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Abstract

Nowadays, the practices around Continuous Integration (CI) have gained significant
traction as project codebases are being impacted by a larger number of developers
each time, and the need for a consistent and stable project remains a priority. In
this regard, CI considers conducting a testing phase for each contribution made to a
codebase. Despite of providing a higher level of confidence to the changes done, the
testing phase can represent a time-consuming task. Also, it can become challenging
to identify the contribution responsible for a failed test if multiple of them are being
evaluated. Large IT organizations solve this by leveraging parallel jobs to validate each
contribution, while still requiring to execute the test sequence on each of them.
This thesis conceptualizes strategies that aid to identify contributions —i.e. commits

made to a software repository—that led to a failed test. We call those error-inducing
commits (EICs). To achieve this goal, existing code analysis techniques are explored
and exploited to deduce the commits responsible for a test failure by associating the
past code changes to the sections exercized by the test. In addition, this work provides
a schema of properties related to the extend at which a tracing strategy discovers EIC
candidates, which is used to categorize the conceived strategies. Furthermore, a tracing
strategy is realized and its behavior is demonstrated in a set of common development
scenarios. Towards the end of this work, suggestions are made for the further conception
and realization of tracing strategies.
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1 Introduction

Software development is an activity that can involve a large number of developers who
jointly contribute to the codebase of a project. Along the history of this activity, diverse
approaches have surged to encompass it in order to improve the productivity, efficiency,
and ensure the quality of the deliveries. These approaches have taken many forms,
including: process models, philosophies, tools, etc.
Continuous Integration (CI) is a practice that has gained a lot of traction in the recent

years. CI aims to ensure the consistency and stability of the codebase by assisting in
the integration of each developer’s contribution into the project codebase. CI relies on
test automation, the process of conducting tests directly after a change to the codebase
has been detected with the purpose of ensuring the healthiness of the project.
As software projects increase their dimensions, they demand a larger number of

participants working simultaneously. In this scenario, besides assisting the project
development, the assessment of each code contribution can represent a big overhead
and, ultimately, a bottleneck to the development process if it does not keep up with the
pace of the development.
Nowadays, large IT companies and projects, such as Google[Kum10],

Facebook[FFB13, Fac15], and OpenStack[Ope12], have already the demand that
has pushed them to develop their own infrastructure to handle their own software
development workflow which consists, basically, in assessing each contribution
independently and determining if it can be safely integrated to the project by executing
automated tests. However, besides their experiences and solutions, there is limited
research that focuses on this issue.
Despite of this, there exists enough literature in the field of regression testing that

could aid to identify, in the event of a test execution failure, the contribution that has
introduced the error in the codebase and, hence, procure a faster build fixing and avoid
holding the development process. One of the concerns of the regression testing research
is to improve the efficiency of executing tests to discover errors after code changes,
for which it relies on software dependency techniques that help to identify which tests
exercise the modified code changes. Such techniques can be reused in order to conceive
techniques that could help to link the code changes that affected a codebase and the
failed tests that evidence the presence of an error.

Contributions

The aim of this thesis is to conceive strategies that help to localize error-inducing commit
(EIC) in a Continuous Integration (CI) environment. In this regard, the contributions
of this thesis are outlined next:
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1 Introduction

1. An overview of the techniques used in the field of regression testing, specifically in
code dependency analysis, is provided. Additionally, this overview covers previous
work that is related to the concept of discovering EICs although not specifically
associated with a CI environment.

2. The concept of tracing EICs and a set of strategies that accomplish it are
introduced. These strategies are, additionally, compared between them and
categorized according to a properties schema that, together with the strategies,
was conceived in this work.

3. Beyond conceptualizing the strategies, one strategy was realized by extending a
framework for regression testing. The behavior of the implemented strategy is
shown in diverse demo cases that exemplify common development scenarios. The
results observed in this scenarios are discussed.

4. Furthermore, this work concludes with further work suggestions and
implementation ideas.

Structure

This work starts, in chapter 2, with an overview of the work related to regression
testing, discovering EICs, as well as, practices for avoiding EICs. Chapter 3 introduces
the concept of tracing EICs, the tracing strategies, and their evaluation. Chapter 4
introduces the framework for regression testing which was extended for implementing
the tracing strategy together with the technologies involved and, in addition, describes
the extensions needed to support EIC-tracing. In chapter 5 specific details related to
the implementation of the strategy are given. Next, chapter 6 tackles the evaluation
of the strategy implemented with the help of demo cases. Later, chapter 7 discusses
the strategies in terms of the properties schema introduced in this work and addresses
their strengths and weaknesses. Lastly, chapter 8, covers final conclusions and points to
further work directions.
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2 Related Work

Contents
2.1 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Discovering problem origins through changes history . . . . . . . . . . . . 5
2.3 Related tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Regression Testing
Software regression testing is a process where developers continuously verify the behavior
of software as they maintain the code. This is done using a test suite, which is steadily
executed with the hope of discovering errors and gain confidence as the code is modified.
[GHK+01] Running regression tests can represent a very expensive task and a big
overhead in the software development process. Therefore, current research focuses on
improving techniques for test selection and prioritization which, ultimately, aim to reduce
the cost of running regression tests while maximizing the detection of faults.

2.1.1 Change Impact Analysis
Regression Testing can benefit from Change Impact Analysis (CIA), a set of techniques
that aim to identify the software entities that may have been affected after a change
between two versions. [Leh11b] With the help of CIA, regression testing can determine
which tests to run and how to prioritize them, in order to exercise the changes that
are more likely to contain errors and discard the tests that were not impacted by the
changes.
There have been many studies in the area of CIA and efforts have been made to

categorize them. One of the most recent and complete classifications can be found in
[Leh11b]. According to this work, the studies rely on a set of distinct techniques:

• Program slicing.

• Call graphs.

• Execution Traces.

• Program Dependency Graphs.

• Message Dependency Graphs.

• Traceability.

• Explicit Rules.

• Information Retrieval.

• Probabilistic Models.

• HistoryMining.
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The techniques shown above represent quite diverse approaches and involve different
software artifacts, including source code, models, or a combination of them. Relevant
to this thesis, we can identify a set of techniques that rely on a source code-based
dependency analysis, namely, Program slicing, Call graphs, Execution Traces, Program
Dependency Graphs, and Message Dependency Graphs. Dependency Analysis will be
covered thoroughly next.

2.1.2 Source Code Dependency Analysis

Dependency analysis based on source code can help to determine whether a statement
has been impacted after certain syntactic change. The techniques that achieve this
analysis can be further classified in: static analysis and dynamic analysis.
Static analysis techniques don’t rely on a specific execution path and hence

approximate on the potentially affected execution paths and how the semantic effects
are propagated. According to Böhme et al. [BRO13], with the help of static analysis,
it is possible to: determine which statements are definitely not affected by a change
or just under a certain probability, whether a set of changes semantically interfere
between them, and which statements depend syntactically from a changed statement.
Techniques that can provide this analysis include: call graphs, program slicing, and
program dependency graphs.
Dynamic analysis techniques, on the other hand, rely on a specific execution path

which is constructed using a defined program input. Based on the execution path, it
is possible to precisely determine the statements that were affected by the exercised
changes, if the changes are propagated to the output, or if different subsets of changes
interact between them. [BRO13]

Call graph-based techniques

Techniques that rely on this method perform a static analysis to study the call-relations
inside a source code. Once the relationships have been collected into a so-called call
graph, it is possible to determine affected methods if they call a modified method. This
can be computed using transitive closures.[Leh15] A comprehensive list of techniques
implementing this method has been compiled by Lehnert [Leh11a].

Program slicing-based techniques

A program slice consists on a subset of the program statements which are related to a
specific program element (slice criterion), e.g., a variable or a control statement. The
slice can be computed in a forward or a backward manner. A forward slice reflects the
statements that depend on the criterion, including the output if it is reachable; while
the backward slice identifies the statements that influenced the value of the criterion.
Although the slicing technique is usually catalogued as a static analysis technique,

there exists static slicing, as well as, dynamic slicing. The objective of the analysis may
play a role on which type of slicing to use. While the static slicing is usually employed to
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understand a program, the dynamic slicing is usually more suitable for tracing an error
in a program (Debugging).[Lig09]

2.2 Discovering problem origins through changes history
Efforts have been done in the past to examine software changes history and identify
problems which a developer may have inadvertently introduced in a software while
performing maintenance, implementing new features, or fixing bugs. This has been
addressed before using the terms bug-introducing change and fix-inducing change while
referring to the same concept. Examples of these efforts can be found in works of
Sliwerski et al. [ŚZZ05], Kim et al. [KZPJ06], Aversano et al. [ACD07], Williams and
Spacco [WS08], Sinha et al. [SSR10], Wu et al. [WZKC11].
The main target of these studies is to establish a link between bug-fixing changes—the

changes that introduce a fix—and the bug-introducing changes, while relying on bug
databases (e.g., bug-tracking systems) or bug reports. This is achieved using different
approaches, such as: text-based source code comparisons [ŚZZ05, KZPJ06, ACD07,
WS08], analyzing program dependences [SSR10], or features related to the changes logs
[WZKC11].
It is worth mentioning that this research has been motivated mainly by the interest of

knowing properties of bug-introducing changes and discovering common change patterns
that are susceptible of introducing bugs. Although this is outside the field of CI, it is
relevant to understand the approaches employed to link past code changes along code
versions.

