
Evolution of Object Oriented Coupling Metrics:
A Sampling of 25 Years of Research

Ana Nicolaescu
RWTH Aachen University

52074 Aachen, Germany

ana.nicolaescu@swc.rwth-aachen.de

Horst Lichter
RWTH Aachen University

52074 Aachen, Germany

horst.lichter@swc.rwth-aachen.de

Yi Xu
RWTH Aachen University

52074 Aachen, Germany

yi.xu@rwth-aachen.de

Abstract—Coupling is one of the most important properties
that affect the quality of the design and implementation of
a software system. In the context of object oriented software
development, coupling metrics and their impact on quality
attributes have been investigated for a quarter of a century. In
this work we review and critically analyze the developments in
this domain by considering 26 of the most influential research
papers addressing object oriented coupling. Our analysis reveals
that a very strong theoretical background has been already
developed but unfortunately without a clear impact on the
industry practices and software analysis tooling. Even more,
recent developments fail to address this problem and seem to
even contribute to increasing this gap. We argue that the direction
of current research should be shifted towards systematizing and
evaluating existing results rather than exploring new applicability
domains and defining new metric suites.

I. INTRODUCTION

In the 1990s, researchers realized that traditional metrics

were only barely suitable for object-oriented (OO) programs

and could not be adapted to OO concepts such as classes,

inheritance and message passing (e.g. Wilde and Huitt [1]).

Tegarden et al. and Bilow were among the first researchers

who proposed to take OO concepts into account when design-

ing new metrics [2], [3]. To the best of our knowledge, the

first set of metrics developed for OO software was proposed

by Morris [4] as early as in 1989 and already contained a

coupling metric called Degree of Coupling between Objects.

In the following, researchers started to develop metrics for OO

software. For example, Coplien [5] as well as Pfleeger and

Palmer [6] proposed some initial metrics for C++ programs

and Rajaraman and Lyu were the first who proposed four

coupling metrics for C++ programs in 1992 [7]. In 1994

Lorenz and Kidd published one of the first books on OO

metrics presenting a set of eleven very different metrics [8].

Although there is a variety of properties that can be mea-

sured in OO programs, we focused in this paper on coupling

metrics and aimed to present how OO coupling metrics

have evolved since they were introduced. We chose this

focus because coupling is by all means an important design

property (also included in the Quality Model for Object-

Oriented Design (QMOOD) [9]) that has a strong impact

on several software quality attributes such as maintainability,

testability or reusability. Meaningful coupling measurements

should therefore be a necessary information to support both

developers and architects to take the right decisions on, e.g.,

refactoring or re-engineering projects.

The remainder of this paper is organized as follows. In sec-

tion 2 we briefly present how we have designed and performed

our literature search. Based on the chosen timely grouping, the

fundamental works on coupling metrics published in the 1990s

will be discussed in section 3. In section 4 we present papers

published in the 2000s mainly focusing on dynamic coupling

metrics. Some recent directions are presented in section 5.

Section 6 contains a (critical) discussion on about 25 years of

research in this field and concludes the paper.

II. SEARCH STRATEGY

Our search process consisted of defining the search ex-

pression, selecting digital libraries, executing a pilot search,

refining the search expression, retrieving an initial list of

papers matching the search expression and finally filtering the

results.

In order to retrieve relevant published research works,

we defined the following search expression ”software AND

coupling OR (measurement OR metrics) AND (object OR

class OR system OR component OR architecture) AND (OO

OR object oriented)”. We restricted the publication period

from 1990 until 2014. We applied the search expression to

10 databases and finally chose the following 6 databases

based on the relevance of the results: IEEE Xplore Digital

Library1, ACM Digital Library2, CiteSeerX3, ScienceDirect4,

Google Scholar5 and The Collection of Computer Science Bib-

liographies6. We sorted the results according to two criteria:

number of citations and relevance. The “relevance” is typically

defined as “the extent to which the retrieved articles match the

search query”. We did not use a relevance algorithm of our

own, but relied on the relevance computations offered by each

considered database.

First, we searched the two citation databases, and got 210 re-

sults from The Collection of Computer Science Bibliographies

and 418 papers from CiteSeerX. We read the top 50 titles and

1IEEE, http://ieeexplore.ieee.org/search/advsearch.jsp
2ACM, http://dl.acm.org/dl.cfm
3CiteSeerX, http://citeseerx.ist.psu.edu
4ScienceDirect, http://www.sciencedirect.com/
5Google Scholar, http://scholar.google.de/
6Collection, http://liinwww.ira.uka.de/bibliography

© IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174849

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on , pp.48-54, 16-16 May 2015
doi: 10.1109/SAM.2015.14



abstracts of each database, and divided the papers into three

periods: papers published in the 1990s (fundamental works),

the 2000s (advanced approaches), and from 2010 until 2014

(recent directions). Then, we queried the other four databases

and sorted the results according to relevance. We retrieved

10625 results from IEEE Xplore Digital Library, 247 results

from ACM Digital Library, 27300 results from Google Scholar

and 42510 results from ScienceDirect. Finally, we filtered the

results according to the different time periods and chose for

our sampling 11, 9 and 6 papers for the three considered time

periods. This choice is partially subjective. We chose more

papers from the first time period, because it revealed itself

as being very fruitful and impacting for the later research.

