

there exist many approaches that do not provide reliable results in defect prediction due
to missing or incomplete information. Thus, the data has to be collected and analyzed
very carefully. Second, in order to provide trusted results, an early and quick feasibility
estimation of a defect prediction method with acceptable performance is required. Last,
additional quality validation is needed, i.e., a measure to verify the obtained prediction
results. The authors state that the indicated issues are crucial when applying defect
prediction in practice.
Furthermore, Ramler et al. report experiences and empirical results obtained from

applying the defect prediction framework in [RWS+09]. Furthermore, the authors
discuss the essential issues related to the application of defect prediction models in
practice. As mentioned above, the authors examine defect prediction for use in large
software development projects for planning the system tests. For this purpose, the defect
prediction framework developed in [WRB08] is applied. The prediction model is based
on historical data which is used in a learning algorithm. The authors state that the
effectiveness of a prediction model depends on the prediction objectives. Therefore they

27

4 Related Work

perform an analysis and observe several questions in order to identify key decisions while
constructing the defect prediction model. In particular, what learning algorithm should
be used and how can the performance of the model be measured.
As a result of the analysis, Ramler et al. determine that for each project version

a prediction model should be constructed using the data from the previous version.
Such an approach has the potential to enable a prediction with high precision. The
authors state that good performance can be obtained by applying a learning algorithm,
which captures the current state and repeats what is already known. With respect
to the choice of a learning algorithm, the authors state that it should satisfy certain
criteria like prediction performance, ease of use and comprehensibility of the prediction
model. A significant issue of the performance of learning algorithms is the ease of
tuning the algorithm’s parameters. The authors suggest to apply the learning algorithms
implemented by the tools WEKA and MLF, as the both show a good applicability in
practice. Last but not least, the authors suggest to use a confusion matrix in order to
quantify the prediction performance.
During the experiment, seven versions of a software system were analyzed. The

prediction results were then compared with the real values, where the highest accuracy
was achieved for version 4 with about 78% and the lowest accuracy was achieved for
version 1 with 67%. Ramler et al. state that the prediction framework shows good results
with respect to applicability and practical performance. However, a better learning
algorithm could increase the prediction performance.

4.2.2 Prediction of Defects by Applying Clustering Approach
In [JM10], Jureczko and Madeyski describe a clustering approach of software projects,
where groups of software projects with similar characteristics regarding defect prediction
are identified. In other words, a defect prediction model can be applied to all projects
which belong to the same group (or cluster). The authors use hierarchical and k-Means
clustering, as well as Kohonen’s neural network for building clusters with similar
elements. After identifying clusters, a statistical analysis is applied in order to verify the
obtained groups. For each cluster, a defect prediction model is created using suitable
metrics and stepwise linear regression. In particular, there are two prediction models
created. One model deals with projects that belong to a given group, while the other is
applied to all remaining projects outside of any group.
Jureczko and Madeyski performed the evaluation by using various metrics. Besides

the lines of code metric, the authors use several other metrics, e.g., weighted methods
per class, depth of inheritance tree, coupling between object classes, lack of cohesion
in methods, number of public methods, data access metric, etc. After applying the
approach, six clusters based on correlation vectors were identified, where the existence
of two clusters was proven. The authors compared the obtained result with other studies
and determined that there are no significant inconsistencies. However, the authors
state that the proposed approach can be difficult to reproduce in the industry since
information about defects is necessary for constructing the correlation vectors. The
proposed approach needs for further investigation in order to be applied in practice.

28

4.2 Prediction of Defects in Software Projects

4.2.3 Defect Prediction based on Retrospective Project Analysis

In [HGW11], Herbold et al. present a retrospective project analysis using the
Expectation-Maximization (EM) clustering algorithm. The goal of the proposed research
work is to develop a project prediction approach that allows to map the clusters to phases
of the project. The analysis is data-driven and is based on software metrics measured
during different phases of the project. The authors use lines of code (LOC), number of
bugs (BUG), and number of active bugs (ACTBUG) as the main metrics. Here, BUG
measures the total number of bugs that are not fixed, while ACTBUG identifies the
currently know bugs.
The EM algorithm requires data collection and data preparation during the first two

steps. The collected data should be normalized to reduce the impact of different metric
scales. In the third and the last step of the algorithm, data analysis and estimation of
the data sources, e.g., the project phases, is performed.
In order to validate the approach, Herbold et al. performed a study with two main

questions: whether the presented approach allows to identify project phases, and whether
either the BUG metric or the ACTBUG metric is sufficient, or both metrics are required.
For their study, the authors applied their approach to two large-scale open-source
projects and use Weka’s implementation of the EM clustering with a maximum of 100
iterations and a dynamic number of clusters.
After analyzing the experiment’s results, the authors state that the approach is indeed

able to split a project into phases; however, this worked only for one of two projects.
In fact, the last phase of the project can be identified with high accuracy. For the
other phases but the final phase, the experiments show that the approach is unreliable.
Furthermore, the authors report that for the other project the approach yielded no
detected phases at all. Regarding the question addressing the metrics, the authors
determined that there is no significant difference between applying only one metric,
BUG or ACTBUG, and applying both. Thus, only one of the metrics is sufficient to
optimize the approach.
In summary, the evaluation results show that the approach provides reasonable

prediction accuracy only for the last phase and only for one of two tested projects. Note
that the authors applied their approach only to two projects, which makes statements
regarding the results of the presented approach unreliable. As a consequence, the
proposed approach cannot be considered practicable and needs further research.
In [HGNW10], Herbold et al. present a similar approach, which uses k-Means

clustering for the retrospective analysis of software projects. The analysis focuses on
separating the data into two sets. The first set includes the versions before the feature
freeze and the second set the versions after the freeze. As the approach is based on
k-Means clustering, k clusters are identified, represented by their centroids.
The authors validated their approach by applying it to two projects, where they

use tuples of metrics (LOC, BUG). As a result, the software versions were correctly
clustered. However, the authors state that their approach needs to be analyzed with more
confidence and plan to apply the approach to more projects using additional software
metrics. Therefore, it is hard to tell whether the approach can be successfully applied

29

4 Related Work

in practice.
Ramler and Himmelbauer consider in [RH13] noise in bug report data and its impact

on defect prediction. To this end, the authors evaluated predictions for different versions
of a large industrial software system. The approach predicts data of version n+ 1 based
on the data of version n. The data set of noise vectors is evaluated in version n + 1 in
order to indicate prediction accuracy w.r.t. a certain chance level. The authors assume
that an experiment instance can be considered successful, if the prediction accuracy is
above of chance level of at least 95% of the predictions. The results of the first part of
the experiment show that the average prediction accuracy is significantly higher than the
average chance level. The experiment indicated only a few cases where the prediction
accuracy remains below the chance level. In the second part of the experiment, a model
of version n is used for predicting version n + 1 by different noise levels. The results
demonstrate that the prediction model is reliable and remains above 95% at a noise level
of up to 20%. Thus, the approach seems to be useful and can be applied in practice.

4.2.4 Defect Prediction by Using Classification

Ma et al. present a comprehensive study of two algorithms for the associative
classification approach for software fault prediction in [MZC+14]. The classification
is based on a subset of association rules. The approach includes four main stages: data
preprocessing, rule generation, classifier building and prediction, as well as prediction
results evaluation. During the rule generation phase, optimal minsup and minconf
thresholds are determined. These parameters are used to decide whether a rule is
accepted or rejected. Using obtained thresholds, the class association rules (CARs)
are generated. The size of the generated rule set is controlled by using several rule
pruning strategies, which apply pessimistic error rate pruning. After the CARs have
been generated, the final classifier is constructed to enable subsequent inference on the
test data, where the confidence of each rule is used to estimate the prediction probability.
During the experiment, the authors compared the proposed associative classification

approach (AC) with five different tree-based and rule-based classifiers: C4.5, Decision
Table (DT), CART, ADT, and RIPPER. The discussion of the experimental results
indicates that among the different classifiers DT and CART outperform the other
classifiers w.r.t. accuracy and specificity. However, AC and RIPPER show the best
results when considering geometric mean and F-measure, a harmonic mean of recall and
precision. The authors state that AC and DT perform better over the methods on the
area under the ROC curve (AUC), which is the most informative indicator of predictive
accuracy.
Regarding the results of cross-project validation, the authors report that classifiers

trained on four data sets achieve an acceptable prediction performance with relative
AUC values above 90%. The AC classifier shows a high capability of generalization on
the data set with a high mean value and low standard deviation.

30

4.2 Prediction of Defects in Software Projects

4.2.5 Defect Prediction by Using Support Vector Machines

In [EE08], Karim et al. describe an approach for software defect prediction by using
support vector machines (SVM). The support vector machines approach is a kernel-based
learning algorithm that allows for minimization of the generalization error. The SVM
classifier uses a number of support vectors to define the boundary between two-class
pattern recognition problems. According to the authors, the main characteristics of
the SVM approach are that the SVM classifier is independent from the feature space
dimensionality, it gives a global optimum solution, it is robust to outliers and it can model
non-linear functional relationships. In their paper, the authors provide the mathematical
background and explanation of the SVM algorithm.
In their study, Karim et al. evaluate the SVM approach by comparing it with eight

well-known statistical and machine learning models. In particular, they compared the
SVM approach with logistic regression (LR), k-nearest neighbor (KNN), multi-layer
perceptrons (MLP), radial basis function (RBF), bayesian belief network (BBN), naive
Bayes (NB), random forest (RF), and decision tree (DT). For this purpose, they use four
data sets (CM1, PC1, KC1, and KC3) obtained from NASA software projects, where
each data set includes 21 software metrics.
According to the results obtained from the CM1 data set, the SVM method provides

better outcomes then the other eight models with respect to accuracy (90.69%) and a
perfect recall (100%). Furthermore, the outcomes of six of the eight compared models
in precision (90.66%) except for BBN (94.17%) and NB are shown.
The results from the PC1 data set show that RF outperforms the other methods with

respect to accuracy by 93.66% and F-measure by 96.7%, which is not significantly higher
than the accuracy (93.10%) and F-measure (96.4%) achieved by the SVM method. The
KNN approach shows the highest precision (95.54%) in this case. The SVM perform
better than the other methods by recall with 99.47%.
The results of the experiment obtained from KC1 and KC3 data sets reflect that SVM

achieves the highest recall for the both data sets. However, with respect to accuracy,
precision and F-measure the SVM algorithm is outperformed by MLP, BBN, RBF, and
NB.
The authors summarize that the proposed approach is at least competitively viable

against the compared algorithms for predicting defect-prone software modules, since it
outperforms many models in recall and F-measure. However, the approach shows worse
results than the other methods in precision and accuracy, which is a motivation to carry
out further empirical studies with more data sets to improve the proposed method.

4.2.6 Defect Prediction by Using Belief Networks

The approach for prediction of fault prone modules described by Guo et al. in [GCS03],
is based on Dempster-Shafer belief networks. The approach uses a directed graph whose
nodes are connected by implication rules. During the experiment, the authors consider
whether the module contains any defects, instead of the number of defect modules. They
identify 21 metrics in the given data sets. These metrics are called predictors. They

31

4 Related Work

are chosen by a logistic procedure which leads to different sequences of the predictors.
The predictor sequences are analyzed where the best one is noted. Additionally, there
are other tuning parameters in the Dempster-Shafer networks. The approach allows for
selecting the optimal results for each set of criteria.
For the evaluation Guo et al. used two binary data sets that were generated by

partitioning with mean and median values. They compare the Dempster-Shafer approach
with discriminant analysis, logistic regression, and ROCKY. According to the evaluation
results, the suggested approach outperforms the logistic regression and discriminant
analysis methods in accuracy. After comparing the presented approach with the ROCKY
defect prediction method, the authors state that predictions done by ROCKY lead to
more effort than D-S network predictions. The authors inspected about 72% of the code
(LOC) by using the D-S network model which showing that 91% of the modules are
fault prone. By applying the ROCKY approach, it was necessary to read 94% of code
to discover the 91% fault prone modules. Thus, the approach seems to be useful for
real-world applications in order to predict software quality. Further, it provides various
optimization criteria and allows for integration of new optimization requirements.

4.2.7 Prediction of Defects by Using Neural Networks
Mahaweerawat et al. describe an approach to predict faults in object-oriented software
by using neural networks in [MSLM04]. Besides fault prediction, the approach provides a
method for the classification of fault type. In particular, the authors consider faults due
to inheritance and polymorphism. They assumed that inheritance and polymorphism
might be significant factors that cause anomalies and faults of software products.
The approach is based on two neural network techniques: Multi-layer Perceptron

(MLP) and Radial-basis Function Networks (RBFN). While MLP provides clustering of
the input data according to appropriate fault categories, RBFN helps to indicate fault
type by using curve-fitting approximation. To this end, the authors define the prediction
of fault type as a clustering problem where a cluster represents a fault type.
For their study, Mahaweerawat et al. initially applied a set of 60 object-oriented

metrics. In order to filter only relevant metrics, the authors propose an algorithm which
allows to select appropriate metrics. The algorithm allows to set an initial weight of
each metric. In the next step, pairs of fault-free and faulty classes from the training
set are established and the values of differences between this pairs are calculated. The
authors state that the mechanism of calculating differences prevents metrics intermix.
The differences are calculated in several iterations and used to adjust the weight value of
each metric. The algorithm terminates when all fault-free classes match with all faulty
classes. In the last step, the metrics with weight values above the selected threshold are
selected.
In order to evaluate the approach, the authors used three data sets to which both

neural network techniques, MLP and RBFN, are applied. For this purpose, the authors
used the metrics which are filtered with the algorithm described above. The aim of
the experiment in case of MLP is correct classification of the data points into fault-free
and faulty classes. RBF neural network is used to categorize the faults with respect to

32

4.2 Prediction of Defects in Software Projects

defined fault types.
Mahaweerawat et al. report that the two predictive models allows to predict faultiness

of a class with more than 90% accuracy. The results of the evaluation show that the
faulty classes can be detected in 91.53% of test cases. The inspection cost for verification
is 59.55%, and the waste cost is 3.51%, and only 2.09% of faulty classes are undetected.
The faulty type prediction results in 90.05% of test cases. The authors assume that the
reason of misclassification might be the reason of overlapping parameters of fault types.
The results obtained from the experiment show the potential of the proposed approach

in the software fault prediction domain. Additionally, the authors developed an
algorithm which allows to filter for relevant metrics. However, the application of neural
networks requires a huge set of data, and thus, the analysis of such amount of data might
be very costly. Furthermore, the authors mention that the proposed approach can be
enhanced by adding more parameters and proper data classification technique.
In [QT03], Quah and Thwin describe two kinds of defect prediction of object-oriented

software quality using neural network models. Specifically, the authors analyze
predicting the number of defects in a class and predicting the number of lines changed
per class. For this purpose, two neural network models are applied: the Ward neural
network and the General Regression neural network (GRNN). The Ward neural network
is a back-propagation network with various activation functions, where a Gaussian
function is applied in order to detect values in the mid-range of the data and a Gaussian
complement is used to indicate features for the upper and lower extremes of the data. The
General Regression neural network is a memory-based network that provide estimates
of continuous variables and converges to the linear or nonlinear regression surface. The
algorithm is a one-pass learning algorithm, which allows quickly training of instances.
Quah and Thwin use object-oriented metric approach and traditional complexity

metric approach as a measurement method, where the metrics are used as independent
variables. The performance of the prediction algorithm is determined by applying the
coefficient of multiple determination (R-square), the correlation coefficient, r-square,
mean square error, mean absolute error, minimum absolute error and maximum absolute
error. The authors state that the presented approach shows a high degree of confidence
for successful validations with both the Ward neural network and the General Regression
neural network, where the GRNN network model is more accurate than the Ward
network model.