2.3 Related tools
Currently, there are tools that aim to maintain a healthy build system by avoiding
changes that could corrupt the codebase of a project.
Two different known approaches will be described below accompanied by the tools

that implement them.

2.3.1 Gated commit

Also called gated check-in, is a software build pattern which enforces code changes
verification separately and in a isolated environment before integrating them into the
project’s main line of work.[Osh13]
A tool that provides an automated version of this pattern is OpenStack Zuul, a gating

system project which makes it possible to verify a set of code changes received during
a period of time by running separate build jobs in parallel and integrating them into
the project only if they passed a set of tests. In addition, Zuul is capable of handling
dependencies between code changes. It can hold certain change if it doesn’t comply the
tests, while processing the rest of the changes set.[Ope12] Being able to test individual
code changes in parallel enables a significant improvement in feedback response time,
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which could be otherwise impossible considering that in large projects a test execution
could take several hours and a codebase may be impacted by a large number of changes
in a single day.

2.3.2 Binary approach
Certain tools have implemented a common binary-like method while aiming to discover
code commits that break a project build. This approach consists on examining, after
the presence of an error has been evidenced, the previous commits history in a binary
manner in order to determine which commit is responsible of introducing the fault.
An example of such feature is the bisect command, featured by the Git source

code management system.[Git12] This command offers two possible modes of operation:
manual and automatic. Both modes allow to set an initial and ending commit to perform
the analysis. However, while the former requires the user to execute an operation (e.g.,
test execution) on each commit and mark it as good or bad, the latter is configured using
a script, which is triggered on each commit visit, such operation is conceived for longer
bisect runs that difficult a manual execution.
A common workflow used to identify the origin of a flaw in a repository is shown

in figure 2.1. Based on the evidence that a flaw exists, the inspection can start with
generating a test case which evidences the flaw. Then, a script can be generated to
execute the test case on a certain code version. Finally, with the help of bisect, a
long inspection run (usually overnight) can be executed between the last known working
version and the most recent one, which will determine the faulty commit. In combination
with additional tools, it is possible to extract information about the commit author,
notify him, and, in addition, create an issue item, which can be tracked in a issue
management system.

Figure 2.1: Binary approach to identify commits responsible of breaking a project’s build.

Bisect is a tool popularly used by developers and QA staff. Because of this, other
platforms mirror the behavior of git bisect, such as: a similar command for the
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management system called Mercurial [Mer] and a plugin for the continuous integration
tool TeamCity.[Tep15]
The binary approach of finding faulty commits has been adopted further than the

examples mentioned before. Google is an example of a company that implemented
such approach within their test infrastructure, their implementation gives them the
opportunity to localize a breaking commit in their large and highly-active integration
pipeline.[Kum10]
Facebook is another example of a company that implements this approach. Facebook

uses automated bisect within their in-house developed continuous integration system
called Sandcastle. This system helps the organization to handle the integration of each
developer’s commit into the main line of work without holding their work and providing
them rapid feedback in case of failures.[Fac15]
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This chapter covers one of the main contributions of this thesis: the foundations of
the concept of EICs and the tracing strategies. Before these concepts are introduced, a
brief background is given, followed by the EIC concept complemented with a properties
schema, an output report structure and ideas regarding the evaluation metrics. Next,
each of the strategies will be described.

3.1 Background

Before the topic of tracing EICs is covered and the tracing strategies are explained,
this section introduces the concepts behind those topics, which may result helpful in
order to understand them. This concepts include: a brief comprehension of Version
Control Systems (VCS), the workflow description and common practices of a Continuous
Integration environment, and an overview of common testing frameworks.

3.1.1 Version Control Systems

As a software project is developed, it is important to keep track of the source code changes
(and the relevant resources) in a repository which is available to all team members. For
this reason, modern Version Control Systems (VCS) provide guarantees such as the ones
found in a database; namely integrity, shareability, and integrability.[Pre10]
Key features of a VCS are:

• Storing all source files, documents, libraries necessary to build the project,
including all of their different versions.

• Providing each of the team members an isolated line of work into which they can
store their individual contributions (commits).

9



3 Concept of Tracing Error-inducing Commits

• Providing the capability of integrating separate lines of work into a single one.

• Possibility of recovering contextual information of each of the contributions made
by the team members, such as the author, time and the details of the changes
involved.

Three of the most popular VCS nowadays are: Git[Git16], Subversion (SVN)[Apa15];
and Mercurial[Mer16]. Although their main purpose is to store resources in a similar
fashion as in a filesystem, a key difference between them is the repository model they
follow. On the one hand, SVN follows a traditional central repository model, where the
project changes are managed in a single place and each of the members keeps a working
copy in their local environment eventually committing their changes back to the central
repository. On the other hand, Git and Mercurial follow a modern distributed repository
model, where each of the participants hosts their own repository and it is updated from
their peers. Despite of their order of appearance, SVN may present advantages over Git
and Mercurial, and viceversa. This comparison is, however, beyond the scope of this
introduction.

3.1.2 Continuous Integration
Continuous Integration (CI) is the evolution of software integration, achieved as a result
of software involving a larger number of team members and consisting of a bigger number
of artifacts and dependencies. Although software integration was practiced already in
previous software development methodologies, it was until Extreme Programming (XP)
and Agile appeared that practitioners started considering integrating several times a
day.
According to CI evangelists, i.e., Duvall et al. and Fowler, one organization can

embrace this methodology by following several principles[DMG07, Fow06]:

• Keeping all software assets in a single central source repository.

• Automating builds in order to save time in repetitive tasks such as compiling,
performing inspections and running tests.

• Building self-testable source and implementing the execution of automated tests
into the integration cycle.

• Making frequent commits in order to, not only facilitate code merges, but also
reduce the probability of introducing errors, since each commit represents a smaller
chunk of code.

• Commit-triggered integration process (either automatically or manually) should
rapidly inform the committer if the build failed.

• Broken builds should be notified immediately in order to avoid delaying the
integration pipeline. Since the commits represent ideally small changes, this should
be easy to fix.
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3.1 Background

• Test the application in clones of the production environment. This is done in order
to avoid assumptions that could arise once the application is deployed.

It is possible to list some clear benefits of adopting this methodology that have
attracted many organizations to embrace it, such as: Mitigating risks, by discovering
errors in an earlier stage. Process automation can avoid errors and save time of doing
repetitive tasks manually, which can help team members to focus in development. Doing
continuous integration of code commits allows a project’s codebase to be deployable
at any time and release new version in a more frequent basis, this is however, the
focus of another philosophy called Continuous Delivery and involves, between other
things, configuring infrastructure automatically. Lastly, have a better project visibility,
accompanied by quality metrics, defect rates, speed of feature completion, which could
help to take important decisions regarding the project.
This thesis focuses on conceptualizing strategies that could help to discover commits

that introduced errors into a codebase. This could be of great relevance in CI, as these
strategies could help to recover from an interrupted integration cycle once a build broke
and keep the integration process continuous.

3.1.3 xUnit

The term xUnit corresponds to a family of Test Automation Frameworks that follow
the same practices of test definitions, yet implemented in different programming
languages[Fow11]. The name originates from JUnit, the first member of this family for
the Java programming language which, after being made known, was quickly adopted
and fostered the implementation of the same concept in different technologies.
xUnit frameworks come in many flavors and there is a reason for that (besides

technology compatibility); namely, that developers are frequently in charge of developing
tests together with the software in order to verify it. Therefore, it is convenient to be
able to write tests in the same programming language used to develop.

Test pattern

Following the xUnit pattern, each of the test cases is implemented using a test
method[Bec02, Mes06]. This method exercises the code section targeted by the test case
and, once completed, the expected output is evaluated against the real output using
assertionss, statements whose solely purpose is to determine if the system under test
(SUT) behaved correctly under the test case. In case the test fails, the result is usually
accompanied by an assertion message which helps to identify the reason of misbehavior.
Since an object may be the target of several test cases, these test cases are grouped

into test classes, where each test class includes a fixture, that is, the common objects
required by all test cases.
One of the main goals of xUnit frameworks is to achieve test automation, for this

reason, their test classes implement a common four-phase process. During this process,
a sequence of four steps is executed, consisting in:
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3 Concept of Tracing Error-inducing Commits

• First, during the set up phase, configuring the fixture as the environment where
the SUT would normally perform.

