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Abstract

Regression testing is common practice to reduce bugs in software projects. Even though
test cases are often automated, test execution takes a significant amount of time. In-
creasingly so on huge software projects or if testing needs to be performed for different
configurations with regard to architecture, processor type, or operating system. Long
test executions can delay development due to a longer feedback loop for developers.
Additionally, if tests are skipped due to time limitations, code faults may propagate and
the cost to fix them increases over time.
Regression test optimization aims to optimize test execution. While test selection

reduces execution time by finding a subset of change-relevant test cases, test prioritization
orders test cases corresponding to a weight function, such that important tests are executed
first. Especially test selection there involves risks, because faults may stay undetected
and that time, the cost to fix it increases.
In literature, many algorithms have been presented. Recent research yield promising

results with multi-objective, search-based, and self-adaptive optimization algorithms. For
example, in 2015, researchers at Microsoft presented an approach, named THEO, for test
selection using metric measurements. Based on the test history, THEO computes some
metrics, e.g., the detection rate , and based on those cost values are derived for each test
case.
This thesis presents the requirements to implement a metric based strategy, and

proposes how to realise them. Furthermore, metric-based strategies are implemented,
one that is very similar to THEO and another one that extends the idea by increased
use of parameters. Also a first step toward runtime analysis is made.
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1 Introduction

Contents
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Software testing is increasingly used in today’s development processes. Its main goal is
to assure high software quality, specifically by exposing bugs and thus removing them
before release. Regression testing is a testing approach, where a test suit is run on every
change to detect changes in functionality, and consequently, increase confidence in the
software. However, software testing is taking up an increasing amount of time, especially
on huge software projects.

Test automation is famous technique to reduce testing effort by discovering, running and
evaluation tests. This drastically reduces testing effort. Sophisticated testing framework
exist to help developers with test automation. For instance, the JUnit framework for
Java is widely known. Indeed, it has become so successful that it has been ported to
many other languages. Those frameworks are called the xUnit family [Fow06].
Even though test execution can be automated, it takes a significant amount of time.

One reason might be that, when code changes, new test cases are added, while the old
remain in the test suite. Consequently the test suite keeps growing and takes longer to be
executed [CRK10]. This effect even increases with respect to huge software projects and
when testing needs to be performed for a variety of different configurations with regard
to architecture, processor type, or operating system [Her+15]. Long test executions can
delay development due to a longer feedback loop for developers. Additionally, if test
execution is skipped, code faults may propagate and the costs to fix them increase over
time [Ors+01].

Projects often are on a tight schedule for varying reasons, e.g., that a security relevant
patch needs to be released quickly. In those cases it is not feasible to run a test suite,
that may need multiple hours to finish. Developers often decide to run a manual selection
of test cases. They select those, which are in their experience or intuition relevant for
the code change they made [Gli]. Manual selection is prone to human error. Often test
cases fail, which are not linked to the change at a first glance. In the worst case scenario
the overseen bugs propagate and fixing them becomes a complex process.
Continuous delivery is another frequently used technique. It describes the process,

that after a commit to repository is made, software is automatically built, compiled and
deployed to the server. Usually test suites are run prior to deployment, Regression test
optimisation (RTO) could allow a shorter time between a code change and deployment.
Shortening the time between code change and deployment can also decrease the time to
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1 Introduction

discover problems [EMR02].
RTO aims to optimise test execution, e.g., by reducing execution time. Multiple different

strategies of RTO can be found in the literature. Since the problem of determining
test cases that are relevant for a code change is NP-hard, many strategies try to use an
heuristic approach [AC91]. While some analyse coverage data or evaluate data gathered
in previous test runs, others use self-learning structures like genetic algorithms [Jyo14;
SSS11; BM07]. Even though there is a multitude of strategies, the common goal of most
strategies is to reduce the time for test execution.
The following two approaches are used for that purpose. Test prioritisation on one

hand, is the method of reordering the execution of test cases. This may not reduce the
overall execution time, but it is advantageous to run more important test cases earlier,
because if those fail, developers can react faster. On the other hand test case selection,
which completely removes some test cases from the test run, and obviously reduces
execution time by doing so [Jyo14].
THEO is a self-adaptive strategy. It was recently published by Kim Herzig et al

[Her+15]. This strategy calculates a cost function to decide whether it is more cost
efficient to run a test case or skip it. The goal of this thesis is to implement a metric-based
strategy, which is based on the ideas of THEO.
The Lazzer framework, which was developed in 2015 at the RWTH Research Group

Software Construction, will support the implementation [Ple15]. It provides basic func-
tionality for regression test optimisation, including support for selection and prioritising
test cases. Lazzer’s architecture is modular, each of its core components can be exchanged.
For that reason multiple programming languages, test frameworks and data storages can
be supported.

1.1 Contributions
The goal of this thesis will be to conceptualise and implement a multi-objective regression
test optimisation strategy. Thereby relying on the Lazzer framework as a framework for
test suite manipulation.

1. Separate data evaluation and storage: Currently Lazzer does not separate
data evaluation and storage. In the course of this thesis the data store is split up in
analysis engines and data stores, to prepare the implementation of a self-adaptive
strategy.

2. Implement support for a graph database: Relational databases show to be
an ineffective solution to store test history data, hence support for a graph database
is implemented.

3. Strategy parameterisation: THEO and other strategies need parameterisation
of the strategy. By doing so the knowledge developers may have about their
test suite can be used to improve optimisation and make it more project specific.
Consequently parameterisation is requirement and hence implemented.

2



1.2 Structure of this Thesis

4. Implement metric-based strategies: Finally three metric-based optimisation
strategies are implemented, to prove that the updated Lazzer is capable of running
such a strategy.

1.2 Structure of this Thesis
Chapter 2 gives an introduction to Lazzer and THEO. It also briefly gives background
knowledge about regression test optimisation. Next, Chapter 3 the requirements for a
metric-based strategy are covered and introduces concepts for an updated Lazzer. The
realisation is explained in chapter 4, giving detailed insight on the refactoring of Lazzer
and implementation of the THEO strategy. Further, Chapter 5 evaluates the implemented
strategies and gives insights on the performance. Finally, chapter 6 summarises this
thesis and hints at improvements for the future.
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2 Related Work

Contents
2.1 Regression Test Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 THEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Lazzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Running Lazzer . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

This chapter gives a introduction to related work. First a introduction on regression
testing is given, then the THEO strategy is introduced as an example for a metric-based
strategy. Further Lazzer as a important basis for this work is covered.

2.1 Regression Test Optimisation
Software regression testing is widely used technique to discover code faults introduced
with a code change, such that those faults can be fixed. Since solely manual testing is
not feasible, even on medium sized software projects, automatic testing has become the
standard. Considering large and complex software systems, the need for extensive testing
suites increases. The downside becomes obvious if one looks at execution times for those
test suites. For instance, running all available tests of the Apache Spark project needs
approximately 35 minutes [Spa]. While this project is rather small, execution times of
multiple days a not unusual [Do+10]. Ideally tests should be run with every code change
a developer performs. In practice this would massively delay development and hence is
not feasible.

Software tests, depending on the project, may also have to be run on multiple configu-
rations [Her+15], thus consuming even more computation time. All this has a measurable
impact on the effectiveness of a development process. While on one hand software
quality needs to be held high, software release cycles shorten, especially with practice like
continuous integration. Additionally, security fixes are to be released as fast as possible.
If fixing takes up to much time or even introduces new weak points, the results can be
devastating.
The previous section states that regression testing is a task that has to be conducted

with great care, but also suffers from an increasing pressure regarding time. Many, if not
most, developers resort to manual test selection [Gli]. This term describes the common
practice to run hand picked tests. Moreover, developers pick test cases which regarding
their experience relate to the code change they recently made and run them. There is a
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2 Related Work

History-based [Gra+01], THEO [Her+15]
Coverage-based [GIP11]
Modification-based [TTL89]
Requirement-based [Gor+08]
Other approaches [SSS11]

Table 2.1: Examples of RTO Strategies

lot of room for mistakes, because code which does not directly correlate to the changed
code may also break with the change.
There are several approaches to optimise a test suite, one is test case prioritisation.