4.2.8 The Cross-project Defect Prediction Model
In [ZNG+09], Zimmerman et al. suggest the cross-project defect prediction model, where
possible defects of a project can be predicted by taking prediction results from another
project. The authors consider two dimensions of cross-project defect prediction: the
domain dimension and the company dimension. In order to evaluate the validity of
the approach, the Firefox and Internet Explorer web browsers are used to predict
software defects for each other. The software choice is of the ‘same domain, but different
companies’ category.
The metrics used to perform the experiment are: the number of observations (file

33

4 Related Work

count, binary count, component count), the total lines of code (LOC), added LOC,
deleted LOC, modified LOC, and the number of edits (commits), cyclomatic complexity,
number of bugs (pre-release), number of developers, number of defects (post-release).
The cross-project prediction works only if the two projects (A, B) are chosen in a
compatible way: the model of project A predicts project B, if the products of A and B
are different or B has a later version than A.
The measured data is classified into non-defect-prone and defect-prone by applying

a statistical low confidence bound and a logistic regression model. Metrics with fewer
defects than the low confidence bound are defined as non-defect-prone, otherwise the
metric is classified as defect-prone. Zimmerman et al. evaluate precision, accuracy, and
recall to determine how well the data is classified as defect-prone in B according to
the model from A. The authors state that for some project combinations, the logistic
regression model provides the same prediction for all elements of the project, which is
unusable in practice.
After analyzing the experimental results, Zimmerman et al. found that a project can

be considered a strong predictor for another project only if precision, accuracy, and
recall are greater than 0.75. According to the experiment’s outcome only 3.4% of the
cross-project combinations satisfied this criteria. Further, application of the approach on
projects in the same domain does not provide a proper prediction model. The data needs
to be analyzed and processed before a prediction model is build. Thus, the approach
is only able to correctly predict faults in few projects, which shows that it cannot be
applied in practice.
Another approach of cross-project prediction is described by Canfora et al. in

[CLP+13]. The proposed model is based on the results obtained by Zimmerman et
al. outlined above. Canfora et al. note that the success of cross-project prediction
depends on the heterogeneity of the project domain, source code characteristics, and
process organization. To minimize error in the prediction model, the authors offer
a multi-objective approach that suppose to offer a better cross-project prediction.
Further, the approach allows to choose predictors in order to identify a high number
of defect-prone artifacts. For this purpose, the authors applied a multi-objective genetic
algorithm, which uses the product metrics as independent variables to build a logistic
regression predictor.
After applying of the approach to perform cross-project prediction with 10

software projects, Canfora et al. compared multi-objective cross-project prediction with
single cross-project prediction and within-project prediction. The results show that
within-project prediction outperforms the cross-project prediction w.r.t. precision and
recall. However, the authors state that the proposed approach allows to generate
information about how much code needs to be analyzed to achieve a certain level of recall.
In addition, the authors tried to achieve a tradeoff between precision and inspection costs,
since a low precision implies a high code inspection cost.
According to the study’s results, the proposed multi-object cross-project prediction

model offers better cost-effectiveness and higher precision than a single-objective
predictor does. Furthermore, the approach allows to choose a configuration for the

34

4.2 Prediction of Defects in Software Projects

predictor that best fits the specific situation. However, the proposed approach does not
show significant difference to the approach presented by Zimmerman et al. w.r.t. precision
and recall. Furthermore, the authors mention that in general the cross-project prediction
method provides distinctly worse results than within-project prediction and needs more
investigations. Hence, the presented approach is not the best solution for practical
application.

4.2.9 Defect Prediction by Using Method-Level Metrics
In [CD13], Catal and Diri describe a fault prediction strategy based on method-level
metrics (e.g., lines of code, cyclomatic complexity, essential complexity, unique operator,
etc.) with constant threshold as a filtering mechanism. The approach allows
for software-based fault prediction without information about previous fault data.
Furthermore, the authors emphasize that the proposed approach offers a fully automated
prediction method, meaning no expert’s review is needed; e.g., to label obtained clusters.
There are several benefits to such a human-expert independent approach. For instance,
the non-existing difficulty and additional effort of embedding an expert into a software
tool.
The prediction strategy of the presented approach is divided into five steps. In the

first step, the best metric set fit to the fault-proneness measurement is identified. Catal
and Diri used the experiences of the previous related studies to select the metrics. A
clustering-based fault prediction requires a human expert to label the clusters after using
clustering methods. As mentioned above, the authors suggest an automated mechanism
to label software modules as fault-prone or non-fault-prone. For this reason, the metric
set obtained from the previous step is used to select appropriate metrics for the labeling
of a software module. In the next step, the most appropriate filtering mechanism is
selected, where a module falls under a fault-prone. For this purpose the authors apply
the marginal absolute semantical filter with the specified threshold value, where modules
are separated into a fault-prone or a not fault-prone group. In the fourth step, the metric
thresholds are defined. The fifth and the last step deals with the merging procedure.
Using a composition mechanism, where an analyzed module is labeled as defect-prone if
at least one metric has a value which is equal or greater than the threshold.
For the evaluation. Catal and Diri used error, false positive rate (FPR), and false

negative rate (FNP) as performance indicators. Here, the error parameter reflects the
amount of mislabeled modules, FRP defines the number of non-faulty modules labeled
as fault-prone, and FNP the faulty modules labeled as non-fault-prone. The authors
then compared their approach with a related study based on a clustering method and
a software expert’s review. The authors claim that their approach shows better results
w.r.t. the FNR values. However, error and FNP rates are higher than in the compared
study. The authors assume that the reason lies in data noise and a large number of
outliers. In order to obtain better results, the authors suggest to apply a threshold
calculation approach instead of a constant method.
The presented approach shows an attempt to develop a fully automated prediction

model, i.e., it does not require a data mining or software engineering expert. However,

35

4 Related Work

the evaluation results show high FNR and high overall classification error rates. For
instance, the percentage of non-detected faulty modules lies over 30% which can cause
dramatic failures in the software. Therefore, the presented method requires more
research and enhancements before being applied in the industry.

4.3 Discussion
Concluding the literature review, we can state that most approaches do not provide
reliable results for large test candidates sets. Further, many approaches provide a little
information about the used tools and the applied metrics. However, the main issue is
that most methods use static metrics such as lines of code, number of bugs, weighted
methods per class, depth of inheritance tree, etc. for the prediction. Hence, the proposed
approaches are impractical for dynamic metrics (e.g., CPI and SPI) predicting project
behavior.
The theoretical framework for software defect prediction described by Ramler et al. can

be used as a starting point for our approach. Their framework implements the main steps
of the knowledge discovering process: data preparation, prediction model construction,
and analysis for prediction model robustness. We adopt the concept of this theoretical
framework to our needs and problem domain. To this end, we take into account pros
and cons of the analyzed literature, and with that, extend the framework by additional
phases (and steps within phases) in order to obtain better prediction results.

36

5 Concept

Contents
5.1 Idea of the Framework . 37
5.2 Processes Modeling . 38

5.2.1 Data Import and Pre-Processing 40
5.2.2 Classifier Construction and Evaluation 44
5.2.3 Prediction . 45

5.3 GUI Prototyping . 46
5.4 Domain Model . 50

According to the objectives defined in chapter 1 and requirements identified in
chapter 3, in this chapter, we design a framework for automatic prediction in different
application domains. Additionally, we design a prototype for a tool-based forecasting
of project’s development as decision making aid for project managers. The resulting
forecasting tool enables creating a project-specific classifier based on historical data and
represents the prove of concept of our framework.
In this chapter, we present and analyze the conceptual issue of our research work.

First, in section 5.1, we present the abstract idea of our approach. After that, we
present and explain the framework activities and processes on the basis of flow diagrams
in section 5.2. Third, we depict the GUI prototypes of the tool in section 5.3. Finally,
we present our domain model for the framework in section 5.4.

5.1 Idea of the Framework
Before we can design the architecture of the framework, we have to define the basic
concept of the future software. The concept definition is a phase of software development
that is established between the requirements engineering and architecture design phases.
The endeavor of this phase is domain abstraction, which is needed to identify the concrete
components of the software architecture. In this section, we introduce the idea of the
problem solution and explain the essential parts of the DataMiningFramework.
The main idea of the DataMiningFramework is based on identifying similarity

patterns in the data, which are, then, used to construct a classifier. With this classifier,
we classify the ongoing project and derive predictions. To do so, we follow the
three-phases breakdown of Ramler et al.’s theoretic framework: preparation, classifier
construction as model creation, and prediction as model usage (cf. [WRB08]). Clearly,
the steps within those phases differ from Ramler et al.’s theoretic framework, however,
are consonant to the five steps of the knowledge discovering approach as described

37

5 Concept

in section ??: First, data import and pre-processing in the preparation phase. Then,
clustering and labeling in classifier construction. Last, predicting project values in
prediction.

Historical data
(training set)

Data
preparation

Clustering

Performance
evaluation

Clustering improvement

Classifier construction

Clusters
Classification

(labeling)

project
(test set)

Classifier
(classes +

classification
parameters)

PredictionParameters

Error rate
n-th

clustering
run

Figure 5.1: Abstract control flow of the framework

Figure 5.1 depicts the abstract control flow of our approach. First, we apply data
mining methods such as clustering to partition the historical data, i.e., the training set,
into clusters according to a certain similarity principals. Using performance evaluation
an optimal number of clusters is identified. Once the clusters are computed, the identified
groups of similar projects are labeled by the user or an external system. With this, we
obtain a classifier, which comprises the labeled clusters, i.e., classes, and classification
parameters. Finally, we use this classifier along with the ongoing project, i.e., the test
set, to make the prediction.
Often, the input for the classifier construction, i.e., the historical data, needs to be

prepared beforehand. For instance, the given time series of past projects are of different
durations and might include outliers; both negatively affect the clustering result. Hence,
we need to prepare the data in order to perform a meaningful clustering; e.g., cleaning
data by removing outliers, performing data normalization, and computing missing values.
In the following sections, we will describe the phases and steps of our approach in more
detail.

5.2 Processes Modeling

In this section, we introduce the process model that reflects the essential framework
activities within each step. For this purpose, we use flow diagrams, due to their simple

38

5.2 Processes Modeling

notation as illustrated in figure 5.2.

Figure 5.2: Example: Flow diagram elements

The start and end states in a flow diagram have a form of the rounded rectangles.
Solid arrows describe the control flow of the process. The elements between start
and end states describe either a process or a sub-process within the system. We
distinguish between activities, denoted by rectangles, and system processes, denoted by
rectangles with curved bottom. The former can be either framework (regular rectangles)
or non-framework (rectangles with two vertical bars), i.e., carried out by the user or
an external system, activities. The latter reflect a group of activities or processes.
Diamond-shaped element refer to decisions, where conditions of decision are denoted by
labels off the outgoing arrows. The flow continuous only by the arrow, whose condition
is satisfied. The system’s input and output are illustrated in flowcharts as the convex
and concave polygons, respectively.
Figure 5.3 shows the overall procedure of the system described in section 5.1. To start

with, the user initiate data import, which triggers the pre-processing step on import
completion. Once the pre-processing is done, the system starts classifier construction

39

5 Concept

Figure 5.3: Overview of the overall approach

including clustering, classification, and evaluation of classifier. The output of the
classifier construction process consists of the classifier along with the classes. Last but
not least, the classifier is used to classify the ongoing project and results in a prediction
for future values. We keep predicting the project iteratively during its development.
Thereby, the project might change its class, and consequently, its predicted values are
recalculated. After the project is finished, it will become a part of the training set in
order to be used to construct classifier for the future projects. Subsequently, we describe
each process of the system in detail.

5.2.1 Data Import and Pre-Processing

In this section, we describe the data import and data pre-processing process, which
is depicted in figure 5.4). With respect to requirements FR140, FR141, FR142,
the system must offer various possibilities of data import. The flowchart in figure 5.4
illustrates three data import options: file, database, or URL. The import is initiated
either by the user or an external system. We require that the imported data are time
series.

40

5.2 Processes Modeling

Figure 5.4: Overview of the import and pre-processing processes

After the import of the raw data, the framework starts transforming the data into the
form that is appropriate for a meaningful clustering. Thereby, the system converts time

41

5 Concept

series into data vectors, which are needed for further processing. In the next step, the
system must clean the vector set from the outlier for later clustering analysis. Thereby,
the system removes all vectors which contain values exceeding a predefined threshold.
After that, the user or an external system is engaged to meet decision regarding size of
vectors, which means a number of values per vector instance. As explained above, the
clustering tool expects that each instance to be clustered has the same number of values.
To this end, the system must provide different strategies to perform normalization of
data vectors with different lengths. In context of this work, this strategies are based on
regression methods described in section 2.3.2.
In the data mining literature, regression analysis is often used for numeric prediction.

However, in this thesis, a numeric regression cannot be applied for forecasting future
project values. Instead, regression analysis is used in the data pre-processing step to
estimate missing values. When the regression function is computed, it is applied to
either stretch a vector by adding additional value, or to fill the gaps inside vectors by
inserting estimated values between two given neighboring values.
At the end of the pre-processing process, the system outputs the set of normalized

data vectors, i.e., vectors with equal length. This output serve as input for the next
process, classifier construction.

Optimization Step

Since even after the data normalization, outlier might significantly affect clustering
results, we apply data smoothing algorithms to remove noises from the data, and thus,
achieve better regression results. To this end, values of time series are modified with
intention either to reduce the values that are higher than their immediate neighbors, or
to increase the values that are lower than their immediate neighbors. Han and Kamber
describe several smoothing methods, which can be applied to time series [HK00].
In this work, we use a simplest smoothing algorithm based on the moving average

method. The method replaces each data value with the average m of adjacent values,
where m is a positive integer called the smooth width [O’H08]. In context of this work,
we use a smooth width of 3, i.e., m = 3, and calculate smoothed values as follows:

si = xi−1+xi+xi+1
3 ,

where si is the smoothed value of the origin value xi. In contrast to the original
algorithm, we also smooth the first (x0) and last (xn) points with

s0 = x0+xi+1
2 and sn = xn−1+xn

2 .

Figure 5.5 demonstrates an example of time series smoothing. The blue line with
circles represents the original data, while the orange line with squares depicts the
smoothed data values by applying the smoothing method as explained above. Figure 5.6
illustrates the resulting regression lines for the original (blue dashed line) and smoothed
data (orange solid line), respectively. Here, we can see that after smoothing, outliers
within the time series have less influence on the regression.

42

5.2 Processes Modeling

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1 2 3 4 5 6 7 8 9 10 11

CPI Smoothed CPI

Figure 5.5: Example: time series smoothing

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1 2 3 4 5 6 7 8 9 10 11

CPI Smoothed CPI Linear (Smoothed CPI) Linear (CPI)

Figure 5.6: Example: time series smoothing with regression line

43

5 Concept

5.2.2 Classifier Construction and Evaluation

The construction of the classification model or so-called classifier starts with the
adjustment of clustering setup parameters (cf. figure 5.7). That is the question of the
conception task, which setup combinations should be selected. Furthermore, during
designing the framework, we had to decide, which parameter settings must be implement
as non-framework activity, i.e., the clustering parameter that the user should adjusts or
another system before trigger a clustering procedure. If the user is not familiar with
the data mining area, this task might be quit difficult for them. On the other hand,
letting the framework decide what clustering parameters should be specified, restricts
user’s activities and the system application for the solution of a particular problem.