• Then, executing the test method and performing the interaction with the SUT.

• After that, evaluating the obtained interaction outcome.

• Finally, during the tear down, bringing back the environment to its original state
before the test.

By following this process, it is not only easier to identify the test case-specific conditions,
but also the test cases can be written and executed in a more efficient way, since some
elements may not be duplicated or set up redundantly.
Once all test classes are in place, it is a common practice to run all of them at once

during a verification step. In order to do this, the test classes are grouped into a Test
Suite, which can easily by identified and executed by an actor called Test Runner.

3.2 Error-inducing commits
Before proceeding to introduce the conceived tracing strategies, it is important to define
the target of our discovery efforts, namely, the error-inducing commits (EICs).
First, a commit should be understood as a contribution made by a project team

member to the main repository of the project. A commit can include different types
of contributions, such as source code, documentation, configuration files, third-party
libraries, etc; which are required for the project and can coexist in the repository.
However, for the purpose of this thesis, when mentioning the term commit we focus
on (and we will refer to from now on) source code contributions.
The purpose of a commit, i.e., code contribution, is to enhance a software project by

implementing a new feature, fixing an existing bug or maintaining the current codebase.
This enhancement is usually followed by a behavior verification carried out by regression
testing. A failure to comply a test execution (assuming a well-written test) will represent
an error that was introduced in the codebase. This gives us enough elements to formulate
the concept of EICs (cf. figure 3.1) as source code contributions that have introduced an
error in the project codebase, whose existence has been evidenced by a failed test execution.
Discovering EICs is the focus of our efforts. This can represent a special challenge if the

codebase has been altered by several commits since the last successful integration. The
main task involves now, associating each of the commit’s changes to the code sections
reached by the tests, which acknowledge the presence of an error. This, however, will be
covered in detail in the following sections.

3.3 Tracing strategies fundamentals
This section is concerned about introducing the concept of EIC-tracing strategies.
These strategies build upon the fact that the project under development has a defined
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Figure 3.1: Representation of an error-inducing commit, where the presence of an error
is evidenced by a failed test execution.

automated test suite, which is continuously extended along the development cycle
following Test-driven development (TDD) practices and, also, that the project evolution
is managed by a version control system (VCS).
During a normal workflow, the project will integrate the contributions of the developer

team and will execute the test suite continuously. In case the test execution happens to
fail, the strategies will take action and will focus on localizing the EIC, which may yield
a number of candidates.
Next, fundamentals concerning the common strategies input, properties, output

reporting and evaluation metrics will be presented.

3.3.1 Strategies input

Before presenting specific details of the tracing strategies, three common input elements
that provide the basic information needed to perform the tracing will be described.
These elements comprise: gathering the test execution coverage, fetching the previous
test history; and collecting the code changes history.

Test code linking

In the context of this thesis, the presence of errors is evidenced, essentially, through
failed test cases. Hence, if the focus of the strategy is to localize the introduction of an
error into the project’s codebase, it is relevant to link the sections of code exercized by
tests, this can be achieved using code coverage or call-relationships. In regards to code
coverage, it is important to know which code was covered on a line-level detail, since a
previous change may have occurred in a single line and, therefore, restricting ourselves
to method or branch coverage would not be sufficient. Regarding call-relationships, code
analysis techniques can help to determine the call dependencies on a method level (see
section 3.6).
The outcome of this step would be a collection of covered source lines for each of the

source classes touched by a single test or a method call-graph.

13



3 Concept of Tracing Error-inducing Commits

Previous test history

In order to start narrowing down which code commit may have introduced an error,
it is important to have an initial version to start off the analysis. This version
corresponds to the last code version, whose test suite was successfully executed, denoted
succesfully-tested codebase version (STCV). The STCV may change during the project’s
lifecycle. Therefore, it is important to keep track of the past test execution history
together with the id of the code version being tested. Since versions are uniquely
identified in a VCS, it is simple to use it to fetch the following most recent versions.

Changes history retrieval

With the information we have about previously tested code versions (specifically the
last STCV), we can perform a query to find out which files were recently modified. This
query aims to relate the code modifications that took place to the corresponding commit.
This information is then later used to perform strategy-specific operations in order to
determine if a commit is a EIC-candidate.

3.3.2 Strategy properties

By now, the different strategies and their approaches have been introduced. However,
if it is required to employ them, understanding their approach might not be enough.
Furthermore, it would be important to know the guarantees that they provide and
depending on those, one could decide which one to opt for. In this section, a set of
properties are introduced which can be used to categorize a tracing strategy. In a later
discussion section (see section 7.1) each strategy will be catalogued according to this
schema. This set of strategies has its origin in a work by Rothermel and Harrold[RH96],
where they were part of a framework used to analyze regression test selection techniques.
In the context of that work, the properties described the extent at which the strategies
included and avoided modification-revealing tests.

Properties schema

Below are presented the properties that will help to categorize the strategies:

Safe strategy. Strategy which discovers all possible EICs. Though there could be
false-positives, this technique include among its candidates all real EICs.

Precise strategy. Strategy which avoids all non-error-inducing commits. This technique
may not deliver all EICs, however, all candidates that it detects are real EICs.
This means, in turn, that there are no false-negatives among its results.

Reliable strategy. Strategy which delivers at least one possible EIC. This technique may
not deliver all EICs nor it can be assured that all candidates are EICs. However,
this strategy guarantees to deliver one EIC among the candidates.
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Figure 3.2 allows to visualize the possible combinations of these properties. As shown
in the diagram, any strategy that delivers at least a valid EIC can be catalogued as
a reliable strategy. If a strategy manages to discover all EICs, it is considered a safe
strategy and, if it also avoids false-positives, can be considered precise as well. Moreover,
if a strategy delivers valid EICs, while avoiding false-positives, it is considered precise.
Finally, a strategy that does not deliver valid EICs does not fall into any of these
categories.

Figure 3.2: Properties schema that can categorize a strategy based on the capability of
identifying valid EICs and avoiding false-positives.

3.3.3 Tracing output reporting

In the previous sections, the conceived strategies as well as the properties to categorize
them were presented. However, still an important part of the concept of tracing EICs
is to present the gathered information or even determine which information is available
and helpful.
Below, the content of a tracing output report is presented accompanied by the

description of each parameter:

EIC id. Codebase version id of the detected EIC. Id that helps to uniquely identify a
commit in a VCS.

Commit date. Commit creation date.

Commit author. Person responsible for creating the commit in the VCS.

Author contact. Author’s contact medium, usually the e-mail that the author uses to
authenticate with the VCS. Can be potentially used to trigger an immediate
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notification directly to the author and urge an immediate build fix, one of the
main objectives pursued by CI.

Current code version. The id that identifies the current version being tested.

Last successful code version. The id that identifies the last STCV that was used as a
starting point to execute the strategy.

Tracing strategy. The name of the strategy employed.

No. EICs found. Number of EIC candidates found.

Total commits analyzed. Total number of commits found between the current tested
code version and the last STCV. The number of commits analyzed during the
strategy execution.

Ratio. Ratio of EIC candidates and the total of commits analyzed.

The output report shown before represents the result of a single strategy execution.
Although observing the outcome of a single strategy execution may not be very
significant, collecting the results of several executions and comparing it against other
strategies, may result in interesting statistics and metrics could be deduced from them.
These will be introduced in the next section.

3.3.4 Strategies evaluation
Before, the information that can be obtained from a tracing strategy execution was
already presented. Now, it will be presented how the gathered information could be
examined and converted into insight that would better show the general performance of
each of the them.

Evaluation metrics

Below is a list of the metrics that could be obtained from a series of executions of the
strategies:

Time. Comparison of the runtime of the different approaches.

Result set size. Percentage of the delivered commits out of the analyzed set.

Precission. Extent at which the approaches deliver valid EICs.

Inclusiveness. Percentage of the result that represent valid EICs.

Error-rate. Percentage of the result that represent non-EICs.

An example evaluation result is shown in table 3.1 including the execution of three
hypothetical strategies where the focus of the evaluation were 10 commits belonging to
the history of certain project.
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Parameter Strategy 1 Strategy 2 Strategy 3 X

Running time (s) 11 12 10 11
EIC candidates 4 3 5 -
Real EICs 1 2 1 -
Non EICs 3 1 4 -
Results (%) 40 30 50 40
Inclusiveness 1/4 2/3 1/5 -
Error-rate 3/4 1/3 4/5 -
Precision 1/3 2/2 1/1 -

Table 3.1: Example evaluation results from three hypothetical strategy executions.

