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Continuous Integration (Ideal Scenario)
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Continuous Integration (Ideal Scenario)
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Continuous Integration

How to avoid breaking the codebase?
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State of the Art

Staged commit:
* Developers commit changes blindly to Cl server.

e Cl server determines if they can be integrated to the main line of
work.

* Improve evaluation by testing changes in parallel.

* Example: OpenStack Zuul.
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State of the Art

|dentify failed commits using a binary approach:

Define initial evaluation commit.

Visit each commit in the history on a binary basis.
Evaluate each commit and mark them as good or bad.
Automation possible with help of scripts.

Examples: git-bisect, Cl features (TeamCity), Facebook Sandcastle,
Google Test tools.
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Motivation

* Fast-evolving software
- Google examplell:
- 20+ changes per minute; 50% codebase changes every month.
- 120K Test suites in the codebase.
- 7.5M test suites run per day.

- Facebook’s VCS receives up to 100K+ commits per week.!?]
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Continuous Integration (In Practice)
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Continuous Integration (In Practice)

/\ Healthy commit?
A\ Broken build
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Objective

Conceive strategies that help to identify possible error-inducing commits
in the presence of failed tests.
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Error-inducing Commits

* Introduction of an error into a project’s codebase.
* Evidenced by failed tests.

* Relies on the quality of the test suite.
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Tracing EIC Concept

Background:
* Similar concepts (e.g., bug-introducing change, fix-inducing change)
revealed properties around error introduction.
* Change impact identification techniques:
Identify program behavior affected by changes.
Used in regression testing to select and prioritize tests.

Static and dynamic techniques (test coverage, program slicing, call
graphs, program dependency graphs, between others).
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Tracing Strategies Framework

Failed tests Last correct version
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15t strategy: Statement-test-coverage
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Challenge 1 + refinement

* Line count changes along the code evolution.

* Solution: Delta Spots to track the line count positions.

A— A A
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modification
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ClassA.java ClassA.java ClassA.java
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Challenge 2

* Text comparison doesn’t recognize semantic changes.

* Solution: alternative techniques.
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Properties schema
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Properties of Strategies

» Safe strategy: Discovers all possible error-inducing commits.

* Precise strategy: Avoids all non-error-inducing commits.

* Reliable strategy: Delivers at least one possible error-inducing

e
A—AA

commit.
Base
version
Safe Precise  Reliable
= X X X
I X - X
I - X X

A Error-inducing commit

A Non-error-inducing commit
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STC strategy properties

Safe — Changes hidden by deleted lines in history

Precise — No semantic data. Comments represent changes.

Reliable = No systematic approach enforced by

strategy to discover EICs.
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Realization
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Realization requirements

e Test discovery
* Test execution (coverage gathering)
* Test result history

e Code versions access

* Reporting

* Build configuration
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Lazzer framework extensions

Framework
API
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Demo
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Demo Case: Single line modification

L N ) [ TriangleTester — bash — 141x41

ricardohmon:TriangleTester ricardohdzs$ [
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Demo Case: Displaced error line

[INFO] == Lazzer Results Report

[INFO] ~~ Optimization Strategies ~mmmmmmmmmmmmmnmononmn e e
[INFO] [1/1]1 AlphabeticPrioritisation

[INFO]
=[INFO] ~~ Tracing Strategies smmmmossmamnonmmonmmmmomn, i
[INFO] [1/1] StatementTestCoverage

[INFO]

[INFO] ~~ Data Stores s s s s s s
[INFOI [1/1] TestHistoryDataStore

[INFO]

[INFO] ~~ Tests ~~ o, g o, o, o,
[INFOI [ 1/13] BoundaryValueTest.minPNOmNOM +.vvvvvevrrnrnrrnrnnnnns SUCCESS .... 1 ms
[INFOI [ 2/13] BoundaryValueTest.nomMaxNom ....coevevernnnornrnnnnns SUCCESS .... @ ms
[INFOI [ 3/13] BoundaryValueTest.nomMinNOm ...ccvvvevevnncosnsnnnnns SUCCESS .... @ ms
[INFO] [ 4/13] BoundaryValueTest.nomNOmMaX ...eevevevernsnornsnnnnns SUCCESS .... @ ms
[INFO] [ 5/13] BoundaryvValueTest.nomNomMin ...vevevensnsnrnsnsnnnnns SUCCESS .... @ ms
[INFOI [ 6/13] BoundaryValueTest.nomNomNOm ....cvvvvevrrnrnornrnnnnns SUCCESS .... @ ms
[INFOI [ 7/13] BoundaryValueTest.maxNomNOm ...ccvevevernsnosnsnnnnns SUCCESS .... 1 ms
[INFO] [ 8/13] BoundaryValueTest.minNomNOM ...cevvvrernnrnnnsrannnns SUCCESS .... @ ms
[INFO] [ 9/13] BoundaryvValueTest.nomMaxMNOM +.vevesvnsnsarnsnsnnnnns SUCCESS .... @ ms
[INFO] [1@/13] BoundaryValueTest.nomMinPNOM ...vvevveennennnnrnnnnns SUCCESS .... @ ms
[INFO] [11/13] BoundaryValueTest.maxMNOMNOM ...vvuvvernnrnnnnrnnnnns SUCCESS .... @ ms
[INFO] [12/13] BoundaryValueTest.nomNomMaxM ....covveevsnnsnssnnnnns SUCCESS .... @ ms
[INFO] [13/13] BoundaryValueTest.nomNomMinP ....cevveennrnnnnrnnnnns SUCCESS .... 1 ms
[INFO]

E|(tINFO] ~~ Test statistics s A

[INFO] Tests succeeded: 13 Tests failed: @ Tests ignored: @

[INFO]