It reorders test cases, often with the goal to increase the probability that a certain test
case fails early in the process. This is beneficial because commonly if one test case fails
during test execution, the remaining tests are not run, such that prioritisation can lead
to a time reduction. Though if no test case fails, test prioritisation has no effect. A more
radical approach is test selection, which is very effective to reduce execution time. Test
selection modifies the test suite, such that a subset of test cases is run. The risk of not
detecting certain bugs is higher with selection than with prioritisation, because some
tests are not executed.
Solutions on how to optimise test cases automatically can be found in the literature.

The first approach coming to mind would be to analyse code changes and calculate which
code relates to the change. Unfortunately, solving this problem is NP-hard [AC91]. With
this in mind, approaches, that gather data from previous test runs have been found.
Table 2.1 gives an overview on some algorithms which have been envisaged to find a

heuristic solution. History-based approaches gather data on test runs, e.g., execution
time or outcome. This history data is then evaluated for optimisation. Among others,
THEO, which is introduced in section 2.2, is a history based strategy. While history-based
approaches store test results, coverage-based approaches store the code that was executed
when running a certain test case. The tested program is sliced into multiple parts, which
are linked to a certain test case. If a change occurs test cases linked to that code are
run. Modification-based algorithms take a similar approach. But instead of gathering
coverage data they rely on models, e.g., object diagrams. Another approach takes a closer
look at software requirements. Considering the fact that software is often build upon
certain specifications, which are documented prior to development, requirement-based
approaches optimise test suites such that test cases for more important requirements
have a higher weight. Not every approach is covered here. Also there are some that do
not fit the categories above, for example there are genetic algorithms which can be used
for RTO purposes.
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2.2 THEO

2.2 THEO
THEO is one strategy, which was presented in a paper by [Her+15], to optimise test
suites. It is a test selection technique. The goal of their research was to find a strategy
that not only reduces testing costs, but to find a trade off between optimising costs and
software quality. THEO is self-adaptive, which means that it improves over time and can
react on changes to the test suite. Since THEO relies heavily on this data it may need
a training phase of about 50 executions upon initialisation. After that training phase
THEO accesses four general categories of data: General Test Execution Information, Test
Runtime, Test Results, Execution Context (e.g. processor type).

Cost of Execution: costexec = costmachine ∗ (PF P ∗ costinspect)

Cost of Skipping: costskip = PT P ∗ costescaped ∗ Timedelay ∗#engineers

Detection Rate: PT P (t, c) = #detecteddefects(tic)
#executions(tic)

False Alarm Rate: PF P (t, c) = #falsealarms(t,c)
#executions

THEO is a metric-based strategy, it calculates the two cost functions depicted in the
listing above. The costexecution formula describes the costs of running the test considering
machine cost, false alarm and inspection cost. A false alarm is a failing test that is not
caused by a code fault. Those can for example occur if the test case is outdated.
The costskip formula describes the costs which are inferred by skipping a test. This

formula considers that a certain bug escapes attention and needs to be fixed at a later
point in development. This bug may block other engineers from committing their changes,
which may lead to a time delay, Timedelay. Additionally, to fix that bug at a later point
leads to higher costs. Those costs depend on a variety of factors. For example on
the severity of the bug, but also on how long the bug stays undetected. In certain
circumstances a undetected bug in a production release can infer huge damages.

False alarm and detection rate can be calculated by utilising the stored history values
of previous test runs, other values have to be parameterised. An example is the machine
cost per hour, or the costs for an escaped bug. Even though default values can be found,
in practice those values are project specific.

To ensure software quality, the strategy enforces a branching schema, which is commonly
used in software development. Quality guards are established at important points in the
branching schema. Those quality guards ensure that at this point each test is run at
least once. For instance, all tests should be executed at least once before the feature
branch is merged into the main development branch. Merging erroneous code into the
main development branch can lead to a multitude of follow up errors: Other developers
may build upon faulty code and that code may need to be changed when the bug is
finally resolved. Also if a bug is merged on the main branch, the developer who discovers
the fault may not be the author of the faulty code, so he may need an increased amount
of time to fix it.

7
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2.3 Lazzer
The Lazzer framework was developed in 2015 at the RWTH Research Group Software
Construction, [Ple15]. The framework can discover, select, prioritise test cases and then
execute them. Discovery and execution is delegated to the test framework, e.g., JUnit.
Lazzer offers an interface to modify test suites. Modifications can consists of selection and
prioritisation. Additionally, Lazzer is able to store data, which is gathered before, during
or after the test run, e.g., outcome and execution time of test cases. It was developed in
a modular structure as figure 2.1 shows.

2.3.1 Architecture

RTO Framwork

Optimization
StrategiesData Stores Test Framework

Adapter

Client Adapter

Figure 2.1: UML component diagram of the Lazzer Architecture.

Each of the main steps in the Lazzer framework are generalised by interfaces: storing
test data, retrieving test data, and the optimisation strategy itself. Implementations
of those interfaces are located in the corresponding modules. The main processing is
executed in form of a pipeline. This part is called the RTO framework.

There a nine stages registered to the pipeline pattern. Each stage is executed separately
in fixed order, depicted in figure 2.2 and executes certain tasks that can be modified by
injecting different implementation of the interfaces mentioned before. These classes are
pre-configured when using Lazzer and then loaded with the help of Google Guice.

Test Discovery Uses the testing framework’s discovery mechanism to discover all test
cases that are available for optimisation.

Pre-Optimisation Data Collection Takes care of instantiation of the data store and

8



2.3 Lazzer

Pipeline

Test Discovery Pre Optimisation Data
Collection Optimisation Test Run Post Test Run

Data Collection Reporting

Figure 2.2: UML component diagram of the Lazzer pipeline stages.

runs data collection methods which are overwritten by the strategy, that has been
selected.

Optimisation Strategy specific optimisation methods are executed.

Test Run The testing framework is used again, to run the modified test suite. Test
results are collected here and processed in the next stage.

Post-Test Run Data Collection The data store is used to save test results.

Reporting In the reporting stage results of test execution and optimisation are shown.

Google Guice also takes care of injecting a singleton instance of the datastore into the
strategy, the strategy can then access previously stored data on test runs. This makes
Lazzer very configurable and new strategies or data stores can be implemented and used
without changes to the RTO framework module.

2.3.2 Running Lazzer
Lazzer can be run either by using the command line runner or by using a Maven plugin
which registers a Maven goal and executes test cases, similar to surefire. Surefire is a test
runner for Maven [Sur].
Currently several simple strategies are implemented in Lazzer: Prioritise Execution

Time, Prioritise/Select Failed Tests. Prioritise Execution Time accesses the datastore
and retrieves the last execution time for a certain test case, then orders test cases starting
with the lowest execution time. More tests can be run in a shorter time and under the
exception that all test cases fail equally often, this increases the probability that a test
case fails early and the test run finishes in a shorter period of time. Select Failed Tests
avoids running succeeded tests if there is one or several that failed. The scenario is that
a developer is currently fixing broken test cases and checks whether his changes have
been successful. If no test has failed the previous test run, all tests need to be run.
There is also one example implementation of a data store which currently accesses

an SQL database. That database is able to store time and outcome of previous test

9
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runs and it can be accessed through the default data store interface. Tests are stored
in the pre-optimisation data collection phase and results are gathered and added to the
database in the post-test run data collection stage. In the current implementation only
the canonical class name of those tests is used to store in the database. No additional
attributes are evaluated in the process.
Furthermore, a test framework adapter implementation is necessary to run Lazzer,

which is provided for the JUnit framework. Unit tests in Java projects are discovered in
the discovery phase of Lazzer execution. The client adapter is also able to alter the test
suite and run only the selected tests.

Lazzer can be run as a Maven Plugin, which is the most convenient way to run tests in
a project, because tests can easily be included in a certain Maven goal, and for example
bound to every build. The Maven plugin allows parameterisation, e.g., the data store
implementation can be defined here.
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Chapter 3 gives an introduction to graph databases at first. Then requirements of a
metric-based strategy are elaborated. Finally, concepts on how to refactor Lazzer and
implement the THEO strategy are given.