3.4 Statement-test coverage-based strategy
The statement-test coverage-based strategy (STC) is the first strategy that will be
presented. The main principle behind STC is the usage of the failed test coverage
information, in terms of source code lines, and deduction of which commit could have
introduced the error based on the modified source lines.
As mentioned before, the strategy relies on three elements in order to be able to

deduce the EIC-candidates: the code coverage of the failed test, a record about the last
STCV; and the changes history since the last STCV. These elements should be available
before executing the core algorithm of this strategy. Then, the information provided by
these elements will be combined and the code coverage will be matched with the changes
history in order to deduce the EIC-candidates (cf. figure 3.3).
A special consideration during the retrieval of the changes is that, as the source of

the code files evolves, the covered source lines counting may not exactly correspond to
those in previous code versions. For this reason, an approach of history context has
to be adopted, it will be called DeltaSpots. This approach consists of keeping track of
the lines added or removed during the code evolution in order to be able to perform
a line-matching in the core step of the strategy. This process takes place during the
changes retrieval and has to be done starting from the most recent code version (version
on which the tests were executed) back to the oldest code version being analyzed. This
step is sketched in figure 3.4.

Code change-coverage matching

The core step of the strategy combines the information obtained after the common steps.
At this stage, all the necessary information is available: a collection of covered source
lines obtained during the test code coverage and, also, the specific modified lines for each
file that was identified as modified in the past commits, information which was obtained
changes history retrieval.
At this step, it is fairly straightforward to deduce the EIC candidates. Following the

below algorithm:
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Figure 3.3: Concept of statement-test coverage-based strategy, featuring the
covered-modified-line matching.

1. After the text execution, consider all failed tests.

2. For each of them, consider the project classes that the test covered.

3. For each of the project classes, check if it was modified in the change history.

4. If changed, perform a line-matching operation between the test coverage and the
modified lines, for each of the commit changes that were identified.

5. For each coverage-modification-line match, extract the responsible commit.

6. Finally, all responsible commits are collected and reported as EIC candidates.

3.5 Slicing-based strategy
The program slicing-based strategy (PS) will be now presented. This strategy builds upon
a technique called program slicing, a powerful technique used for software dependency
analysis. This strategy aims to relate the code sections covered by a failed test to the
code statements that a code change may have impacted to in order to determine EIC
candidates. This approach will be explained below after a brief introduction of the
program slicing concept.

3.5.1 Background: Program Slicing
Section 2.1.2 introduced the concept of program slicing as it is used for regression testing
techniques. In that section, two types of slicing were mentioned: static and dynamic
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Figure 3.4: Representation of delta spots, which allow to track code lines insertions and
removals along the changes history.

slicing, where static slicing is commonly used to understand a program, while dynamic
slicing is better suited to trace back an error (Debugging process). Although the use of
this technique in this work is motivated by the localization of an error in the codebase,
the primarily focus of the tracing strategy is to understand the changes that the code
has suffered in the past commits, hence the static approach is used.
A forward slice is built with the help of a Control-Flow Graph (CFG), a graph whose

nodes represent code statements and the vertices are arranged in such a way that describe
the possible execution paths of a program. An example of this graph is shown in
figure 3.5b corresponding to the code snippet of source code 3.5a. Having computed
the CFG, it is possible to identify the statements that depend on a certain statement,
the slice criterion. A common way to represent a slice is by using a diagram. The
forward slice corresponding to statement sum is shown in figure 3.5c.

3.5.2 Tracing strategy

Having introduced the concept of program slicing, we can describe the approach followed
in the PS strategy (see figure 3.6). Similarly to the past strategy, STC, this strategy
also relies on three elements: the code coverage of the failed test, a record about the last
STCV; and changes history since the last STCV.
Regarding the changes history, differently to the last strategy, PS requires to know

exactly which statements were modified in the commit history, instead of the source lines
of the corresponding source files as done in the previous approach. The reason for this
is explained next.

3.5.3 Changes history retrieval

The objective of this step is to discover which statements were modified along the changes
history and compute slices for each of the statements modified in the source code. These
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slices are associated with the class file where they occurred and the commit where they
were detected. By using forward slices it is possible to keep track of the statements that
could have been affected by this change.

3.5.4 Commit blaming
At this stage, the information about the statements covered by the failed tests is used to
match the code sections that a commit’s changes may have influenced (see figure 3.6b).
The process used to deduce the EIC candidates follows the steps below:

1. After the text execution, consider all failed tests.

2. For each of them, consider the project classes covered by the test.

3. For each of the project classes, look up for the class in the slices collection gathered
during the change history retrieval.

4. If found, proceed with looking up the covered statements of the corresponding class
in the statement slice traces of the change history.

5. If any of the statements match, mark the responsible commit (whose slice belong
to) as a EIC candidate.

6. Finally, after the coverage of failed tests have been analyzed, all the EIC candidates
identified during the strategy run are reported.

3.6 Atomic changes-based strategy
The strategy presented here is based on the work of Ren et al. [RST+04] , which consists
on a change impact analysis tool for Java. This tool builds upon the analysis of atomic
changes, a set of operations that “capture the source code modifications at a semantic
level that are amenable to analysis.” [RST+04] A detailed explanation of this concept
and how they are used in the prototype of Ren et al. follows.

3.6.1 Background: Call-graphs
In section 2.1.2, it was mentioned that call graph models is a powerful technique used to
gather dependency relations inside source code. It is a technique that has been exploited
in terms of CIA to understand the software behavior impacts between code versions.

3.6.2 Background: Atomic changes
In their work, Ren et al. [RST+04], present a prototype of change impact analysis for
Java that differences from other tools developed in two factors: first, besides identifying
the differences of two program versions, the tool also reports the change impact in terms
of the regression tests whose execution behavior may have been impacted by the changes;
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second, it doesn’t compute the program differences by comparing control flow graphs,
instead it relies on the analysis of atomic changes.
As mentioned before, atomic changes capture source code modifications at a semantic

level. The modifications types handled in the prototype of Ren et al. [RST+04] include:

• Added classes (AC)

• Deleted classes (DC)

• Added methods (AM)

• Deleted methods (DM)

• Changed methods (CM)

• Added fields (AF)

• Deleted fields (DF)

• Lookup changes (LC)

As the differences between the versions are identified, each change is interpreted into
the corresponding atomic change. Using the atomic changes, syntactic dependences can
be deduced and, based on these, it can be determined if the behavior of a test was
impacted by the change.
Figure 3.7 depicts an example of a change impact analysis as carried out in the work

of Ren et al. The source code that is subject of analysis is shown 3.7a, where the changes
identified are highlighted by boxes. Each of these changes are interpreted into atomic
changes in 3.7b and the dependencies between the elements are indicated by the arrows.
It is important to notice that a change to a method is split into the added method (AM)
and changed method (CM) atomic changes. Finally, the impact to a test method can be
identified by its call graph. If one of the methods contained in the call graph matches any
of the atomic changes, then, it can be deduced that the test behavior has been impacted
by the change. It is worth mentioning that the presence of other atomic changes could
be already discarded, which makes this approach more amenable.

3.6.3 Tracing strategy

Now that the concept of atomic changes has been introduced, we can elaborate on how
it is used in the tracing strategy (see figure 3.8). We should recall that the process of
localizing EICs starts when a failed test has been detected. At this point, the tracing
strategies will be triggered. In the case of atomic changes-based strategy (ACS), three
main elements are needed to proceed with the tracing: a record about the last STCV,
the detected changes in terms of atomic changes, and the test method-call information.
The process of gathering the code changes in the VCS starts by comparing from the

commit corresponding to the STCV up to the most recent commit. For each of the
changes it is determined if it represents a method modification, a field added, or a look
up change. The result of the previous step is then translated into an atomic change as
seen in the previous section. Before delivering the result of the code change gathering, the
accumulated atomic changes are associated with the code version where it was detected
at.
Besides gathering the code changes information, another important step involves

building call graphs for each of the failed tests, which results in a similar output as
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in figure 3.7c.
Finally, after the code changes, in form of atomic changes, and the test method-call

relations are available, it is possible to associate the failed tests with the atomic change
that may have impacted it (if any) and extract the responsible commit (see figure 3.8b).
The set of of the responsible commits are then delivered as output.

3.7 Rerun tests on all failed commits strategy
The rerun-all-failed-tests strategy (RAFT) involves re-running the previously failed tests
on all past commits. Although this is a naive approach with clear processing overhead, it
does guarantee that the EIC candidates are indeed the ones we would expect to obtain,
discarding hence the presence of false-positives.
The figure 3.9 illustrates the involved approach. In the figure, we can observe that, in

the event of a failed test execution, the strategy will proceed to query the test execution
history to find the code version corresponding to the last STCV. Once obtained, the
strategy will start executing the test suite on each following code version progressively.
Every code version that happens to fail the a test case for the first time will be logged
as EIC candidate. The strategy will stop, however, until all commits responsible for the
failed tests are detected or the strategy has reached the latest commit (our originally
tested code base version). This is done in order to make the best effort discovering the
probable EIC.
A special consideration needs to be done, however, when executing the test suite on

previous code versions as the test suite itself may have also evolved along them. For this
reason, it is needed to keep track of the test cases belonging to each version.
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1 input(n);
2 input(a);
3 max := 0;
4 sum := 0;
5 i := 1;
6 WHILE i <= n DO
7 IF max < a[i] THEN
8 max := a[i];
9 sum := sum + a[i];
10 i := i + 1;
11 avr := sum / n;
12 output(max);
13 output(avr);

(a) Code snippet.

