
Localizing Error-inducing Commits
in CI Environments
Master Thesis Final Presentation

Ricardo Hernandez-Montoya,
ricardo.hernandez@rwth-aachen.de

April 26th, 2016

Continuous Integration (Ideal Scenario)

3

Healthy commit?

Continuous Integration (Ideal Scenario)

4

Healthy commit?

Healthy commit

Continuous Integration (Ideal Scenario)

5

Healthy commit?

Healthy commit

Broken build

Continuous Integration

6

How to avoid breaking the codebase?

Staged commit:

• Developers commit changes blindly to CI server.

• CI server determines if they can be integrated to the main line of
work.

• Improve evaluation by testing changes in parallel.

• Example: OpenStack Zuul.

State of the Art

7

Identify failed commits using a binary approach:

• Define initial evaluation commit.

• Visit each commit in the history on a binary basis.

• Evaluate each commit and mark them as good or bad.

• Automation possible with help of scripts.

• Examples: git-bisect, CI features (TeamCity), Facebook Sandcastle,
Google Test tools.

State of the Art

8

Motivation

• Fast-evolving software

- Google example[1]:

- 20+ changes per minute; 50% codebase changes every month.

- 120K Test suites in the codebase.

- 7.5M test suites run per day.

- Facebook’s VCS receives up to 100K+ commits per week.[2]

9

Continuous Integration (In Practice)

10

Healthy commit?

Continuous Integration (In Practice)

11

Healthy commit?

Broken build

Objective

Conceive strategies that help to identify possible error-inducing commits

in the presence of failed tests.

12

Error-inducing Commits

• Introduction of an error into a project’s codebase.

• Evidenced by failed tests.

• Relies on the quality of the test suite.

13

Tracing EIC Concept

Background:

• Similar concepts (e.g., bug-introducing change, fix-inducing change)
revealed properties around error introduction.

• Change impact identification techniques:

- Identify program behavior affected by changes.

- Used in regression testing to select and prioritize tests.

- Static and dynamic techniques (test coverage, program slicing, call
graphs, program dependency graphs, between others).

14

Tracing Strategies Framework

15

Failed tests Last correct version

EIC candidates

1st strategy: Statement-test-coverage

16

SLOC

SLOC

Intersect test code coverage and code modifications

Yield possible error-inducing commits

Challenge 1 + refinement

17

• Line count changes along the code evolution.

• Solution: Delta Spots to track the line count positions.

ClassA.java ClassA.java ClassA.java

deletion

modification

addition

Challenge 2

• Text comparison doesn’t recognize semantic changes.

• Solution: alternative techniques.

18

Properties schema

19

Properties of Strategies

• Safe strategy: Discovers all possible error-inducing commits.

• Precise strategy: Avoids all non-error-inducing commits.

• Reliable strategy: Delivers at least one possible error-inducing
commit.

20

Safe Precise Reliable

Base
version

Error-inducing commit

Non-error-inducing commit
X X X

-X X

X- X

- - -

?

?

?

STC strategy properties

21

Safe

Precise

Reliable

Changes hidden by deleted lines in history

No semantic data. Comments represent changes.

No systematic approach enforced by
strategy to discover EICs.

Realization

22

Realization requirements

23

• Test discovery

• Test execution (coverage gathering)

• Test result history

• Code versions access

• Reporting

• Build configuration

Lazzer

Lazzer framework extensions

24

Demo

25

Demo Case: Single line modification

26

648… 350… f6b… acc… 698…

stable

version

error in line 50

comment outside

coverage region

comment inside

coverage region

comment inside

coverage region

EICs candidates:
- 350…
- acc…
- 698…

Demo Case: Displaced error line

27

032… ea2… 389… f48… e74…

stable

version

error in line 50

comment inside

coverage region

comment inside

coverage region

EICs candidates:
- ea2…
- 389…
- e74…

added empty lines

49-56

Demo Case: Method extraction refactoring

28

032… ea1… b2f…

stable

version

error induced by

interchanging

variable assignment

method extractionEICs candidates:
- b2f…

Summary

Contributions:

• Concept of Error-inducing Commits in CI.

• Three strategies for localizing EICs.

• Properties schema for categorizing tracing strategies.

• Realization of one strategy.

29

Conclusion

• Pioneering concept of EICs in CI.

• Realized strategy not very strong but gives initial hints, despite
reduced computing overhead.

• Alternative promising techniques for localizing EICs.

• Relevance in the industry.

30

Further Work

• Strategies realization:

- Further implementation of tracing strategies.

• Conceived techniques:

- Based on statement-test-coverage.

- Based on program slicing.

- Based on atomic changes.

- Re-run failed tests on all commits.

• Strategies evaluation. Using real-world projects.

• Strategy conception:

- Explore further techniques (e.g., symbolic execution).

31

References

• [1] Kumar, Ashish. Development at the speed and scale of google. (2010).

• [2] Facebook Developers. F8 2015 - Big Code: Developer Infrastructure At
Facebook's Scale. (2015). Available at:
https://www.youtube.com/watch?v=X0VH78ye4yY. Accessed April 25, 2016.

32

Thank you

33

2nd strategy: Based on program slicing

35

Forward program slicing

1
2
3
4
5
6
7
8

input (i , j);
a = i;
b = 0;
if (a > 0)

b = a
if (b > 0)

o = j
output(o)

2nd strategy: Based on program slicing

36

Forward program slicing

1
2
3
4
5
6
7
8

input (i , j);
a = i + j;
b = 0;
if (a > 0)

b = a
if (b > 0)

o = j
output(o)

2nd strategy: Based on program slicing

37

Forward program slicing

Forward slice on modified line 2

4, 5, 6, 7, 8

1
2
3
4
5
6
7
8

input (i , j);
a = i + j;
b = 0;
if (a > 0)

b = a
if (b > 0)

o = j
output(o)

2nd strategy: Based on program slicing

38

Statement
level

Identify slices covered by failed tests

Yield possible error-inducing commits

slices

3rd strategy: Based on atomic changes

39

• Classification of the code changes into atomic changes. Possible types:

- Added Method (AM)

- Changed Method (CM)

- Deleted Method (DM)

- Added Field (AF)

- Deleted Field (DF)

- Lookup Change (LC)

• Obtain semantic difference from the atomic changes.

• Identify affected test methods by the code changes.

3rd strategy: Based on atomic changes

40

Match atomic changes covered by failed tests

Yield possible error-inducing commits

atomic changes

CM LC DM LC AF

Call graphs

4th strategy: Re-run failed tests on all commits

• Naïve approach.

• Rerun failed tests on all commits and stop until all failed tests responsible
commits are found.

• Make sure to deliver at least one EIC with certainty.

41

