
On Adequate Behavior-based Architecture
Conformance Checks

Ana Nicolaescu, Horst Lichter
RWTH Aachen University

Research Group Software Construction
Aachen, Germany

{ana.nicolaescu, horst.lichter}@swc.rwth-aachen.de

Veit Hoffmann
Generali Deutschland Informatik Services GmbH

AS-a
Aachen, Germany

veit.hoffmann@generali.com

Abstract—Architecture conformance checks are important to
control the inevitable drift between the prescriptive and descrip-
tive architectures of a software system during its evolution. To this
end, behavior-based architecture conformance checks should be
employed in addition to static ones. But behavior-based analyses
suffer from an important shortcoming: their results depend on
the adequateness of the monitored behavior. Our claim is that
a behavior-based architecture conformance check is adequate if
(1) the architectural rules relevant from a behavior viewpoint
are expressible and can be checked against and (2) the set of
captured scenarios are relevant for exhibiting the overall behavior
of the system. First, using ARAMIS, our approach to behavior-
based architecture reconstruction and conformance checking, we
exemplify how conformance rules can be expressed. Then, we
propose a metric to investigate the relevance of the monitored
scenarios. Last we present two case studies, in which we defined
and checked communication rules and discuss the relevance of
the monitored scenarios.

I. INTRODUCTION

Architectural drift and erosion are two phenomena often
occurring in the context of evolving software systems. Nec-
essary changes to the software systems are often performed
under time and cost constraints and consequently are not, if
at all, properly documented and–or typically violate initial
architectural decisions in the favor of, e.g., less rigorous but
on the short term easier to implement solutions [1], [2]. These
situations might be acceptable in an initial phase to secure
momentum and agility towards ever changing requirements.
However, if corrective actions are not undertaken the system
quickly evolves very differently than prescribed in the initial
architecture design [3], [4]. Thus, the descriptive architecture
of a system erodes away from its initial prescriptive architec-
ture description, rendering the latter useless or even harmful
for supporting the understanding of the system on a more
abstract, conceptual level.

There already exist a plethora of approaches for extracting
descriptive architecture descriptions from system’s artifacts
(source code, configuration files, etc.) [5], [6]. Most of these
are based on structural analyses and reflect the static view of
the system. However, often the complexity lies in the interplay
of different systems, rather than in their mere structure [7].
Most of the tools that analyze the run-time of systems focus
on performance-related aspects. Using our approach called

ARAMIS (the Architectural Analysis and Monitoring Infras-
tructure [8], [9], [10]), we reuse such tools for a different
purpose: to analyze the behavior of a system on various
architectural abstraction levels thus scaffolding understanding,
architectural reasoning and conformance checking.

The literature often mentions that behavior-based analyses
depend on the adequacy of the monitored behavior [5], but
no further details are given regarding how adequacy can be
measured and ensured. This paper presents a set of concepts
for ensuring that a behavior-based architecture conformance
check is adequate. Adequacy is, in our vision, supported
by two aspects: expressiveness of formulated communication
rules and relevance of monitored scenarios. Using ARAMIS
we exemplify our solution for defining communication rules
on an architectural level. Then, we discuss the problem of
assessing the relevance of the monitored behavior, as reflected
by the performed scenarios. We applied these concepts during
two case studies. While the first was conducted in an academic
setting, the second was performed on a medium-sized software
system developed in the industry. The findings were two-
fold. First, using ARAMIS, we could express a variety of
conformance rules and obtained useful conformance checking
results with manageable effort. Second, the developed con-
cepts helped to increase confidence in the relevance of the
monitored behavior.

The paper is structured as follows. In Section II we de-
scribe how ARAMIS supports the definition of expressive
behavior-based architectural rules. In Section III, we present
the monitoring concepts used in ARAMIS and introduce the
scenario coverage metric as a means to assess the relevance of
the performed conformance check from the point of view of
monitored scenarios. Section IV discusses the interpretation of
the results based on the well-known reflexion model and the
newly introduced scenario coverage metric. Section V presents
the evaluation of our results. Finally, Section VI gives an
overview of related work and Section VII concludes the paper.

