Ricardo Hernandez-Montoya,
ricardo.hernandez@rwth-aachen.de

Localizing Error-inducing Commits
in Cl Environments

Master Thesis Final Presentation
April 261, 2016

Sl I I Software
Construction

GEEK & POKE’S LIST OF
BEST PRACTICES

TODAY: CONTINUOUS INTEGRATION
GIVES YOL THE COMFORTING
FEELING TO KNOW THAT
EVERYTHING IS NORMAL

ALL THE
AUTOMATED
TESTS HAVE
CRASHED

geek & poke

THAT’S
NORMAL

Continuous Integration (Ideal Scenario)

W;E
)
Eh

/\ Healthy commit?

Sl I I Software
Construction

Continuous Integration (Ideal Scenario)

ha
)

/\ Healthy commit?

A\ Healthy commit

4
Sl e,

Continuous Integration (Ideal Scenario)

R E

/\ Healthy commit?

R

A\ Healthy commit

£\ Broken build

5
Sl .

Continuous Integration

How to avoid breaking the codebase?

6
Sl .

State of the Art

Staged commit:
* Developers commit changes blindly to Cl server.

e Cl server determines if they can be integrated to the main line of
work.

* Improve evaluation by testing changes in parallel.

* Example: OpenStack Zuul.

)

o~ _|
i

———
—

[I

& &
i
@ﬁ 0

Sl I l Software
Construction

State of the Art

|dentify failed commits using a binary approach:

Define initial evaluation commit.

Visit each commit in the history on a binary basis.
Evaluate each commit and mark them as good or bad.
Automation possible with help of scripts.

Examples: git-bisect, Cl features (TeamCity), Facebook Sandcastle,
Google Test tools.

H\ A\ //\\ //\\ //\\ //\\ //\\ //\\ //\\ //\h’

4

1

Sl I l Software ‘
Construction

Motivation

* Fast-evolving software
- Google examplell:
- 20+ changes per minute; 50% codebase changes every month.
- 120K Test suites in the codebase.
- 7.5M test suites run per day.

- Facebook’s VCS receives up to 100K+ commits per week.!?]

Sl I l Software ‘
Construction

Continuous Integration (In Practice)

..|.
|
I
Eh

4

/\ Healthy commit?

10 RWTH

Sl I I Software
Construction

Continuous Integration (In Practice)

/\ Healthy commit?
A\ Broken build

11

Sl

Software
Construction

RWTHAACHEN
UNIVERSITY

Objective

Conceive strategies that help to identify possible error-inducing commits
in the presence of failed tests.

i—A—A—kﬂ—»»-»*Aﬂk»

12
Sl .

Error-inducing Commits

* Introduction of an error into a project’s codebase.
* Evidenced by failed tests.

* Relies on the quality of the test suite.

13 SLLI

Software
Construction

Tracing EIC Concept

Background:
* Similar concepts (e.g., bug-introducing change, fix-inducing change)
revealed properties around error introduction.
* Change impact identification techniques:
Identify program behavior affected by changes.
Used in regression testing to select and prioritize tests.

Static and dynamic techniques (test coverage, program slicing, call
graphs, program dependency graphs, between others).

14 l l
5 Software
Construction

Tracing Strategies Framework

Failed tests Last correct version

|
Fa

l

EIC candidates

RWTHAACHEN
UNIVERSITY

15
SWC e,

15t strategy: Statement-test-coverage

L /\\ L /\\ L /\\ L /\\ L /\\

I

o B ey =
sLoc > r; = r; r—: E = 4
N o) . A_

Intersect test code coverage and code modifications — ﬁ
A ﬁ
A

I D SLOC
Yield possible error-inducing commits
RWNTH

16
Sl .

Challenge 1 + refinement

* Line count changes along the code evolution.

* Solution: Delta Spots to track the line count positions.

A— A A
S — O/C1O
modification
_<: adadition
ClassA.java ClassA.java ClassA.java

17 RWNTH
SWC

Challenge 2

* Text comparison doesn’t recognize semantic changes.

* Solution: alternative techniques.

18
Sl .

Properties schema

19

Properties of Strategies

» Safe strategy: Discovers all possible error-inducing commits.

* Precise strategy: Avoids all non-error-inducing commits.

* Reliable strategy: Delivers at least one possible error-inducing

e
A—AA

commit.
Base
version
Safe Precise Reliable
= X X X
I X - X
I - X X

A Error-inducing commit

A Non-error-inducing commit

20

Sl I l Software ‘
Construction

STC strategy properties

Safe — Changes hidden by deleted lines in history

Precise — No semantic data. Comments represent changes.

Reliable = No systematic approach enforced by

strategy to discover EICs.