Figure 5.7: Overview of the classifier construction process: clustering

Thus, we resolve this issue by asking the user to specify the clustering algorithm used,
the maximum cluster size (the maximum number of instances inside each cluster), as
well as the range of cluster numbers. The latter task is denoted in figure 5.7 as an extra
part of the process. The number of clusters k is the maximum number of generated
clusters per clustering run, i.e., we generate a clustering model for each k from the range

44

5.2 Processes Modeling

specified by user. At the end of the clustering procedure, we have a set of clusters for
each cluster number specified. This set is used by the user to identify a meaningful
number of clusters k. The user analyzes results for each clustering run to find out which
k provides the model with the best performance.
According to the concept of the unsupervised learning (clustering), we have to specify

the model parameters on the training set. We test the performance of the model in
the following way: we remove one instance from the training set and put it into the
test set. After that, we apply the model to the test set while keeping the clustering
parameters constant. This procedure is performed for each instance and the mean error
r for each number k is computed. The mean error r implies the average number of
incorrectly clustered instances. The minimum value of r refers to the model with the
best performance.

Figure 5.8: Overview of the classifier construction process: classification

The artifact of the described process is a set of clusters plus the performance value for
each k. This artifact is used as input for the classification process illustrated in figure
5.8. Note that this process includes solely non-framework activities. The user decides
which group of clusters corresponding to a cluster number should be used for prediction
and performs classification by labeling clusters. Additionally, the user can characterize
each cluster by a short description. The resulting set contains classes and classification
model which is used for prediction in the next step.

5.2.3 Prediction
The last process deals with the prediction of project values by applying the classifier,
which was constructed in the previous step, to the test set containing the ongoing project

45

5 Concept

(see figure 5.9). For this purpose, the system performs clustering of the training and test
set, while keeping the parameters and the cluster number as defined by the classifier.
This results in the assignment of the ongoing project to a class.
In order to predict project’s behavior, we need identify the representative of the class

first. To this end, we use the mean value of the cluster for each time frame. Finally, we
estimates the future values of the test project by using the class representative.

Figure 5.9: Overview of the classifier application: prediction

The estimated values are continuously compared to the actual values during project’s
progression. Thereby, the estimated values are replaced by the new actual values and the
application of the classifier is triggered. Repetitive classification of the project instance
might result to assigning the instance to a new class and rectification of estimating values
is need.

5.3 GUI Prototyping

Following the objective of this thesis to evaluate our concept with industrial data, we
need to design a software prototype, which, simultaneously, will be a proof of concept
for the framework. In section 5.2, we modeled possible scenarios regarding functionality
for the tool.

46

5.3 GUI Prototyping

In this section, we create a prototype of the user interface. Prototyping is “the method
of brainstorming, designing, creating, testing, and communicating user interfaces”
[Sny03] and is widely used in software development for conducting usability studies
before developing an actual software. We designed our prototype within a software tool
supporting the paper prototyping technique. There exists a number of tools providing
creation of screen mockups. A collection of tools for design paper prototypes, along with
pros and cons, can be found in [Gui14]. We decided to use Pensil, an open-source GUI
prototyping tool [Evo12].

Figure 5.10: Screen mockup of data import and clustering setup page

The design of our prototype is based on the requirements defined in chapter 3. First,
we need to build a web-based system supporting various import options (cf. requirement
FR1.4). Figure 5.10 demonstrates the prototype of the import and clustering setup
page. The current prototype offers three possibility to import the data into the
framework: by opening a file, accessing a database, or using an URL.
According to the requirement FR1.3 and considerations in section 5.2.2, the user

has to configure several parameters before triggering the clustering procedure. The
configuration consists of selecting the metric to be used for prediction. Further, we can
set parameters to configure the clustering method: selecting the clustering algorithm,
setting the cluster size (i.e., a maximum and a minimum number of elements in each
cluster), and defining the range of cluster sizes (to performing a k-clustering for each
number within this range; cf. section 5.2.2). Additionally, the user can see the calculation
status, after they trigger the clustering process by pressing the button “Calculate”. This

47

5 Concept

Figure 5.11: Screen mockup presenting clustering result page

Figure 5.12: Screen mockup illustrating clusters overview page

48

5.3 GUI Prototyping

Figure 5.13: Screen mockup illustrating classification page

process can be aborted by pressing “Cancel”. A press on the button “Help” provides
further information regarding the clustering parameters.
After the clustering procedure is initiated, the framework performs the clustering.

When the generation of clusters is finished, the user is redirected to the next page
displaying the calculation results depicted in figure 5.11. With respect to requirements
FR160 and FR180, the statistical results of each clustering run are presented in tabular
and graphical (box-and-whisker chart) forms. The box-and-whisker chart in figure 5.11
reflects mean errors of each k-clustering. In figure 5.12, the user has an overview of a
selected cluster.
When the decision regarding meaningful clusters number is made, the user can start

with the classification. To this end, the user can either click the link “Go To Clusters
Description” at the top of the clusters overview page or activate the button “Describe
Clusters” under the box-and-whisker chart. Both options lead the user to the “Cluster
Overview and Description” page illustrated in figure 5.13). On this page, then, the user
can label clusters with names as well as write short description for each cluster.
After the classification, the user can save the model with classes and trigger prediction

using the link at the top of the “Cluster Overview and Description” page. In the
prediction page shown in figure 5.14, the user is asked to open the ongoing project and
specify the metric for the prediction. On the same page, the user can see prediction result,
when calculation is completed. They can configure the visualization mode by picking
a check-box on the screen. The user can choose either prediction line, prediction area,

49

5 Concept

Describe Cluster...

Figure 5.14: Screen mockup presenting prediction result

or both. The corresponding representation appears in the graph reflecting prediction
result. Next to the graphs, representing estimated project’s progress, the user can see
the corresponding cluster and its description.

5.4 Domain Model

In this section, we explain the domain model of the PredictionTool. Figure 5.15
demonstrates the UML entity relationship diagram of the domain model. It includes
all components needed to maintain the required functionality of the PredictionTool
that is described this chapter. The domain model is logically separated into the Import
component and the Clustering component.
The Import component contains all entities that are created during the import of

data into the system: Data Basis, Data Vector, and Data Value. The data
basis entity represents a general container of logical group of data, e.g., a set of projects
comprising ‘small’, ‘medium’, and ‘large’ projects. Each data basis object possesses a
unique name, a description, and a list of data vector objects (the projects). The data
vector entity has two attributes: EOM and MetricID. The EOM attribute is used to
reflect the unique name of each data vector according to which it can be found in the
database, e.g., the project ID. The MetricID attribute stores the characteristic of the
data vector according to which this vector should be assigned to what cluster in the

50

5.4 Domain Model

Figure 5.15: Architecture: the domain model

clustering process. Moreover, each data vector has a list of data values, which are the
time series values measured for the certain metric (MetricID). Consequently, these
data value objects must provide a timestamp with the corresponding value.
The Clustering component comprises of all entities that are created during

configuration of the clusterer and the clustering process: Cluster, Clustering
Run, Clustering Configuration, Clustering Run Property, and Quality
Measurement. The clustering configuration entity has only the attribute Name, in
order to store the date that implies when a particular configuration has been created.
Additionally, clustering run configuration possesses a clustering run property and a list of
clustering runs. The clustering run property entity encapsulates the information about
the number of total clustering runs required, which is stored in the Key attribute, and
the maximum clusters number for each ran, which is store in the Value attribute. The
clustering run object is created when a clustering process is initiated for each maximum
number of clusters. Clustering run is specified by a unique name and a description. In
order to be able to store the performance of each clustering run according to a certain
quality measurement, the quality measurement entity is used. It includes the attribute
MeasureName to reflect the corresponding measurement method, and the attribute
MeasureValue to store the evaluation result.
Note that each clustering run contains a set of clusters obtained after the clustering

process. The cluster object can be identified according its unique name. Additionally,

51

5 Concept

the cluster entity has the description attribute needed for the classification. Each cluster
refer to a set of assigned to it data vectors, which is denoted by the dashed arrow.

52

6 Realization

Contents
6.1 JavaEE Technologies . 53

6.1.1 Enterprise JavaBeans . 54
6.1.2 Java Server Faces . 54

6.2 Architecture . 55
6.2.1 Component Architecture . 55
6.2.2 Data Import Component . 57
6.2.3 Data Pre-Processing Component 59
6.2.4 Clustering Component . 61
6.2.5 Classification and Prediction Components 63

6.3 WEKA Java API . 64
6.3.1 The ARFF Format . 65
6.3.2 Accessing the Data . 66
6.3.3 Clustering with WEKA . 69

6.4 Visualization . 71
6.4.1 PrimeFaces Chart . 71
6.4.2 JFreeChart . 73

6.5 Evaluation of Clustering Performance . 73

In this chapter we describe the realization aspects of our approach. First, we describe
the technologies that we integrated to implement the system in section 6.1. We list
the main challenges of the component architecture and explain how we implemented
them in our software prototype in section 6.2. Subsequently, we will go through each
component and describe its main interfaces and hot-spots. After that we describe
the implementation details of the integration of Weka Java API that we used as
computational core for air approach.
Implementation of the visualization component as well as the tool applied are described

in section 6.4. Finally, in section 6.5, we briefly explain the two-step procedure that we
implemented to evaluate the clustering performance.

6.1 JavaEE Technologies

In this section, we give some background information for the techniques that we used
to contract our software prototype. We start by describing the Enterprise JavaBeans
(EJB) framework that we use for the back-end architecture in section 6.1.1. Then, in
section 6.1.2, we explain Java Server Faces (JSF) that we use for the client component.

53

6 Realization

6.1.1 Enterprise JavaBeans

For our back-end architecture, we use the Enterprise JavaBeans (or shortly EJB)
framework. In its specification, EJB is defined as “an architecture for component-based
transaction-oriented enterprise applications” [SM09]. The EJB technology is widely
applied in business software applications. The reason is that EJB offers many features
for developing business systems: database accessing using different techniques (e.g., Java
Database Connectivity (JDBC) API), integration with other applications through the
Java EE Connector Architecture, etc.
Enterprise beans are server-side software components. There are two main server-side

component types provided by EJB: session and message-driven beans. Session beans
serve to implement application activities, e.g., adding elements, accessing a database, or
calling other beans. Moreover, they act either as stateless or stateful. Stateless session
beans are used to implement business logic that is performed by a single request without
keeping the client-specific state among calls. Stateful session beans are used to model a
process, which spans multiple user request. In contrast, message-driven beans are also
intended to maintain actions, but can be called only implicitly by sending messages. For
more information, see [RB10] and [SM09].
Starting with version 3.0, EJB uses POJO to avoid API coupling upon the classes.

The acronym POJO stands for Plain Old Java Object and was defined by Fowler [Fow00].
POJOs refer to general Java objects that neither are inherited from any class nor
implement any interface. However, to create enterprise beans from POJOs, we have
to configure them within a deployment descriptor, e.g., XML files, or by annotation
provided by EJB.
Enterprise beans are deployed within an EJB Container, which provides automatic

generation, management, and destruction of EJBs, and thus, requires no intervention of
the developer. Accessing the beans is further possible from the outside of the container,
e.g., using SOAP or REST web services.

6.1.2 Java Server Faces

The front-end architecture of our DataMiningFramework is based on the Java Server
Faces (or shortly JSF) technology. It is a server-side component framework for developing
web applications written in Java. JSF offers various programming model and tag
libraries for implementation of component tags that simplify creating and maintaining
web applications with server-side user interfaces.
JSF technology provides separation of logic from presentation that allows autonomous

development of each single part of the software application. The presentation layer
is typically implemented in the form of XHTML-Pages. In order to represent logic
layer, JSF uses Managed Beans, which are regular Java Bean classes (POJOs) that are
registered by JSF using annotation @ManagedBean. Managed Beans represent a model
for UI component and typically contain the getter and setter methods. Those can be
accessed from the XHTML-Page.
A JSF application runs in a Java servlet container, where Java beans are automatically

54

6.2 Architecture

instantiated as soon as they are needed by the application. The lifetime of the particular
bean is also defined through JSF annotation. There exist four different lifetime scopes
provided by JSF: The shortest is the request scope. Lifetime of such beans is equal to the
lifetime of the HTTP-requests. After the HTTP-requests is complete, those beans are
released. The view scope means that the beans with this scope live as long as the view
to which they are bound. The third lifetime scope is the session scope. Here the bean is
released first after an HTTP session is completed. The longest scope is the application
scope. This means that there is only one bean for all users during performing the entire
application.
More information about the JSF technology can be found in [Ora13].

6.2 Architecture
Design of the system’s architecture is the next abstraction step in software development.
Software architecture design is a sophisticated process and the resulting architecture
should meet all technical and operational requirements. Bass et al. explains
software architecture of a system as “the structure or structures of the system, which
comprise software elements, the externally visible properties of those elements, and the
relationships among them” [BCK03]. The main objective of the architecture is organizing
components to provide specific functionality. Through the process of components
organization, components are grouped according to their area of concern, within which
each component is responsible for only one concern or functionality [Pat09].
In this section, we describe the architecture of our framework. We start with

a coarse-grain component architecture and explain the main functionality of each
component as well as the relationships among them. After that, we explain the
architectural details of each component.

6.2.1 Component Architecture

In this section, we describe the system architecture that we derived from our
requirements (cf. 3) and some general requirements for a software prototype (cf. [Pat09]).
In brief, the software architecture is designed in compliance with the following three key
principles:

Loose coupling between components. This can be achieved by separating the
components w.r.t. their functionalities, which should overlap as little as possible.
This implies, that the system supports extending and optimizing the functionality
of each component without touching the source code of some other component.
For instance, the loose coupling of back-end and front-end components enables
replacement of the presentation layer technologies with little effort; e.g., we can
replace JSF by Angular JS technology.

Abstract implementation of interfaces by providing, e.g., a Facade, on the top of
each component. Additionally, abstraction of the common interfaces between

55

6 Realization

components can be achieved by defining interface types or abstract classes. This
helps to achieve transparency of the system’s architecture for an external viewer.

Established communication between components. This issue addresses a contract or
an interface specification of components within the application. This imply that
the relationship between components, modules, and functions as well as their usage
must be explicit defined. A contract specifies all possible communication scenarios
between components as well as the access of the internal functionality of each
component. Further, it describes pre-conditions, post-conditions, side effects, etc.
of those scenarios.

With respect to the principles described above and requirements FR2.1 to FR2.5, we
defined seven components in our coarse-grain architecture, which is depicted in figure 6.1.
Each component provides a business interface, i.e., the access of each component is
provided by the corresponding facade. This is realized by EJB’s FacadeLocal interface,
which is implemented by a concrete EJB FacadeBean.
On the top of the application, the API component JSF API, which is implemented

using JSF, is responsible for the presentation function (UI) of the system. It includes
mainly XHTML-pages and Managed Beans as described in section 6.1.2. Additionally,
JSF API enables the import of data into the system. This task might be replaced in
the future by a measurement system.