3.1 Graph Databases
Non-relational databases have been around since the late 1960, but while relational
databases are the uncontroversial standard, non-relational databases regain popularity,
examples are Googles BigTable and Facebook’s Cassandra.[Vic+] The biggest difference
to relational databases is the lack of a predefined schema. There are different kinds of
non-relational databases, some of them are also called NoSQL databases. NoSQL

NoSQL databasses process data faster than relational databases [Lea10]. The downside
is that data is handled with less precision. The lack of a schema can lead to programming
errors, there is no security that a certain objects hold the correct data type.
Also most relational databases management system enforce atomicity, consistency,

isolation and durability (ACID). Atomicity and consistency mean that transactions
and updates are performed completely or not at all. Isolation means that multiple
applications, that work on the database don’t influence each other. Finally Durability
means that a transaction which successful completes persist [Lea10]. NonSQL databases
often relinquish to enforce those rules, which makes them more performant but also more
prone to flaws.
There are Document databases consist of objects, which may have relations and
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attributes. Also an object in a document database can nest another object. Also if there
are frequent changes to the domain model, there is no schema that needs to be changed.

Graph databases consist of Directed Acyclic Graphs (DAG’s). Those databases apply
well if the domain model is similar to a graph. As a matter of fact it can become a
complex and time consuming task to store and maintain a graph structure in a relational
database. For this case graph databases offer a simpler and more seamless solution.

Movie

Actor	2
Cinema	

B

Cinema	
A

Actor	1

Figure 3.1: Illustration of a directed acyclic graph.

The paper by Mccoll et al. also suggests that graph databases have an performance
edge when applying typical graph operations (e.g. depth first search). [MB] They suggest
suggested that graph databases do not perform worse even on problems which seem more
suitable for relational databases.

3.2 Requirements
This chapter covers the requirements of a metric-based optimisation strategy. Require-
ments already fulfilled by the Lazzer framework are covered shortly and then additional
requirements are introduced.

3.2.1 Requirements for a Metric-Based Strategy
There are some general requirements for RTO, which this section summarises shortly,
since Lazzer already supports simple optimisation strategies, and hence fulfils those
requirements. A optimisation framework should be able to discover and execute tests.
Since testing frameworks exists the Lazzer should delegate those task to them, con-

sequently Lazzer needs a connection to such a testing framework. Lazzer also should
be able to model the discovered test suite, and modify it before finally delegating the
test execution to the testing framework. Afterwards test results should be displayed and
stored.
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After giving an introduction to the requirements of RTO we will take a closer look at
THEO, which has already been introduced earlier. The strategies developed in this thesis
will be based on the idea of THEO and consequently have similar requirements. THEO
is a self-adaptive strategy, that means it relies on gathering data from previous test runs.
We call this data history data, to put it in other words THEO is a history-based strategy
(cf. section 2.1).

Prior to selecting test cases, THEO calculates two cost functions costskip and costexec,
which are described in detail in section 2.2. Since those cost functions are aggregated
metric values, the framework should be able to compute these metric values.

As a first step to calculate those metric values the test history data is accessed. After
retrieving the required data some kind of calculation has to be performed. Additionally
parameters like costinspection are allocated to the calculation process. Finally the metric
values have to be stored. The metric values used in the course of this thesis can be
categorised as follows.

Constant parameters: Project/Test specific values which are constant for multiple
test runs. For instance the cost for computation time.

Heuristic measures: Values, that are acquired by some kind of data analysis.

Constant parameters need be injected into the computation process by using some
kind of configuration file. In contrast history values need be stored in the database
section 3.2.2. A good example for a constant parameter would be the cost of a compute
hour. Even though THEO does only use a fixed number of those values, the new Lazzer
should provide a flexible solution to add fixed values.

Heuristic measures should be calculated in some kind of analysis engines. This analysis
engines should have the single task of computing these values. Lazzer’s modular structure
should also be applied to those analysis engines. This will make it easy to add or exchange
analysis engines, by using the frameworks hotspots. Additionally when looking at parts
of the cost function, e.g. the detection rate, it occurs that metric values depend on each
other. The detection rate as an example depends on the failure rate and the total number
of test runs.

An implementation of a analysis engine should have a recursive element, such that more
complex values can be constructed by combining multiple engines. Also to avoid duplicate
calculations these engines should cache values, which have already been calculated,
during a test optimisation. Additionally metric values should be stored for later usage.
Conceivably those stored values could be used to calculate measures incrementally. The
next section 3.2.2 will explain how those values are saved in detail.

3.2.2 Test History
THEO falls in the category of history-based strategies (cf. section 2.1). As a consequence
there is the need for a way to comprehensible access result data, which was gathered
in previous test runs. Figure 3.2 shows the structure of multiple test results in form of
directed graph.
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Figure 3.2: Illustration of the data, that will be stored in the testhistory data store.

This structure widely resembles the structure of Lazzer’s data model (cf. section 2.3)
of a test suite, which also is very similar to the xUnit architecture section 4.1.1. But
since the structure should be able to represent multiple test runs with evolving test
suites, there is an additional node TestRun. If a test run is completed it is appended as
a successor to the most recent test run already stored in the database.
Metric values are appended as nodes, which are either connected to a test method,

test class or a test run. One of such test objects can have a number of metric values,
but each metric value has one target node. History values are essential and every node
has them. In comparison to metric values it’s also not necessary that history values are
connected to other nodes. For instance metric values could be an aggregation of other
metric values, while history values are rather simple. As a consequence history values
are stored inside the node they belong to. This differentiation makes it easier to separate
calculated metric values from values which are provided by the testing framework.
Lazzer currently uses a relational database and it would be possible to store this

structure in that database. But as mentioned in section 3.1 there graph databases are a
more efficient way of storing such a graph structure. Even though this is not a necessary
requirement it is a reasonable extension to the Lazzer framework.
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3.3 Refactoring and Extension of Lazzer
This section covers in detail how Lazzer is refactored and extended. As already stated
in the previous section 3.2.2 some kind of analysis engine is needed. A new hotspot for
analysis engines has to be added to the framework. Also parameterisation of a strategy
is currently not implemented in Lazzer and it needs to be implemented. In the course
of that access to some kind of configuration file and a way to directly assign parameter
values to test cases needs to be created. A detailed concept on how parameterisation is
done will be given in section 3.3.3. Finally history data storage needs to be reworked to
store data in a graph database.

3.3.1 Coarse-Grained Architecture
Figure 3.3 depicts the extended architecture of Lazzer. A new hotspot for analysis engines
has been added. Those analysis engines can recursively depend on each other. Strategies
can access those analysis engines to get metric values. The benefits of this architecture
are that multiple strategies can share analysis engines.

RTO Framwork

Optimization
StrategiesData Stores Test Framework

Adapter

Client Adapter

Figure 3.3: UML component diagram of the coarse grained architecture

Parameterisation will be implemented as one analysis engine, such that it can be reused
by multiple strategies. Additionally changes to the RTO framework to support analysis
engines are made. And the test framework needs to be extended to support test specific
parameters. The following chapters will give a detailed concept of those changes.
To implement a data store, which supports graph databases no changes to the archi-
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Figure 3.4: UML class diagram, which shows the meta model used to model history data
in the updated Lazzer.

tecture are necessary. The new data store will make use of the test history data store
hotspot. Even though most changes can be made using the framework’s hotspots some
changes to the core framework need to be made, those will be covered in the following.

3.3.2 Test History’s Meta Model
As already stated before a graph database would be a promising way to store data that
is gathered by Lazzer. This chapter will give a fine grained concept of how that data can
be stored and which benefits result from using a graph database.

First of all, Lazzer should in the future support multiple different strategies. As stated
in section 2.1, there a many strategies that take completely different approaches. Since
some of them may need to store data it would be beneficial if the data store could easily
be adapted. Relational databases have a schema which often needs to be updated if
mayor changes occur to the domain model. Even though a schema that is flexible enough
could be created, but the effort can be saved by using a non-relational database.

Also Lazzer should be able to process a reasonable amount of data fast enough to really
save execution time. Another benefit could be that non-relational databases generally
perform better. In particular graph databases perform very regarding typical graph
algorithms like depth first search [MB].
The meta model depicted in figure 3.4 shows how the graph database will be stored.

The interface Repeatable is used to model that each test run as a predecessor. Both
test method and test class extend the class test case object. Lazzer differentiates between
test classes and test methods while the xUnit framework does not, this is a compromise
between both architectures.
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The interface measure target is implemented by the TestMethod, TestClass and
TestSuite, because metric values exists for each of them. Each MeasureTarget can
have a number of test measures. A test measure in this modal is not strictly defined.
Hence it can consist every bit of information that is related to a test suite or test case
object.

3.3.3 Parameterisation
Another important requirement was the need of parameters to inject project specific
values. Parameterisation was design to be flexible enough to be used with other strategies
and not only THEO. The following Parameters could be divided in three categories:
strategy parameters, project parameters and test parameters. The first two should be
gathered in some kind of configurations file, while the test specific parameters could be
added directly to the test they influence. This chapter will give a detailed explanation of
this structure.

