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Continuous Integration
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How to avoid breaking the codebase?



Staged commit:

• Developers commit changes blindly to CI server.

• CI server determines if they can be integrated to the main line of 
work.

• Improve evaluation by testing changes in parallel.

• Example: OpenStack Zuul.

State of the Art
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Identify failed commits using a binary approach:

• Define initial evaluation commit.

• Visit each commit in the history on a binary basis.

• Evaluate each commit and mark them as good or bad.

• Automation possible with help of scripts.

• Examples: git-bisect, CI features (TeamCity), Facebook Sandcastle, 
Google Test tools.

State of the Art
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Motivation

• Fast-evolving software

- Google example[1]:

- 20+ changes per minute; 50% codebase changes every month.

- 120K Test suites in the codebase.

- 7.5M test suites run per day.

- Facebook’s VCS receives up to 100K+ commits per week.[2]
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Continuous Integration (In Practice)
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Healthy commit?



Continuous Integration (In Practice)
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Healthy commit?

Broken build



Objective

Conceive strategies that help to identify possible error-inducing commits

in the presence of failed tests.
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Error-inducing Commits

• Introduction of an error into a project’s codebase.

• Evidenced by failed tests.

• Relies on the quality of the test suite.
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Tracing EIC Concept

Background:

• Similar concepts (e.g., bug-introducing change, fix-inducing change) 
revealed properties around error introduction.

• Change impact identification techniques:

- Identify program behavior affected by changes.

- Used in regression testing to select and prioritize tests.

- Static and dynamic techniques (test coverage, program slicing, call 
graphs, program dependency graphs, between others).
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Tracing Strategies Framework
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Failed tests Last correct version

EIC candidates



1st strategy: Statement-test-coverage
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SLOC

SLOC

Intersect test code coverage and code modifications

Yield possible error-inducing commits



Challenge 1 + refinement
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• Line count changes along the code evolution.

• Solution: Delta Spots to track the line count positions.

ClassA.java ClassA.java ClassA.java

deletion

modification

addition



Challenge 2

• Text comparison doesn’t recognize semantic changes.

• Solution: alternative techniques.
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Properties schema
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Properties of Strategies

• Safe strategy: Discovers all possible error-inducing commits.

• Precise strategy: Avoids all non-error-inducing commits.

• Reliable strategy: Delivers at least one possible error-inducing 
commit.
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Safe Precise Reliable

Base 
version

Error-inducing commit

Non-error-inducing commit
X X X

-X X

X- X

- - -
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STC strategy properties
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Safe

Precise

Reliable

Changes hidden by deleted lines in history

No semantic data. Comments represent changes.

No systematic approach enforced by 
strategy to discover EICs.



Realization
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Realization requirements
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• Test discovery

• Test execution (coverage gathering)

• Test result history

• Code versions access

• Reporting

• Build configuration

Lazzer



Lazzer framework extensions
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Demo
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Demo Case: Single line modification
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648… 350… f6b… acc… 698…

stable 

version

error in line 50

comment outside

coverage region

comment inside

coverage region

comment inside

coverage region

EICs candidates:
- 350…
- acc…
- 698…



Demo Case: Displaced error line
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032… ea2… 389… f48… e74…

stable 

version

error in line 50

comment inside

coverage region

comment inside

coverage region

EICs candidates:
- ea2…
- 389…
- e74…

added empty lines

49-56



Demo Case: Method extraction refactoring
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032… ea1… b2f…

stable 

version

error induced by

interchanging 

variable assignment

method extractionEICs candidates:
- b2f…



Summary

Contributions:

• Concept of Error-inducing Commits in CI.

• Three strategies for localizing EICs.

• Properties schema for categorizing tracing strategies.

• Realization of one strategy.
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Conclusion

• Pioneering concept of EICs in CI.

• Realized strategy not very strong but gives initial hints, despite 
reduced computing overhead.

• Alternative promising techniques for localizing EICs.

• Relevance in the industry.
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Further Work

• Strategies realization:

- Further implementation of tracing strategies.

• Conceived techniques:

- Based on statement-test-coverage.

- Based on program slicing.

- Based on atomic changes.

- Re-run failed tests on all commits.

• Strategies evaluation. Using real-world projects.

• Strategy conception:

- Explore further techniques (e.g., symbolic execution).

31



References

• [1] Kumar, Ashish. Development at the speed and scale of google. (2010).

• [2] Facebook Developers. F8 2015 - Big Code: Developer Infrastructure At 
Facebook's Scale. (2015). Available at: 
https://www.youtube.com/watch?v=X0VH78ye4yY. Accessed April 25, 2016.

32



Thank you
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2nd strategy: Based on program slicing
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Forward program slicing

1
2
3
4
5
6
7
8

input (i , j);
a = i;
b = 0;
if (a > 0)

b = a
if (b > 0)

o = j
output(o)



2nd strategy: Based on program slicing
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Forward program slicing

1
2
3
4
5
6
7
8

input (i , j);
a = i + j;
b = 0;
if (a > 0)

b = a
if (b > 0)

o = j
output(o)



2nd strategy: Based on program slicing
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Forward program slicing

Forward slice on modified line 2

4, 5, 6, 7, 8

1
2
3
4
5
6
7
8

input (i , j);
a = i + j;
b = 0;
if (a > 0)

b = a
if (b > 0)

o = j
output(o)



2nd strategy: Based on program slicing
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Statement
level

Identify slices covered by failed tests

Yield possible error-inducing commits

slices



3rd strategy: Based on atomic changes
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• Classification of the code changes into atomic changes. Possible types:

- Added Method (AM)

- Changed Method (CM)

- Deleted Method (DM)

- Added Field (AF)

- Deleted Field (DF)

- Lookup Change (LC)

• Obtain semantic difference from the atomic  changes.

• Identify affected test methods by the code changes.



3rd strategy: Based on atomic changes
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Match atomic changes covered by failed tests

Yield possible error-inducing commits

atomic changes

CM LC DM LC AF

Call graphs



4th strategy: Re-run failed tests on all commits

• Naïve approach.

• Rerun failed tests on all commits and stop until all failed tests responsible 
commits are found.

• Make sure to deliver at least one EIC with certainty.
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