Figure 6.1: Architecture: components

56

6.2 Architecture

Since JSF API encapsulates the GUI, it must communicate with other components
in order to retrieve user’s input and display the output of, e.g., the computation core
of the system. JSF API invokes other components through the corresponding facade of
each component and its implementation allows for the replacement of JSF by an other
framework, e.g., Angular JS.
The Visualization component contains functionalities needed to create graphical

elements, such as different charts to visualize the clustering and prediction output. In
section 6.4, we give more information on implementation details and techniques used to
create charts.
The four main steps of the knowledge discovering process are encapsulated in four

components: Import, Pre-Processing, Clustering, and Classification and
Prediction. Note that classification and prediction are combined into one single
component, since in our approach, classification is a sub-function of prediction and is
conducted by the user. The Classification and Prediction component uses the
output of the Clustering component to conduct the classification and subsequently
apply prediction.
Similar to the knowledge discovering process, the output of each of these components

is the input for the next adjacent component. For instance, we use the pre-processing
output as an input for starting the clustering process within the Clustering
component. Interaction between components proceeds typically via facades to achieve
flexible communication. Thus, if an alteration within a single component is required,
the other components remain untouched. For the purpose to be able to customize the
functionality of each component, the design of each component provides extension points
(hot-spots) that are explained in sections 6.2.2, 6.2.3, and 6.2.4.
The last component, CRUD, represents the business layer of the application. The

acronym CRUD states for create, retrieve, update, delete functions of the back-end
to handle application objects. Figure 6.2 illustrates the CRUD component, comprising
the CRUD Facade, CRUD Controller, Domain Model and DAO classes. The facade
CRUD Facade is the entry point for other components and forwards the control flow to
the controller CRUD Controller, which validates the data and invokes the methods
of the DAO classes. If an entity must be created, the controller uses Domain Model
to create an entity via an entity factory. DAO is responsible for storing, updating, and
deleting of the application using an Entity Manager.
Subsequently, we present the architecture of each component in more detail.

Specifically, we observe the key components of the computation core, import,
preprocessing, clustering, and classification and prediction.

6.2.2 Data Import Component

Figure 6.3 illustrates the Import component of the DataMiningFramework
composing the DataImportFacadeLocal interface and the implementing
DataImportFacadeBean class. DataImportFacadeBean delegates method
calls to DataImportController which provides a particular implementation of the

57

6 Realization

Figure 6.2: Architecture: overview of CRUD component

Figure 6.3: Architecture: Data import component

method importData that is used to read the data from an input stream (delegated
from JSF API) and transform it into Java Objects.
Concerning the requirements FR1.4.1 and FR1.4.2, the DataMiningFramework

must offer the import of data from an Excel file as well as the data import from an
SQL database. Currently the DataMiningFramework supports only Excel format,
but as shown in figure 6.4, the architectural design of the system anticipates future

58

6.2 Architecture

Figure 6.4: Architecture: Data import component with classes

implementation of additional import possibilities via an extension point (hot-spot). This
extension point is represented by the interface of the type ImportSource comprising
the hook method importData.
First, the imported data is transformed into Java objects representing time series in

order to filter the imported data. Alike to the import format issue, the architecture
of the system provides the FilterImport interface; each filter class implementing
the FilterImport interface realizes a particular implementation of the filter function.
For instance, the class diagram in figure 6.4 shows a filter FilterUpperValue that
discards data with values exceeding a predefined threshold.
After the import and filter activities are finished, the time series are transformed to

DataVector entities and are persisted in the database via the CRUD component.

6.2.3 Data Pre-Processing Component

As shown in figure 6.1, the next step after the import is data preparation in the
Pre-Processing component. Here, the data is cleaned from outliers and data noise,
and normalized in order to take a form suitable for the clustering process. As stated
before, all method calls are passing through the facade PreProcessingFacadeLocal,
which is implemented by PreProcessingFacadeBean, and are then delegated to
PreProcessingController that manages the pre-processing tasks.
Figure 6.6 demonstrates the architecture of the PreProcessing component. Within

this prove of concept, we assumed that the pre-processing task can be triggered by the
user as well. The control flow, initiated in the JSF API component, is forwarded through
PreProcessingFacadeBean to PreProcessingControllerBean. Then, the
controller invokes the PreprocessingInitialization class that initializes

59

6 Realization

Figure 6.5: Architecture: Pre-processing component

pre-processing steps and allows to combine all available pre-processing steps in custom
ordering. PreProcessingController processes those steps in the order defined by
a list.

Figure 6.6: Architecture: Pre-processing component with classes

To allow alteration of pre-processing strategy, we created two additionally hot-spots in
this component: a hot-spot for the regression method that is applied to compute missing
values (see figure 6.7) and a hot-spot to allow re-creation and exchange of pre-processing
steps. The former hot-spot is defined by the interface RegressionMethod, which is
currently implemented by three different regression approaches. The latter hot-spot is
defined by the hook method processData in the abstract class PreprocessingStep.
When PreProcessingController finishes the pre-processing, i.e., all steps in the

pre-processing list were executed, the processed data is, then, persisted using the CRUD
component.

60

6.2 Architecture

Figure 6.7: Architecture: Missing data computation hot-spot

6.2.4 Clustering Component

Figure 6.8: Architecture: Clustering component

Next, after the data is pre-processed, the data is ready for the clustering
process. Figures 6.8 and 6.9 illustrate the structure of the Clustering
component. After the method call is forwarded through ClusteringFacade to
ClusteringControllerBean, the class invokes SetupCluster to trigger initial
activities needed to perform clustering. This activities include invocation of additional
pre-processing methods, if required, transformation of the data into the appropriate form
supported by the clustering tool, as well as specifying of the clustering algorithm that
will be applied.
When clustering is finished, the SetupClustering class performs interpretation

of the clustering result, which is transformed it into a Java object of

61

6 Realization

Figure 6.9: Architecture: Clustering component with classes

type ClusteringResult. ClusteringControllerBean uses the information
encapsulated by the ClusteringResult object to create corresponding domain model
objects with the obtained information. Moreover, the controller ensures that the
ClusteringRun object and the list of corresponding cluster objects are created after
each clustering process. Since the controller receives the list of maximum clusters
numbers for each iteration, it initiates creation of clustering runs by calling the methods
of CRUDFacade.

Figure 6.10: Architecture: Clusterer algorithm hot-spot

The Clustering component specifies two hot-spots. First, a hot-spot aiming

62

6.2 Architecture

for the interchangeability of the clustering algorithm and is realized by the interface
ClusteringAlgorithmus (cf. figure 6.10). The second hot-spot is the abstract
class ClusterRepresentative that provides different methods to identify cluster
representatives (see figure 6.11); e.g., a cluster representative that is computed using the
average value of all vector values of the cluster.
A cluster representative is, then, used to build a prediction line or a prediction

area for a certain project. This task is implemented by the Classification and
Prediction component, which we explaine in the next section.

Figure 6.11: Architecture: Cluster representative hot-spot

6.2.5 Classification and Prediction Components

Figure 6.12: Architecture: Classification and Prediction component

When the clustering is accomplished, the user can initiate the classification and
prediction process. To this end, the user is presented with the evaluation results for
each clustering iteration (number of clusters) and can start the process by selecting
the clustering with the minimal error for incorrectly clustered instances. First, the
user is asked to label each cluster of the selected clusters set. To this end, the
DataMiningFramework provides the possibility to characterize each identified cluster
in form of textual description. The classification result, i.e., clusters description, is stored

63

6 Realization

in the database. Then, the prediction process is started by choosing the project that
wants to be predicted.

Figure 6.13: Architecture: Prediction component with classes

Similar to the other components, the access of the Classification and
Prediction component is realized through the PredictionFacadeLocal interface
which delegates all method calls to the PredictionControllerBean class.
PredictionControllerBean initiates clustering of the train-set, i.e., all project
used for the previous clustering (model training), for a selected number of clusters
by calling the corresponding method of the SetupClusterer class. Then,
SetupClusterer generates the Clusterer and the ClusteringResult object.
Each ClusteringResult includes the cluster index as well as the list of the vectors
that are assigned to that cluster. ClusteringResult together with the Clusterer
and the test-set (project to be predicted) is used in the prediction procedure. This
procedure is conducted by calling the predictionOutput method implemented in
the SetupClusterer class. The method returns the PredictionResult object,
that provides the index of the cluster to which the project to be predicted is assigned.
According to this index, the underline cluster can be found in the database.
Once the cluster for the current project is identified, the DataMiningFramework

computes the cluster representative that is used by the Vizualization component to
create the prediction line for the project. We describe the visualization methods used
and the obtained results in section 6.4.

6.3 WEKA Java API

In this work, we use the WEKA Java API Version 3.6.6. The integration of the library
into the project is performed via a Maven dependency added to the pom.xml file as
shown in 6.1.

64

6.3 WEKA Java API

1 <dependency>
2 <groupId>nz.ac.waikato.cms.weka</groupId>
3 <artifactId>weka-stable</artifactId>
4 <version>3.6.6</version>
5 </dependency>

Source Code 6.1: WEKA Maven dependency

Subsequently, in section 6.3.1, we describe the data format that is required by the
WEKA library. After that, in section 6.3.2 we explain how the data is loaded into the
system in order to be used by the WEKA API. Last, we address clustering in WEKA
and explain the main challenges of using the WEKA API in section 6.3.3.

6.3.1 The ARFF Format
A set of data objects and their attributes is encapsulated in the data set in data mining.
The data set in WEKA is represented by a collection of instances that are implemented
by the class weka.core.Instances. The representation of this class is stored as an
ARFF (Attribute-Relation File Format) file. An example of an ARFF file content is
given in 6.2. It consists of two sections: the header and the data section.

1 @attribute Eom {ID-0005082,ID-0003162,ID-0003665,ID-0003533,ID-0005565}
2 @attribute Month_1 numeric
3 @attribute Month_2 numeric
4 ...
5 @attribute Month_10 numeric
6
7 @data
8 ID-0005082,2.24,2.11,1.95,1.78,1.64,0.97,0.9886,0.0823,0.762,0.53
9 ID-0003162,11.4,4.41,1.84,1.68,1.19,1.32,1.31,1.05,1.14,5.442556

10 ID-0003665,1.35,1.24,1.2,0.9,0.87,0.83,0.92,0.87,0.782857,0.782857
11 ...

Source Code 6.2: The WEKA Attribute-Relation File Format (ARFF)

In the header of the ARFF file, the attributes and their types are defined (cf. lines 1-11
in listing 6.2). Each attribute declaration consist of the @attribute keyword, followed
by a unique attribute name and its type; i.e, each header line is of the form @attribute
<attribute-name> <datatype>. The order of each attribute indicates position of
the corresponding column in the database. The types of the attributes are either numeric,
nominal, string, date, or relational and are declared as follows:

Numeric attribute is used to declare real and integer numbers and are of following
format: @attribute <attribute-name> numeric

Nominal attributes are predefined values of the form @attribute
<attribute-name> {<nominal-name1>, <nominal-name2>, . . . }

String attributes enable to define attributes with arbitrary textual values and are
declared in the the form: @attribute <attribute-name> string

65

6 Realization

Date attributes are used to specify a date and its format: @attribute
<attribute-name> date [<date-format>]. Here, <date-format> is
optional with a default value <yyyy-MM-dd HH:mm:ss>

Relational attributes are declared in the form:
@attribute <name> relational
<further attribute definitions>
@end <name>

In the example 6.2, Eom is a nominal attribute and Month_n are numeric attributes.
The ARFF data section starts with @data statement (cf. line 13 in listing 6.2) and

is the declaration of instances (cf. lines 14-19 in listing 6.2), where each instance is
represented by a single line. The attribute values of an instance are separated through
commas and must appear in the same order as specified in the header section.

6.3.2 Accessing the Data

In order to start processing some data with WEKA, we need to transform it into the
required format for WEKA. Typically, WEAK uses the ARFF format (cf. section 6.3.1,
however, other formats, e.g., XRFF or CSV, are supported by WEKA. The WEKA API
offers two possibilities to obtain data in the required format: load the data from source
(specifically, from a file or a database) or create the data objects on-the-fly in memory.

Load from File

In case of loading data from a file, WEKA offers two types of loading: The first type
of loader is defined by the file’s extensions .arff, .csv, and .xrff. In all other cases,
the user must use a loader for the corresponding file extension, e.g., JSONLoader,
C45Loader, SVMLightLoader, etc. All available loaders are comprised in the package
weka.core.converters.
Source code 6.3 demonstrates the reading of data from the default file types (ARFF,

CSV, XRFF), using the DataSource class.
1 import weka.core.converters.ConverterUtils.DataSource;
2 import weka.core.Instances;
3 ...
4 Instances data1 = DataSource.read("/some/where/dataset.arff");
5 Instances data2 = DataSource.read("/some/where/dataset.csv");
6 Instances data3 = DataSource.read("/some/where/dataset.xrff");
7
8 Instances data1 = source.getDataSet();

Source Code 6.3: WEKA Data Loader: Loading with the DataSource class

Source code 6.4 shows how data in JSON-format is loaded by using JSONLoader.
1 import weka.core.converters.JSONLoader;
2 import weka.core.Instances;

66

6.3 WEKA Java API

3 import java.io.File;
4 ...
5 JSONLoader loader = new JSONLoader();
6 loader.setSource(new File("/some/where/some.data"));
7 Instances data = loader.getDataSet();

Source Code 6.4: WEKA Data Loader: Loading with JSONLoader

Load from Database

Using the class weka.core.converters.DatabaseLoader, we can loading data
from a databases. A DatabaseLoader object queries the instances within a database
either in batch or incremental mode. In the former mode the whole dataset is loaded
from the database at once. The latter loading mode queries only a single row (instance)
per query.

1 import weka.core.Instances;
2 import weka.core.converters.DatabaseLoader;
3 ...
4 DatabaseLoader loader = new DatabaseLoader();
5 loader.setSource("jdbc_url", "the_user", "the_password");
6 loader.setQuery("select * from whatsoever");
7 Instances data = loader.getDataSet();

Source Code 6.5: WEKA Data Loader: DatabaseLoader used in batch mode

Source code 6.5 and source code 6.6 illustrate the difference between loading in batch
and incremental mode, respectively. Since not all databases support an incremental
querying, WEKA additionally provides a “pseudo-incremental” mode, where the data
fully loaded into memory first and after that is provided row-by-row.

1 import weka.core.Instance;
2 import weka.core.Instances;
3 import weka.core.converters.DatabaseLoader;
4 ...
5 DatabaseLoader loader = new DatabaseLoader();
6 loader.setSource("jdbc_url", "the_user", "the_password");
7 loader.setQuery("select * from whatsoever");
8 Instances structure = loader.getStructure();
9 Instances data = new Instances(structure);

10 Instance inst;
11 while ((inst = loader.getNextInstance(structure)) != null)
12 data.add(inst);

Source Code 6.6: WEKA Data Loader: DatabaseLoader used in incremental mode

Create the Data in Memory

In contrast to loading the data from a source, we can create the data in-memory
on-the-fly using the class weka.core.Instances. In this way, the WEKA ARFF

67

6 Realization

data can be generated directly with the Java objects and a re-import of the data from
a file or a database is not necessary.
Source code 6.7 shows how a list of the DataVector objects is converted into ARFF

format that is needed for further clustering process in WEKA. You can see an example
for the resulting ARFF format in example 6.2. The process of converting the data is
conducted in two steps: first, the attributes must be defined, and second, the data is
added row by row.