Strategy Parameters are used to define the basic behaviour of a strategy.

Project parameters are used to define constant values, e.g. compute cost per hour.

Test parameters are used to define test specific values, e.g. test priority.

Parameters consist of fixed values, which are not altered by the strategy. Strategy
parameters are those which vary for every project. An example of such a parameter
would be the compute cost per hour, as this is a value that is not influenced by test runs
and hence is not changed by the strategy. There are multiple other values that can be
found in the THEO strategy and are discussed more detailed in section 2.2.

Test parameters are assigned to test cases. The idea is that a test can have for example
a priority. Considering there is a project that has some core functions which are reused
in almost every component. Assuming that one of those failed, a failure can be overseen
easily. The result would most likely be that the whole application fails to function
within specifications. Those tests are more important than others. If this fact is known
by developer working on that project, it can be used to improve optimisation. Test
parameters should be added to the optimisation process to reflect this knowledge.
Other kinds of test parameters are possible. For instance, tests could be bound to a

branch, such that those tests are always executed if ran on that branch. For simplicity we
choose to implement a test priority parameter. There are five priority values, which are
explained with detail in section 3.3.3. Test prioritisation is also influenced by priorities,
while the usual prioritisation methods are considered first, if two test cases have the same
value test priority influences the order.

3.4 Strategies
This section will give an introduction of the ideas of three example strategies which are
implemented in the course of this thesis. The first will make usage of an analysis engine
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Priority Test Selection Test Prioritisation
NEVER never executes execute last

AVOID_EXEC avoid execution execute later
DEFAULT default priority

AVOID_SKIP avoid skipping execute former
ALWAYS never skips execute first

Table 3.1: Testing Frameworks Release Dates

and order test methods regarding the values it delivers. The metric-based parameter
strategy will show how a cost function can be parameterised and the last strategy
implemented is the THEO strategy to show that the updated Lazzer really is compatible.

3.4.1 Detection Rate Prioritisation
Detection rate prioritisation is the first example strategy. It was mainly implemented
to show how an analysis engine is built. There is no parameterisation involved in this
strategy. Figure 3.5 depicts how the necessary analysis engines are built. The detection
rate will be calculated like stated in section 2.2. Each engine implements the interface
AnalysisEngine and has three methods. The first, named calculate, is called by the
strategy to retrieve the value for a certain target, which might be a TestMethod or
TestClass in this case.

<<interface>>
AnalysisEngine

+calculate(Target):Measure

+preOptimizationDataCollectio
n(...):void

+postTestRunDataCollection(..
.):void

DetectionRateEngine

+calculate(Target):Measure

+preOptimizationDataCollection(...)
+postTestRunDataCollection(...)

SuccessRateEngine

+calculate(Target):Measure

+preOptimizationDataCollection(...):void
+postTestRunDataCollection(...):void

FailureRateEngine

+ calculate(Target):Measure

+ preOptimizationDataCollection(...):void
+ postTestRunDataCollection(...):void

DataStore
...

 ....

TestMeasureService

...

+ storeTestMeasure(...)
+ retrieveTestMeasure(...)

TestHistory
Service

...

 ....

Figure 3.5: UML class diagram of the detection rate engine.

The preOptimizationDataCollection and postTestRunDataCollection are called in the
equally named stages of the Lazzer pipeline and in this case save the calculated values to
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the data store.

3.4.2 THEO strategy
In the previous chapter an example for a analysis engine was given, this chapter will
concentrate on the strategy itself. To calculate the cost functions the following analysis
engines will be needed:

• CostEngine:
costexec = costmachine ∗ (PF P ∗ costinspect),
costskip = PT P ∗ costescaped ∗ Timedelay ∗#engineers

• MachineCostEngine: costmachine = durationlastexecution ∗ parmmachinecost

• DetectionRateEngine: PT P (t, c) = #detecteddefects(tic)
#executions(tic)

• FalseAlarmRateEngine: PF P (t, c) = #falsealarms(t,c)
#executions

• SuccessCountEngine: #executions, #detecteddefects(tic)

• FailureCountEngine: #executions, #falsealarms(t, c)

• ParameterEngine: costinspect, costescaped, costmachine, #engineers, Timedelay

• GitEngine: Branch and commit Information for quality guards (cf. section 2.2).

The false alarm rate engine is build similar to the detection rate engine, but it requires
some more effort, because the inspection result is considered. The inspection results gives
information whether the failure of a test cases was a bug or if it was a false alarm. An
attribute inspection result was added to the test case object. The inspection result can
have three values, unresolved, resolved and false alarm. When a test fails the inspection
result is set unresolved. After it has been inspected by a developer it is either set to
resolved if a bug was fixed or to false positive if no bug could be found.

The Git engine accesses information about the branch and once a certain branch is hit,
e.g., the master branch. All tests are executed. This is a simplification in comparison to
the original THEO structure, but suffices to show how quality guards can be implemented.

The machine cost engine uses the history data to determine the last execution duration
of a specific test case. After that it utilises the parameter engine to calculate a value for
the computation cost. Even though this is only an approximation, because execution
times may fluctuate, it is better than a fixed value for every test.

Finally the Lazzer framework’s hot spot for optimisation strategies is used to add the
THEO optimisation strategy itself. This strategy uses the state analysis engines. The
strategy does not perform any calculations itself, morover it utilises the cost engine and
optimises based on the values provided.
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3.4.3 Metric-Based Parameter Strategy
The new Lazzer allocates multiple new possibilities to build strategies. Having that in
mind this strategy uses those possibilities and evaluates the idea of using a sum of costs
for optimisation. The basic idea is similar to the THEO strategy. Two cost functions
are defined. One cost functions to skip a test case and one to execute it. The difference
is that those cost functions can be configured. The underlying thought is that a cost
function may not fit every project. In figure 3.6 depicts how the optimisation process of
such a strategy looks like.

Both cost functions are parameterised and injected into the optimisation process. That
optimisation process also has access to test parameters, project parameters, and the
original test suite. The combination of that information is used to calculate the cost
functions and finally to optimise the test suite.

Strategy
Skip Cost Execution 

Cost

Test Parameters

Optimisation Process

Project Parameters

Optimised 
Suite

Test Suite

cost value

cost value

…

cost value

cost value

…

cost escaped

compute cost

…

priority

failure cost

…

Figure 3.6: Illustration of the parameterised optimisation process.

This strategy will be similar to THEO. The relevant formulas are shown below, where
fp and dr are the false alarm and detection rate as defined in the THEO strategy.

costskip = costcostbranch + (dr ∗ costannotated)

costexecution = costmachine + (fp ∗ costinspection)

Each cost functions is again calculated by an analysis engine. Some of those can
be reused, since they have already been part of the THEO strategy, others have to be
implemented. The following engines have been added:

• CostBranchEngine

• StrategyParameterEngine

• MetricMeasureEngine
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The annotated cost engine calculates the value of a certain test case, based on the
annotated priority and a default cost. Additionally, test cases which are annotated with
the priority NEVER are not executed. Test cases with a higher priority are also valued
higher by the strategy. For instance tests that ensure a critical function of the program
can be associated with a very high priority, this way external knowledge can be utilised
in the strategy.
The cost branch engine is used to connect the cost of skipping a test to the branch

the test is executed on. The idea is that skipping a test on the master branch may lead
to much higher cost than skipping a test on some development branch. This is due
to the fact that code faults on the master branch may be undetected when releasing
the software to production. Even though this rule is not universal, we assume it for
the sake of this example. This strategy could be configured to execute few of the most
important tests on the development branch, but execute a more extensive test suite on the
development branch. The cost of false detection calculates the formula dr ∗ costannotated,
which represents the cost of a false alarm depending on the annotated value of a test
case.

CostStrategy
CostValues:List

XMLDefinedStrategy
costSkip:CostStrategy
costExec:CostStrategy

staticValues:ListStaticValue
name:String
value:Float

Figure 3.7: UML class diagram, which shows the meta model for strategy parameters.

Finally the strategy parameter engine takes care of reading the file, which specifies the
cost functions and static parameters. Assuming such a analysis engine is implemented,
no new implementation is needed to add or remove a cost value to the strategy. This
allows for the strategy to be easily adapted for the individual projects. The meta model
is depicted in figure 3.7.
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This chapter gives an introduction to the necessary background for implementation.
Further, details on the implementation are given.