(b) CFG.

(c) Forward slice.

Figure 3.5: Example of a slicing operation showing: a) a code snippet with control
statements, b) the corresponding CFG, and c) the resulting forward slice
using variable sum as slice criterion. Adapted from [Lig09]
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(a) Block diagram.

(b) Commit blaming.

Figure 3.6: Representation of the program slicing-based strategy (PS). Including: a) a
block diagram with the main steps of the strategy; b) the commit blaming
step, which matches changes slices with the covered statements and deduces
responsible commits.
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(a) Code snippet with changes highlighted by boxes.

(b) Code changes represented as atomic changes.
(c) Call graph built after the test behavior.

Figure 3.7: Example of change impact analysis based on atomic changes. Adapted from
[RST+04]
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(a) Block diagram.

(b) Commit blaming.

Figure 3.8: Representation of the atomic changes-based strategy (ACS). Including: a) a
block diagram with the main steps of the strategy; b) the commit blaming
step, which matches statements covered by failed test to atomic changes that
affect the test behavior.
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Figure 3.9: Concept of rerun-all-failed-tests strategy (RAFT).
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During the implementation phase of this thesis, the opportunity to reuse a framework
for test prioritization and selection named Lazzer was identified. This software
was developed by Christian Plewnia in context of his Master’s Thesis[Ple15]. In the
following sections a background of this framework and technologies used during the
implementation phase, in addition to the extensions done to it, are described in detail.

4.1 Background
This section provides a background of the architecture constituting Lazzer, which ought
to be helpful to understand the extensions done presented in the following section. Also,
the different technologies used to implement the tracing strategies are introduced.

4.1.1 JUnit
JUnit is the first member of the testing frameworks family xUnit (see also section 3.1.3)
to become widely known. As most testing frameworks that follow the xUnit pattern,
JUnit provides its own format to specify test cases, assertions, set up phases, tear down
phases, etc.
An example of a test class written with JUnit is presented in source code 4.1. Here

can be identified the particular implementations of a typical xUnit pattern as follow:

• Test cases are written in the form of methods, each method is annotated with
@Test. By using this label, the TestRunner can identify each of them.

• Assertions can be achieved by calling a set of functions: assertTrue(...),
assertEquals(...), assertNull(...), between others. Each of these function
are accompanied with the expected and the real values to evaluate and, optionally,
with a message which helps to localize a failed assertion.

• The instance variables inside this class represent the SUT. JUnit fully conforms
to the xUnit pattern and provides the ability to define setup and teardown phases
before and after each test method through the @Before and @After annotations.
However, these phases can represent a significant overhead for a big collection of
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1 public class JukeboxTest {
2 private static Jukebox jukebox;
3 private Song song;
4
5 @BeforeClass // Perform some setup before running any test method
6 public static void initOnce() {
7 jukebox = new Jukebox();
8 }
9

10 @Before // Perform some setup before each test method
11 public void initAlways() {
12 song = new Song("DJ Test", "My Unit");
13 }
14
15 @Test // this method is a test method
16 public void testAddSong() {
17 jukebox.addSong(song); // Execute
18 assertTrue(jukebox.existsSong("My Unit")); // Verification
19 }
20 }

Source Code 4.1:
A Java code snippet showing an exemplary unit test written with JUnit. This test class
includes a Jukebox object representing a SUT, which is initialized before any test is run
inside a method annotated with @BeforeClass. Also, a Song object is initialized just
before every test using the annotation @Before. Finally, the test method testAddSong

(annotated with Test) verifies the correct behavior of adding a song to the jukebox,
which is later confirmed using an Assert function.

tests, for this reason JUnit also provides the @BeforeClass and @AfterClass

annotations, which implement the same functionality just before and after all test
methods are run.

In its initial implementation, the Lazzer framework included a JUnit adapter as test
class provider. Given the technology relevance, it represented a good opportunity to be
reused within this thesis.

4.1.2 Git

Git is one of the most popular version control system used nowadays. It is built around
the concept of repository, which is simply a database that stores all the necessary
information to manage the versions and complete history of a project.
Differently to the traditional VCS, Git is distributed. In this sense, it does not copy

the project from a central repository but clones the complete repository, and also uses
its peers to pull new changes. Having a local repository allows a developer to work
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autonomously and make as many commits to it as desired. A branch system allows, in
addition, to have separate lines of development within the same repository.
Once a developer is ready to share its progress to the rest of the peers, each branch

is paired with a remote and Git can be instructed to transfer the data to the remote
following a push or pull model.

Internal structure

A Git repository is basically composed of two data structures [Loe09]: the object store
and the index. The object store is the main component of the repository where all the
original data files, log messages, author information, etc. are stored.
A repository is basically composed of four basic object types:

• Blobs represent a version of a file. Can be considered a raw piece of information
without any metadata such as name or location.

• Tree objects represent one level of directory information. They hold enough
information to identify the blobs in that directory and build a complete hierarchy
of files and directories by referencing other trees.

• Commits are in charge of holding the necessary information to represent a change
introduced into the repository along with the author, date, log message, etc.

• Tags, whose function is to add a human-readable name to any object.

The index is a temporary binary file which captures the project structure at some
moment in time. The key feature of an index is to provide the flexibility to specify
changes of a version until they are ready to be committed.

Diff

A diff operation is an important action used within the tracing strategies. It involves
performing a summary of differences between two items stored in the VCS. Diff allows
to review a comparison between the current working directory and the staged content,
between the current working directory and certain past commit (a common shortcut is
to use the name HEAD to refer to the latest commit), or between two past commits.
Relevant to this work is the last operation, which outputs all modified files between

the two trees accompanied with the modified sections between them. An example diff
output is shown in figure 4.1.

4.1.3 Lazzer Testing Framework

As mentioned before, Lazzer was developed with the purpose of having a highly
extensible, adaptable, technology-independent framework to evaluate test prioritization
and selection strategies. With this idea in my mind, Lazzer provides the necessary
hot-spots to add new stages to the test execution pipeline and also to integrate
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Figure 4.1: Git diff command output.

technology-specific modules through provided hot-spots and their corresponding
adapters. These modules can include test execution technologies (JUnit, NUnit, etc.),
data store modules, as well as modules implementing different test prioritization and
selection strategies.

Architecture

As mentioned before, the Lazzer architecture (cf. figure 4.2) consists of a set
highly-decoupled modules, which jointly make up a framework capable of:

• Discovering Test classes in a project independently of the technology used to
implement them. Currently, Lazzer includes a JUnit 4 Test Framework adapter
which helps to identify the test classes following its specific formatting (see also
section 4.1.1).

• Interfacing technology-specific data stores in order to gather pre-test execution
information or storing post-test execution information regarding the execution of
the tests.

• Selecting and prioritizing test cases based on specific strategies, which could require
result information from previous test executions fetched previously from the data
stores, or also be based only on the information gathered from the test classes,
such as names, number of test methods, etc. The possibility of implementing
new strategies is offered by the corresponding hot-spot and the framework launch
configuration settings.

• Reporting test execution results using a FreeMarker-template-based adaptable
format.

Reuse opportunity

The fact that Lazzer implements the whole lifecycle of tests, from their discovery,
including execution, up to the delivery of results; also, considering that it provides
the necessary hot spots to integrate new stages to the execution pipeline and to adapt
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Figure 4.2: Original architecture of the Lazzer framework, including data stores (Git,
Test history), Test optimization strategy, JUnit 4 Test Adapter.

different technologies, gives the opportunity to consider reusing the framework and
adapting it for different purposes, such as the realization of this thesis.
The strategies conceived in the context of this thesis have as common starting point the

output of the test execution, specifically the failed tests. In the presence of failed tests,
the strategies focus on narrowing down the commits that could have possibly introduced
an error in the project. Although other frameworks or plugins offer the possibility to
run test classes and obtain a detailed report of the complying or failed tests (e.g., Maven
Surefire plugin), one additional constrain is imposed by the statement-test coverage-based
strategy (STC) (see section 3.4 and section 5), which requires obtaining fine-grained test
coverage information, in order to match it with the commits that modified such code
sections. Fortunately, Lazzer keeps track of the class files belonging to the project and
coverage information can be collected by use of external libraries. Details regarding this
will follow.