1 import weka.core.Attribute;
2 import weka.core.FastVector;
3 import weka.core.Instance;
4 import weka.core.Instances;
5 ...
6 List<DataVector> vectors_list = new ArrayList<DataVector>();
7 vectors_list.addAll(vectors);
8 FastVector nominal_attrs = new FastVector();
9 for (DataVector vector : vectors_list){

10 nominal_attrs.addElement(vector.getEom());
11 }
12 attrs.addElement(new Attribute("Eom", nominal_attrs));
13
14 List<DataValue> values_list = new ArrayList<DataValue>();
15 DataVector first_element = (vectors_list.get(0));
16 values_list.addAll(first_element.getDataValues());
17 int vector_size = values_list.size();
18 for(int i=1; i<vector_size + 1; i++){
19 Attribute a = new Attribute("Month_" + i);
20 attrs.addElement(a);
21 }
22 Instances dataset = new Instances("Clustering of CPIs ",
23 attrs, 500);
24 for(DataVector vector : vectors_list){
25 Instance instance = new Instance(cluster_size + 1);
26 String eom = vector.getEom();
27 instance.setValue((Attribute)attrs.elementAt(0), eom);
28 values_list = new ArrayList<DataValue>();
29 values_list.addAll(vector.getDataValues());
30 int i = 1;
31 for(DataValue dataValue : values_list){
32 instance.setValue((Attribute)attrs.elementAt(i), dataValue.getValue());
33 i++;
34 }
35 dataset.add(instance);
36 }
37 dataset.setClassIndex(dataset.numAttributes() - 1);

Source Code 6.7: Converting Java objects into ARFF format

For creation of attributes we use the weka.core.Attribute class. In order to
cluster the DataVector objects, we use numeric attributes for double values and a

68

6.3 WEKA Java API

nominal attribute for all Eoms to enable identification for each DataVector after
clustering. Since the nominal attribute is in this case not just a value but an array
of strings, we use the weka.core.FastVector class.
After defining the attributes, for each entry in the DataVector list we create an

Instance object with corresponding nominal attribute (Eom) and a set of numeric
(double) values. Then, this instance is added to a dataset. which is a set of instances.
The obtained dataset is used as the input for clustering in WEKA.

Discussion

In this work, we generate the data in-memory by converting the imported data into the
ARFF format as described in the previous sub-section. We want to briefly discuss the
advantages of the in-memory approach over the data loading from a databases or a file.
Here, the main argument is that the transforming of the data in-memory decouples the
domain-specific import and data objects from the used technology (here, WEKA). Thus,
providing modularity of the system and independence of the tools used to perform, e.g.,
clustering operations.
For instance, assume that we decide to generate the data for clustering with WEKA

by loading from a database. In other words, the WEKA loader imports the data and
transforms it into WEKA instances. Hence, all DataMiningFramework procedures
must be designed to process data in this WEKA-specific format, or the data must be
transformed back and forth within the DataMiningFramework. The first option
restricts the DataMiningFramework by using only the WEKA tool and the second
issue implies computational overhead by performing multiple transformations. Hence, if
we decide to use another technology for the clustering and prediction, we effort for the
substitution is major. In contrast, creating the ARFF data in-memory allows generating
the WEKA-specific data from the domain objects, and thus, decoupling the data import
from the clustering tool.

6.3.3 Clustering with WEKA

The main reason we use WEKA is that the WEKA Java API offers various clustering
algorithms. Everything needed to build and evaluate a clusterer is included in
the weka.clusterers package. Clustering with WEKA is performed either in
batch-manner or incremental. The former allows clustering of the whole dataset at
once. In constrast, the incremental clustering updates its clustering model step by step
as data is read. However, only a small number of clustering algorithms in WEKA
supports incremental clustering, e.g., the Cobweb algorithms. Thus, in this work, we
use only batch clustering. It is conducted in two steps: first, set the options, and second,
build the model with the training data.
To evaluate the clustering result, WEKA offers the interface

weka.clusterers.ClusterEvaluation, which is implemented by various
cluster evaluation methods specific to the used clustering method. Here, a clustering

69

6 Realization

evaluation comprises a classification of cluster instances w.r.t. a cluster representative
and a report of how many elements (absolutely and relatively) are in each cluster.
Additionally, WEKA can perform classes-to-clusters evaluation for probabilistic

clustering methods (e.g., EM clustering). In general, such evaluation of clusterer is
performed in three steps: First, we have to copy the training set of data containing
the class attribute and remove the class attributes by applying the Remove filter of the
weka.filters.unsupervised.attribute.Remove class. In our example, we have to apply the
Remove filter to the Eom-attribute (see step 1 in source code 6.8). Once the filter is
applied to the training set, we create the clusterer based on the filtered data in the second
step (see step 2 in source code 6.8). In the third step, we create the ClusterEvaluation
and apply it to the original training set in order to evaluate the clusterer (see step 3 in
source code 6.8).

1 // 1. Create copy of train set without eom-attribute => dataClusterer
2 Instances train_set = ... // from somewhere
3 train_set.setClassIndex(0);
4 Remove filter = new Remove();
5 filter.setAttributeIndices("" + (train_set.classIndex() + 1));
6 filter.setInputFormat(train_set);
7 Instances dataClusterer = Filter.useFilter(train_set, filter);
8
9 // 2. Train clusterer with dataClusterer

10 EM clusterer = new EM();
11 // Set options for clusterer if necessary
12 ...
13 clusterer.buildClusterer(dataClusterer);
14
15 // 3. Create ClusterEvaluation and perform evaluation of clusterer
16 ClusterEvaluation eval = new ClusterEvaluation();
17 eval.setClusterer(clusterer);
18 eval.evaluateClusterer(train_set);
19 // Return evaluation result as string
20 result = eval.clusterResultsToString();

Source Code 6.8: Classes-to-clusters evaluation of EM clusterer

The last statement in source code 6.8 serves to return the evaluation result as string.
An example of an evaluation result for an an EM clustering is shown in listing 6.9.

1 Clustered Instances
2 0 4 (29 %)
3 1 10 (71 %)
4
5 Log likelihood: -8.36599
6
7 Class attribute: play
8 Classes to Clusters:
9

10 0 1 <-- assigned to cluster

70

6.4 Visualization

11 2 7 | yes
12 2 3 | no
13
14 Cluster 0 <-- no
15 Cluster 1 <-- yes
16 Incorrectly clustered instances : 5.0 35.7143 %

Source Code 6.9: Evaluation Result

6.4 Visualization
In this section, we describe the data visualization for the DataMiningFramework and
the used library. According to requirement FR1.8, besides the statistical representation,
our prototype must provide the graphical representation of clustering and predication
results. Thus, we have to decide what visualization library to use in order to render the
diagrams.
The visualization library must provide several features that satisfy objectives and

requirements of the DataMiningFramework. First, it must be compatible and easily
integrable with the client layer of the DataMiningFramework, namely, with the JSF
component. This implies that the library must be written in Java. Second, it must
provide rendering of all diagrams required by the DataMiningFramework. Hence,
the selected library must support various types of charts, including combined charts as
well as the customization of their labels. Moreover, the library must be able to operate
with time series for diagram and it must be able to the render diagrams independently
from the internet browser.
According to the requirements for a visualization library listed above, we chose two:

PrimeFaces Chart and JFreeChart. PrimeFaces is an open-source JSF component suite,
and thus, is obviously compatible with JSF applications. The Chart component of
PrimeFaces allows to create various types of chart and dynamically render them in an
JSF page. However, it does not provides combinations of charts and restricts alteration
of the diagrams for the developer.
JFreeChart is an open-source library for the Java written applications and provides

a various number of diagrams and their combinations, annotations, export to PNG,
JPEG, PDF, SVG, etc. Furthermore, the JFreeChart library provides implementation
of several regression methods that can be applied in-memory without a visualization.
The essential drawback of JFreeChart for our prototype is that the diagrams created by
JFreeChart do not provide interactivity, since they are rendered into the JSF page as a
simple buffer image.

6.4.1 PrimeFaces Chart

A PrimeFaces chart can be implemented directly in the corresponding @ManagedBean
of the JSF API component. Each PrimeFaces chart is an object of the type
LineChartModel that is called from an XHTML-page (cf. source code 6.10). Source

71

6 Realization

code 6.11 illustrates an example where the PrimeFaces Chart library is used to visualize
a DataVector object, creating a LineChartModel. The resulting chart is depicted
in figure 6.14.

1 <p:chart type="line" model="#{projectsOverviewBean.lineChartModel}"
2 style="height:700px;" />

Source Code 6.10: A line chart using PrimeFaces, XHTML

1 private String createLineModels(DataVector vector) {
2 this.lineChartModel = initLinearModel(vector);
3 this.lineChartModel.setTitle("Linear Chart for Project "
4 + vector.getEom());
5 this.lineChartModel.setLegendPosition("e");
6 this.lineChartModel.setShowPointLabels(true);
7 this.lineChartModel.getAxes().put(AxisType.X,
8 new CategoryAxis("Months"));
9 Axis yAxis = lineChartModel.getAxis(AxisType.Y);
10 yAxis.setLabel("CPI");
11 yAxis.setMin(0);
12 yAxis.setMax(5);
13 }
14 return "showVectorChart.xhtml";
15 }

Source Code 6.11: A line chart using PrimeFaces, @ManagedBean

Figure 6.14: Resulting PrimeFaces line chart

72

6.5 Evaluation of Clustering Performance

6.4.2 JFreeChart

Source code 6.12 shows how to create a chart for a cluster using JFreeChart. In order
to create a JFreeChart diagram, the given time series must be transformed into a
XYDataset first (lines 3-4). The example creates a PNG file that illustrates all projects
assigned to the cluster and the cluster representative as XYLineChart. Figure 6.15
illustrates the resulting diagram.

1 public File getClusterAsChart(Cluster cluster)
2 throws IOException, NotFoundException{
3 XYDataset lines = ConvertDataIntoXYDataset
4 .convertClusteredProjectsIntoXYDataset(cluster);
5 JFreeChart jFreeChart = ChartFactory.createXYLineChart(
6 "Clusterer Result Chart", "Month", "Values", // y axis label
7 lines, // data
8 PlotOrientation.VERTICAL,
9 true, // include legend

10 true, // tooltips
11 false // urls
12);
13 XYPlot plot = jFreeChart.getXYPlot();
14 String label = "Cluster Representative by Average";
15 XYDataset inputDataforLine = converter
16 .convertClusterRepresentativeIntoXYDataset(reresentative, label);
17 plot.setDataset(1,inputDataforLine);
18 XYLineAndShapeRenderer renderer1 = new XYLineAndShapeRenderer();
19 float dash[] = {5.0f};
20 renderer1.setSeriesStroke(
21 0, new BasicStroke(3.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
22 2.0f, dash, 2.0f
23)
24);
25 plot.setRenderer(1, renderer1);
26 plot.getRendererForDataset(plot.getDataset(1)).setSeriesPaint(0, Color.black);
27 File file = saveChartAsPNG("jfreetest_allClustersAsChart.png", jFreeChart);
28 return file;
29 }

Source Code 6.12: A line chart using JFreeChart

6.5 Evaluation of Clustering Performance

In chapter 5, we described the essential idea of estimating the performance of clustering
results. Figure 5.1 in section 5.1 shows an performance evaluation step after each
clustering run. We call this process clustering improvement. Thereby, an error rate
is computed for each clustering run. To this end, we implemented a two-step procedure
which is shown in source code 6.13 and 6.14.

73

6 Realization

Figure 6.15: Resulting JFreeChart line chart

In the first step, we evaluate the clusterer in the following way: First, we copy
all instances of the training set into an evaluation set and create an initially empty
test set. After that, we iteratively move one instance from the evaluation set
to the test set (cf. lines 9-10 in source code 6.13). By applying the clusterer
using weka.clusterers.Clusterer.clusterInstance, the test set instance is
assigned to one of the clusters which is memorized (cf. line 12). Continuing, we clear
the test set and repeat the process for all other instances in the evaluation set until
it is empty. The predictor results are stored in the PredictionResult objects that
contains the id of the predicted object (eom) and the cluster index to which the project
has been assigned (cf. lines 16-19).

1 List<PredictionResult> result = new ArrayList<PredictionResult>();
2 Instances evaluation_set = DataTransformation
3 .convertDataVectorListToInstances(vectors, cluster_size);
4 Instances test_set = new Instances(...);
5 int trainset_size = evaluation_set.numInstances();
6 for (int i=0; i<trainset_size; i++){
7 Instances _temp_evaluation_set = DataTransformation
8 .convertDataVectorListToInstances(vectors, cluster_size);
9 test_set.delete();

10 test_set.add(_temp_evaluation_set.instance(i));

74

6.5 Evaluation of Clustering Performance

11 _temp_evaluation_set.delete(i);
12 Predictor predictor = new Predictor();
13 int cluster_index = predictor.getClusterForPredictionOutput(clusterer,
14 test_set, _temp_evaluation_set);
15 Instance instance = test_set.instance(0);
16 String eom = instance.stringValue(instance.classIndex());
17 PredictionResult predictionResult = new PredictionResult();
18 predictionResult.setCluster_index(cluster_index);
19 predictionResult.setEom(eom);
20 result.add(predictionResult);
21 }

Source Code 6.13: Evaluation of Clustering Performance: SetupClusterer

In the second step, we use the result of the first step and compare the values of each
project with the values of the cluster representative (cf. source code 6.14). First, for
a project, we create the cluster representative of the project’s cluster (cf. lines 7-14 in
source code 6.14). Then, we compute the average variance of the cluster representative
and the project values in percent (cf. lines15-20). This is repeated for each project in
the training set. The variances are persisted in the database for each clustering run as
a QualityMeasurement entity and represent the average error rates of each run (see
lines 23-28 in source code 6.14).

1 List<Double> run_evaluation = new ArrayList<Double>();
2 List<PredictionResult> predictionResults =
3 new ArrayList<PredictionResult>();
4 predictionResults.addAll(setupClusterer.evaluteClusterer(
5 vectors_list, cluster_size));
6 for(PredictionResult presult : predictionResults){
7 String clusterName = "Cluster" + presult.getCluster_index();
8 Cluster cluster = dataminingFrameworkCrudFacade
9 .getClusterByName(clusterName);

10 DataVector vector = dataminingFrameworkCrudFacade
11 .getDataVectorByEom(presult.getEom());
12 List<Double> cluster_representative = new ArrayList<Double>();
13 cluster_representative.addAll(
14 this.getClusterRepresentativeByAverage(cluster.getName()));
15 EvaluatorByMeanError evaluatorByMeanError =
16 new EvaluatorByMeanError();
17 Double presult_evaluation = evaluatorByMeanError
18 .getMeanErrorForProjectAndClusterRepresentative(
19 cluster_representative, vector);
20 run_evaluation.add(presult_evaluation);
21 }
22
23 for(Double mean : run_evaluation){
24 String qualityValue = mean.toString();
25 String qualityName = ... ;
26 dataminingFrameworkCrudFacade
27 .createQualityMeasurement(

75

6 Realization

28 qualityName, qualityValue, clusteringRunName);
29 }

Source Code 6.14: Evaluation of Clustering Performance: ClusteringControlleBean

Figure 6.16: Explanation of Box and Whisker Plot

In order to present the results of performance evaluation graphically, we use a
box-and-whisker chart. Figure 6.17 demonstrates a resulting clustering performance
evaluation in form of box-and-whisker chart created by using the JFreeChart library.
Such a visualization enables depicting series of numerical data through their quartiles.
Figure 6.16 demonstrates graphical explanation of box-and-whisker plot. The bottom
and top of the box are the first (Q1) and third quartiles (Q3), and the line inside the
box is the second quartile or the median. Q1 implies that 25% of all data values lay
under x2 value and Q3 corresponds to the 75% of all data values that lay under x3. The

76

6.5 Evaluation of Clustering Performance

median represents a value under that lies 50% of all data values.
The ends of the whiskers represents the upper and lower outlier thresholds of the data.