The articles often build on top of each other, by systematizing

and extending the previous work in the field. In contrast, we

considered only 6 articles from the most recent time period

because this period is shorter, the articles didn’t yet have

time to impact later research and, in our opinion, these latest

developments are somewhat lacking pragmatism, as we will

detail later.

III. FUNDAMENTAL WORKS

In the following, we present 11 most influential coupling
metrics papers published in the 1990s, selected based on the

citations counts and the relevance for our topic - as we deduced

it by reading the title and abstract of the papers. First, we

give an overview of the selected papers by shortly depicting

their essence. Afterwards we summarize and present an initial

analysis regarding the developments during this period of time.

A. Selected Papers

In 1991, Chidamber and Kemerer (CK) proposed a Metric

Suite [10], [11] containing the most influential coupling metric

Coupling Between Object Classes (CBO) as well as Response
For a Class (RFC). The CBO value of a class is the number of

classes that it is using and that it is used by. Hence, a class A is

coupled to another class B, if A uses B’s methods or attributes

or vice versa. CBO does not take inheritance between classes

into consideration. The publication of the CK Metric Suite

was a landmark in the development of OO coupling metrics.

In 1994, Martin [12] published a set of metrics to mea-

sure stability (or instability) of a group of classes (called

category). A highly stable category of classes is supposed to

be reused easier in other contexts, as the classes are strongly

interdependent and cannot be separated from each other. To

measure instability, he introduced the two base metrics Afferent
Couplings (Ca) - the number of classes outside a category

that depend upon classes within this category, and Efferent
Couplings (Ce) - the number of classes inside a category that

depend upon classes outside this category. Based on these

metrics, instability (I) is calculated as Ce / (Ca+Ce). Moreover,

he presented a simple model using the properties instability

and abstractness (defined as number of abstract classes in a

category / total number of classes) to assess categories and

to determine those categories whose abstractness is balanced

with stability.

In the same year, Brito e Abreu and Carapuca [13] proposed

the MOOD Metric Set containing the Coupling Factor (CF)

metric. CF is a system-level metric, that considers the percent-

age of directed pairs of classes that have a “client-supplier

relation” in comparison with the total number of possible

(directed) connections in the overall system. A directed pair of

classes is connected if the first one is “a client” of the second

one, i.e., it accesses one of its methods or attributes.

Also in 1994, Eder et al. [14] introduced a uniform taxon-

omy or framework for coupling and cohesion, motivating that

these concepts were not clearly defined in the OO context.

They distinguished three types of coupling: interaction cou-
pling (achieved through method invocation and/or sharing of

data between methods), component coupling (one class con-

tains a variable or parameter of another class) and inheritance
coupling. Each of these types was further refined in so-called

“degrees” that were mapped on an ordinal scale to show their

contributions towards coupling increase.

In 1995, Hitz and Montazari [15] argued that internal

product attributes (e.g. Number of Children) used to control

important external quality attributes (e.g. maintainability) have

to be carefully selected. They classified internal product at-

tributes as fundamental or useful (having a causal relationship

to external quality attributes), auxiliary (having a statistical

correlation to external quality attributes) and useless. Finally

they presented some examples of general design and coupling

metrics (e.g. Message Passing Coupling and Change Depen-

dency Between Classes), that measure useful internal product

attributes and thus can be used to control respective external

quality attributes.

As early as 1993, Lee and Henry [16] evaluated whether

a set of metrics consisting of the CK Metric Suite, two size

indicators (number of semicolumns in a class, and number

of attributes and methods of a class) and an additional set

of metrics proposed by themselves can be used to predict

maintainability effort. The evaluation was performed on two

commercial software systems developed in Ada. The results

were positive: maintainability “seams to be predictable” using

these metrics. Regarding the metrics themselves, the authors

proposed two additional coupling metrics to complement the

CK suite: number of send-statements in a class (to quantify

“message passing coupling”) and number of abstract data
types defined in a class (to quantify the so-called “coupling

through ADT”).

Three years later, Basili et al. [17] performed an experiment

to validate the ability of the CK Metric Suite to predict

fault-proneness of classes. To this end they analyzed eight

functionally equivalent C++ systems developed by teams of

students. Their results indicated that the CBO value of a class

significantly correlates with its fault-proneness, especially in

the case of UI classes: the higher the CBO value is, the more

error-prone the class might be. Furthermore, they also raised

the question whether future work should focus on developing

programming-language dependent metrics because these could

correlate even better with the quality attributes of the systems

developed with them.