4.1 Background for Realisation
This section gives an introduction to all necessary libraries and frameworks that are
utilised to realise the updated Lazzer framework and metric-based strategies. First unit
testing is introduced, then Spring, Spring Data and Neo4J is covered.

4.1.1 Unit Testing
’Fixing a bug is usually pretty quick, but finding it is a nightmare. And then when you do
fix a bug, there’s always a chance that another one will appear and that you might not
even notice it until much later. Then you spend ages finding that bug.’, was stated by
Martin Fowler in [Fow99].

Tests are used to find bugs, after a change has been made to the software. The citation
above shows how much effort is connected to finding bugs and emphasises how important
unit testing has become. Unit tests, in contrast to integration tests, do not test the
complete program, but rather each test is designed to evaluate a isolated unit of software.
The idea is to split up the code in small fragments and test if they work as specified in
a controlled environment. Often other parts that are less relevant to a specific test are
mocked (cf. [Ham]).
Test frameworks support implementation and automated execution of tests. Some of

those are described by xUnit frameworks. The term xUnit is derived from JUnit which is
the most common unit testing framework for the Java programming language. JUnit has
been ported to a number of other programming languages. Those frameworks all have
their basic architecture in common, which will be introduced in the following section.
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xUnit

While xUnit may not be a huge project, regarding lines of code, the impact to a
development still is respectable [Fow06]. The xUnit architecture, figure 4.1, is built
around two objects: test methods and test classes. Since test classes are only a container
to test methods, xUnit does not distinquish between those. Instead xUnit has a class
called TestCaseObject, which represents cases.

TestSuiteObjectTestRunner
creates
and runs

TestCaseObject
testMethod

TestCaseObject
testMethod

runs

runs

Test Discovery
Mechanism

creates

creates

creates
SUP

(System Under Test)

exercises

exercises

Figure 4.1: UML Diagram of the simplified xUnit architecture.

Test case objects are then gathered in a TestSuiteObject, which is generated in a
TestSuiteFactory. Those test suite objects can contain test methods from multiple test
classes. A test suite object can be run by a test runner. Consquently all test case objects
in that suite are run.

The unit framework does not only run tests, it also has the capability to find tests that
have been written before. Those tests can then be loaded into a test suite object and
finally be run. Discovering test cases often is parameterised by a classpath or class.
When tests are about to be executed, the test runner delegates the run of single test

methods to the test suites. Those build up the SUT (System Under Test) in four steps:
setup, exercise, verify and teardown. Setup and teardown steps are taking care of the
surrounding fixture, needed to exercise the tests. The exercise step executes the test
itself and the verify step takes care of verifying the results.

4.1.2 Spring
The Spring dependency injection framework can be seen as an extension to Java EE, it is
licensed under the Apache license. The Spring framework aims to simplify the creation of
Backend-Application by favouring standards of configuration. While previous versions of
Spring relied heavily on Xml configurations, the most current development relies heavily
on annotations. Annotations are an integral part of Java since version 5.0.

Annotations, provided by Spring, are not only used for configuration but also to realise
some default design patterns, e.g., the singleton pattern. In this thesis, we mainly used
two Spring modules. On one hand, dependency injection, and on the other hand, Spring
data is used within the data store to provide database access. Spring contains a variety of
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other modules. Those, for example, provide support for easily implementing web services
(Spring MVC framework). Castor is also part of the Spring core framework and is used
in this project to map Xml files to Java objects.

Dependency Injection

The Spring dependency injection can be initialised in a quite small example. The following
example shows how to initialise a Spring Boot project. Spring Boot is a collection of some
Spring components, which allow to easily bootstrap an application. The most important
aspect of a Spring Boot application is the entry point, where the dependency context is
initialised, as can be seen in listing 4.1, listing 4.2, and listing 4.3.
1 package example.springboot;
2
3 import ...
4
5 @ComponentScan(basePackages = {"example.springboot"})
6 public class DependecyContextMain {
7
8 public static void main(String[] args) {
9 ApplicationContext applicationContext = new

AnnotationConfigApplicationContext(Main.class);
10 ExampleService service =

applicationContext.getBean("example.springboot.ExampleService")
11 System.out.println(service.getMessage());
12 }
13
14 @Bean
15 public ExampleBean getExampleBean(){
16 return ExampleBean("Hello World");
17 }
18 }

Source Code 4.1: DependecyContextMain.java

1 package example.springboot;
2
3 import ...
4
5 @Component
6 public class ExampleBean {
7 private String message;
8
9 public ExampleBean(String message){

10 this.message = message;
11 }
12
13 public String getMessage(){
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14 return this.message
15 }
16 }

Source Code 4.2: ExampleBean.java

1 package example.springboot;
2
3 import ...
4
5 @Service
6 public class ExampleService {
7 @Ressource
8 ExampleBean exampleBean;
9

10 public String getMessage{
11 return exampleBean.getMessage();
12 }
13 }

Source Code 4.3: ExampleService.java

This code example will execute and return ’Hello World’. When the Spring context is ini-
tialised, Spring automatically searches for classes, which are annotated with @Component

and @Service. Custom annotations which extend the @Component annotation are also
supported. Then those classes are injected where @Resource is utilised. In this example
the ExampleBean class is initialised in its @Bean configuration and then injected into the
example service. Applications that are built with this pattern can be easily configured
and save a lot of code. Also in comparison to more elaborate xml configurations code
can be saved significantly. For instance if a bean has the default constructor without
parameters, no @Bean configuration is necessary.

Spring Data

Spring Data is relatively new component of Spring which supports data from different
origins. Among others, there are:

JPA The Java Persistence API can be used to access a relational database.

MongoDB is a popular NoSQL database.

Redis is a in memory data structure storage.

Key-Values Makes it easy to access custom data stores that store key value pairs.

REST Allows to access custom web services that use the REST protocol to provide
data.
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Neo4J Access the graph database management system Neo4J.

Every implementation of Spring Data follows the same main structure, which is depicted
in figure 4.2. The domain model consists of entities and relationships, those are modelled
with Java classes and then annotated either with @NodeEntity or @Relationship

-Entity, to map those classes to the graph database. Repositories are used to access
those entities on the database. Those repositories access an entity, that is specified with a
generic attribute. A collection of methods to access and store that entity is then provided
via inheritance. If those default methods are not sufficient, there are multiple ways of
adding custom methods. Some of those will be covered in the following section.

<<interface>>
UserEntityRepository

@NodeEntity(label= "USER")
UserEntity

@GraphId
private Long uid:Long

@Property
name:String

CustomUserEntityRe
positoryImpl

Method

<<interface>>

CustomUserEntityRep
ositor

UserService

+ getUser(String
name)

@RelationshipEntity(type="KNOWS")
KnowsRelationship

@GraphId
uid:Long

@StartNode
startNode:UserEntity

@EndNode
endNode:UserEntity

Figure 4.2: UML Model of a spring implementation.

1 @Query("MATCH n:Actor WHERE n.name= {name} RETURN n")
2 public Actor getMovieActors(@Param("name") String name);

Source Code 4.4: QueryAnnotation.java

One way to add custom methods is the @Query annotation. It can be used as depicted
in listing 4.4. This statement queries for nodes with the label ’Actor’ and the attribute
name, that equals the passed parameter. Spring is also able to generate queries from
method names. Spring detects some common keywords ,e.g., ’findBy’ and if a methods
starts with such a keyword, the following word is taken as an attribute name. An example
is given in listing 4.5.
1 //Method for named query
2 private findByName(String name);
3 //Corresponding cypher query
4 MATCH n:Actor WHERE n.name=#{name} RETURN n

Source Code 4.5: NamedQuery.java
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Repositories can be extended using the schema depicted in figure 4.2. For instance, if data
can not be queried with a single query, a custom repository can be instantiated. First an
interface is created, which is then implemented. Spring searches for custom repositories.
For Spring to be able to find that class it has to be named exactly considering the
rule: Custom + RepositoryName. And if found, it searches for implementations of that
interface, which have to end with ’Impl’.