The upper outlier threshold is computed as Q3 + (IQR ∗ 1.5), where IQR states for
inter quartile range that is Q3−Q1. The lower outlier threshold is estimated as follows:
Q1 − (IQR ∗ 1.5). The remaining series that are not included between the whiskers, are
called outlier and typically plotted as dots or small circles. According to the example in
figure 6.16 the outlier comprises 2, 5% of the whole data set and and 97, 5% of all values
are equal or less than x5.
In figure 6.17, each box-and-whisker represents the estimated error rates for a run

labeled as Cluster# <clusters number>. The box is build according to the
QualityMeasurement values computed for each clustering run while performing the
evaluation procedure. We discuss the interpretation of the obtained evaluation results
in chapter 7.

Figure 6.17: Evaluation of Clustering Performance: Box and Whisker chart

77

7 Evaluation

Contents
7.1 Evaluation of the DataMiningFramework 79

7.1.1 Evaluation Based on Requirements 79
7.1.2 Static Code Analysis . 80

7.2 Evaluation of the PredictionTool 82
7.2.1 Experiment: Application Scenario 1 85
7.2.2 Experiment: Application Scenario 2 87
7.2.3 Experiment: Application Scenario 3 92

Based on the requirements defined in chapter 3, we designed the architecture of
DataMiningFramework and described it in section 6.2. In sections 6.3 and 6.4,
we explained how we integrated different computation and visualization libraries in
DataMiningFramework. Subsequently, we evaluate the software prototype’s quality
and compliance of requirements in section 7.1. Then, in section 7.2, we evaluate the
prototype using the implemented PredictionTool through designed experiments with
the empirical database of the company ITERGO.

7.1 Evaluation of the DataMiningFramework
In this section, we discuss the evaluation of the DataMiningFramework’s quality.
For this purpose, we validate the DataMiningFramework according to the functional
requirements in section 7.1.1 first. After that, we analyze the code quality using static
analysis methods in section 7.1.2.

7.1.1 Evaluation Based on Requirements
In this section, we concentrate on the evaluation according to the functional requirements
defined in section 3.2 that we derived from the objectives of this work and stakeholder’s
needs. According to the Electrical and Electronics Engineers (IEEE) Standard Glossary,
a system evaluation during or at the end of the development process serves to “determine
whether it satisfies specified requirements” [Ele90]. In the following, we discuss the
coverage degree of the specified functional requirements:

FR2.1 addresses the requirement of providing loosely-coupled architecture that is based
on the independent modules. For this purpose, we designed component- based
architecture of the DataMiningFramework as described in section 6.2. The
architecture comprises seven components that communicate through Facades.

79

7 Evaluation

Each component encapsulates a certain functionality based on the concept of
“separation of concerns” and can be developed independently from the each other.
Hence, the requirement FR2.1 is fulfilled in the realization of the system.

FR2.2 and FR2.3 The requirements define implementation of the data mining steps
needed for data mining analysis. Thereby, each step of discovering data knowledge
must be encapsulated by a component of the system. We created five components
(cf. figure 6.1) for each step needed for the data mining analysis, which are
data import, data preprocessing, clustering, classification and prediction and data
visualization. Each component implements a set of functions that are sufficient to
perform the corresponding step of data mining analysis. Consequently, the system
implementation completely covers both requirements.

FR2.4 The requirement prescribes providing extendability and exchangeability of
the system. Thereby, the framework realization is required to support the
possibility to exchange or extend a component with little effort. For this purpose,
we defined several hot-spots that offer extension points of functionally of the
DataMiningFramework. The system provides hot-spots for the implementation
of different filtering, pre-processing, and clustering algorithms. Thereby, the
developer needs to implement a single class to achieve the desired realization of a
new algorithm or function, and thus, fulfilling the requirement.

FR2.5 The fifth and the last requirement defines the ability of the software system to be
integrated into another system. This implies that the DataMiningFramework
must provide a API and a component that enable interaction with an external
environment, which is not implemented in theDataMiningFramework by now.
Hence, the system architecture must be extended to a component that provides
function that connect the external system to functionality of the framework and
allows execution of the whole process of data mining analysis without control flow
initiated by GUI. However, the effort need to create the integration component is
minimal due to the loosely-coupled architecture and the access of each component
of the system through facades.

7.1.2 Static Code Analysis
A mature development system’s program code should satisfy distinct quality criteria
measured by static code analysis. The goal of the static program analysis address not
only finding bugs and blockers, it also helps to reveal security and reliability lacks in
the system. The static analysis methods detect the errors or code fragments that can
result to system’s failure in the future. There exists a number of different tools enabling
an automatic code analysis. In this work, we used the open-source platform SonarQube
[Son] to evaluate the code quality. SonarQube provides various static analysis tools and
methods and supports analysis of different program languages.
Figures 7.1, 7.2, and 7.3 show the results of code analysis of the

DataMiningFramework (project MA Elena) with SonarQube. The analysis of

80

7.1 Evaluation of the DataMiningFramework

Figure 7.1: SonarQube: Project overview Elena MA

Figure 7.2: SonarQube: Project overview Elena MA

the system’s code reveals that the system architecture comprises 6375 lines of code
(LOCs), 113 classes, and 538 methods (cf. figure 7.2). The implementation of the
DataMiningFramework includes low duplicated code of 4.8%, which is due to
some visualization component implementation; e.g., graphical representation in form of
different chart types.
The realization of the system has over 98.4% rules compliance, which reflects only few

issues and findings in code. In particular, the system has no blocker and critical errors,
32 major issues (preserving stack trace, avoiding duplicate literals, etc.), three minor
issues (nested if statements) and 90 info issues (unused modifier) (cf. figure7.3).
The Cyclomatic Complexity (CC) metric used by Sonar (see figure 7.3) indicates the

number of linearly independent paths through the source code. The best value for this

81

7 Evaluation

Figure 7.3: SonarQube: Project overview Elena MA

metric is defined by 1, implying that the method is characterized by only one linearly
independent path. In general, the complexity per method that is less than 10 refers
to the understandable code that enables a convenient testing process. Sonar provides
CC measured per class, file, or method. For DataMiningFramework the average
complexity is 1.6 per method, 7.7 per class, and 7.7 per file. This indicates that the
project provides simple and understandable implementation.

7.2 Evaluation of the PredictionTool

In this section we, discuss the evaluation results of PredictionTool using ITERGO’s
historical data of 281 projects with CPI and SPI values. Preliminary to the experiments,
we list the parameters and the application scenarios for the evaluation.
First, we identify the evaluation parameters: We have to decide on a project durations

that are taken into account for clustering. Additionally, we have to specify the vector
size, i.e., the number of values for each project that is clustered. Next, the range of
the number of cluster k (cf. requirement FR1.6.1), i.e., have to define the minimum
and maximum for k. Last but not least, the methods for regression and clustering
(cf. requirement FR1.5). In summary, these are the parameter that must be specified
for the evaluation:

82

7.2 Evaluation of the PredictionTool

• Project duration range

• Vector size

• Range of clusters number k

• Regression method

• Clustering method

Figure 7.4 depicts a box-and-whisker diagram representing durations of 281 projects
that are available for the evaluation. From the diagram, we see that the development
duration of all historical projects is between one and 27 months and 50% projects are
of four to 12 months duration. This implies that the duration of 25% of the projects is
13 months or greater and the other 25% of projects were developed within one to four
months. Note that projects that lasted less than five months are often manageable, and
thus, not interesting for prediction. Moreover, we also do not take into account projects
that lasted more than 15 months. In other words, to evaluate the PredictionTool,
we use the projects of duration five to 15 months. For the experiments, we used CPI
values of 151 (53.7%) projects from the empirical database of the company ITERGO.
Choosing the vector size, we must take into account the following issues: On one

hand, if we choose a smaller value than the project’s number of values, some of these
are not considered during the clustering process and we lose information. For example,
if we set vector size to 5, we loose 50% of information for projects have ten values, and
75% for projects have 20 values. On the other hand, if the vector size is bigger than
the number of values a project has, we must estimate missing values by, for example,
using a regression method. For example, for the projects that have ten values and the
vector size is 20, the amount of the estimated values comprises 50%, accordingly for five
values we have to estimate 75% of values. The is to say, if we choose a too high value,
we would mostly use estimated values for clustering, and thus, affecting the accuracy of
the prediction.
Due to time constraints of this thesis, we commit to fix values for the last three

parameters for all experiments. This commitment is based on some preliminary
observations during tests. In particular, we define the range for the number of clusters
to be five to ten, i.e., k ∈ [5; 10] clusters. To compute missing values, we use a linear
regression function. Last, we use the k-Means clustering algorithm to evaluate our
PredictionTool.
During the experiment, we identified a technical restriction by means of processing

time that is needed to calculate clustering runs for different k and their performance
evaluation. All experiments were performed on Mac OS X, Version 10.9.5 with Processor
2 GHz Intel Core i7. For a data set comprising up to 50 projects, the calculation
terminated in less than one minute. For a data set that comprises 50 to 100 projects, the
time needed to perform and evaluate the clustering process risen to up to five minutes.
While trying to test a data set of 150 projects, we had to abort the process after 30
minutes without its termination. A reason for a long processing time is a huge number

83

7 Evaluation

Figure 7.4: Resulting PrimeFaces line chart

of read and write operations in the databases needed to perform the complete clustering
process and its performance evaluation. In this work, we used MySQL database to store
and retrieve the data. A possible solution for reducing of computation time might be
replacing SQL database by a NoSQL database, such as document or graph databases,
that might be more suitable for the type of data structures used in this work, i.e. data
vectors.
The latter issue explains why we restricted the number of projects per each defined

group to maximum 100 projects during evaluation experiments.
We designed the following possible application scenarios of PredictionTool:

Application Scenario 1 The first scenario targets to estimate data quality. Hence, we
evaluate the clustering model w.r.t. different data sets that we built from different
project duration range. The results are presented by using mean error that we
computed from the difference of each project compared to the representative of
cluster to which the underline project is assigned (cf. section 6.5).

Application Scenario 2 The objective of the second scenario is to analyze the variance of

84

7.2 Evaluation of the PredictionTool

mean error. The variance occurs due to the random estimation of missing values by
using regression. We compute the mean error variance by performing ten iterations
of clustering run for the same number of clusters k for each k ∈ [5, 10] and calculate
the average variance of error based on all iterations.

Application Scenario 3 In the last scenario, we evaluate predictive facilities of the
PredictionTool trough step-wise prediction of a given project. We extracted
one project from the evaluation data and use it to estimate prediction error. To this
end, we enter the first five values of the extracted project into PredictionTool
which results in a prediction of a the value for the sixth month. With this value, we
then predict the value for the seventh month and so on. Finally, we compare the
predicted points with the original values of the project to determine the prediction
error.

In the next three sections, we present the statistical results of the three experiments
based on the application scenarios and discuss their interpretation.

7.2.1 Experiment: Application Scenario 1
In this section, we analyze the results of the first scenario by applying linear regression
and k-Means clustering algorithms to different data sets. We divided the evaluation
data into groups that contain more than ten projects and at max. 100 projects (due
to performance reasons). To this end, we considered groups were all projects have the
same duration and groups with a defined duration range.
Further, we defined the vector size for each group as the upper bound value of each

interval. This implies that for projects with duration less than this value (vector size) the
missing values are calculated by using regression. Taking this into account, we chose the
groups with a duration range w.r.t. how many missing values are needed to be estimated:
few, medium, many.
Table 7.1 shows the evaluation results for each group ordered by Q2min ascending.

The first column lists the group names, where the number represents the duration of
the projects; e.g., B 10-15 is the group with all projects of duration ten to 15 months.
Further, the table provides columns with group and vector size, i.e., the number of
projects in each group and the number of points of each project used for the clustering,
respectively. The next two columns present the maximum and the minimum mean errors
of the clustering performance, and the minimum and maximum of the first quintile (Q1)
and the third quintile (Q3), respectively. The sixth column shows the interval of the
median for each group. In the last column, we listed the best number of clusters k by
means of the lowest value of the median identified for the group.

Discusson

Form table 7.1, we derive that the range of all error values is distributed between 0%
to 420%. However, the average value of all medians is approximately 63%, which imply
that 50% of all errors lie under 63%. The best results where indicated for the group

85

7 Evaluation

Group Group
Size

Vector
Size

Mean errors [Q1;Q3] [Q2min ;Q2max] Best k

B 14-15 13 15 [3%; 76%] [8%; 43%] [12%; 27%] 8
B 10 16 10 [4%; 90%] [13%; 53%] [25%; 32%] 5
B 13-15 18 15 [0%; 150%] [15%; 100%] [35%; 90%] 7
B 5-10 104 10 [3%; 250%] [32%; 140%] [45%; 64%] 5
B 10-15 61 15 [10%; 240%] [25%; 140%] [45%; 110%] 10
B 6-8 63 8 [6%; 200%] [26%; 108%] [49%; 69%] 5
B 8-10 51 10 [0%; 310%] [26%; 159%] [50%; 102%] 7
B 6 19 6 [0%; 200%] [14%; 108%] [52%; 74%] 10
B 8 22 8 [0%; 420%] [40%; 270%] [62%; 167%] 9
B 8-15 100 15 [5%; 415%] [30%; 280%] [65%; 105%] 9

Table 7.1: Summary of Experiment 1

B 14-15. Figure 7.5 shows the box-and-whisker plot for that group and is generated
from the mean errors of cluster representatives by clustering projects. The range of all
error values is distributed form 3% to 76%. The maximum and the minimum of the first
and the third quintile disseminates between 8% and 43%. The median range of values is
indicated between 12% and 27%. The best result for this group is identified for number
of clusters k = 8 where 50% of all errors lie under 12%.
The second best group w.r.t. low mean error is the group B 10. Both, group B 14-15

and group B 10, have similar characteristics: they includes projects with no or only few
missing values. Meaning that the regression to estimate missing values is applied to only
few values or is not at all. One might conclude that the application of the regression
to cover missing value gaps causes interferences in the prediction result. However, the
assessment results for the other two group with no need to calculate missing values,
namely, group B 6 and B 8, show significantly higher error rates (cf. table 7.1). In fact,
group B 8 has the highest error rate.
Figure 7.6 illustrates graphical representation of group B 8 in form of box-and-whisker

plot. The maximum error rate for this group is 430%, which is the highest value in this
experiment, and the mean of median of error rate for all evaluated numbers of clusters
k is 114.5%.
Since we use k-Mean algorithm, which is based on a distance function, to cluster the

data, the reason for the high error rates in groups B 6 and B 8 can be explained by the
low denseness of the projects within the groups. Figure 7.7 shows two of the clusters,
cluster 1 and 6, for group B 8 where k = 9. The two clusters are the only clusters
that include more than two projects for this clustering. Both clusters are low-dense with
respect to the distance between projects that are assigned to the corresponding cluster.
Figures 7.8 and 7.9 illustrate the comparison of the projects’ density for groups B 6,

B 8, B 10 and B 14-15. Taking a closer look, we can see a similarity of the groups

86

7.2 Evaluation of the PredictionTool

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 7 k = 10 k = 6 k = 5 k = 9 k = 8

Figure 7.5: Application Scenario 1 for data set B 14-15

B 6 and B 8: both contain projects where the CPI value trends are of low denseness.
In contrast, the CPI values of the projects in groups B 10 and B 14-15 proceed in a
small interval [1.0; 1.5] (high denseness) after 30%-50% w.r.t. the duration of projects
development time.
The results of this analysis, based on the the evaluation of clusterer model

(cf. section 6.5), indicate that neither the computation of missing values, nor the group
size seem to matter for the performance of the clusterer (cf. table 7.1). However, we saw
that groups, for which clusterer shows low error rates, and groups, for which clustering
demonstrates significantly higher error rates, possess in each case similar characteristics.
Especially, the more similar projects w.r.t. their CPI values a data set has, the better
the clusterer performs.