[INFO]

[INFO]

[INFO] Result: SUCCESS

[INFO]

[INFO] HHH@®@@3@: Cleaning up connection pool [jdbc:h2:~/lazzer-h2-db;MODE=PostgreSQL]
[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 5.428 s

[INFO] Finished at: 2016-84-26T@0:55:59+02:00

[INFOI Final Memory: 37M/451M

[INFO]

ricardohmon:TriangleTester ricardohdz$ ||
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Demo Case: Method extraction refactoring

[INFO] == Lazzer Results Report
[INFO] ~~ Optimization Strategies

[INFO] [1/1] AlphabeticPrioritisation
[INFO]

[INFO] ~~ Tracing Strategies
[INFO] [1/1] StatementTestCoverage
[INFO]

[INFO] ~~ Data Stores

[INFO] [1/1] TestHistoryDataStore

[INFO]

[INFO] ~~ Tests ~~an e

[INFO] [ 1/13] BoundaryValueTest.minPNOmMNOM ....esveevssssssssssssss SUCCESS .... 1 ms

[INFO] [ 2/13] BoundaryValueTest.nomMaxXNOm ....eeveensensenssnnsnnss SUCCESS .... @ ms

[INFO] [ 3/13] BoundaryValueTest.nomMinNOM ....vevsvesssnsvessssssss SUCCESS .... @ ms

[INFO] [ 4/13] BoundaryValueTest.nOmMNOMMEX ..vvsevsenrsnssnssnnsnnss SUCCESS .... 1 ms

[INFO] [ 5/13] BoundaryValueTest.nomNOmMMin ......sveevevessessssssss SUCCESS .... @ ms

[INFO] [ 6/13] BoundaryValueTest.nomNOMNOM ..uvvevvenrensenssnnsnnss SUCCESS .... @ ms

[INFO] [ 7/13] BoundaryValueTest.maxNOMNOM ....evsvsevevsnsensnsnsss SUCCESS .... @ ms

[INFO] [ 8/13] BoundaryValueTest.minNOMNOM ..vuvvevsevrsnssnssnssnnss SUCCESS .... @ ms

[INFO] [ 9/13] BoundaryValueTest.nomMaxMNOM ........ e i e SUCCESS .... @ ms

[INFO] [10/13] BoundaryValueTest.nomMinPNOM ...vvvvenevsnnsnsnennnns SUCCESS .... @ ms

[INFO] [11/13] BoundaryValueTest.maxMNomNOm ....... e cesssssss SUCCESS .... @ ms

[INFO] [12/13] BoundaryValueTest.nomNomMaxXM .......eevevsnnnnnnnss h. SUCCESS .... @ ms

[INFO] [13/13] BoundaryValueTest.nomNOMMiINP ....esvevssssnsnsnsnnnns SUCCESS .... @ ms

[INFO]

[INFO] ~~ Test statistics

[INFO] Tests succeeded: 13 Tests failed: @ Tests ignored: @
EICmwro)

[INFO]

-[INFO]

[INFO] Result: SUCCESS

[INFO]

[INFO] HHH@®@@30: Cleaning up connection pool [jdbc:h2:~/lazzer-h2-db;MODE=PostgreSQL]

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 5.431 s
[INFO] Finished at: 2016-04-26T01:01:27+02:00
[INFO] Final Memory: 37M/456M
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Summary

Contributions:
e Concept of Error-inducing Commits in CI.
* Three strategies for localizing EICs.
* Properties schema for categorizing tracing strategies.
* Realization of one strategy.

29
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Conclusion

* Pioneering concept of EICs in Cl.

* Realized strategy not very strong but gives initial hints, despite
reduced computing overhead.

* Alternative promising techniques for localizing EICs.

* Relevance in the industry.
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Further Work

Strategies realization:

Further implementation of tracing strategies.

Conceived techniques:

Strategies evaluation. Using real-world projects.

Based on statement-test-coverage.
Based on program slicing.
Based on atomic changes.

Re-run failed tests on all commits.

Strategy conception:

Explore further techniques (e.g., symbolic execution).
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Thank you
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2"d strategy: Based on program slicing

Forward program slicing

O NOYUL N WNR

input (1, J);
a = 1i;

b = 0;

if (a > 9)

b =a

if (b > 9)

0 =]
output(o)
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2"d strategy: Based on program slicing

Forward program slicing

O NOYUL N WNR

input (1, J);
a=1i+3j;

b = 0;

if (a > 9)

b =a

if (b > 9)

0 =]
output(o)
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2"d strategy: Based on program slicing

Forward program slicing

input (1, J);
a=1i+3j;
b = 0;
if (a > 9)

b =a
if (b > 9)

0 =]
output(o)

O NOYUL N WNR

Forward slice on modified line 2

4, 5, 6, 7, 8
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2"d strategy: Based on program slicing

L /\\ L /\\ L /\\ L /\\ L /\\
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Yield possible error-inducing commits
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3" strategy: Based on atomic changes

* Classification of the code changes into atomic changes. Possible types:

Added Method (AM)
Changed Method (CM)
Deleted Method (DM)
Added Field (AF)
Deleted Field (DF)
Lookup Change (LC)

* Obtain semantic difference from the atomic changes.

* Identify affected test methods by the code changes.

39
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3" strategy: Based on atomic changes

A A\ A A A\ :

v v v
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Match atomic changes covered by failed tests
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Yield possible error-inducing commits

2 5% % %

40 SLLI

Software
Construction



4t strategy: Re-run failed tests on all commits

* Naive approach.

* Rerun failed tests on all commits and stop until all failed tests responsible
commits are found.

* Make sure to deliver at least one EIC with certainty.
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