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174849 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

 Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on , pp.48-54, 16-16 May 2015 
doi: 10.1109/SAM.2015.14



Also in 1996, Brito e Abreu and Walcelio [18] evaluated

the impact of OO design on software quality characteristics

using the MOOD Metric Set [13]. They performed a controlled

experiment presumably using Basili’s eight C++ systems. The

results showed that the MOOD metrics can potentially be used

to predict defect density (a reliability measure) and rework (a

maintainability measure). The authors concluded with empha-

sizing the need of further evaluation. They also mentioned

the importance of studying whether the used programming

language influences the results of such experiments.

One year later, Briand et al. provided a new suite of

coupling metrics especially developed to address “the different

design mechanisms provided by C++ ” [19]. Similar as in

the case of [17], one of the most important hypotheses that

was explored and also confirmed was that coupling metrics

expose a significant correlation with class fault-proneness. The

metrics were designed to differentiate between the various

modalities that can contribute to coupling when implementing

in C++. These are relationship, locus and type. Relationship

refers to the relationship-type between a pair of classes: none,

inheritance or friendship. Locus refers to the flow of change

impact: towards a class (import), i.e., a class has to be changed

as a consequence of a change in another class, or away from a

class (export), i.e., a change in a class leads to changes in other

classes. Type refers to the interactions-type between classes:

class-attribute, class-method, or method-method interaction.

Given that there are 3 possible values of the relationship

facet, 2 for the locus and 3 for the type, the authors defined

18 coupling metrics that consider the interactions of these

different facets. While their evaluation (using again Basili’s

C++ systems) showed that their hypotheses might hold (high

export coupling leads to domino effects when changing a

class, high import coupling makes a class error-prone and hard

to understand and friendship increases error-proneness), the

authors emphasized the stringent need of further evaluations

in industrial contexts.

As early as 1999, Briand et al. already remarked an ex-

plosion of the number of OO coupling metrics, their het-

erogeneity and lack of maturity: “many measures are not

defined in a fully operational form, and relatively few of

them are based on explicit empirical models” [20]. Thus, they

proposed a framework to facilitate the comparison, evaluation

and definition of already existing and new metrics, based on

a common formalism and 6 classification criteria: connection
type (method-class, method-attribute, etc.), locus (import vs.

export), measure granularity (class, object, system, etc. and

the strategy used to count the connections), server stability
(unstable classes vs. stable classes), direct vs. indirect connec-
tions (counting only direct connections vs. transitively derived

ones as well) and inheritance (inheritance- vs. non-inheritance-

based coupling). The authors showed the applicability of

the framework by using it to formalize the well known CK

metrics.

In 1999, Allen and Khoshgoftaar [21] proposed an infor-

mation theory approach to compute coupling and cohesion

on system-level. A system is represented as a graph and its

subsystems as partitions of the initial graph. They defined three

metrics: inter-module coupling, intra-module coupling, and

cohesion. These are computed by treating the pattern of edges

incident on a given node in the graph as a random variable

and then applying entropy and information measures. They

argued that their approach is more useful than the counting-

based approaches proposed previously and systematized in

Briand’s framework, described above. But, no evaluation of

the approach in a real-life context was performed.

B. Summary

Since coupling and cohesion were not defined in the OO

context, most of the influential works from this time period

concentrated on defining and structuring these concepts and

proposing metrics for their quantification. The well-known CK

Metric Suite with its CBO metric and the MOOD metrics had

a great impact on later research.

Furthermore, even at this early stage, researchers already

remarked the explosion of new coupling metrics and pro-

posed common meta-models, frameworks or taxonomies to

compare already existing metrics and to define new future

ones. Looking back from today’s perspective, unfortunately

these proposals did not hinder nor systematized the further

expansion of this research domain, as our search has revealed.

It is remarkable to note that relatively many articles also

discussed preliminary evaluations of the first published OO

coupling metrics (e.g., the CK and the MOOD suites) and

obtained positive results indicating that maintainability can

be estimated using coupling measures. Nonetheless, a lot

of emphasis was put on the need of further evaluations in

industrial contexts.

Most of the approaches presented in the 1990s refer to

the different types of coupling between classes, methods and

attributes. However, coupling was also analyzed as a system-

level metric and approaches regarding the measurement of

coupling between subsystems were also considered. But, in all

the cases the focus was on the static view of the system, so the

measures were based either on analyzing design documents or

actual source code.

IV. ADVANCED APPROACHES

In this section, we present 9 representative papers on cou-

pling metrics mostly published in the 2000s. Again we chose

the papers based on the citations counts and the relevance for

our topic.