21
SLLI Comirustion

Realization

22

Realization requirements

e Test discovery
* Test execution (coverage gathering)
* Test result history

e Code versions access

* Reporting

* Build configuration

Post

2]
Test Run

Data Collection

..n] Strategy | [1..1] [1..1] Test Framework
Adapter

Optimization
Strategy

23 RWTH

5' I I Software
Construction

Lazzer framework extensions

Framework
API

Lazzer

Core

EiC Pipeline

7]

Data Collection

o z] (e
(O Dependency

Loader E
w2, B 2]
Discovery Optimization Optimization

A

Test Run

5]

Post

2]
Test Run

Data Collection

Reporting

Datastore? [0..n]

¢

c

Strate gy: [1..1]

I

Git

2]

2]

Test History

Optimization
Strategy

|1..11%

Test Framework
Adapter

JUnit 4
Adapter

24

SuJ

Software
Construction

Demo

25

Demo Case: Single line modification

L N) [TriangleTester — bash — 141x41

ricardohmon:TriangleTester ricardohdzs$ [

26
Sl .

Demo Case: Displaced error line

[INFO] == Lazzer Results Report

[INFO] ~~ Optimization Strategies ~mmmmmmmmmmmmmnmononmn e e
[INFO] [1/1]1 AlphabeticPrioritisation

[INFO]
=[INFO] ~~ Tracing Strategies smmmmossmamnonmmonmmmmomn, i
[INFO] [1/1] StatementTestCoverage

[INFO]

[INFO] ~~ Data Stores s s s s s s
[INFOI [1/1] TestHistoryDataStore

[INFO]

[INFO] ~~ Tests ~~ o, g o, o, o,
[INFOI [1/13] BoundaryValueTest.minPNOmNOM +.vvvvvevrrnrnrrnrnnnnns SUCCESS 1 ms
[INFOI [2/13] BoundaryValueTest.nomMaxNomcoevevernnnornrnnnnns SUCCESS @ ms
[INFOI [3/13] BoundaryValueTest.nomMinNOm ...ccvvvevevnncosnsnnnnns SUCCESS @ ms
[INFO] [4/13] BoundaryValueTest.nomNOmMaX ...eevevevernsnornsnnnnns SUCCESS @ ms
[INFO] [5/13] BoundaryvValueTest.nomNomMin ...vevevensnsnrnsnsnnnnns SUCCESS @ ms
[INFOI [6/13] BoundaryValueTest.nomNomNOmcvvvvevrrnrnornrnnnnns SUCCESS @ ms
[INFOI [7/13] BoundaryValueTest.maxNomNOm ...ccvevevernsnosnsnnnnns SUCCESS 1 ms
[INFO] [8/13] BoundaryValueTest.minNomNOM ...cevvvrernnrnnnsrannnns SUCCESS @ ms
[INFO] [9/13] BoundaryvValueTest.nomMaxMNOM +.vevesvnsnsarnsnsnnnnns SUCCESS @ ms
[INFO] [1@/13] BoundaryValueTest.nomMinPNOM ...vvevveennennnnrnnnnns SUCCESS @ ms
[INFO] [11/13] BoundaryValueTest.maxMNOMNOM ...vvuvvernnrnnnnrnnnnns SUCCESS @ ms
[INFO] [12/13] BoundaryValueTest.nomNomMaxMcovveevsnnsnssnnnnns SUCCESS @ ms
[INFO] [13/13] BoundaryValueTest.nomNomMinPcevveennrnnnnrnnnnns SUCCESS 1 ms
[INFO]

E|(tINFO] ~~ Test statistics s A

[INFO] Tests succeeded: 13 Tests failed: @ Tests ignored: @

[INFO]

[INFO]

[INFO]

[INFO] Result: SUCCESS

[INFO]

[INFO] HHH@®@@3@: Cleaning up connection pool [jdbc:h2:~/lazzer-h2-db;MODE=PostgreSQL]
[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 5.428 s

[INFO] Finished at: 2016-84-26T@0:55:59+02:00

[INFOI Final Memory: 37M/451M

[INFO]

ricardohmon:TriangleTester ricardohdz$ ||

27
S w-.

Demo Case: Method extraction refactoring

[INFO] == Lazzer Results Report
[INFO] ~~ Optimization Strategies

[INFO] [1/1] AlphabeticPrioritisation
[INFO]

[INFO] ~~ Tracing Strategies
[INFO] [1/1] StatementTestCoverage
[INFO]

[INFO] ~~ Data Stores

[INFO] [1/1] TestHistoryDataStore

[INFO]

[INFO] ~~ Tests ~~an e

[INFO] [1/13] BoundaryValueTest.minPNOmMNOMesveevssssssssssssss SUCCESS 1 ms

[INFO] [2/13] BoundaryValueTest.nomMaxXNOmeeveensensenssnnsnnss SUCCESS @ ms

[INFO] [3/13] BoundaryValueTest.nomMinNOMvevsvesssnsvessssssss SUCCESS @ ms

[INFO] [4/13] BoundaryValueTest.nOmMNOMMEX ..vvsevsenrsnssnssnnsnnss SUCCESS 1 ms

