
Behavior-based Architecture Reconstruction and
Conformance Checking

Ana Nicolaescu, Horst Lichter
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

Email: {nicolaescu, lichter}@swc.rwth-aachen.de

Abstract—The reconstruction of software architectures and the
evaluation of architecture conformance of software systems is
a long-studied research topic. Although up-to-date architecture
descriptions are necessary to understand and evolve systems, they
are rarely available. Consequently, many software architecture
reconstruction approaches and tools have been proposed. Despite
this, software architects still do not extensively employ these tools
and suffer from negative effects when relying only on outdated
descriptions. In this paper we present ARAMIS, an approach
and associated toolbox that aims to support the behavior-based
reconstruction of up-to-date architecture descriptions based on
the correction of possibly outdated prescriptive ones. Addition-
ally, ARAMIS addresses the so-called meta-model incompatibility
problem by allowing architects to use their own architecture
description language instead of the one that the reconstruction
tool requires. ARAMIS checks the behavior-based architecture
conformance of a system based on pre-specified communication
rules, derives up-to-date descriptions and enables their explo-
ration. We have evaluated ARAMIS during several combined
surveys and interviews with subjects from both the industry and
academia and have obtained positive results.

I. Introduction

“Understanding and updating a system’s software archi-
tecture is arguably the most critical activity” in a system’s
life-cycle [1]. Therefore, a software can only be sustain-
ably evolved if the architects know the system’s currently
implemented architecture (often called as-implemented ar-
chitecture). However, due to architecture erosion and drift,
the as-implemented architecture is rarely documented, i.e.,
a descriptive architecture description is missing, and, if it
exists, it is often inconsistent with the initial architecture
description (called prescriptive architecture description). The
prescriptive architecture description is typically created very
early in the software development process and usually consists
of static views only. Even if outdated, it can still support the
understanding of a system but also often proves misleading due
to the differences introduced by architecture degeneration.

A large number of techniques have been developed and
proposed both by academia and industry (e.g., [2]) to recon-
struct the static views of descriptive architecture descriptions
using respective prescriptive architecture descriptions as input.
However, to fully understand a system, its behavior (i.e., its
dynamic view) has to be understood as well. Considering
the huge size of today’s software systems (measured e.g.
in number of code or architecture units as well as in their

interactions), useful reconstruction techniques need to offer
views on higher abstraction levels (e.g., layers or components)
not only for the static view, but also for the dynamic one.

Furthermore, the languages used in an architecture recon-
struction process to create the prescriptive architecture descrip-
tions (called ADLs) are always tool-specific. For example, the
prescriptive ADL defined by Sonargraph-Architect [3] allows
to model layers, layer groups, vertical slices, vertical slices
groups and subsystems. Hence, an architect must define the
prescriptive architecture description using the reconstruction
tool’s ADL. According to our experience [4], the fact that
architecture descriptions created in existing ADLs (e.g., boxes
and lines or company-specific UML diagram types) have to
be transformed to a given tool’s ADL (called the meta-model
incompatibility problem) is frustrating and leads to acceptance
problems. In order to alleviate this problem, much more
flexible architecture reconstruction approaches are needed,
which allow the easy “docking” of new or existing ADLs.

The overall goals of our research and the proposed
behavior-based approach to architecture reconstruction (called
ARAMIS) are the following:

• Support architects to understand the behavior view of a
system by automatically mapping the run-time traces on
defined architecture units. To this end, ARAMIS recreates
the descriptive architecture description by augmenting
and correcting a given prescriptive architecture descrip-
tion.

• Enable arbitrary prescriptive architecture descriptions as
input and creating respective output descriptions.

• Support architecture conformance checking by detecting
communication integrity violations (Luckham et al., [5])
based on predefined communication rules.

ARAMIS assumes that (1) there is a prescriptive architec-
ture description (even if outdated), (2) there is some knowledge
to map the code to architecture units, and (3) the system can
be executed in order to be monitored.

Compared to our previous publications (e.g., [6]), this
paper introduces an extended meta-model with a richer rules
taxonomy that enables the communication integrity validation
of systems of systems, a refined solution to the meta-model
incompatibility problem and an evaluation conducted with
users from academia and industry.