Castor

Castor is one possibility to read Xml files provided by the Spring framework. It consists
of a marshaller and an unmarshaller, those can be used like depicted in listing 4.6
1 public class Person {
2 String name;
3 }
4
5 public class Group{
6 List<Person> persons;
7 }

Source Code 4.6: XMLMetaModell.java

1 <group>
2 <person>
3 <name>John</name>
4 <person>
5
6 <person>
7 <name>Mike</name>
8 <person>
9 </group>

Source Code 4.7: Group.xml

1 public void convertFromObjectToXML(Object object, String
filepath) throws IOException {

2
3 FileOutputStream os = null;
4 try {
5 os = new FileOutputStream(filepath);
6 getMarshaller().marshal(object, new StreamResult(os));
7 } finally {
8 if (os != null) {
9 os.close();

10 }
11 }
12 }
13
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14 public Object convertFromXMLToObject(String xmlfile) throws
IOException {

15
16 FileInputStream is = null;
17 try {
18 is = new FileInputStream(xmlfile);
19 return getUnmarshaller().unmarshal(new

StreamSource(is));
20 } finally {
21 if (is != null) {
22 is.close();
23 }
24 }
25 }

Source Code 4.8: ConvertXML.java

Castor can convert XML objects to Java objects and the other way around, without
any further configuration.

4.1.3 Neo4J
Neo4J is a graph database management system, which is licensed under the GNU license
[Neo]. All values are stored either in a node an edge or an attribute. An example can be
seen in figure 4.3. Each node has a type, here street, town and country. The attribute
name can be stored in a node. Each element in the graph database has an automatically
generated id attribute. This attribute is recommended for internal use only, since it is
reused if an entity is deleted. In this example all edges have the same type, which is
’isLocatedIn’.

isLocatedIn isLocatedInHalifaxst… Aachen Germany

Figure 4.3: Neo4J Graph Example

Graph databases are not compatible to SQL-Queries, so Neo4J brings its own query
language, which is called cypher. In Listing listing 4.9 three examples of cypher are
shown that create the example figure 4.3, then match all nodes in the example, and
afterwards delete the country node of the example.
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1
2 CREATE (n:Street)-[e:isLocatedIn]->(b:City{name:’Aachen’})
3 -[f:isLocatedIn]->(c:Country{name:’Germany’});
4
5 MATCH (n) return n;
6
7 MATCH (n:Country) where n.name=’Germany’ DELETE n;

Source Code 4.9: CypherExample1.java

1 CREATE CONSTRAINT ON (n:Country) ASSERT n.name IS UNIQUE;

Source Code 4.10: CypherExample2.java

Cypher has a variety of other features, which are not important regarding the topic of
this thesis, and therefore are not presented here. By design there is no need for schema,
but since version 3.0 of Neo4J schemas can be implemented. Having a schema can have
some advantages for data integrity. A technique similar to using schemas is the creation
of constraints, those can be defined in cypher.Listing 4.9 shows how to assure that each
country’s name is unique. There are some additional possibilities to add constraint to
Neo4J databases, which are not covered here.

successor successor successor

Figure 4.4: Illustration of Neo4J graph

Another useful feature of Neo4J is indexing, which allows for faster and simpler queries.
When using an early version of Neo4J the only way to find an entry point was to manually
define it. Before Neo4J version 1.0 was released, manual indexing was the only option to
indexing.
1 START n=node:Person(index=’abc’) RETURN n

Source Code 4.11: CypherQueryIndex

The cypher statement, listing 4.11, shows how to access the manual created index.
Later in version 2.0 of Neo4J automatic indexing was introduced. Automatic indexing
basically is manual indexing with a fixed name and can be utilised as follows in listing 4.12.
1 START n=node:node_auto_index(index=’abc’) RETURN n;

Source Code 4.12: CypherQueryIndex2

To model a chain of nodes, a start node had to be defined. This start node may have
a special type or an attribute identifying it uniquely. This way of indexing has one
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pitfall, if both a person and a city are index with the attribute name index, both will be
returned as a result of the query for ’abc’. Those manual and automatic indexes are also
called legacy indexes and practically should not be used in favour of schema indexing.
Schema indexing allows to use a way similar to creating constraints to create an index
on a certain type of node or relationship.
1 CREATE INDEX ON :Person(index);
2
3 MATCH (p:Person {index: ’abc’}) RETURN p

Source Code 4.13: CypherExample3.java

Also there is no extra code necessary to improve the performance of a query. Neo4J
automatically utilises schema indexes without the change of queries; in listing 4.13, such
a match statement is shown.

4.2 Realisation
This section will cover the refactoring of Lazzer and how the metric-based strategy is
implemented.

4.2.1 Test History Data Store
A database is needed, since THEO is a history-based strategy. Neo4J, section 4.1.3, will
be used as a database management system. There are multiple reasons that make Neo4J
a suitable choice. One of them is that it stores graphs natively, which leads to a better
performance. Neo4J also offers an extensive documentation and has an active community,
keeping the project up to date [Neo].
Neo4J can be used with Java in multiple ways. One is to use Java’s JPA adapter

with hibernate, another would be to use the Neo4J Java driver, which was especially
developed for Neo4J. Spring data seemed best, because other parts of Spring are also
used in this project. Spring Data uses annotations to map the domain model to database
objects. Figure 4.5 depicts the meta model of the test history datastore.
For each accessed entity a repository is needed. Each repository inherits a number of

methods by default. Those can be used to access the database. Each repository provides
access to one entity. The Spring framework needs a main class where it is initialised.
Since Lazzer has implemented its own way of dependency injection and we did not want
to lose Lazzer’s modular structure, the Spring context is limited to the package of the
test history data store, line 7 in listing 4.14.
1 package de.rwth.swc.lazzer.datastores.testhistory;
2
3 import ...
4
5 @Configuration
6 @EnableNeo4jRepositories
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TestMethodEntity

-outcome:Outcome

TestClassEntity

-
outcome:Outcom

e
TestRunEntity

-uid:Integer
-outcome:Outcome
-time:TIme
-runId:

MetricMeasureEntity

id
name
value
unit

TestSuiteEntity

- did:Integer

<<interface>> MeasureTarget

 + addTestMeasure(...)
+ removeTestMeasure(...):Boolean
+ containsTestMeasure(...):Boolean
+ getTestMeasureEntityCollection():C

ollection<...>

TestCaseObjectEntity

- Long uid
- String canoncialName
- Instant time
- :inspRes:InspectionResult
- Duration duration
- Collection<...> testMeasureEntityCollection

MethodRelationship

start:TestMethodEntity
end:TestClassEntity

ClassRelationship

start:TestClassEntity
end:TestSuiteEntity

MeasureRelationship

start:MetricMeasure
end:MeasureTarget

PredecesoorRelationship

start:TestRunEntity
end:TestRunEntity

SuiteRelationship

start:TestRunEntity
end:TestSuiteEntity

Figure 4.5: UML class diagram showing the domain module of the test history database.

7 @ComponentScan(basePackages =
{"de.rwth.swc.lazzer.datastores.testhistory"})

8 public class DatabaseContext extends Neo4jConfiguration {
9

10 public static final String URL =
11 System.getenv("NEO4J_URL") != null ?
12 System.getenv("NEO4J_URL") :
13 "http://neo4j:passwort@localhost:7474";
14
15 public static ApplicationContext initContext() {
16 return new
17 AnnotationConfigApplicationContext(DatabaseContext.class);
18 }
19
20 @Bean
21 public org.neo4j.ogm.config.Configuration getConfiguration() {
22 org.neo4j.ogm.config.Configuration config = new

org.neo4j.ogm.config.Configuration();
23 config
24 .driverConfiguration()
25 .setDriverClassName(
26 "org.neo4j.ogm.drivers.http.driver.HttpDriver"
27 )
28 .setURI(URL);
29 return config;
30 }
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31
32 @Override
33 public SessionFactory getSessionFactory() {
34 return new SessionFactory(getConfiguration(),
35 "de.rwth.swc.lazzer.datastores.testhistory.entities");
36 }
37 }

Source Code 4.14: DatabaseContext.java

Listing 4.14 shows the initialisation of the context. The database location and cre-
dentials are configured by creating a bean of the class Configuration. This example
can also be seen as a minimum working example, because no further configuration is
necessary to use Spring Data.

4.2.2 Analysis Engines
This section introduces analysis engines and show how they are implemented. Figure 4.6
gives an overview of those engines and their dependencies on each other. Each engines
implements the AnalysisEngine interface, and hence inherit the preOptimization

-DataCollection() and postTestRunDataCollection() methods, these methods are
currently used to store results in the database, but may be used otherwise in the future.