A. Selected Papers

As early as 1999, Yacoub et al. [22] remarked that the

“complex dynamic behavior of many real-time applications

motivates a shift in interest from traditional static metrics

to dynamic metrics”. They introduced a suite of dynamic

coupling metrics, sometimes also called run-time coupling

metrics, to assess OO designs. To be able to capture dynamic

metrics during the initial design time, they used the Real-Time

Object Oriented Modeling (ROOM), an alternative to UML

that provides means to define executable designs. The suite

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174849 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

 Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on , pp.48-54, 16-16 May 2015 
doi: 10.1109/SAM.2015.14



consists of one dynamic complexity metric and of two dy-

namic object-level coupling metrics: Export Object Coupling
(EOC) and Import Object Coupling (IOC). The export and

import coupling of an object A with respect to an object B

is the percentage of the number of messages sent from A

to B and received by A from B respectively with respect to

the total number of exchanged messages during one execution

scenario. They evaluated the metrics on the executable models

of a cardiac pacemaker and showed that significant differences

between static and dynamic coupling metrics can be identified.

Therefore, they strongly militated for further empirical studies

to analyze this difference as well as to understand the impact

of the various types of metrics on external design.

In 2004 several proposals for new dynamic coupling metrics

were published. Arisholm et al. [23] discussed about the

existence of two types of run-time coupling: object-level and

class-level coupling. These concepts do not completely overlap

semantically, because of the intrinsic features of OO, e.g.

polymorphism: “the class of the object sending or receiving

a message may be different from the class implementing the

corresponding method”. Based on this remark they proposed

3 classification criteria for dynamic coupling metrics: entity
of measurement, granularity and scope. The entity of mea-

surement is either a class or an object. According to the

chosen entity of measurement, the results can be aggregated to

different granularities: the coupling values of all instances of a

class can be aggregated to compute its coupling; the coupling

values of some or all classes can be aggregated to further

levels, e.g., sub-system or system. The scope determines which

entities are to be accounted for or ignored when measuring

dynamic coupling. In accordance with the framework proposed

by Briand et al. [20] they then extended their previous work

[24] and the work of Yacoub et al. [22] and formally defined

and evaluated a series of export and import dynamic coupling

metrics from the different perspectives mentioned above. Ac-

cording to their evaluation results on an open-source Apache

system, the static and dynamic coupling metrics, although

not unrelated, measure also different facets of the system.

Especially dynamic export coupling measures were regarded

as very strong indicators of class change-proneness especially

when complemented by size and static coupling measures.

Mitchell and Power [25] also argued that “static metrics fail

to quantify all the underlying dimensions of coupling”. They

proposed 4 run-time extensions of the CBO metric. The run-
time import and export coupling metrics denote the number of

times a class accesses and is being accessed by other classes

respectively. The run-time import and export degree metrics
denote the percentage of outgoing and incoming accesses w.r.t.

the total number of accesses. As in the previous cases, their

results obtained from an evaluation performed on several Java

programs from the SPEC JVM98 benchmark “seem to suggest

that the run-time coupling metrics are not redundant with the

static CBO metric”.

Hassoun et al. [26] observed object coupling as it evolves

during program execution. They proposed the so-called Dy-
namic Coupling Metric (DCM). The DCM value of an object

P depends on two factors: a time-factor (1) expressed as a

set of discrete execution steps during which the state of the

object P changes and the complexity (2) of the objects that

are coupled with P during each execution step in this set.

The DCM can be extended to compute the coupling of the

entire system at run-time. The authors specifically stressed the

importance of analyzing object coupling in reflective systems,

because in such systems “objects’ coupling are run-time

dependent and may change due to customizations of objects’

behavior or modifications of their structure”. However, apart

from relatively small examples and an analytical evaluation

in which the properties of the DCM are compared with those

recommended by Briand et al. [20], no evaluation of the metric

on a real-world software system was provided.

Zaidman and Demeyer [27] defined the Object Request For
Service (OQFS) and the Class Request for Service (CQFS)

metrics - as two variants of the EOC metric proposed by

Yacoub et al. [22] - to suggest entry points for further

collection and analysis of event traces in the context of large-

scale industrial systems. The OQFS metric gives the total

number of unique messages that an object sends during run-

time, while the CQFS metric aggregates the unique messages

at the class-level. The authors argue that the objects or classes

with the highest values for OQFS or CQFS respectively should

be proposed as entry points for system comprehension. An

evaluation of the validity of these heuristics was missing and

proposed as future work.

In 2005, Mitchell and Power proposed a further set of CBO-

based dynamic metrics to study the coupling at object-level

[28]. The purpose of their study was to validate or invalidate

the hypothesis that objects belonging to the same class have

similar couplings during run-time. To this end, they proposed

two dynamic coupling metrics at two different abstraction

levels. Run-time CBO (RCBO) is a class-class level metric

that simply computes the CBO for each object based on the

number of accesses at run-time. The second metric operates

on the object-class level and applies agglomerative hierarchical

clustering to check if clusters of objects can be identified that

although belonging to the same class, exhibit non-uniform

behavior coupling at run-time. Their evaluation performed on

the JOlden benchmark invalidated their hypothesis: objects

belonging to the same class are not necessarily coupled

similarly during run-time. The authors drew the attention on

the need of further evaluation and reiterated on the importance

of the chosen input data for the results of any dynamic metrics.