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7516824 

This is the author's version od work. s is the author's version of the work. It is posted here for you

2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, 2016, pp. 152-157. 
doi: 10.1109/WICSA.2016.25



The remainder of this paper is organized as follows. Section
II describes the conceptual meta-model of ARAMIS. Section
III presents our solution to the aforementioned meta-model
incompatibility problem. Section IV discusses a first evaluation
of our work. Section V offers an overview of the related work
and Section VI concludes the paper and gives some insights
regarding our future work.

II. ARAMIS ConceptMeta-Model

The concept meta-model of ARAMIS can be divided into
four areas of interest, as depicted in Figure 1. The Architecture
area presents the high-level concepts concerning architecture
descriptions, their structure and governing communication
rules. The Monitoring area highlights the concepts specific to
its run-time monitoring character. The Communication Rules
area depicts a taxonomy of the rules that can be specified in
ARAMIS. The parametrized rules, being more complex, are
addressed in the Parametrization area of the meta-model.

A. Architecture

The root element of the meta-model is the analyzed software
system which can be composed of further systems, thus
constituting a system of systems. A software system has a de-
scriptive and possibly a prescriptive architecture description.
Each architecture description defines the architecture units
comprising the system (e.g., layers, components, etc.) and the
communication rules that should govern their communication.

B. Monitoring

Since ARAMIS analyzes a software system using run-time
information, the system must be initially monitored during
some episodes of interest. Currently, ARAMIS integrates two
well-known monitoring systems: Kieker [7], to collect run-
time data from Java- and JavaEE-based systems and Dynatrace
[8], to monitor heterogeneous systems of systems implemented
using different languages and technologies. An episode can
be created for example by running a set of test cases or
by interacting with the system’s GUI to achieve a desired
functionality. Each episode produces some run-time traces
consisting of so-called execution record pairs, which are
ordered pairs of code building blocks that accessed each other.

In order to abstract from programming-language specific
code building blocks (e.g., Java classes or C# namespaces)
the meta-model offers untyped code units which are linked to
code building blocks via regular expression-based filters.

Code units are included in untyped architecture units (e.g.,
a set of packages form a “layer” architecture unit). This grants
independence from ADLs and allows modeling architectures
based on informal architecture descriptions. To document the
designed purpose expressed in the language used by the archi-
tects (e.g., layer, subsystem, component etc.) the architecture
units have an optional role attribute. As architecture units are
coarser grained structural units they can build hierarchies of
other units, be them code units (a layer consists of a set
of packages) or architectural units (a component is further

structured in several layers). The identifier attribute is used to
uniquely identify architecture units.

Because real-life systems are heterogeneous using various
kinds of interaction mechanisms, ARAMIS not only allows
to analyze the direct communication between code building
blocks and map it on architectural units [6] but also allows
the analysis of more “complex” communication, occurring,
e.g., through web service calls. To characterize this communi-
cation, execution record pairs contain a list of communication
parameters. These are simple but flexible name-value tuples,
as they depend on the infrastructure employed to collect data
from the monitored system and the level of detail to which the
communication is documented. The most common communi-
cation parameters are: protocol (values are e.g., REST, SOAP,
AMPQ messaging), webservice-endpoint, and queue (values
are the queue names used for transmitting messages).

C. Communication Rules

The communication between architecture units is governed
by communication rules. The ARAMIS meta-model applies
view inheritance to classify these rules according to 4 criteria.

First, according to its permission type, a rule can allow or
deny the communication between architecture units.

Second, according to its emergence type, a rule can be
explicitly specified (e.g. “layer A should not access layer B”)
or implicit and thus named derived (e.g., “component C1
should not access component C2” because they are included
in further architecture units that are explicitly not allowed to
access each other according to a specified rule). The derived
rules are consequently automatically computed by ARAMIS
based on the specified ones, as explained in [6].

Third, based on the communication type we distinguish
between three flavors of communication rules: caller rule:
concerns the communication to all other architecture units
emerging from a given caller architecture unit (e.g., “utility
layer” is not allowed to issue calls towards any other architec-
ture units); callee rule: concerns the communication emerging
from all other units towards a given callee architecture unit
(e.g., “facade layer” can be called from all other architecture
units); caller-callee rule: concerns the communication between
a pair of specified caller and callee architecture units (e.g.,
“layer A” must not access “layer B”).