The analysis engine also has multiple calculation methods, which have different param-
eters. For example there is a calculate() method for test classes. Those calculation
methods return objects of a type that implements the interface Measures.
The specific type is set using the generic argument of the AnylsisEngine interface.

Measures have a name attribute, which is used to store them in the database. Additionally,
those measure objects have a value attribute. The type of that attribute can be set using
a generic parameter. In the Measure class, there also is a method to convert the value
to a string that can be stored in the database.
It was mentioned before as a requirement (cf. section 3.2), that the engines should

cache already calculated values to avoid multiple calculations. The solution is to use a
decorator pattern, which is depicted in figure 4.7. The class CachedAnalysisEngine
stores calculated values in a map and if the value has been calculated before, it returns
the value from that map rather then to calculate it. The benefit of using this pattern is
that the engine can be used either way. The CachedAnalysisEngine decorator can be
used to cache values or the engine can be accessed directly to avoid caching values.
Another requirement was that analysis engines work recursively. Furthermore, it

turned out that each cache analysis engine should be accessed as a singleton. This avoids
multiple calculations if one engine is reused multiple times. Fortunately, Spring offers an
annotation offering just that. The @Service annotation ensures that only one instance
of a class is injected. An example of the @Service annotation is also given in listing 4.3
(page 26). Additionally the annotation @Qualifier is used to uniquely name analysis
engines. This could in the future also be utilised to name multiple configurations of
analysis engines. Listing 4.15 shows how injection works.
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SuccessCountEngine FailureCountEngine

DetectionRateEngine

FalseAlarmRateEngine

ExecutionCostEngine

Cost Skipped Engine
THEOParameterEngine

Cost Execution Engine

MetricMeasureEngine

CostBranchEngine

StrategyParameterEngine

de.rwth.swc.analsisengies.metricmeasure

de.rwth.swc.lazzer.analysisengines.countengines de.rwth.swc.lazzer.analysisengines.theo

de.rwth.swc.analsisengies.gitengine

GitEngine

de.rwth.swc.analsisengies.annotationengine

AnnotationEngine

Figure 4.6: UML component diagram of analysis engines.

1 ...
2 @Autowired
3 @Qualifier("de.rwth.swc.lazzer.analysisengines"
4 +".countengines.success.SuccessCountEngineCached")
5 private SuccessCountEngineCached successCountEngine;
6 @Autowired
7 @Qualifier("de.rwth.swc.lazzer.analysisengines"+
8 ".countengines.failure.FailureCountEngineCached")
9 private FailureCountEngineCached failureCountEngine;

10 ...

Source Code 4.15: AutowireDetectionRate.java

Success/Failure Count Engines

The success and failure count engine access method can be calculated for three targets:
test methods, test class, and test suites. In either case the database is accessed and
the the number of test cases with the respecting property is calcualted. Both engines
do not access any other analysis engines, such that the only dependency is the test
history datastore. The TestHistoryDataStore is injected using the @Autowire, which
is shown in listing 4.16
1 ...
2 @Autowired
3 TestHistoryDataStore testHistoryDataStore;
4 ...

Source Code 4.16: SuccessCountEngine.java
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<<interface>>
AnalysisEngine

+calculate(TestMethod):Measure
+calculate(TestSuite):Measure
+calculate(TestClass):Measure

+preOptimisationDataCollection
+postOptimisationDataCollection

<<abstract>> CachedAnalysisEngine

-calculatedValues:Map

 +calculate(TestMethod):Measure
+calculate(TestSuite):Measure
+calculate(TestClass):Measure

+preOptimisationDataCollection
+postOptimisationDataCollection

AnalysisEngineImpl

-calculatedValues:Map

+calculate(TestMethod):Measure
+calculate(TestSuite):Measure
+calculate(TestClass):Measure

+preOptimisationDataCollection
+postOptimisationDataCollection

CachedAnalysisEngineImpl

-calculatedValues:Map

 +calculate(TestMethod):Measure
+calculate(TestSuite):Measure
+calculate(TestClass):Measure

+preOptimisationDataCollection
+postOptimisationDataCollection

Figure 4.7: UML class diagram of cached analysis engine

1 ...
2 @Service("TestHistoryService")
3 public class TestHistoryService {
4 ...

Source Code 4.17: TestHistoryService.java

Detection Rate Engine

The detection rate engine overrides the calculation methods of AnalysisEngine interface
for test classes and test methods. Only those methods, that can be applied for the measure,
are overwritten by the analysis engine. This is possible because within the interface a
default method is defined. This method returns an empty Optional to show that the
calculation can not be applied.

False Alarm Rate Engine

There is an attribute InspectionResult on each test case node in the database, this
value can either be UNRESOLVED, FIXED or FALSE_POSITIVE. Unresolved is set after the
test has been run, the developer then has to inspect the test result and decide whether
there is a bug or the test case itself is flawed. If a bug is discovered and fixed, the new
status becomes FIXED, otherwise the new status is false positive. Since the paper on
THEO does not give any information on how this should be handled, we decided to treat
unresolved test cases as true positives, meaning they are treated the same like fixed bugs.
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The alternative to treat them as false positvies would lead to a higher cost for execution
and it would be less likely for the test to be executed. The query to retrieve all previous
test executions for a test method with a specified output is shown in listing 4.18.
1 Match
2 (a:TestRunEntity)-[b:RUN]->(c:TestSuiteEntity)-[d]
3 ->(e:testClassEntity)-[f:METHOD]
4 ->(g:TestMethodEntity)
5 WHERE
6 e.canoncialName=’de.rwth.swc.’+’
7 ’examples.triangletester.tests.TestTriangle’ AND
8 g.outcome=’SUCCESS’ AND
9 g.canoncialName=’WhenTriangleIsScalene’

10 RETURN g;

Source Code 4.18: Query for False Positives

THEO Xml Parameter Engine

The THEO Xml parameter engines allocates constant parameters for the THEO strategy.
The listing 4.19 gives an example of a configuration. In chapter chapter 3 a introduction
on constant parameter values is given. Opposed to the annotation parameters these are
note bound to a certain test case.
1 <theo>
2 <hourly_cost>0.027</hourly_cost>
3 <cost_escaped>50</cost_escaped>
4 <cost_inspection>25</cost_inspection>
5 <time_delay>10</time_delay>
6 <number_of_engineers>10</number_of_engineers>
7 </theo>

Source Code 4.19: ExampleXMLStrategy.xml

To read the xml file we used Castor which usage is described in section 4.1.2. The
domain model to map this file consists of one file called TheoParameter.

Cost Engine

The cost engine finally calculates the aggregated values costskip and costexecution, therefore
using the necessary analysis engines. The calculated measures are returned as a a object
of type Measure in the case of the cost engine this measure is of the type CostMeasure.

This cost measure holds a CostValue in the value attribute. A CostValue consist of
two float values, the skip cost and the execution cost. These values are accessed in the
optimisation strategy.
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Annotation Parameter Engine

To implement the annotation parameter engine, the Lazzer test suite description needed
to be updated. As a reminder, Lazzer uses the JUnit framework to discover test cases.
The resulting model is described in chapter section 4.1.1. This model already contains
annotations to classes and methods. They need to be extracted to the Lazzer model.
The main task of the analysis engine is to filter out Lazzer annotations and get their
values. Annotations are defined like depicted in listing 4.20.
1 package de.rwth.swc.lazzer.framework.api.annotations. ...;
2
3 import ...
4
5 @Retention(RetentionPolicy.SOURCE)
6 @Target(ElementType.METHOD) //on method level
7 public @interface LazzerCostSkipAnnotation {
8
9 String value() default "";

10 String tags() default "";
11 }

Source Code 4.20: LazzerCostSkipAnnotation.java

CostBranchEngine

The CostMasterBranchEngine uses the Git engine to check which branch is currently
used. The engine is depended on the branching schema that is used by a development
team. A popular branching schema is Git flow. Part of its idea is that the there is a
master branch that holds code ready for release. Development is made on the development
branch. THEO requires a similar branching schema (cf. [Her+15].

The master branch holds code that is ready for release and if a test fails on that branch,
a bug almost reached production use. Consequently, less test cases should be skipped
on the master branch. The cost branch engine calculates an additionally value that is
higher when a test is about to be skipped on the master branch. Consequently less tests
are skipped on the master branch in comparison to the development branch.