One year later, Mitchell and Power further explored the

difference between the CBO metric, its dynamic counter-

parts and the influence that the instruction coverage has

on this difference [29]. While previous results ([25], [28],

[23]) showed that static and dynamic metrics complement

each other, the influence of the actually executed code was

not thoroughly tested. The evaluation was conducted using

the dynamic metrics proposed by Arisholm et al. [23] and

analyzing 14 Java programs from the SPEC JVM98 and

JOlden benchmarks. The results showed that the static CBO

together with the instruction coverage are better predictors for

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174849 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

 Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on , pp.48-54, 16-16 May 2015 
doi: 10.1109/SAM.2015.14



some of the dynamic coupling metrics than static CBO alone.

In particular, the dynamic import-based coupling metrics can

be better predicted than the export-based coupling metrics by

this combination of metrics. As future research directions, the

authors suggest to use dynamic metrics for quantifying the

effectiveness of various test strategies, further analyzing the

connection between static and dynamic metrics with respect

to external design quality and sustaining re-engineering and

program-understanding endeavors.

Deviating from the main research stream busy with defining

and evaluating dynamic coupling metrics, Gyimothy et al.

[30] applied the CK metrics in 2005 to identify fault-prone

source code in the Mozilla system. They compared their

predictions with the actually registered bugs in Bugzilla and

used statistical and machine-learning techniques to validate

their usefulness. Among other evaluation results, the authors

showed that among all the CK metrics, the CBO metric

correlates best with fault-proneness and can be used as a

reliable predictor.

Already in 2002, Bansiya and Davis [9] proposed a hierar-

chical quality model called QMOOD to assess the high-level

design quality attributes (reusability, flexibility, understand-

ability, functionality, extensibility and effectiveness) during

design-time. QMOOD defines four levels. The first level,

L1, consists of the considered 6 design quality attributes.

The L2 level contains 11 design properties (e.g., coupling,

cohesion, inheritance) that positively or negatively influence

the elements on L1 to different, weighted extents. Level L3

consists of metrics to determine the values of the L2 properties.

These metrics operate on elements contained in level L4

- the basic OO design elements (i.e., methods, attributes,

classes, etc.). QMOOD defines a new coupling metric since

the authors argued that the previously developed ones require

an implemented system, while QMOOD assesses the system

at design time. The resulting coupling value is then weighted

to negatively influence reusability, flexibility, understandabil-

ity and extensibility. The very positive evaluation results of

applying QMOOD to validate and compare a set of industrial

systems can be seen as yet another indicator that coupling does

correlate with the above mentioned quality attributes.

B. Summary

Related research in the 2000s decade was clearly predomi-

nated by proposals and evaluations of new, dynamic metrics.

The initial, widely-agreed upon motivation to develop dynamic

coupling metrics was that the “features of object-oriented

programming such as polymorphism, dynamic binding and

inheritance render the static coupling metrics imprecise” [25].

Interestingly, most of the new metrics ([23], [26], [25], [28],

[29]) were proposed according to the principles previously

formulated in Briand’s framework [20].

Several dynamic variants of already known static coupling

metrics and especially of CBO were developed. These typi-

cally extended CBO by augmenting it with direction (export

vs. import coupling), and/or normalized strength notions, [25]

and/or by applying it on different granularity levels: object-

level, class-level or system-level ([23], [26]). In this context,

it was even stated that the name of CBO is misleading since it

does not measure the coupling between objects, but between

classes [22].

Efforts were also invested in analyzing if the static and

dynamic metrics are redundant or complement each other. By

applying techniques from, e.g., descriptive statistics, correla-

tion and principal component analysis, different papers ([22],

[23], [25], [29]) indicated similar results: while a relation

between static and dynamic metrics exists, they also measure

different facets of the system and can be used in conjunction

to better predict important properties, such as class fault-

proneness.

Interestingly, in parallel with the development of more

sophisticated dynamic coupling metrics, very good fault-

proneness prediction results were achieved using the original

CK metrics and especially CBO [30]. The quality model

proposed by Bansiya and Davis [9] is another important

milestone, since it considered the interplay of more design

properties (among which coupling is as well) to assess various

design qualities and proved within an extensive evaluation that

a hierarchical model is very feasible for this goal.

V. RECENT DIRECTIONS

Finally, we present several recent papers on OO coupling

metrics published in the last 5 years. Obviously, these papers

are not so often cited than the older papers. Therefore, we

sorted the query result according to relevance and we chose

6 papers that we considered suitable to depict the trend of

recent advances.