Forth, according to their parametrization type, the rules
can be either non-parameterized, referring to direct commu-
nication only, or parameterized, referring to more complex
communication mechanisms, specified using an expression-
based language.

D. Parameterization

The ARAMIS communication rule language, implemented
by a XML-based DSL, enables the specification of more
complex communication rules based on expressions. Obvi-
ously this adds complexity, but these complex communication
rules are needed to specify and finally validate inter-systems
communication rather than just direct one.

To this end, ARAMIS offers three types of expressions.

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7516824 

This is the author's version od work. s is the author's version of the work. It is posted here for you

2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, 2016, pp. 152-157. 
doi: 10.1109/WICSA.2016.25



����

����	
��
�����	


	�������

�	


�������	��	��������

������	���������	
��
���������	����

�����������
��

���������	�
 ������	�����������
��!

"#�������$��������	�

%����

�����	���������	
��
���������	����

����	��

����	
��
���������	����

��������������
�

����	��

"�	����

������

������	��
����	
�

������	


������

������������

�&����������	��

��������
�
'(()

���

"���������%��� ����	��	���%��� ������	������%��� ������
�	*�����%���

��������$��� ���	���$��� �������$��� �������$��� ������+�������$���

"#�����	��%���	����"#�����	��,�
�����"#�����	��

-���"#�����	�� .����"#�����	�� �����"#�����	��

����"#�����	�� /��"#�����	�� .�
�"#�����	��

)

����
��	�
�

������	������������
��

0

"1�����"#�����	��
)

����	
��
��� ,��	
��	��

������	������$����

������
��	*����

������	������$���

2	�
��

.��+������
��	*��
$���

������
��	*��
$���

����	���
$���

���	���
$���

����
�����

Fig. 1. ARAMIS Meta-Model

Terminal expressions are constraining the communication
based on the communication parameters of the corresponding
execution record pair. The matches and equals expressions
can be used to allow/deny a certain communication if the
value of a parameter specified using its name matches a given
regular expression or has a precise value, respectively. The
has expression is used to allow/deny a communication based
on whether the corresponding execution record pair exhibits a
parameter with a given name (e.g., allow only communication
that has a documented communication “protocol” in its list of
communication parameters).

N-ary and unary expressions can be further used to express
more complex conditions. The unary not expression can be
applied to an expression to reverse its boolean value. E.g., the
not expression used in combination with an equals expression
can be used to identify communication in which the value of
a parameter is different than a specified one (e.g., communi-
cation whose “protocol” is not “REST”). Furthermore, using

���������		
��������
������	����������������
���������������������������	�����������������
������������	�������������
��������������
����������
���������� 
���������	��������������!��
�����"#����
���������	��$�������	�����%�&���!���'���������!��
���(����
�����������
���������������
����������		
��������
���

Fig. 2. Example of a Communication Rule

an n-ary expression, one can constrain a communication if
several expression-based conditions apply simultaneously (and
expressions) or only if some of them hold (or expressions). By
combining these different types of expressions, complex rules
can be specified for constraining the communication within a
system (of systems).

An example of using the ARAMIS communication rule lan-
guage is depicted in Figure 2. The callee rule FacadeAccess
specifies that the Facade architecture unit can be accessed
by any other unit, as long as the communication protocol
is REST. All REST endpoints of the Facade are freely
accessible.

III. Addressing External Prescriptive Architecture
Descriptions

As briefly introduced in Section I, architects employing
software architecture reconstruction tools are faced with the
so-called meta-model incompatibility problem: the need to
redefine the prescriptive architecture descriptions using the
ADL (meta-model) of the considered reconstruction tool.

To lessen this problem, we have developed a model-based
solution to accept prescriptive architecture descriptions as
input adhering to other meta-models than the ARAMIS one.
Additionally, the applied model-based solution enables to
create an output that augments the given input with informa-
tion resulting from the analysis performed by ARAMIS. The
designed model-transformation chain is depicted in Figure 3.
It relies on the following two assumptions:

First, prior to requesting ARAMIS to process a given
Prescriptive Architecture Model (PAM) that adheres to a non-

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7516824 

This is the author's version od work. s is the author's version of the work. It is posted here for you

2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, 2016, pp. 152-157. 
doi: 10.1109/WICSA.2016.25



��� ��������� �������	� �
��

�����

������ ���

��� ���

�������
�������������

��������
������������� ����������

���

��+,, ������������������������������ ��������� ���������������� 
��� �������������������������� ��������� ������������������ 
�	�� ��������������������������������� �������
� ������������������� 

������

� !
��� ������������
���������� �!