4.1.4 JaCoCo

JaCoCo is a code coverage library for Java that originally powered the Eclipse plugin
EclEmma.[Ecl12] Nowadays, a number of tools rely on its capabilities in form of plugins
for build automation tools (e.g., Gradle, Maven), CI tools (Jenkins, TeamCity), code
inspection tools (SonarQube), etc.[Ecl09]
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In the context of this thesis, JaCoCo was integrated into Lazzer in order to obtain
test line-by-line coverage information and later use it to perform the matching between
commit-change difference and the test line-coverage of the STC strategy (see also
section 5).
Despite of the different tools available for Java code coverage, such as JCov[Ope15],

Clover[Atl16], Cobertura[Cob16], CodeCover[Cod11], JaCoCo[Ecl16] resulted the most
attractive tool based on the following factors:

Distribution scheme. JaCoCo is an open-source software, which means all of its features
and source code are publicly available. Although Clover is full of features, the fact
that it requires a license and its source code is not public, could have represented
a project constrain.

Development activity. The fact that JaCoCo is actively supported increases the chance
of continuing using the tool without being compromised by its lack of support of
recent technologies, such as supporting the latest JDK (JaCoCo supports JDK 1.8
at the time of writing).

Coverage metrics. In contrast with some of the similar tools, JaCoCo provides up to
line coverage, which is required for the STC strategy.

Build tools and CI servers integrations. JaCoCo offers provides integration to most
popular of these tools, including (but not limited to) Maven, Gradle, Jenkins,
TeamCity. Although at the end, it was opted not to use one of these specific
adapters (see also section 4.2.2), its wide range of integration adapters imply a
well-defined API and loose-coupled core, accompanied with a number of examples
showing how to use the API reducing, with this, the learning curve.

This library relies on a program’s byte code and Intstrumentation in order to be able
to collect the coverage of a test execution. Code instrumentation is the process where a
coverage tool introduces counters into code sections with the purpose of monitoring if a
statement, function, branch, or condition was covered by a program execution.
Jacoco offers two modes to perform code instrumentation: offline instrumentation,

where each class byte code is prepared before execution; on-the-fly instrumentation,
process which skips the preliminary preparation and instruments the code as it is
executed, this is achieved with the help of a Java Agent and represents less overhead.
Further details explaining how this library was integrated to the framework will be

introduced in section 4.2.2.

4.2 Extensions to Lazzer

In this section, the extensions made to the Lazzer framework are detailed described.
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4.2.1 Test result data store extension
The test history data store is one of the initial adapter example implementations of the
Lazzer framework. Its main purpose was, as the name implies, to store test results and
provide this information to test selection and sorting strategies which rely on previous
test runs. This data store is realized using a Hibernate-based database whose schema is
specified using Liquibase. Liquibase is a tool that allows tracking changes of database
schema, which allows specifying schema changes in a number of formats, including XML,
YAML, JSON and SQL).
The initial Lazzer implementation included the schema shown in figure 4.3a. However,

the tracing techniques conceptualized in this work required relating past test runs to
code versions, in order to make it possible to determine the last version whose tests ran
successfully. The modified schema is shown in figure 4.3b. In addition to the schema,
the corresponding object-relational mapping (ORM) was modified to adhere to the new
schema.

4.2.2 Coverage gathering
Line-level-granular test coverage is one feature that powers the STC strategy (see also
section 5) and it is obtained with the help of the Jacoco library. As mentioned before, this
library can perform code instrumentation in two distinct modes: offline and on-the-fly
instrumentation. For the implementation of the mentioned strategy it was opted to use
the former approach, since the latter requires the Java Agent to be attached to a process
(Test executor) whenever it is launched in a Java virtual machine (JVM), and in Lazzer
the tests are executed internally, without launching a separate process.
In this regard, the offline instrumentation was introduced as a separate stage in the

Lazzer’s core pipeline. An additional step involves stopping the coverage runtime. This
step was also integrated in the Lazzer’s core pipeline and take place just before and after
test execution. This stage, together with the preparation (instrumentation) stage are
depicted in figure 4.4.

4.2.3 Tracing stage hot-spot
One of the main objectives of implementing the tracing strategies conceived in this
work was to be able to execute and compare results of each of them. With this idea in
mind, and taking advantage of Lazzer’s architecture extensibility, a new hot-spot was
implemented and incorporated into Lazzer’s execution flow as a separate pipeline stage.
This modification is represented also in figure 4.4.

4.2.4 Tracing reporting
The current implementation of the tracing strategies leverages the flexibility of Lazzer
in terms of customizing the output report. The reporting step in Lazzer takes place in a
separate stage (see figure 4.2) and makes it possible to specify the console output format
using a template engine named FreeMarker. Such template engine allows to specify a
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base output format in a file, which can be processed inside the program and combined
with the application-specific data model to produce the formatted output. The engine
is powerful enough to manipulate data collections and different data types required to
create a rich output.
As shown in figure 4.5, the result of the tracing stage represents a collection of

TracingOutput objects which is passed over to the reporting stage. Each of these
objects contains the results of the tracing strategies executed by the framework.
The information contained within these objects include:

StrategyName. The strategy whose this results belong to.
LastSuccesfulCommit. The past commit from which the strategy started the analysis,

i.e., the last codebase version that logged a complete successful test execution.
CurrentVersionId. The codebase version that was tested.
TracingResult. The Map structure relating each of the failed tests to the set of EIC that

may be have introduced an error.

The result of the transformation performed by the template engine using the adapted
format can be observed in figure 4.6.
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«Table»
TestResult

id: int
testRunReportId: int
canonicalClassname: varchar(1024)
methodName: varchar(256)
testExecutionTime: int
testStatus: varchar(64)

1 i d

«Foreign_key»
fk_testhistory_id

*
testRunReportId

«Table»
TestRunReport

«PK» id: int
timeTestsStarted: Timestamp
testExecutionTime: int
success: boolean
failureCount: int
successCount: int
ignoredCount: int

(a) Original schema.

«Table»
TestResult

id: int
testRunReportId: int
canonicalClassname: varchar(1024)
methodName: varchar(256)
testExecutionTime: int
testStatus: varchar(64)

1 i d

«Foreign_key»
fk_testhistory_id

*
testRunReportId

«Table»
TestRunReport

«PK» id: int
timeTestsStarted: Timestamp
testExecutionTime: int
success: boolean
failureCount: int
successCount: int
ignoredCount: int
versionId: varchar(256)

(b) Modified schema.

Figure 4.3: Test history data store schema. Addition of the versionId field helps to track
the source code version being tested.
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1 * *

EICCandidate
-commitId: String
-author: String
-authorContact: String
-date: Date
+getId(): String
+getAuthor(): String
+getAuthorContact(): String
+getDate(): Date

1

LazzerPipelineContext

1 *

TracingOutput
-strategyName: String
-lastSuccesfulCommit: String
-currentVersionId: String
-tracingResult: Map<String, Set<EICCandidate> >
+getStrategyName(): String
+getLastSuccessfulCommitId(): String
+getCurrentCommitId(): String
+getFailedTests(): Set<String>
+getErrorInducingCommits(failedTest): Set<EICCandidate>
+getAllErrorInducingCommits(): Set<EICCandidate>

TracingResults

Figure 4.5: Tracing result class diagram.
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Figure 4.6: Tracing console output displaying: (a) a listing of the tracing strategies
executed, (b) a comprehensive report for each of the strategies, (c) the last
successfully tested codebase version, (d) the current codebase version being
tested, (e) each of the EIC ids, (f) date and time of the commit, (g) author
of the commit, and (h) contact of the commit author.

39





5 Statement-test coverage strategy realization

Contents
5.1 Past changes information retrieval . . . . . . . . . . . . . . . . . . . . . 41
5.2 Changes-coverage matching . . . . . . . . . . . . . . . . . . . . . . . . . 42

After addressing the major modifications done to the Lazzer framework to enable
EIC tracing in the last section, it is time to review the enhancements done to it that are
specific to the statement-test coverage-based strategy (STC). This enhancements comprise
the information retrieval regarding the past commit changes and the coverage-changes
matching, described next.

5.1 Past changes information retrieval

The past changes information retrieval consists in a diff operation that takes place
inside Lazzer’s Git (see section 4.1.2 and section 4.1.3) module, one of the data stores
implementation that is concerned with the codebase storage in a repository. This diff
operation is carried out for each code version that is analyzed starting from the last record
of a STCV up to the most recent version. The realization of this strategy implemented
in Lazzer includes the considerations mentioned in section 3.4 including the support of
DeltaSpots.
Internally, the Git data store module relies on three components (Figure 5.1) to process

the diff information: an implementation of OutputStream, that helps to gather the
raw output from the diff operation (DiffFormatter); a DiffOutputAnalyzer, which
parses the output considering the diff format and extracts the modified source lines;
EffectiveLineUpdater, an object that keeps track of the DeltaSpots and updates the
modified source lines of each file version accordingly.
The class DiffOutputAnalyzer creates objects of type CommitDiffResult, which

contains the modified lines for certain file in a code version. These are collected by
HistoryDiffData, the output data structure.
The output of this step is a data structure that relates the project’s modified files

that were detected to the responsible commit, including the diff information with the
modified source lines. This structure is represented in figure 5.2.