A. Selected Papers

Aloysius and Arockiam [31] presented a new complexity

metric called Cognitive Weighted Coupling Between Objects
(CWCBO) for measuring the complexity of classes. It con-

siders among others the cognitive complexity (based on the

average comprehension time) of the five types of coupling

introduced by Berard [32] in 1993 (control coupling, global

data coupling, internal data coupling, data coupling and lexical

content coupling). In order to calibrate the weight values of

these types of coupling they applied psychological experi-

ments. Furthermore they performed a study to validate the

metric compared to the CBO metric and showed that the

CWCBO metric is a much better complexity indicator than

CBO.

Kebir et al. [33] used coupling and cohesion metrics to

identify components based on three properties of components.

First, a component is autonomous if it has no required inter-

face. Second, a component can be composed by means of its

provided and required interfaces. Third, a component which

provides many interfaces may provide various functionalities.

Then they matched these properties to a set of new and existing

metrics and validated their component identification approach

using open source systems.

Rathore and Gupta [34] performed a controlled experiment

to identify correlations between design properties (measured

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174849 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

 Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on , pp.48-54, 16-16 May 2015 
doi: 10.1109/SAM.2015.14



by means of class-level metrics) and fault-proneness of classes.

Beside existing coupling metrics (e.g., CBO, RFC) they ap-

plied cohesion, inheritance, size and complexity metrics as

well. They were able to confirm one of their hypotheses that

classes with high coupling are more likely to be fault prone.

Alshammari et al.[35] proposed a suite of security related

metrics including a metric called Critical Classes Coupling
(CCC) to measure the coupling between classes based on

design models such as UML class diagrams. The aim was

to deliver indicators of strongly coupled systems, because the

hypothesis of the authors was that systems with strong cou-

pling are a greater target for successful attacks than systems

with loose coupling. CCC aims to calculate the degree of

coupling between classes and classified attributes in a given

software design. They illustrated the application of the metric

suite in a case study where an initial design was stepwise

improved (regarding security issues) based on the calculated

metric values.

Gethers and Poshyvanyk [36] found out that many exist-

ing coupling metrics lack the ability to identify conceptual

dependencies, which could specify underlying relationships

encoded by developers in identifiers and comments of source

code. They proposed the class-level coupling metric Rela-
tional Topic-based Coupling (RTC), using the Relational Topic

Model (RTM) to identify latent topics associated with source

code. If RTM identifies a link between two classes with a high

probability, these classes are considered to be coupled. Finally

they validated the RTC metric against nine well-known static

coupling metrics, e.g. CBO, RFC and DAC, using a large set

of open source software. They could show that RTC is able

to explain a dimension in the data that is ignored by existing

coupling metrics.

Chen et al. [37] argued that traditional metrics are not

suitable to measure complexity in component-based software

system (CBSS). Therefore, they provided new component-

level metrics to measure coupling (MV), cohesion (COM),

and interface density (AIM) of components, used to calculate

complexity. Two components are coupled if and only if at least

one of them acts upon the other. The introduced coupling

metric (MV) takes into account the usage of methods and

variables. Based on the component-level metrics respective

system-level metrics are presented. Unfortunately, the applica-

tion of their metrics is shown only using an artificial toy-like

CBSS example.

B. Summary

Although new advanced coupling metrics have been pro-

posed (e.g., [36] for conceptual coupling), researchers now

mainly focus on applying existing metrics for very different

purposes such as the identification of components in large code

bases or the discovery of security issues.

VI. DISCUSSION

In this paper, we first conducted a literature review of

26 relevant and often cited research papers published in the

last 25 years regarding the topic of object oriented coupling

metrics. We divided the selected papers into three time periods:

the “fundamentals” works era (1990 - 1999), the “advanced

approaches” era (2000 - 2010) and the “recent directions”. For

each era, we chose a set of representative works, presented an

overview thereof and finally conducted an analysis regarding

the major identified trends.

In the first two eras, a relatively extensive knowledge base

was constructed and the relevance of both static and dynamic

coupling metrics was often acknowledged. Despite this appar-

ent strong academic background, our practical experience with

defining metric systems ([38], [39]) for a variety of industrial

cooperation partners showed that both static and dynamic

coupling metrics are ignored and not used to drive impor-

tant decisions despite their proven predictability for quality

attributes such as maintainability and reliability. Commonly

used static analysis tools also at most simply list the computed

values of some static coupling metrics but do not further use

them to predict quality (e.g., JDepend7 and Sonargraph8 list

the values of the Martin’s metrics, Stan4J9 additionaly also

compute the CK metrics, while other tools such as Clover10 or

SonarQube11 do not offer such measures at all). The situation

is even more acute in the case of the dynamic coupling metrics.

Most of the tools for dynamic analysis, no matter if industrial

or academic, ignore these metrics (e.g., Kieker12). Those who

do regard them, either define new ones and/or use them fust

for system comprehension (e.g., ARAMIS [40]), but do not

offer any impact analysis of the results.