Fig. 3. ARAMIS Transformation Chain (based on [9])

ARAMIS specific Prescriptive Architecture Meta Model (PA-
MM), an exogenous model to model (m2m) transformation
from the PA-MM to the ARAMIS-MM has to be defined. This
transformation applied on a PAM creates an ARAMIS Input
Model (ARAMIS-IM) containing the corresponding code and
architecture units and the architectural rules governing their
communication. Currently, we have implemented such trans-
formations using the Epsilon model-engineering environment
for simple boxes and lines and component diagram PA-MMs.

Second, as we want to present the output model as an aug-
mentation of the input model (called Augmented Descriptive
Architecture Model, ADAM), the respective augmentation
has to be specified. Currently this has to be done program-
matically: for any considered PA-MM, a specific augmenter
must be implemented by inheriting from a generic one that
employs the template design pattern. The specific process steps
specified in the template must then be implemented in the
specialized augmenter. To implement the augmentation, ques-
tions such as the following must be conceptually answered in
advance: how should a newly discovered communication, not
specified in the PAM, be depicted (e.g., in the boxes and lines
example, one can opt for creating dashed/curved/thicker lines
for newly discovered communication)? how should violations
be marked (e.g., drawing red lines)? etc.

The transformation chain itself is consequently built as
follows: giving a non-ARAMIS PAM as input, first an exoge-
nous m2m transformation is applied to create a corresponding
ARAMIS-IM conforming to the ARAMIS-MM. The resulted
transformation links are also recorded for further use. Then,
ARAMIS analyzes the system based on information collected
at run-time. The result of this analysis is the behavior-based
descriptive architecture description of the system, also named
the ARAMIS Output Model (ARAMIS-OM). Next, based on
the ARAMIS-OM and the previously documented transfor-
mation links, ARAMIS augments (thus performing a second
m2m transformation) the input PAM and consequently creates
an ADAM which complies to the same, input meta-model (PA-
MM). Figure 4 illustrates the model transformation process for
the lines and boxes example.

We have chosen to implement an augmentation-based solu-
tion instead of a bidirectional model transformation, because of
simplicity reasons. Due to the generic nature of the ARAMIS-
MM, there is a high probability for several, different elements
of a PA-MM (e.g., layers, subsystems) to be mapped on the

������ ��	
������

������� ���	
������
������ ������

������� ���	
������

���������	
�
����������
���
���������

������ ������

��	
��������
���������������
��������

������������

������ ��	
������

�������
�	�
����

�����������
�	�
����

��

���� �� ���� !�

"�

���������	
�
����������
���
�������	#	��	

Fig. 4. Example of the Transformation Chain

same element type (e.g., architecture unit) from the ARAMIS-
MM. This would typically hinder straight-forward definitions
of bidirectional transformations. Instead, we have opted for the
augmentation-based solution in which we reuse the transfor-
mation links resulting from the m2m transformation between
the PAM and the ARAMIS-IM.

IV. Evaluation

Evaluating an approach like the presented ARAMIS one is
challenging, as evaluation techniques like experiments are hard
to be performed.

We have chosen to apply a combination of interviews
and surveys to obtain feedback from the subjects involved.
We conducted 21 combined interviews and surveys. Thirteen
subjects were professionals from three different companies
(twelve architects and one developer), the others were Ph.D
or master students (see Table I).

TABLE I
Distribution of the Evaluation Subjects

Sector Company Size Role # Subjects

Academia
Master Student 3

-
Ph.D Student 5

Insurance
2 companies

>1000 employees Architect 9

Energy
Management

Architect 31 company
500-1000 employees Developer 1

Each evaluation session lasted for approximately one hour.
At first we introduced ARAMIS and its toolbox. Then the
subjects completed the first part of the survey, containing
questions regarding the employed architecting process (e.g.,
the types of architecture descriptions that they create) and their
first impressions concerning the relevance and usefulness of
ARAMIS. In the next step the subjects were introduced to
two test systems: (1) a users and events manager developed
especially for evaluation purposes and (2) the open-source
JHotDraw framework. For the users and events manager we
defined an architecture containing 10 architecture units that
communicated in the recorded episodes with each other over
14128 interactions. The architecture was supposed to adhere to
a well-known “client → facade → controllers → db manager”