7.2.2 Experiment: Application Scenario 2

For a given vector size of a clustering run, some projects might have less values. Thus,
this missing values need to be estimated. To this end, we apply a regression method

87

7 Evaluation

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 5 k = 7 k = 6 k = 9 k = 8 k = 10

Figure 7.6: Application Scenario 1 for data set B 8

on the project vectors. The algorithm that we implemented in this thesis works in the
following way: it computes a regression line for the given values of the project vector,
and then, randomly pics values from the regression line for the missing values. Due to
the randomness of generated values, the error rates of clustering vary within the certain
interval.
This section describes the second application scenario that aims to determine how big

is the error variance for each number of clusters k ∈ [5; 10]. To this end, we performed ten
iterations of clustering the same data set for each k and computed the average variance
of error rate. We compare the computed variance for different group of data sets, which
are:

B 14-15 contains 13 projects with duration range between 14 and 15 months.

B 10-15 The group includes 61 project with the duration range between ten and 15
months.

88

7.2 Evaluation of the PredictionTool

Figure 7.7: Application Scenario 1 Resulting clusters for group B 8 (k = 9)

89

7 Evaluation

Figure 7.8: Application Scenario 1 Projects overview for groups B 6 and B 8

B 5-10 This group of data contains 104 projects with duration range between five and
ten months.

B 8 includes 22 projects with duration eight months.

Table 7.2 shows the results of the second experiment. Columns two to seven present the
average variance of error rate for each group in percent for each k ∈ [5; 10], respectively.
The second last column summarizes the lowest and the highest error variances and the
last column states the average error variance for each group. The forelast and last rows
present the same for each number k of clusters.

90

7.2 Evaluation of the PredictionTool

Figure 7.9: Application Scenario 1 Projects overview for groups B 10 and B 14-15

Discusson

According to the results of the second application scenario that are presented in table 7.2,
the values of error variance are spread between 11% and 41%. The difference between
average variance values between groups is in between 26% and 30%. Group B 14-15
has the highest average error variance and groups B 10-15 and B 8 the lowest. The
highest average variance value w.r.t. number of clusters k is for k = 6, 33%, and the
lowest value of 21.5% for k = 7. The average value of performance error variance for
groups and number of clusters k is about 27%. This analysis indicates that the error
variance due to the randomness of the missing value computation, is negligible being
about 27%.

91

7 Evaluation

Mean (%)

Group k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 [min%;
max%]

Av.
(%)

B 10-15 18 41 26 19 31 21 [18; 41] 26
B 14-15 37 33 25 30 34 20 [25; 37] 30
B 5-10 35 25 11 28 30 32 [11; 35] 27
B 8 24 32 24 18 29 27 [18; 32] 26

[min%;max%] [18; 35] [25; 41] [11; 26] [18; 30] [29; 34] [20; 32]

Average(%) 28, 5 33 21, 5 24 31 25

Table 7.2: Summary of Experiment 2

7.2.3 Experiment: Application Scenario 3

The objective of the third experiment is to evaluate the predictive facilities of the
PredictionTool. Within this experiment, we simulate the prediction process
by applying PredictionTool to a given project. In order to evaluate predictor
performance, we extracted one project form the available data set and trimmed 70%
of its values. The remaining 30% of values we used as prediction basis, i.e., the start
points for prediction. We, then, compared the predicted with the original values.
For this experiment we picked a 15-months project as the test project. Figure 7.10

shows the values of this project. We use the first five values from month one to five as
a start, and then, applied PredictionTool to predict the values for the months six to
15.

Figure 7.10: Experiment 3: Test project

92

7.2 Evaluation of the PredictionTool

In order to compare different scenarios for prediction, we split the experiment into
three sub-scenarios: 70%-Prediction, 35%-Prediction, Step-wise-Prediction. In former,
70%-Prediction scenario, the PredictionTool generates prediction values for interval
[6; 15]. In the second scenario, the 35%-Prediction, we split the prediction interval into
two sub-intervals [6; 10] and [11; 15], where the predicted values for [6; 10] are used with
[1; 5] to predict values for [11; 15]. Third scenario, the Step-wise-Prediction, we applied
the PredictionTool step-wise to forecast the next unknown value, and then, adding
it to the prediction basis using it in the subsequent step.

Experiment 3.1: 70%-Prediction

For this experiment, we used the following groups of data:

B 8-15 contains 100 projects with duration range between eight and 15 months.

B 10-15 The group includes 61 project with the duration range between ten and 15
months.

B 14-15 This group of data contains 13 projects with duration range between 14 and
15 months.

Figures 7.11, 7.12, and 7.13 reflect the outcome of prediction for three data sets. On
the left-hand side, the chart shows the cluster, comprising the projects and the cluster
representative, that is used for the prediction. On the right-hand side, the chart shows
the prediction of the project values. Here, the solid (blue) line represents the values
of the original test project from above (project ID-0003628), the dashed (black) curve
reflects the values of the cluster representative; in other words, the prediction line,
and the dashed (green) curves represent the maximum and the minimum values of the
corresponding cluster.
The mean errors for B 8-15, B 10-15, and B 14-15 using 70%-Prediction are

114.12%, 50.51%, and 31.83%, respectively. That is to say that the best result of
prediction is for group B 14-15. However, the prediction for this group results in
high errors for the first half of the prediction interval [6; 10] and is compensated by the
second half [11; 15]. Moreover, taking a closer loot at the trends, the predictions forecast
values of high error rate either for the first half or the second half of the 70%. While
this may be true, the first five values are descending, and thus, the sudden ascend is in
fact hard to predict.

Experiment 3.2: 35%-Prediction

In order to evaluate the 35%-Prediction scenario, we used two groups of data:

B 8-10 contains 51 projects with duration range between 8 and 10 months.

B 13-15 The group includes 18 projects with duration range between 13 and 15 months.

93

7 Evaluation

Figure 7.11: Experiment 3.1: Prediction results for 70%-Prediction for data set B 8-15

Figure 7.12: Experiment 3.1: Prediction results for 70%-Prediction for data set B 10-15

We used the first data set B 14-15 for the forecasting of the first prediction interval and
the second data set [B 13-15] to predict the second interval.
Figure 7.15 shows the resulting chart of the prediction. As before, the blue curve

represented the original project progress. The dashed black curve is the cluster
representative with the corresponding maximum and minimum bounds depicted by the
green dashed curves. The red line reflects the predicted values for the test project (in the
legend ID-01) that were generated in the previous prediction step. The red line and the
cluster representative assemble the set of predicted values for the test project. The mean
error of the 35%-Prediction scenario results to 55.59%. Similar to the experiment 3.1,
the prediction line of the 35%-Prediction scenario does not detect the curve fluctuation.

94

7.2 Evaluation of the PredictionTool

Figure 7.13: Experiment 3.1: Prediction results for 70%-Prediction for data set B 14-15

Figure 7.14: Experiment 3.2: Prediction results for 35%-Prediction: Interval [6; 10]

Experiment 3.3: Step-wise-Prediction

In this experiment, we performed step-wise prediction by applying the PredictionTool
to only two and three months ahead per each step. In the successive step, the predicted
values are then used to predict the next period’s values. The prediction of each step
is based on the results obtained from the previous step. Fro this experiment we split
the prediction into fore intervals: [6; 8], [9; 10], [11; 12], [13; 15] and used groups B 6-8,
B 8-10, B 10-12, and B 12-15 respectively. The groups are defined as follows:

B 6-8 contains 63 projects with duration range between six and eight months.

B 8-10 The group includes 51 projects with duration range between eight and ten

95

7 Evaluation

Figure 7.15: Experiment 3.2: Prediction results for 35%-Prediction: Interval [11; 15]

Figure 7.16: Experiment 3.3: Prediction results for 35%-Prediction: Interval [6; 8]

months.

B 10-12 The group includes 43 projects with duration range between ten and twelve
months.

B 12-15 The group includes 33 projects with duration range between twelve and 15
months.

The computed mean error for this scenario is 37.58%. The graphical representation
of the results for each prediction interval is presented in figures 7.16, 7.17, 7.18, and
7.19, respectively. The obtained results show that the Step-wise-Prediction scenario

96

7.2 Evaluation of the PredictionTool

Figure 7.17: Experiment 3.3: Prediction results for 35%-Prediction: Interval [9; 10]

Figure 7.18: Experiment 3.3: Prediction results for 35%-Prediction: Interval [11; 12]

outperforms the 35%-Prediction and the 70%-Prediction. Additionally, the prediction
line of the step-wise prediction shows better results in means of slope and decline in
comparison to the original project’s progress.

97

7 Evaluation

Figure 7.19: Experiment 3.3: Prediction results for 35%-Prediction: Interval [13; 15]

98

8 Conclusion

Contents
8.1 Summary . 99
8.2 Future Work . 100

In this chapter, we conclude our work. Having a concept and an implementation for
our framework and the prediction tool, we would like to summarize our work in section
8.1. Moreover, we present open questions for future research work and discuss possible
improvements of the DataMiningFramework and PredictionTool in section 8.2.

8.1 Summary
This master thesis contributes to the designing of a data mining framework,
DataMiningFramework, for automatic prediction using data mining methods on
the historical data in specific problem domains. Specifically, we use unsupervised
learning algorithms in order to classify the data. Furthermore, we implemented
the necessary steps required for knowledge discovery from data that include data
import, data preprocessing, clustering, prediction, and data representation. Thereby,
we encapsulated each step in a component of the DataMiningFramework and
implemented several hot-spots for the extendability and changeability. To show how
and that the DataMiningFramework work, we created the software prototype
PredictionTool and evaluated it by using the empirical database of the company
ITERGO.
In context of this work, in the first place, we performed a comprehensive literature

research of existing related studies to identify the state-of-the-art in chapter 4. The
literature review showed that there exist a number of studies addressing project
prediction methods. However, we concluded that non of the reviewed researches describe
techniques for predicting CPI and SPI values of a project. Furthermore, we pointed out
that most approaches do not provide reliable results and give little information about
the tools applied.
According to the objectives for this work considered in chapter 1, we identified

stakeholders and engineered requirements in chapter 3. Thereby, we separated the
requirements formulation into two groups: requirements for the PredictionTool and
the requirements addressing the DataMiningFramework. Based on the derived
requirements, we considered the basic concept of the future software for automatic
prediction in chapter 5. The approach is based on discovering similarity patterns in
historical data and and generating a classifier. Then, with this classifier, an ongoing

99

8 Conclusion

project is assigned to a data pattern class and its future values are predicted using that
class’ representative.
Next, we designedthe domain model and the architecture of the

DataMiningFramework in chapter 6. Based on the design principles of
software framework construction, we designed a component-based architecture for
DataMiningFramework. Thereby, each component is constructed according to its
own area of concern or functionality and provides a business interface through Facades.
Besides the components implementing the required steps of knowledge discovery from
data, the DataMiningFramework provides visualization component for graphical
representation of clustering and prediction outcomes.
In chapter 7, we evaluated the DataMiningFramework according to the engineered

requirements. The evaluation showed that all requirements but the one are fulfilled by
the implementation of the DataMiningFramework. The last requirement addresses
the integration of the DataMiningFramework into another system and is a future
improvement issue.
Additionally, to validate the DataMiningFramework, we implemented the

PredictionTool that uses the major functions of the DataMiningFramework to
forecast a project’s progress in the future. In order to evaluate the predictive performance
of the PredictionTool, we deliberated three application scenarios. In chapter 7, we
present the obtained results for each scenario in statistical and graphical form. The
results indicated that the tool performs best when the projects inside the prediction
class are close to each other and the prediction is limited to only a few time units ahead.

8.2 Future Work

The outcome of this master thesis can serve as a basis for further research work. In
this chapter, we give an overview of open questions and improvements in the context
of automatic forecasting in specific problem domains that was untouched in this thesis
and can be addressed in the following works. For this purpose, we separated this section
into two parts. The first part includes challenges and improvement suggestion for the
DataMiningFramework architecture, and, in the second part, we describe further
possible experiments that can be performed to explore other parameters of clustering to
improve the outcome of prediction.

DataMiningFramework

The proposed architecture of the DataMiningFramework can be extended by an API
and a component that enable interaction with an external environment. This will make
the integration of the DataMiningFramework into a measurement system possible.
Consequently, the DataMiningFramework might become a module that is used for
different data mining tasks of a larger system.
We implemented only one possibility for data import in the

DataMiningFramework, namely the import from an Excel file. Hence, the

100

8.2 Future Work

new import functions that support, e.g., import from SQL databases, can be added
to the set of DataMiningFramework’s functions. Also, the import task might be
replaced in the future by a measurement system. Therefore, the implementation of the
framework must be adapted to offer this possibility.
We implemented the component for the presentation function (UI) of the system using

the JSF framework. JSF is a server-side framework which implies that all tasks needed to
build the UI is done on the server. The process of streaming them back to the application
produces high network load. Due to the server-side characteristics of the JSF framework,
we need a lot of server memory to create an application which negatively influences the
system scalability. Hence, the JSF framework can be replaced by a newer framework,
e.g., Angular JS, which provides client-side implementation and is based on the single
page application model.
A further issue addresses enhancement of the level of system’s performance. In section

7.2, we briefly described efficiency limitations of the computation core of the system. We
concluded that the processing time might be reduced by replacing SQL database by a
NoSQL database, which implies that the database API must be customized depending
on the used database type.
Last but not least, the hot-spots provided by the architecture can be used to create

new algorithms for data selection, computation of missing values in time series, and new
clustering methods. Also, other data mining and graphical tools and libraries can be
integrated into the DataMiningFramework.

PredictionTool

A huge challenge for the success of the prediction approach is to find out the best
parameters values and their combinations. Hence, the PredictionTool can be used
to estimate the best parameters values. Due to the time constraints of this thesis, we did
not evaluate the clustering performance for an application scenario when the vector size
parameter is not equal to maximum project duration. In this case, not entire project
duration is used to perform clustering. Also, we did not evaluate runs for k ≤ 4 and
k ≥ 11.
For our experiments, we applied the k-Means clustering algorithm and used linear

regression to compute the gaps in time series and missing values when the vector size
was grater than project duration. Hence, further clustering and regression methods can
be applied and evaluated. Additionally, a further application scenarios for prediction
process can be considered, in order to determine the best fitting approach.
The DataMiningFramework is designed to be applied for different problem

domains that do not necessary deal with project management. Hence, other tools
might be implemented using the main components of the DataMiningFramework
to estimate future values in a different domain.