Unfortunately, the later developments are not seeking to

alleviate the situation described above but are often just con-

cerned with exploring new applicability domains of existing

metrics (e.g., security) or defining new, sometimes “very ex-

otic” metrics, rarely probed in real-life software projects. This

trend is very worrying as it embodies one of the most crucial

problems of today’s software engineering research: its lack of

relevance for the software development industry! Probably just

as worrying is the fact that this situation has resulted, although

the importance of proper evaluation has been highlighted as

early as during the emergence of the first, fundamental OO

metrics “metrics must be collected and analyzed throughout

time in as many different projects as possible in order to

establish comparisons and derive conclusion”. [13]. However,

recent developments expose the same problem as almost 20

years ago: “our understanding of existing coupling measures is

not what it should be” [20]. The present situation is even more

dramatic, if we take into consideration that the previous cited

statement was made in a context where only 30 OO coupling

metrics had been developed by the research community, which

is almost insignificant compared to the number of currently

available OO coupling metrics, as our search process has

revealed.

7http://clarkware.com/software/JDepend.html
8https://www.hello2morrow.com/products/sonargraph/architect
9http://stan4j.com/metrics/quality-metrics.html
10https://de.atlassian.com/software/clover/overview
11http://docs.sonarqube.org/display/SONAR/Metric+definitions
12http://kieker-monitoring.net/features/

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174849 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

 Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on , pp.48-54, 16-16 May 2015 
doi: 10.1109/SAM.2015.14



VII. FUTURE WORK

An overview of all relevant coupling metrics is still missing.

In the future, we strongly believe that more effort should be

shifted towards reviewing and re-evaluating already existing

metrics rather than investing further resources in defining

new ones. A coupling metrics catalog similar to catalogs of

design patterns, would be helpful both for researchers and

practitioners to guide the selection of coupling metrics that

best fit their purpose.

REFERENCES

[1] N. Wilde and R. Huitt, “Maintenance support for object-oriented pro-
grams,” IEEE Transactions on Software Engineering, vol. 18, no. 12,
pp. 1038–1044, Dec. 1992.

[2] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, “Effectiveness of
traditional software metrics for object-oriented systems,” in Proceedings
of the 25th Hawaii International Conference on System Sciences, vol. 4.
IEEE, 1992, pp. 359–368.

[3] S. C. Billow, “Applying graph-theoretic analysis models to object
oriented system models,” in Workshop on Metrics for Object Oriented
Software Engineering, 1992.

[4] K. Morris, “Metrics for object oriented software development,” Master
Thesis, MIT, Sloan School of Management, Cambridge, MA, 1989.

[5] J. Coplien, “Looking over one’s shoulder at a c++ program,” AT&T Bell
Labs. Tech. Memo, 1993.

[6] S. Pfleeger and J. Palmer, “Software estimation for object-oriented
systems,” in Proceedings of International Function Point Users Group
Fall Conference, 1990, pp. 181–196.

[7] C. Rajaraman and M. R. Lyu, “Some coupling measures for c++
programs,” in Proceedings of the 8th International Conference on
Technology of Object Oriented Languages and Systems, ser. TOOLS
8, 1992, pp. 225–234.

[8] M. Lorenz and J. Kidd, Object-Oriented Software Metrics. Englewood
Cliffs, New Jersey, USA: Prentice-Hall, Inc., 1994.

[9] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[10] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for
object oriented design,” in Conference Proceedings on Object-oriented
Programming Systems, Languages, and Applications, ser. OOPSLA ’91.
New York, NY, USA: ACM, 1991, pp. 197–211.

[11] ——, “A metrics suite for object-oriented design,” IEEE Transactions
on Software Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[12] R. Martin, “Oo design quality metrics - an analysis of dependencies,”
in Proceedings of Workshop on Pragmatic and Theoretical Directions
in Object-Oriented Software Metrics, OOPSLA, 1994.

[13] F. Brito e Abreu and R. Carapuca, “Object-oriented software engineer-
ing: Measuring and controlling the development process,” in Proceedings
of 4th International Conference On Software Quality, 1994.

[14] J. Eder, G. Kappel, and M. Schrefl, “Coupling and cohesion in object-
oriented systems,” Technical Reprot, University of Klagenfurt, Austria,
1994.

[15] M. Hitz and B. Montazeri, “Measuring product attributes of object-
oriented systems,” in Proceedings of 5th European Software Engineering
Conference. Springer Verlag, 1995, pp. 124–136.

[16] W. Li and S. Henry, “Maintenance metrics for the object oriented
paradigm,” in Proceedings of International Symposium on Software
Metrics. IEEE, 1993, pp. 52–60.

[17] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
Software Engineering, vol. 22, no. 10, pp. 751–761, Oct. 1996.