41



5 Statement-test coverage strategy realization

Git datastore

jgit. l ib.Repository

HistoryDif fData

CommitDif fResult

jgi t .di f f .Dif fEntry

jgi t .di f f .Dif fFormatter

OutputStream Dif fOutputAnalyzer EffectiveLineUpdater

Figure 5.1: Class relationship diagram inside Git datastore.

5.2 Changes-coverage matching
Another key step concerning the strategy involves the matching between the collected
modified lines and the covered lines. In order to do this, both data should be available
to the strategy inside the strategy context.
The operation of matching the data mentioned before takes place in a support class

named ImpactAnalyzer, which basically goes through the covered classes of each failed
test and queries the changes information data for records of the class. If found, and after
performing a line intersection comparison, the commit information related to the change
is collected as a EIC-candidate. After consulting all failed tests, the set of EIC-candidates
is delivered to the output. It is worth mentioning that, due to the internal implementation
of the EICCandidate object, object duplicates are avoided.
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Data structure passed over 
along the Lazzer pipeline context

1 *

1

1
Fi leDif f Info

-sourceLines:Collection<Integer>
+getSourceLines(): Collection<Integer>

*1

«Interface»
EICCandidate

+getId(): String
+getAuthor(): String
+getAuthorContact(): String
+getDate(): Date

«Interface»
Comparable<CommitDif fResult>

CommitDif fResult Impl
-CommitInfo commitInfo
-FileDiffInfo fileDiffInfo

«Interface»
CommitDif fResult

+getCommitInfo(): EICCandidate
+getFileDiffInfo(): FileDiffInfo

HistoryDif fDataImp
-Map<String, NavigableSet<CommitDiffResult» commitsImpact
+setCommitsImpact(Map<String, NavigableSet<CommitDiffResult»): void

«Interface»
HistoryDif fData

+getAffectedFiles(): Collection<String>
+getResponsibleCommits(String): NavigableSet<CommitDiffResult>

Figure 5.2: Class diagram representing the output data structure of the change
information retrieval step.
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Having reviewed the concept of the tracing strategies and their implementation details,
it is now turn to evaluate them. For this purpose a set of demo scenarios were considered,
as described next.

6.1 Demo scenarios

In this section, we present a collection of cases which represent development scenarios
where errors could be inadvertently introduced into a codebase while performing common
tasks, such as: maintenance, feature development, or fixing other bugs.

These scenarios aim to demonstrate the behavior of the implemented strategy under
such conditions.

6.1.1 Demo project

The project used to demonstrate the functionality of the implemented strategy consists
in a implementation of a popular Triangle type evaluator which, based on the side
length parameters received as input, can determine either the type of triangle in concern:
Equilateral, Isosceles, Scalene; or confirm an invalid sides configuration for a triangle.

A class diagram of this project is depicted in figure 6.1 showing TriangleTester, the
system under test (SUT) and the test suite TriangleTesterTopDown which evaluates
the output of the SUT after providing it with different input configurations (the full set
of test methods has been omitted in the test suite for simplicity).
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...

11

«JUnit Testclass»
RobustnessBoundaryValueTest

#minM: int = 0
#maxP: int = 201
nomNomMinM(): void
{ @Test }

...«JUnit Testclass»
BoundaryValueTest

#tester: TriangleTester
#expNotTriangle: String = "Not a Triangle"
#expEquilateral: String   = "Triangle is Equilateral"
#expIsosceles: String     = "Triangle is Isosceles"
#expScalene: String       = "Triangle is Scalene"
#expected: String
#min: int     = 1
#minP: int   = 2
#nom: int    = 100
#maxM: int = 199
#max: int    = 200
+setTriangleTester(): void
{ @BeforeClass }
nomNomMin(): void
{ @Test }

TriangleTesterTopDown
#expNotTriangle: String
#expEquilateral: String
#expIsosceles: String
#expScalene: String
-a: int
-b:  int
-c: int
-result: String
+test(int,int,int): String
-analyzeSides(): void
-isTriangle(): boolean
-determineTriangleType(): void
-isEquilateral(): boolean
-isScalene(): boolean

TriangleTester

+testTriangle(int,int,int): String
#test(int,int,int): String

Figure 6.1: Class diagram depicting the relation of the class.

6.1.2 Simple line modification

The aim of this scenario (Figure 6.2) is to show the functionality of the strategy as it
detects a simple error introduced in a code line in the class TriangleTesterTopDown
(Figure 6.2b). This modification impacts the result expected by the test suite yielding
a failed test execution.
The strategy focuses on localizing the EIC despite of existing a couple of later commits

which also influenced the codebase (Figure 6.2a). The results of the execution can be
observed in figure 6.2c. This figure confirms that the EIC in question was indeed found,
however, the two later commits were also within the candidates, since they recorded
changes in sections covered by the failing tests.

6.1.3 Displaced error line

The second demo scenario (Figure 6.3) presented here consists again in an induced
error in the code of class TriangleTesterTopDown, however, an additional constraint
is represented by a later commit (see figure 6.3a) introducing a set of empty lines that
displace the original faulty line and impose an additional challenge when matching the
modified/covered lines (Figure 6.3b).
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As it can be appreciated in the results (Figure 6.3c), the EIC was identified together
with two later commits that modified test-covered sections, hence, the implementation
of the strategy is able to track the changes of source code lines numbering, in order to
be able to match the corresponding modified/covered lines.

6.1.4 Refactoring: Method extraction
Refactoring is a common operation performed during the software development lifecycle.
Method extraction is a well-known refactoring pattern. We will use such pattern in
another scenario to demonstrate the functionality of the strategy.
The scenario in question is shown in figure 6.4. This scenario consists in, similarly

to the previous scenarios, a commit (Figure 6.5a) introducing an error where, in this
case, involves an interchanged assignment statements. This commit is followed by the
refactoring operation which modifies the location of the changed code lines (Figure 6.4b)
and represents a challenge for the strategy. The result of the strategy is shown in
figure 6.5d, which includes only the commit that performed the refactoring and modified
a code section covered by the tests. Unfortunately, this operation hindered the discovery
of the real EIC.

6.1.5 Refactoring: Pull-up
Our last demo scenario (Figure 6.5) involves another common refactoring operation: the
class fields pull-up pattern. This pattern involves moving class fields from a subclass to
any of its parent classes in order to generalize its definition.
After introducing an error in a commit by modifying the constant values of the fields

(Figure 6.5a), the refactoring operation (Figure 6.5b and Figure 6.5c) challenges the
strategy to discover it. The results of this effort are shown in figure 6.5d, which shows
only the last commit whose changes modified a test-covered section.
At this point it is worth mentioning that the changes done to the class fields is not

considered a test-covered section, this is due to the impossibility of the coverage gathering
framework to detect coverage of class fields, given that the framework relies on byte-code
and these elements are not translated to byte-code during build time.
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(a) Commit history timeline.

(b) Diff view of the modification done to a single code line.

(c) The output of the strategy.

Figure 6.2: Demo scenario consisting in an error induced by a simple line modification
in the codebase. Figure shows: a) the scenario’s commit history with an EIC
and later commits affecting covered and non-covered sections, b) change done
to class TriangleTesterTopDown in commit 350fd62 to induce the error,
and c) the output of the strategy showing the identification of the real EIC
with two later non-valid EICs.
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(a) Commit history timeline.

(b) Diff view of a displaced faulty code line in TriangleTesterTopDown.

(c) The output of the strategy.

Figure 6.3: Demo scenario consisting in an error induced by a line modification which
is displaced in a later commit. Figure shows: a) the scenario’s commit
history with an EIC and a later commit modifying the location of the faulty
line, b) change done to class TriangleTesterTopDown in commit f489d8a
to displace the faulty line, and c) the output of the strategy showing the
identification of the real EIC with two later non-valid EICs.
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(a) Commit history timeline.

(b) Diff view of a refactoring operation consisting in an extraction of a code section into a separate
method.

(c) The output of the strategy.

Figure 6.4: Demo scenario consisting in an error hidden by a method extraction
refactoring operation. Figure shows: a) the scenario’s commit history with
an EIC and a later commit where the refactoring operation was performed, b)
refactoring done to class TriangleTesterTopDown in commit b2fe94f, and
c) the output of the strategy showing the identification of only one commit
that modified a test-covered section.
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(a) Commit history timeline.

(b) Pull-up refactoring operation in class TriangleTesterTopDown.

(c) Pull-up refactoring operation in class TriangleTester.

(d) The output of the strategy.

Figure 6.5: Demo scenario consisting in an error hidden by a pull-up refactoring
operation. Figure shows: a) the scenario’s commit history with an EIC
and a later commit where the refactoring operation was performed, b)
and c) refactoring done between classes TriangleTesterTopDown and
TriangleTester in commit 46a5f49, and c) the output of the strategy
showing the identification of only one commit that modified a test-covered
section.
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Having introduced each of the strategies concepts, the schema of properties, and after
demonstrating the realization of the STC strategy in common development scenarios,
it is turn of discussing the behavior observed and categorize the strategies according to
the schema.