[INFO] [5/13] BoundaryValueTest.nomNOmMMinsveevevessessssssss SUCCESS @ ms

[INFO] [6/13] BoundaryValueTest.nomNOMNOM ..uvvevvenrensenssnnsnnss SUCCESS @ ms

[INFO] [7/13] BoundaryValueTest.maxNOMNOMevsvsevevsnsensnsnsss SUCCESS @ ms

[INFO] [8/13] BoundaryValueTest.minNOMNOM ..vuvvevsevrsnssnssnssnnss SUCCESS @ ms

[INFO] [9/13] BoundaryValueTest.nomMaxMNOM e i e SUCCESS @ ms

[INFO] [10/13] BoundaryValueTest.nomMinPNOM ...vvvvenevsnnsnsnennnns SUCCESS @ ms

[INFO] [11/13] BoundaryValueTest.maxMNomNOm e cesssssss SUCCESS @ ms

[INFO] [12/13] BoundaryValueTest.nomNomMaxXMeevevsnnnnnnnss h. SUCCESS @ ms

[INFO] [13/13] BoundaryValueTest.nomNOMMiINPesvevssssnsnsnsnnnns SUCCESS @ ms

[INFO]

[INFO] ~~ Test statistics

[INFO] Tests succeeded: 13 Tests failed: @ Tests ignored: @
EICmwro)

[INFO]

-[INFO]

[INFO] Result: SUCCESS

[INFO]

[INFO] HHH@®@@30: Cleaning up connection pool [jdbc:h2:~/lazzer-h2-db;MODE=PostgreSQL]

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 5.431 s
[INFO] Finished at: 2016-04-26T01:01:27+02:00
[INFO] Final Memory: 37M/456M

28

[INFO] =
ricardohmon:TriangleTester ricardohdz$ ||

Sl I I Software
Construction

(AN A 00

Summary

Contributions:
e Concept of Error-inducing Commits in CI.
* Three strategies for localizing EICs.
* Properties schema for categorizing tracing strategies.
* Realization of one strategy.

29

Sl I l Software
Construction

Conclusion

* Pioneering concept of EICs in Cl.

* Realized strategy not very strong but gives initial hints, despite
reduced computing overhead.

* Alternative promising techniques for localizing EICs.

* Relevance in the industry.

30 | l RWNTH
5 Software
Construction

Further Work

Strategies realization:

Further implementation of tracing strategies.

Conceived techniques:

Strategies evaluation. Using real-world projects.

Based on statement-test-coverage.
Based on program slicing.
Based on atomic changes.

Re-run failed tests on all commits.

Strategy conception:

Explore further techniques (e.g., symbolic execution).

31

SuJ

Software
Construction

References

[1] Kumar, Ashish. Development at the speed and scale of google. (2010).

(2] Facebook Developers. F8 2015 - Big Code: Developer Infrastructure At
Facebook's Scale. (2015). Available at:
https://www.youtube.com/watch?v=X0VH78ye4yY. Accessed April 25, 2016.

32

Sl I l Software ‘
Construction

Thank you

33

Software
Construction

2"d strategy: Based on program slicing

Forward program slicing

O NOYUL N WNR

input (1, J);
a = 1i;

b = 0;

if (a > 9)

b =a

if (b > 9)

0 =]
output(o)

35

SuJ

Software
Construction

2"d strategy: Based on program slicing

Forward program slicing

O NOYUL N WNR

input (1, J);
a=1i+3j;

b = 0;

if (a > 9)

b =a

if (b > 9)

0 =]
output(o)

36

SuJ

Software
Construction

2"d strategy: Based on program slicing

Forward program slicing

input (1, J);
a=1i+3j;
b = 0;
if (a > 9)

b =a
if (b > 9)

0 =]
output(o)

O NOYUL N WNR

Forward slice on modified line 2

4, 5, 6, 7, 8

37

SuJ

Software
Construction

2"d strategy: Based on program slicing

L /\\ L /\\ L /\\ L /\\ L /\\

v

TN
=& OE E —

|dentify slices covered by failed tests

|
—A—A—A—A—A—’ Statement

level

Y| VAV VLY KV

I
2 5% 2 8

>

Yield possible error-inducing commits

38
Sl .

3" strategy: Based on atomic changes

* Classification of the code changes into atomic changes. Possible types:

Added Method (AM)
Changed Method (CM)
Deleted Method (DM)
Added Field (AF)
Deleted Field (DF)
Lookup Change (LC)

* Obtain semantic difference from the atomic changes.

* Identify affected test methods by the code changes.

39

Sl I l Software
Construction

3" strategy: Based on atomic changes

A A\ A A A\ :

v v v

v

CM

v v v
7 A]
LC DM LC

Match atomic changes covered by failed tests

|

\ \/
r:] N A: r7 atomic changes
‘ >

> [7PNl o)
T

A A A

Call graphs

Yield possible error-inducing commits

2 5% % %

40 SLLI

Software
Construction

4t strategy: Re-run failed tests on all commits

* Naive approach.

* Rerun failed tests on all commits and stop until all failed tests responsible
commits are found.

* Make sure to deliver at least one EIC with certainty.

A
AA ﬂ&

g &

a1 R\NTH
SWC e |