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7516824 

This is the author's version od work. s is the author's version of the work. It is posted here for you

2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, 2016, pp. 152-157. 
doi: 10.1109/WICSA.2016.25



pattern. For evaluation proposes we have introduced 1516 vio-
lations to simulate architecture degradation. For the JHotDraw
system (529 classes and 38 packages) we have recorded and
analyzed 23902 interactions, defined 18 architecture units and
discovered 5 architecture violations not conforming to the
available prescriptive architecture description of JHotDraw.
For each of these systems, we presented the respective pre-
scriptive architecture descriptions and the analysis results,
i.e., the behavior-based descriptive architecture descriptions.
Next, the subjects were asked to perform eight tasks using
ARAMIS on the two introduced systems, in order to ensure
that they acquire some in-depth familiarity with the system.
Then, the subjects were asked to rate again the quality of
ARAMIS, based on the usage experience they have gained in
the meantime. Finally, an open discussion took place to gather
further feedback and improvement proposals.

The defined tasks to be performed by the subjects mainly
focused on the ARAMIS goals related to understanding the
behavior view and the identification of violations such as:
determining how many violations occurred in the considered
system, determining which architecture units caused most of
the violations, identifying the order in which the various units
interacted to achieve a given functionality, analyzing which
architecture units are too coupled or not internally cohesive,
deciding which (if any) architecture unit could be a facade
of the considered system, etc. The tasks were solved using a
series of ARAMIS visualizers, which were presented in more
detail in [10] and were performed under our supervision.

A. Some Evaluation Results

We evaluated the suitability of ARAMIS by comparing the
results obtained by the subjects with the results that we have
previously assessed to be correct. All subjects managed to
finish the tasks in time and produced correct results.

Furthermore, all subjects from the industry insisted on the
importance of the ability to monitor systems of systems. This
supports our decision to allow the specification of complex
communication rules based on communication parameters as
well as the integration of Dynatrace as a monitoring tool.

Last, a wide range of questions were asked to evaluate the
suitability and usefulness of the different ARAMIS visualizers
to explore the results and to answer tasks-related questions,
as exemplified before. The user-friendliness of the ARAMIS
tools, although mostly positively evaluated (2, 5, 11 and
3 subjects have evaluated it to be low, neutral, high and
very high respectively), has obvious improvement potentials.
However, the usefulness of ARAMIS and its toolbox was
clearly validated by the results, as all of the participants rated
it as useful (15) or very useful (6).

B. Threats to Validity

Given that no other reconstruction technique besides
ARAMIS were used to analyze the evaluated systems, a
comparison baseline with other approaches is still missing. All
subjects agreed that, if applying ARAMIS on their systems,
they would prefer the results to be augmented on their existing

boxes and lines or component diagrams. However, in the
actual evaluation, we didn’t consider external meta-models for
the prescriptive architecture. Internally, after having created a
m2m transformation and augmenter for the boxes and lines
ADL, we needed one and a half person days to re-implement
the process for a component diagram ADL. Given our previous
experience with creating ARAMIS visualizations (scattered
over several months of work) we estimate that the effort spared
by applying model engineering techniques is considerable but
we do not have exact qualifications thereof.

V. RelatedWork

Several tools that support the enforcement of architecture
description and/or the reconstruction of an up-to-date variant
of it have been proposed over time. The majority of developed
reconstruction tools focus on recovering the structure of the
analyzed system (e.g., [11], [2]).