Strategy Parameter Engine

The strategy parameter engine allows that two cost function in addition to fixed values
can be configured. Listing 4.21 gives an example of how such a configuration file may
look like. The static project values hold fixed values, e.g., the machine cost per hour.
Furthermore, cost of skip and of execution are separately defined. Each cost function can
hold some cost values which are static values. Further, analysis engines can be added,
those have a class as parameter. The class name is used to instantiate a engine which is
then used to return a numeric value. Each of those is then summed to obtain the cost
value.
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1 <strategy>
2
3 <static_project_values>
4 <static_project_value>
5 <name>{value_name}</name>
6 <value>{value_amount}</value>
7 </static_project_value>
8 ...
9 </static_project_values>

10
11 <cost_skipped>
12 <cost_values>
13 <cost_value>
14 {cost_name}
15 </cost_value>
16 ...
17 </cost_values>
18
19 <analysis_engines>
20 <analysis_engine>
21 {class_name}
22 </analysis_engine>
23 ...
24 </analysis_engines>
25
26 </cost_skipped>
27
28 <cost_execution>
29 <cost_values>
30 <cost_execution>
31 {value_name}
32 </cost_execution>
33 ...
34 </cost_values>
35
36 <analysis_engines>
37 <analysis_engine>
38 {class_name}
39 </analysis_engine>
40 ...
41 </analysis_engines>
42 </cost_execution>
43 </strategy>

Source Code 4.21: ExampleXMLStrategyTemplate.xml
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Metric-Measure Engine

The metric-measure engine uses the strategy parameter engine to get a strategy con-
figuration. First static parameters are read, and then the analysis engines defined in
each cost function are instantiated, using the dependency context. Finally, the calculate
methods of those analysis engine are called for the parameter test method. Afterwards
the resulting cost values are returned and can be used in a strategy.

4.2.3 Strategy Implementation
This chapter will cover the realisation of three strategies, which have been implemented.

Detection Rate Prioritisation

The prioritise detection rate implements a AbstractComparatorPrioritization and
uses the detection rate engine to calculate values to prioritise test cases with a high
detection rate. This strategy is mainly used to create a minimum working example of
how analysis engines can be used. A drawback of this strategy is that test cases that
are flawed also have a high detection rate, since they always failed, which can not be
differentiated from a false positive at this point. Currently the only possibility is to
calculate the detection rate for classes, since that suffices for a minimum example.

THEO

The THEO strategy is implemented as an implementation of the Optimisation
-Strategy interface. The method optimise() is called in Lazzers optmisation stage.
Lazzer then accesses the cost engine to calculate the cost values. Finally, the selection
of test cases within the THEOStrategy class, by comparing the costexecution to the
costskipped.
The Git engine is used to determine the development branch and if that branch is

called ’Master’ all test cases are run. This is similar to the quality guards of the original
THEO strategy.

Metric Based Parameter Strategy

This strategy is developed similar to the THEO implementation. The metric-measure
engine is used to calculate two cost values. Those are then compared to decide whether a
test case is run or not. Additionally, methods are prioritised using their gain gexecution =
cexecution − cskip, which also has been defined in section 3.4.3.
Special about this strategy is that it also uses annotation parameters. It accesses

the annotation engine for a priority, which is used for prioritisation when two methods
have the same gain. Additionally, classes can also be skipped completely with the
LazzerSkipAnnotation.
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This chapter will cover the evaluation of the Lazzer software. First, an analysis of
the requirements is made. Then, a short introduction to the example projects is given.
Finally, an analysis of the stability and performance is evaluated for one of the example
projects

5.1 Fulfilment of Requirements
Generally, it can be said that the requirements, as stated in section 3.2, have been
fulfilled, since a metric-based strategy was successfully implemented. Nevertheless, there
are certainly some improvements that can be done, but could not be implemented,
because of the limited time given.
An user interface to display the test history would be a nice feature, telling the user

about reasons why a strategy performed a certain prioritisation or selection. Even a very
basic but individual logging for each strategy would help usability. Also, currently, there is
no convenient possibility to insert the inspection result. For testing purposes a script has
been implemented, that randomly sets the inspection result. Most certainly developers
will not resort to manual database queries to input these values. An integration to a
commonly used bug tracking system, e.g., Bugzilla, would be the perfect solution.
Furthermore, performance of graph databases can be optimised by indexing certain

nodes. Indexing is described in this thesis but has not bee implemented. Anyone how
wants to use this implementation should add these indexes to their database. Another
point regarding data storage may be that currently each database stores the data of one
project, it would be useful if one database could be used for multiple projects.

5.2 Example Projects
At the time this thesis was written, two example projects were available for the Lazzer
framework. One is a minimum example of how Lazzer can be run using its API. The
other one tests how Lazzer can be run using the Lazzer Maven plugin. There are several
test cases implemented for both projects.
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Those test projects are fine as long as to test whether a test method executes. But
since there are no code changes, the initial test result will not change, unless code is
changed manually. As a consequence test cases never fail. Since those projects seemed
insufficient to test a metric-based strategy, because of those limitations, a new test project
was implemented.

The main requirement for that test project was that it delivers a somehow realistic
test history. That is to say that test cases realistically fail and succeed in a alternating
fashion. Also it would be nice to see how the optimisation strategies after a certain
amount of time gives some test cases a higher priority.
The solution was to use random numbers to let test cases fail and succeed regularly.

Some test cases succeed on a smaller range of numbers than others, such that different
heuristic values are found. Even though these results do not have the same significance,
as test on a real project would, these can still be used to test if the strategy works.

5.3 Performance and Stability
To evaluate whether the updated Lazzer performs stable the analysis engines are modified
in a way that they calculate all possible values for the test suite. That would not be
necessary in a real scenario, because most of the time not all values are needed. Then
the THEO strategy was executed 500 times on a single database. The strategy was run
on the random example project. The result is shown in figure 5.1.

Figure 5.1: Graph that illustrates Lazzer runtimes.

Black dots represent the runtime of Lazzer, having no limit to how many test runs in
the past are considered, while the orange dots represent a limit of 100. The results show
that runtime increases linear without a limit. It is expected that the runtime increases
the more history values are considered, but a linear increase seems satisfactorily. Also
ignoring some outliers the runtime has a low variance. To limit the runtime it suffices to
decrease the number of test cases considered.
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Some test suite have a execution time of multiple days. Considering a linear increase
of runtime, such a big test suite could still be optimised in the matter of several minutes.
Overall the performance is adequate, because a selection process most probably will save
up a multitude of that time.

43





6 Conclusion

Contents
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

This chapter, first, gives a summary of the contributions of this work and then hints
at possible topics for future work, especially regarding further improvements.

6.1 Summary
This work took the Lazzer framework as a starting point and performed a refactoring and
extension with the purpose of implementing metric-based strategies. Those strategies are
mainly founded on the research about the THEO strategy, by [Herzig2005] et al.
The main contributions of this thesis are: separation of data access and evaluation,

support for a graph database, parameterisation for strategies and the implementation of
strategies. Recursive analysis engines are realised and used to calculate metric values
efficiently. Furthermore they realise the separation of data access and evaluation.
A graph database adapter was implemented to enhance how test results are stored.

Further an adapter was implemented to store metric values along with the testhistory.
Parameterisation has been provided using two ways: An analysis engine has been written
that consumes xml files. Additionally, the annotation engine has been written that is
able to return values that are linked to test cases by annotations in the test code.
Finally, three strategies have been implemented. One of those utilises the detection

rate engine to prioritise test cases with a high detection rate. The other closely resembles
THEO and a third one which is similar to THEO, but provides more possibilities for
parameterisation, including the definition of individual cost functions.

6.2 Future Work
This thesis prepared the Lazzer framework for metric-based strategies. Consequently, some
future work can be done on implementing other metric-based strategies. Furthermore,
the implementation of a graph database may offer other possibilities.

1. Real world evaluation
The implemented strategy was not tested on a real project. The demo projects
may deliver a hint at the performance, but that does not suffice make a reasoned
statement about the benefit of a implemented strategy.
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2. Other metric-based strategies
Other metric-based strategies could be implemented using Lazzer. There is a variety
of papers that have been published on such strategies. If multiple strategies are
implemented for Lazzer, an empirical performance evaluation would be interesting.

3. Depndency graph strategy
A strategy that uses a genetic algorithm on dependency graphs was proposed by
[Mus+14]. The strategy could utilise the database adapter for a graph database to
store dependency graphs.
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