101

9 Appendix

9.1 Experiment 1: Box Plot Diagrams

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 6 k = 7 k = 10 k = 9 k = 8 k = 5

Figure 9.1: Application Scenario 1 for data set Basis 13-15

9.2 Experiment 2: Box Plot Diagrams

103

9 Appendix

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 8 k = 5 k = 6 k = 9 k = 10 k = 7

Figure 9.2: Application Scenario 1 for data set Basis 10-15

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 5 k = 10 k = 9 k = 7 k = 8 k = 6

Figure 9.3: Application Scenario 1 for data set B 10

104

9.2 Experiment 2: Box Plot Diagrams

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 8 k = 9 k = 6 k = 7 k = 5 k = 10

Figure 9.4: Application Scenario 1 for data set Basis 5-10

105

9 Appendix

Figure 9.5: Application Scenario 1 for data set Basis 8-10

106

9.2 Experiment 2: Box Plot Diagrams

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 7 k = 6 k = 9 k = 8 k = 10 k = 5

Figure 9.6: Application Scenario 1 for data set Basis 6-8

107

9 Appendix

Figure 9.7: Application Scenario 1 for data set Basis 6

108

9.2 Experiment 2: Box Plot Diagrams

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10]

 k = 9 k = 6 k = 7 k = 5 k = 10 k = 8

Figure 9.8: Application Scenario 1 for data set Basis 8-15

Box Plot: Mean Error of Cluster Representative for k-Values Range [7 ; 10] (10 Iterations)

 k = 6
(Mean 33)

 k = 7
(Mean 25)

 k = 8
(Mean 30)

 k = 9
(Mean 34)

 k = 10
(Mean 20)

 k = 5
(Mean 37)

Figure 9.9: Application Scenario 2 for data set B 14-15

109

9 Appendix

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10] (10 Iterations)

 k = 6
(Mean 41)

 k = 7
(Mean 26)

 k = 8
(Mean 19)

 k = 9
(Mean 31)

 k = 10
(Mean 21)

 k = 5
(Mean 18)

Figure 9.10: Application Scenario 2 for data set B 10-15

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10] (10 Iterations)

 k = 6
(Mean 25)

 k = 7
(Mean 11)

 k = 8
(Mean 28)

 k = 9
(Mean 30)

 k = 10
(Mean 32)

 k = 5
(Mean 35)

Figure 9.11: Application Scenario 2 for data set B 5-10

110

9.2 Experiment 2: Box Plot Diagrams

Box Plot: Mean Error of Cluster Representative for k-Values Range [5 ; 10] (10 Iterations)

 k = 6
(Mean 32)

 k = 7
(Mean 24)

 k = 8
(Mean 18)

 k = 9
(Mean 29)

 k = 10
(Mean 27)

 k = 5
(Mean 24)

Figure 9.12: Application Scenario 2 for data set B 8

111

Bibliography

[Abe10a] Michael Abernethy. Data mining with WEKA, Part 2: Classification
and clustering. http://www.ibm.com/developerworks/
opensource/library/os-weka2/index.html, 2010. [Online;
accessed 15-March-2015].

[Abe10b] Michael Abernethy. Data mining with WEKA,Part 1: Introduction
and regression. http://www.ibm.com/developerworks/
opensource/library/os-weka1/index.html, 2010. [Online;
accessed 15-March-2015].

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 2003.

[Bel14] J. Bell. Machine Learning: Hands-On for Developers and Technical
Professionals. John Wiley & Sons, Inc., 10475 Crosspoint Boulevard,
Indianapolis, IN, USA, 2014.

[BFK+13] Remco R. Bouckaert, Eibe Frank, Richard Kirkby, Peter Reutemann,
Alex Seewald, and David Scuse. WEKA Manual for Version
3-7-8. http://sourceforge.net/projects/weka/files/
documentation/3.7.x/WekaManual-3-7-8.pdf, 2013. [Online;
accessed 7-March-2015].

[BR90] Victor R. Basili and H. D. Rombach. Towards a comprehensive framework
for reuse: Model-based reuse characterization schemes. Technical Report
ADA222498, Institute for Advanced Computer Studies and Department
of Computer Science, University of Maryland, College Park, MD 20742,
April 1990. Technical rept.

[CD13] Cagatay Catal and Banu Diri. A Fault Detection Strategy for Software
Projects. Technical Gazette, 20(1):1–7, Feb 2013.

[CLP+13] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco
Oliveto, Annibale Panichella, and Sebastiano Panichella. Multi-objective
cross-project defect prediction. In ICST, pages 252–261. IEEE, 2013.

[Das02] Sanjoy Dasgupta. Performance guarantees for hierarchical clustering.
In 15th Annual Conference on Computational Learning Theory, pages
351–363. Springer, 2002.

113

http://www.ibm.com/developerworks/opensource/library/os-weka2/index.html
http://www.ibm.com/developerworks/opensource/library/os-weka2/index.html
http://www.ibm.com/developerworks/opensource/library/os-weka1/index.html
http://www.ibm.com/developerworks/opensource/library/os-weka1/index.html
http://sourceforge.net/projects/weka/files/documentation/3.7.x/WekaManual-3-7-8.pdf
http://sourceforge.net/projects/weka/files/documentation/3.7.x/WekaManual-3-7-8.pdf

Bibliography

[DT96] Merlin Dorfman and Richard H. Thayer. Software engineering. IEEE,
1996.

[EE08] Karim O. Elish and Mahmoud O. Elish. Predicting defect-prone software
modules using support vector machines. Journal of Systems and Software,
81(5):649–660, 2008.

[Ele90] Inc Electronics Engingeers. IEEE Standard Glossary of Software
Engineering Terminology. IEEE Std 610.12-1990, 121990:84, 1990.

[ES00] Martin Ester and Jörg Sander. Knowledge Discovery in Databases:
Techniken und Anwendungen. Springer Berlin Heidelberg, 1 edition, 2000.

[Evo12] Evolus. Pencil Project. http://pencil.evolus.vn/Default.html,
2012. [Online; accessed 11-April-2015].

[faSQMM15] IEEE Std 1061-1998 IEEE Standard for a Software Quality
Metrics Methodology. IEEE Standards Definition Database Search
- S. http://dictionary.ieee.org/index/s-14.html, 2015.
[Online; accessed 7-April-2015].

[Fis87] D. Fisher. Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2(2):139–172, 1987.

[FK02] Quentin Fleming and Joel Koppelman. Earned Value Project Management,
Second Edition. Project Management Institute, second edition, 2002.

[Fow00] Martin Fowler. Plain Old Java Object (POJO). http://www.
martinfowler.com/bliki/POJO.html, 2000. [Online; accessed
14-April-2015].

[FPR00] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The Uml Profile
for Framework Architectures. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2000.

[FS97] Mohamed Fayad and Douglas C. Schmidt. Object-oriented Application
Frameworks. Commun. ACM, 40(10):32–38, October 1997.

[GCS03] L. Guo, Bojan Cukic, and H. Singh. Predicting fault prone modules by
the Dempster-Shafer belief networks. In Automated Software Engineering,
2003. Proceedings. 18th IEEE International Conference on, pages 249–252,
Oct 2003.

[GLF90] J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept
formation. Artificial Intelligence, 40:11–61, 1990.

[Gui14] Gui Prototyping Tools. http://c2.com/cgi/wiki?
GuiPrototypingTools, 2014. [Online; accessed 11-April-2015].

114

http://pencil.evolus.vn/Default.html
http://dictionary.ieee.org/index/s-14.html
http://www.martinfowler.com/bliki/POJO.html
http://www.martinfowler.com/bliki/POJO.html
http://c2.com/cgi/wiki?GuiPrototypingTools
http://c2.com/cgi/wiki?GuiPrototypingTools

Bibliography

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: An
update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[HGNW10] Steffen Herbold, Jens Grabowski, Helmut Neukirchen, and Stephan
Waack. Retrospective Analysis of Software Projects using k-Means
Clustering. Softwaretechnik-Trends, 30(2), 2010.

[HGW11] Steffen Herbold, Jens Grabowski, and Stephan Waack. Retrospective
Project Analysis Using the Expectation-Maximization Clustering
Algorithm. Third International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2011), (Figure 1):58–63, 2011.

[HK00] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[HK01] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques. Academic Press, London, United Kingdom, 1 edition, 2001.

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques. Elsevier Inc., San Francisco, CA, USA, 2nd edition, 2006.

[HS85] Hochbaum and Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985.

[HSM01] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of Data
Mining. MIT Press, Cambridge, MA, London, England, 1 edition, 2001.

[Ins04] Project Management Institute. Practice Standard for Earned Value
Management. Project Management Institute, Incorporated, 2004.

[JM10] Marian Jureczko and Lech Madeyski. Towards identifying software project
clusters with regard to defect prediction. In Tim Menzies and Gunes Koru,
editors, PROMISE, page 9. ACM, 2010.

[Ker09] Harold R. Kerzner. Project Management: A Systems Approach to
Planning, Scheduling, and Controlling. John Wiley & Sons, Inc., 10
edition, 2009.

[LL10] J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. Dpunkt.Verlag GmbH, Heidelberg, 3 edition, 2010.

[MNU00] A. McCallum, K. Nigam, and L.H. Ungar. Efficient clustering of
high dimensional data sets with application to reference matching.
In Proceedings of the sixth ACM SIGKDD internation conference on
knowledge discovery and data mining ACM-SIAM symposium on Discrete
algorithms, pages 169–178, 2000.

115

Bibliography

[MSLM04] Atchara Mahaweerawat, Peraphon Sophatsathit, Chidchanok Lursinsap,
and Petr Musilek. Fault Prediction in Object-Oriented Software
Using Neural Network Techniques. In Center (AVIC), Department of
Mathematics, Faculty of Science, Chulalongkorn University, pages 27–34,
2004.

[MZC+14] Baojun Ma, Huaping Zhang, Guoqing Chen, Yanping Zhao, and
Bart Baesens. Investigating associative classification for software fault
prediction: An experimental perspective. International Journal of
Software Engineering and Knowledge Engineering, 24(1):61–90, 2014.

[O’H08] Tom O’Haver. Smoothing. http://terpconnect.umd.edu/~toh/
spectrum/Smoothing.html, 2008. [Online; accessed 12-April-2015].

[Ora13] Oracle. The Java EE 6 Tutorial: JavaServer Faces Technology.
http://docs.oracle.com/javaee/6/tutorial/doc/
javaeetutorial6.pdf, 2013. [Online; accessed 14-April-2015].

[Pat09] Microsoft Patterns. Microsoft Application Architecture Guide. Microsoft
Press, 2nd edition, 2009.

[PMI04] PMI, editor. A Guide to the Project Management Body of Knowledge
(PMBOK Guide): An American National Standard ANSI/PMI. Project
Management Institute, Newtown Square, PA, 3 edition, 2004.

[Pre95a] Wolfgang Pree. Design Patterns for Object-oriented Software
Development. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1995.

[Pre95b] Wolfgang Pree. Hot-spot-driven framework development. In
Summer School on Reusable Architectures in Object-Oriented software
Development, pages 123–127. ACM, 1995.

[Pre95c] Wolfgang Pree. Visual object-oriented programming. chapter Framework
Development and Reuse Support, pages 253–267. Manning Publications
Co., Greenwich, CT, USA, 1995.

[QT03] Tong-Seng Quah and Mie Mie Thet Thwin. Application of Neural
Networks for Software Quality Prediction Using Object-Oriented Metrics.
In 19th International Conference on Software Maintenance (ICSM 2003),
The Architecture of Existing Systems, 22-26 September 2003, Amsterdam,
The Netherlands, page 116. IEEE Computer Society, 2003.

[RB10] Andrew Lee Rubinger and Bill Burke. Enterprise JavaBeans 3.1. O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472., 6th
edition, 2010.

116

http://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
http://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
http://docs.oracle.com/javaee/6/tutorial/doc/javaeetutorial6.pdf
http://docs.oracle.com/javaee/6/tutorial/doc/javaeetutorial6.pdf

Bibliography

[RH13] Rudolf Ramler and Johannes Himmelbauer. Noise in bug report data and
the impact on defect prediction results. In IWSM/Mensura, pages 173–180.
IEEE, 2013.

[RWS+09] Rudolf Ramler, Klaus Wolfmaier, Erwin Stauder, Felix Kossak, and
Thomas Natschläger. Key questions in building defect prediction models
in practice. In Frank Bomarius, Markku Oivo, Päivi Jaring, and Pekka
Abrahamsson, editors, PROFES, volume 32 of Lecture Notes in Business
Information Processing, pages 14–27. Springer, 2009.

[SFT02] Noam Slonim, Nir Friedman, and Naftali Tishby. Unsupervised document
classification using sequential information maximization. In Proceedings of
the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’02, pages 129–136, New
York, NY, USA, 2002. ACM.

[SGM02] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 2002.

[SM09] Inc. Sun Microsystems. JSR 318: Enterprise JavaBeansTM,Version
3.1 EJB Core Contracts and Requirements. http://download.
oracle.com/otn-pub/jcp/ejb-3.1-fr-eval-oth-JSpec/
ejb-3_1-fr-spec.pdf?AuthParam=1429001965_
5b7539451c3887cb99f9131223612520, 2009. [Online; accessed
14-April-2015].

[Sny03] Carolyn Snyder. Paper prototyping: The fast and easy way to design and
refine user interfaces. Morgan Kaufmann Pub, 2003.

[Som06] Ian Sommerville. Software Engineering: (Update) (8th Edition)
(International Computer Science). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 8 edition, 2006.

[Son] Sonar. SonarQube. http://www.sonarqube.org. [Online; accessed
30-April-2015].

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data
Management Systems). Elsevier Inc., San Francisco, CA, USA, 2nd edition,
2005.

[WRB08] Dindin Wahyudin, Rudolf Ramler, and Stefan Biffl. A framework for defect
prediction in specific software project contexts. In Zbigniew Huzar, Radek
Kocí, Bertrand Meyer, Bartosz Walter, and Jaroslav Zendulka, editors,
CEE-SET, volume 4980 of Lecture Notes in Computer Science, pages
261–274. Springer, 2008.

117

http://download.oracle.com/otn-pub/jcp/ejb-3.1-fr-eval-oth-JSpec/ejb-3_1-fr-spec.pdf?AuthParam=1429001965_5b7539451c3887cb99f9131223612520
http://download.oracle.com/otn-pub/jcp/ejb-3.1-fr-eval-oth-JSpec/ejb-3_1-fr-spec.pdf?AuthParam=1429001965_5b7539451c3887cb99f9131223612520
http://download.oracle.com/otn-pub/jcp/ejb-3.1-fr-eval-oth-JSpec/ejb-3_1-fr-spec.pdf?AuthParam=1429001965_5b7539451c3887cb99f9131223612520
http://download.oracle.com/otn-pub/jcp/ejb-3.1-fr-eval-oth-JSpec/ejb-3_1-fr-spec.pdf?AuthParam=1429001965_5b7539451c3887cb99f9131223612520
http://www.sonarqube.org

Bibliography

[WWM10] Xiaoxu Wang, Chaoying Wu, and Lin Ma. Software project schedule
variance prediction using bayesian network. In Advanced Management
Science (ICAMS), 2010 IEEE International Conference on, volume 2,
pages 26–30, July 2010.

[You00] Edward Yourdon. Software Engineering Project Management. Wiley-
IEEE Computer Society Press, Los Alamitos, CA, USA, 2nd edition, 2000.

[ZNG+09] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel
Giger, and Brendan Murphy. Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process. In Hans van Vliet and Valérie
Issarny, editors, ESEC/SIGSOFT FSE, pages 91–100. ACM, 2009.

118

Bibliography

119

	Introduction
	Objectives
	Structure of this Thesis

	Background
	Software Project Management
	Frameworks
	Data Mining

	Requirements
	Stakeholders and Requirements of the PredictionTool
	Stakeholders and Requirements of the DataMiningFramework

	Related Work
	Software Project Schedule Prediction Using Bayesian Network
	Prediction of Defects in Software Projects
	Discussion

	Concept
	Idea of the Framework
	Processes Modeling
	GUI Prototyping
	Domain Model

	Realization
	JavaEE Technologies
	Architecture
	WEKA Java API
	Visualization
	Evaluation of Clustering Performance

	Evaluation
	Evaluation of the DataMiningFramework
	Evaluation of the PredictionTool

	Conclusion
	Summary
	Future Work

	Appendix
	Experiment 1: Box Plot Diagrams
	Experiment 2: Box Plot Diagrams

	Bibliography