Concepts and tools that leverage the run-time monitoring
of software systems have been proposed but are less nu-
merous than structural ones. The Kieker tool [7] focuses on
application performance monitoring and architecture discovery
using aspect oriented programming. It displays the information
using, e.g., sequence diagrams, dependency graphs and call-
trees. ARAMIS also leverages Kieker as a monitoring tool for
extracting low-level interactions from J2EE-based systems but
then aggregates and validates the data on higher level architec-
tural units. ExplorViz [12] focuses on the run-time of large sys-
tems of systems to provide scalable visualizations that enable
architecture conformance checking. Unlike ARAMIS, with
ExplorViz the prescriptive architecture description cannot be
pre-specified and checked against using architectural-relevant
rules. The identification of violations is left to the architect,
based on his exploration of the provided visualizations. Simi-
larly, an experiment regarding the extraction and monitoring of
communication within systems of systems was also presented
by Vierhauser et al. [13]. Furthermore, in [14] Arias et al.
describe the extraction of a set of predefined architecture views
corresponding to an execution viewpoint based on log data
and run-time measurements of an industrial software-intensive
system. Unlike in the case of ARAMIS, these approaches
focus only on the extraction and documentation of commu-
nication, while not considering the communication integrity
aspect. By exploring the reconstructed dynamic architecture,
the architect should investigate by himself if this complies
to the prescriptive architecture description. Support for the
specification of rules, as in the case of ARAMIS is missing.
Dynatrace [8] and Nagios [15] are powerful, commercial tools
for application performance management that consider the run-
time of heterogeneous large-scale systems of systems. These
can trace transactions occurring over multiple system borders
and identify aspects such as CPU consumption, performance
bottlenecks and other system health-related issues. ARAMIS
can easily integrate such tools and already uses Dynatrace as
a monitoring tool, enhancing it with architecture conformance
checking features.

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7516824 

This is the author's version od work. s is the author's version of the work. It is posted here for you

2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, 2016, pp. 152-157. 
doi: 10.1109/WICSA.2016.25



Yan et al. used the Java Platform Debugger Architecture
to develop DiscoTect [16], a system that exploits patterns
in the implementation of architectural styles to enable ar-
chitecture discovery. The approach is based on the construc-
tion of architecturally-relevant state-machines that enable the
mapping of low-level interactions on architecturally relevant
events, such as the creation of components and connectors.
With ARAMIS, one does not need to create complex and
error-prone state machines for mapping implementation and
architectural events and the focus is set mostly on automatic
architecture conformance checking. Similarly to ARAMIS,
SoftArch [17] augments created static views using its ex-
tensible editor with information collected during run-time.
The SoftArch modeling editor has been criticized during user
evaluations to be too complex and cumbersome, thus reinforc-
ing our observation that architects are more comfortable with
employing their own ADLs, as possible with ARAMIS. In
[18], Saadatmand et al. present an example of checking low-
level behavior consistency based on pre-specified expected
state transitions for monitoring software in the automotive
domain. Contrastingly, ARAMIS has a richer rules taxonomy
that enables conformance assessments on higher, more abstract
architectural levels.

Solutions for interchanging architecture description lan-
guages to solve the meta-model incompatibility problem were
proposed (e.g., ACME [19], the DUALLY framework [20]) but
remained mostly a topic of research rather than being adopted
in the industry. ARAMIS offers a pragmatic solution, dealing
with the complexity of transforming an incompatible meta-
model only when evidence requires it and without employing
any intermediate format that would further introduce complex-
ity to understand and adopt.

VI. Conclusions and FutureWork

In this paper we presented our approach to behavior-
based architectural understanding and conformance checking,
called ARAMIS. ARAMIS supports the creation of descriptive
architecture descriptions based on the augmentation of pre-
specified prescriptive ones. Leveraging its integration with the
Dynatrace monitoring tool, ARAMIS can check the behavior
conformance of systems of systems by enabling architects to
flexibly specify simple or complex, expression-based com-
munication rules that place constraints on the captured com-
munication parameters. Moreover, using model engineering
techniques, ARAMIS also approaches the meta-model incom-
patibility problem that most reconstruction tools are faced
with. We have evaluated our approach within a series of
combined interviews and surveys and obtained positive results.

As future work, we intend to extend ARAMIS to support
the simulation and comparison of evolution scenarios. Fur-
thermore, to reduce the effort needed to specify prescriptive
descriptions, we will investigate the integration with static
architecture recovery and/or clustering-based approaches.

References

[1] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, “Obtaining ground-
truth software architectures,” in Proceedings of the 2013 International

Conference on Software Engineering (ICSE). Piscataway, NJ, USA:
IEEE Press, May 2013, pp. 901–910.

[2] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 4, pp. 573–591, 2009.

[3] “Sonargraph-architect,” https://www.hello2morrow.com/products/
sonargraph/architect, accessed on December, 14th, 2015.