[18] F. Brito e Abreu and W. Melo, “Evaluating the impact of object-oriented
design on software quality,” in Proceedings of 3rd International Sym-
posium on Software Metrics: From Measurement to Empirical Results,
ser. METRICS ’96. Washington, DC, USA: IEEE Computer Society,
1996, pp. 90–99.

[19] L. Briand, P. Devanbu, and W. Melo, “An investigation into coupling
measures for c++,” in Proceedings of 19th International Conference on
Software engineering. ACM, 1997, pp. 412–421.

[20] L. Briand, J. Daly, and J. Wüst, “A unified framework for coupling
measurement in object-oriented systems,” IEEE Transactions on Soft-
ware Engineering, vol. 25, no. 1, pp. 91–121, Jan. 1999.

[21] E. B. Allen and T. M. Khoshgoftaar, “Measuring coupling and cohesion:
An information-theory approach,” in Proceedings of 6th International
Symposium on Software Metrics. IEEE, 1999, pp. 119–127.

[22] S. M. Yacoub, H. H. Ammar, and T. Robinson, “Dynamic metrics for
object oriented designs,” in Proceedings of 6th International Symposium
on Software Metrics. IEEE, 1999, pp. 50–61.

[23] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling mea-
surement for object-oriented software,” IEEE Transactions on Software
Engineering, vol. 30, no. 8, pp. 491–506, 2004.

[24] E. Arisholm, “Dynamic coupling measures for object-oriented software,”
in Proceedings of 8th IEEE International Software Metrics Symposium,
2002, pp. 33–42.

[25] Á. Mitchell and J. F. Power, “An empirical investigation into the di-
mensions of run-time coupling in java programs,” in Proceedings of 3rd
International Symposium on Principles and Practice of Programming in
Java. Trinity College Dublin, 2004, pp. 9–14.

[26] Y. Hassoun, R. Johnson, and S. Counsell, “A dynamic runtime coupling
metric for meta-level architectures,” in Proceedings of 8th European
Conference on Software Maintenance and Reengineering. IEEE, 2004,
pp. 339–346.

[27] A. Zaidman and S. Demeyer, “Analyzing large event traces with the help
of coupling metrics,” in Proceedings of 5th International Workshop on
OO Reengineering, 2004.

[28] Á. Mitchell and J. F. Power, “Using object-level run-time metrics to
study coupling between objects,” in Proceedings of ACM Symposium
on Applied computing. ACM, 2005, pp. 1456–1462.

[29] ——, “A study of the influence of coverage on the relationship between
static and dynamic coupling metrics,” Science of Computer Program-
ming, vol. 59, no. 1, pp. 4–25, 2006.

[30] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910,
October 2005.

[31] A. Aloysius and L. Arockiam, “Coupling complexity metric: A cog-
nitive approach,” International Journal of Information Technology and
Computer Science (IJITCS), vol. 4, no. 9, p. 29, 2012.

[32] E. V. Berard, Essays on Object-oriented Software Engineering (Vol. 1).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[33] S. Kebir, A.-D. Seriai, S. Chardigny, and A. Chaoui, “Quality-centric
approach for software component identification from object-oriented
code,” in Proceedings of the 2012 Joint Working IEEE/IFIP Confer-
ence on Software Architecture and European Conference on Software
Architecture, ser. WICSA-ECSA ’12, 2012, pp. 181–190.

[34] S. Rathore and A. Gupta, “Investigating object-oriented design metrics
to predict fault-proneness of software modules,” in Proceedings of 6th
International Conference Series on Software Engineering (CONSEG),
2012, pp. 1–10.

[35] B. Alshammari, C. Fidge, and D. Corney, “Security metrics for object-
oriented designs,” in Proceedings of 21st Australian Software Engineer-
ing Conference (ASWEC), 2010, pp. 55–64.

[36] M. Gethers and D. Poshyvanyk, “Using relational topic models to
capture coupling among classes in object-oriented software systems,” in
Proceedings of IEEE International Conference on Software Maintenance
(ICSM), 2010, pp. 1–10.

[37] J. Chen, H. Wang, Y. Zhou, and S. D. Bruda, “Complexity metrics for
component-based software systems,” International Journal of Digital
Content Technology and its Applications, vol. 5, no. 3, pp. 235–244,
2011.

[38] M. Vianden, H. Lichter, and S. Jeners, “History and Lessons Learnt from
a Metrics Program at a CMMI Level 3 Company,” in Proceedings of
20th Asia-Pacific Software Engineering Conference, APSEC 2013, Vol.
2, no. CMMI, 2013.

[39] A. Hutter, “Business Integration of Metric-Dashboards and Dashboard-
Templates for existing Software-Projects (in German),” Diploma Thesis,
RWTH Aachen University, 2013.

[40] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation
of software architectures,” in 21th Asia-Pacific Software Engineering
Conference (to be published), 2014.

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174849 

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

 Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on , pp.48-54, 16-16 May 2015 
doi: 10.1109/SAM.2015.14