7.1 Strategies properties

Previously, a properties schema (see section 3.3.2) was introduced that can be used to
catalogue tracing strategies. Now, we will focus on matching each of the properties to
the strategies conceptualized in this work.
The first strategy to address is the statement-test coverage-based strategy (STC). As

seen before, this strategy is based on source code textual comparisons, hence no syntactic
nor semantic information is used during the EIC localization. This might impact the
results delivered, meaning that any matching modified/covered source lines will result
in the commit under evaluation to be considered an EIC candidate. For this reason,
the presence of false-positives could be expected, hence this strategy is not precise.
Also, code changes history may result in code sections being deleted, information about
the affected lines can be lost at a later comparison, resulting in possible EIC being
omitted. Therefore, this strategy cannot be considered safe either. Regarding reliability,
the technique does not enforce a systematic approach to deliver at least one valid EIC,
hence it is not reliable.
The program slicing-based strategy (PS) is the second strategy conceived. Taking

advantage of static program slicing provides syntactic information that allows to identify
the impact of each commit change. Given that it is a static approach, it is restricted
to provide the probably affected execution paths (while exact execution paths can only
be determined with a defined input), hence there is the possibility that a commit is
considered responsible even though the error might be introduced in a different commit,
leading to a false-positive result, which yields to a non-precise strategy. In regards to
the safety property, we should recall that the strategy relies on syntactic information. In
this sense, code changes that represent semantic modifications (i.e., dynamic dispatching)
may be ignored, due to this reason it cannot be considered safe. Similarly to the previous
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technique, it does not enforce a systematic approach to deliver at least one valid EIC,
hence it is not reliable either.
The third strategy to consider is the atomic changes-based strategy (ACS). The

strategy is based on the change impact analysis by Ren, et al. which is able to safely
detect regression tests whose behavior has been affected by code changes.[RST+04] Since
our work builds upon that technique and our strategy relies on failed test results to detect
EIC, we can therefore conclude this strategy is safe. In regards to precision, contrary to
the previous technique, the method call relations can be gathered dynamically during
test execution. In this sense, the probably-affected regions are gathered more accurately.
However, this technique is more coarse-grained and it does not consider statement-level
dependencies. Therefore, it can not be considered a precise technique. Similarly to the
two previous techniques, a lack of enforcement to deliver at least one valid EIC, results
in a non-reliable technique.
Finally, the rerun-all-failed-tests strategy (RAFT) focuses on delivering a valid EIC

at the minimum within the results. Although the followed approach might represent an
expensive computation overhead, it tests thoroughly all code versions until one execution
fails. Moreover, it will not stop when it finds the first failing code version, instead it will
continue evaluating the following versions until all test cases have evidently failed and
a responsible commit has been found for each of them. By following this approach, the
strategy will clearly return at least one EIC candidate, hence it is reliable. In addition,
it collects all code version with a failing test execution, therefore it is safe, as well.
However, since an error in certain code version propagates in the following versions,
there exist the possibility of false-positives, consequently it is not a precise strategy.
Having analyzed all the strategies conceived in this work, their corresponding

properties according to the schema presented here can be summarized in table 7.1.

Strategy Safe Precise Reliable
STC - - -
PS - - -
ACS X - X
RAFT X - X

Table 7.1: The properties associated to each of the tracing strategies following the
schema presented in this work.

7.2 Strengths and weaknesses

In the last section, the approaches of each strategy were analyzed to determine
the categories that are associated with them. Within that analysis, reasonings were
provided concerning why they could include false-positives and false-negatives within
their resulting candidates.
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Table 7.2 summarizes the arguments form last section regarding the strength or
weakness of finding valid EICs. Computation overhead is not the main criteria of this
comparison, however an argument may be included if it represents a significant difference
against the rest of the strategies.

Strategy Strengths Weaknesses

STC
- Diff information available
after extracting changes history,
no additional computation.

- No semantic information
due to restriction to textual comparison.
- Difficult to recover information
from deleted lines.

PS - Syntactic information yields
possible execution paths. - Lack of semantic information.

ACS
- Atomic changes translate code
changes into impact-relevant
semantic data.

- Coarse-grained precision based on
method-level call relationships.

RAFT - Determines the valid EIC(s)
after an extensive evaluation.

- Expensive strategy that potentially
requires evaluating each commit.

Table 7.2: Comparison of the strengths and weaknesses of the strategies.
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The final chapter of this thesis includes a brief recapitulation of the contributions
made in this work (Section 8.1). Moreover, section 8.2 provides an outlook on future
work directions regarding the conception and realization of new tracing strategies, as
well as, improvement on the ones included in this work.

8.1 Summary

This work introduced the concept of error-inducing commits (EICs), as code commits
made to a codebase whose failed test execution has evidenced the introduction of an
error. Also, it conceptualized strategies to localize them in a CI environment.
Chapter 2 started off with an overview of the techniques that allow identifying the

impact of changes in the area of regression testing. It reviewed, as well, existing
approaches that assist on validating the code contributions of developers before
integrating them into the project codebase.
Later, chapter 3 elaborated on the concept of EIC and the goal of the tracing strategies.

Furthermore, a set of strategies that build upon the techniques reviewed in chapter 2 were
introduced. Additionally, a property schema used to categorize strategies was provided.
Chapter 4 went beyond the concept and reused the framework for regression test

selection and prioritization to realize our strategy concepts. Specific details regarding
the implementation of one strategy were covered in chapter 5.
In chapter 6 the behavior of the implemented strategy was shown under common

software development scenarios, this helped to understand the limitations of the strategy.
This limitations, together with the properties according to the schema provided in this
work, were addressed in chapter 7 with an extensive discussion.

8.2 Future Work

This thesis provided the grounds in the field related to discovering EIC in a CI
environment. As this is a research line that can be explored further, we will point
out to suggestions that can be considered regarding the strategies included in this work
or potential ideas for new strategies.
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8.2.1 Strategies realization

This thesis included only one implementation of the conceptualized tracing strategies.
Suggestions regarding the implementation of the rest of the strategies as well as
improvements to the current one will be done next.

STC strategy realization improvement

The evaluation of the statement-test coverage-based strategy (STC) conducted in
section 6.1 based on common development scenarios evidenced the capabilities and the
limitations of the strategy. As it was discussed before, this strategy is based on source
code textual comparisons, therefore it is challenging to extract semantic information from
it. However, this approach can still be improved to reduce the amount of false-positives.
An improvement to this approach can be found in the work of Kim et al. [KZPJ06],
where annotation graphs are employed to keep track of added, deleted or modified lines
across versions in a graph-based structure, which allows to compute backward deep-first
searches in order to identify the source code dependencies. An even further improvement
was implemented by Williams and Spacco [WS08] who, instead of relying on the code
changes information provided by the CVS annotation command, track individual code
line numbers and are able to track line dependencies even across larger code changes.

Further strategies realizations

Due to time constraints, this thesis included only the implementation of the STC
strategy. However, it would be relevant to realize the other strategies introduced in
this work. Although it would be necessary to rely on additional software or libraries,
the Lazzer framework and the modifications done in this work provide the basis for
realizing them in the future. It is worth pointing out a few considerations regarding the
implementation of specific strategies:

PS strategy. The program slicing-based strategy relies on the analysis of code
dependencies using method call graphs and program slicing. There are several
tools that can enable this. However, two of them that are worth considering using
could be WALA[IBM15] and Chord[Nai], this is based on the evidence of continuing
being supported and the amount and quality of their documentation, which might
facilitate the integration for tracing strategies.

ACS strategy. Change impact analysis based on atomic changes was the contribution
of the work by Ren et al. [RST+04]. Their work was realized in form of a plug-in
for Eclipse which could aid the tasks of developers. Although this plug-in does not
seem to be available anymore [Wlo08], posterior work has made use of the tool,
which could point to the location of the original implementation[SRRT06].
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8.2 Future Work

8.2.2 Strategy conception
This work considered code analysis techniques that have their origins in CIA in order to
conceive tracing strategies. These techniques, however, are not the only ones existing.
Symbolic execution analysis[Leh15] is another technique that could be explored in a
future to trace EICs.

8.2.3 Real world evaluation
Although this work performed experiments using only a small project, efforts were done
to evaluate the implemented strategy in a large and real-world project. Given that many
open-source programs make their source code widely available through repositories and
access to their continuous integration monitoring is also available, experimenting with
them should not be feasible. A difficulty was found, however, when looking for evidences
of broken builds due to failed tests. A reason could lie in the fact that developers perform
testing before committing their work back to the project repository. Therefore, a more
sophisticated experiment configuration may be required.
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