[4] A. Dragomir, M. F. Harun, and H. Lichter, “On bridging the gap between
practice and vision for software architecture reconstruction and evolu-
tion: A toolbox perspective,” in Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA) 2014 Companion Volume.
ACM, April 2014, pp. 10:1–10:4.

[5] D. C. Luckham, J. Vera, and S. Meldal, “Three concepts of system
architecture,” in Technical Report, Stanford University, 1995.

[6] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in the 21st Asia-Pacific Software Engineering
Conference (APSEC), vol. 1. IEEE, December 2014, pp. 191–198.

[7] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
Proceedings of the 3rd joint ACM/SPEC International Conference on
Performance Engineering (ICPE). ACM, April 2012, pp. 247–248.

[8] “The dynatrace tool,” http://www.dynatrace.com/en/index.html, accessed
on December, 8th, 2015.

[9] D. T. Le, A. Nicolaescu, and H. Lichter, “Adapting heterogeneous ADLs
for software architecture reconstruction tools,” in Proceedings of the 10th
International Conference on Software Engineering Advances (ICSEA).
IARIA XPS Press, November 2015.

[10] A. Nicolaescu, H. Lichter, A. Göringer, P. Alexander, and D. Le,
“The ARAMIS Workbench for Monitoring, Analysis and Visualization
of Architectures Based on Run-time Interactions,” in Proceedings of
the 2015 European Conference on Software Architecture Workshops
(ECSAW). ACM, September 2015, pp. 57:1–57:7.

[11] J. Knodel and D. Popescu, “A comparison of static architecture compli-
ance checking approaches,” in Sixth Working IEEE / IFIP Conference
on Software Architecture (WICSA), January 2007, p. 12.

[12] F. Fittkau, P. Stelzer, and W. Hasselbring, “Live visualization of
large software landscapes for ensuring architecture conformance,” in
Proceedings of the 2014 European Conference on Software Architecture
Workshops, ser. ECSAW ’14. New York, NY, USA: ACM, 2014,
pp. 28:1–28:4. [Online]. Available: http://doi.acm.org/10.1145/2642803.
2642831

[13] M. Vierhauser, R. Rabiser, P. Grünbacher, C. Danner, S. Wallner, and
H. Zeisel, “A flexible framework for runtime monitoring of system-of-
systems architectures,” in Proceedings of the 11th Working IEEE/IFIP
Conference on Software Architecture (WICSA), April 2014.

[14] T. B. C. Arias, P. America, and P. Avgeriou, “A top-down approach to
construct execution views of a large software-intensive system.” Journal
of Software: Evolution and Process, vol. 25, no. 3, pp. 233–260, 2013.

[15] “The nagios tool,” https://www.nagios.org/, accessed on February, 19th,
2016.

[16] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “Discotect:
A system for discovering architectures from running systems,” in The
26th International Conference on Software Engineering (ICSE), May
2004, pp. 470–479.

[17] J. Grundy and J. Hosking, “Softarch: Tool support for integrated
software architecture development,” International Journal of Software
Engineering and Knowledge Engineering, vol. 13, pp. 125–152, 2003.

[18] M. Saadatmand, D. Scholle, C. W. Leung, S. Ullström, and J. F.
Larsson, “Runtime verification of state machines and defect localization
applying model-based testing,” in Proceedings of the Working IEEE /
IFIP Conference on Software Architecture (WICSA) 2014 Companion
Volume. New York, NY, USA: ACM, April 2014, pp. 6:1–6:8.

[19] D. Garlan, R. Monroe, and D. Wile, “Acme: An architecture description
interchange language,” in Proceedings of the 1997 Conference of the
Centre for Advanced Studies on Collaborative Research (CASCON).
IBM Press, November 1997, pp. 7–22.

[20] I. Malavolta, H. Muccini, P. Pelliccione, and D. Tamburri, “Providing
architectural languages and tools interoperability through model trans-
formation technologies,” IEEE Transactions on Software Engineering,
vol. 36, no. 1, pp. 119–140, Jan. 2010.

© IEEE 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7516824 

This is the author's version od work. s is the author's version of the work. It is posted here for you

2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, 2016, pp. 152-157. 
doi: 10.1109/WICSA.2016.25