II. EXPRESSIVE COMMUNICATION RULES

Discussions with our industrial partners revealed that there
is a need for architecture conformance checking approaches
that go beyond trivial, structural investigations that only place
constraints on aspects such as variable types, method return

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

types, interface implementation and usage, etc. Practitioners
often expressed the necessity to formulate constraints on
complex systems employing intricate interaction patterns and
complex communication mechanisms, the details of which
are often not even available prior to run-time. To address
these concerns, we developed ARAMIS: a behavior-based
conformance checking approach that complements existing
structural solutions. Consequently, when designing the rule
specification language of ARAMIS, our goal was to ensure that
apart from simple, bidirectional rules regarding the direct com-
munication in traditional call-return architectures, complex
rules could also be formulated, e.g., for expressing constraints
on employed communication protocols, indirect couplings and
asynchronous interactions.

As described in detail in [10], ARAMIS builds on top of
existing software monitors (e.g., Dynatrace [11]) to extract
interaction information from a running system. An interaction
is characterized by its caller, callee and a set of communication
parameters that exhibit further technical details regarding
the communication (e.g., employed communication protocol).
ARAMIS then applies a regular-expression-based approach
to map the caller and callee on corresponding architecture
units and thus creates multi-level abstractions of the analyzed
behavior. The architecturally mapped interactions can then be
validated using communication rules that formulate constraints
on the communication of architecture units.

The communication rules are at the heart of the ARAMIS
analysis. A taxonomical overview of the rules specifiable
with the ARAMIS rules specification language is presented
in Figure 1. First, according to its permission type, a rule can
allow, deny or enforce (the communication must occur) the
communication emerging from one architecture unit towards
another one. Furthermore, according to their emergence type,
the rules can be either specified in a customized way (e.g., unit
A can call unit B), derived (unit A can call unit B because
unit A is included in unit X and unit B is included in unit Y
and it was specified that X is allowed to call Y) or default.
ARAMIS imposes one non-configurable default rule, which is
based on the following assumption: calls that do not exceed
the boundary of a single architecture unit are always permitted;
possible violations at this level are architecturally insignificant.
To ease the specification overhead, two configurable default
rules are available: the default unmapped rule foresees how
should calls be validated if these involve units not specified in
the architecture itself; the default unconstrained rule dictates
the validation status of bidirectional communication for which
no other rule applies. According to our experience, architects
prefer to specify the rules on a white-list basis, and conse-
quently the default unconstrained rule is often set to deny
communication. Furthermore, according to the communication
type, we distinguish between (1) caller-callee rules, that con-
cern the directed communication between a pair of specified
caller and callee architecture units (e.g., layer A must not
access layer B), (2) caller rules, which concern communication
emerging from a unit to all others (e.g., layer utility is not
allowed to issue calls towards any other architecture units) and

(3) callee rules, which refer to communication emerging from
any unit targeting a specified callee unit (e.g., layer facade can
be called from all other architecture units).

However, beyond these aspects, when designing the rule
specification language, our goal was to enable the formulation
of rules beyond simple, bidirectional rules depicting direct
communication (e.g., method call) between units. In this paper,
we focus on the expressiveness of the rules by presenting
how these can be parametrized to specify constraints involv-
ing arbitrary intercepted communication parameters and how
aggregating rules can regulate the communication revealed
by sets of captured interactions that are coupled beyond the
obvious.

In ARAMIS, communication parameters give details re-
garding a complex interaction. The underlying model of the
communication parameters is dependent on the monitoring
tool used for extraction. In an initial step, ARAMIS extracts
these using dedicated adapters and creates corresponding key-
value pairs based thereupon. Such keys can be, e.g., the type of
communication (example of values can be queue, soap, etc.)
or, more fine-grained, type-specific information (e.g., <key:
queue name, value: actual name of the used queue>, etc.).
Moreover, rules can allow or deny a communication by consid-
ering several parameters connected by logical operators such
as or, and or not (e.g., the communication between two units is
allowed only if the first one accesses the second over a restful
web-service communication type and the value of the used
endpoint name matches a given regular expression). To enable
the specification of such rules we defined an expression-based
language that consists of three types of expressions:

Terminal expressions are directly constraining the commu-
nication parameters of interactions. The matches and equals
expressions can be used to allow/deny a communication if
the value of a communication parameter (e.g., “queue name”)
matches a given regular expression (e.g., <key: queue name,
value: matches(queueData*)>) or has a precise value (e.g.,
<key: queue name, value: equals(queueDataTransfer)>), re-
spectively. The has expression is used to allow/deny a com-
munication based on whether the corresponding interaction
exhibits a communication parameter with a given key (e.g.,
allow the communication, only if the corresponding interac-
tions exhibit the “queue name” parameter key).

N-ary and unary expressions can be used to express condi-
tions using logical operators. The unary not expression can be
applied to an expression to reverse its boolean value. E.g., the
not expression used in combination with an equals expression
can be used to identify communication in which the value
of a parameter is different than a specified one (e.g., allow
the communication only if its “type” is not “messaging”:
<key: type, value: not(equals(messaging))>). Furthermore,
using an n-ary expression, one can constrain a communication
if several expression-based conditions apply simultaneously
(and expressions—e.g., the type should be “soap webservice”
and the endpoint name should match the regexp “getData*”),
or only if some of them hold (or expressions—e.g., the
communication is allowed if the type of the communication is

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

Fig. 1. Rules Taxonomy in ARAMIS

“soap webservice” or “restful webservice”).
Depending on the complexity of the communication regu-

lated by a rule, we can distinguish between aggregating and
non-aggregating rules. The non-aggregating rules correspond
to conformance checks that can be performed on single
interactions. E.g., a non-aggregating rule can foresee that
“unit A should not access unit B”. Consequently, given an
architecturally mapped interaction, this can be immediately
validated against this rule as no extra information about other
interactions is needed. In the case of aggregating rules, more
interactions must be considered. Two examples of such rules
are “unit A should be coupled with unit B over the database”
and “unit A should interact with B over a single commu-
nication mechanism”. In the first case, the validation cannot
succeed by analyzing interactions in isolation. To validate the
conformance to this rule, at least two interactions should be
found: one in which the caller is A and the callee is the
database and, at least a second one in which the caller is
B and the callee is the database. To check the second rule,
we must consider the set of all interactions between A and
B at once and determine how many different communication
mechanisms were identified.

To evaluate aggregating rules, we have developed a two-
phase-based algorithm called “map aggregate”. During the
mapping phase, the interactions are analyzed one by one to
determine which of these could be useful for checking the
validity of an aggregating rule. If possibly useful interactions
are identified, these are saved in a buffer for latter access.
In the aggregate phase, the buffer is searched for marked
interactions that can be linked together to prove or disprove
the conformance to the checked rule. An example of an
aggregating rule for enforcing a specific communication chain
in an analyzed system will be presented in the evaluation
section.

By combining the different rule specification aspects offered
by ARAMIS, very specific rules can be defined for constrain-
ing the communication within a system. To specify such rules
we created an XML-based Rules DSL 1.

1The corresponding XSD file is available at: https://rwth-aachen.sciebo.de/
index.php/s/D8CcZUGKZrYm3t5

III. RELEVANCE OF THE MONITORING SAMPLES

In the last section, we presented the ARAMIS approach to
specify architecture communication rules. It goes far beyond
existing rule specification approaches and enables to specify
complex rules to cover all relevant communication relations
between architecture units. However, to produce sound results
of a behavior-based architecture conformance check, it also
must be ensured that the monitoring is performed on an ade-
quate basis. In the following, we first introduce the monitoring
concepts of ARAMIS, then we propose a metric to measure
the adequacy of a performed monitoring. As we will discuss
in the related work session, the typical proposed approach is
to use code coverage metrics to assess adequacy. While high
code coverage can (relatively) easily be obtained at the level
of unit testing, we argue that for behavior-based architectural
conformance checking purposes, we must instead consider the
system as a whole. At this level of integration, achieving a
high overall coverage is often challenging. Consequently, we
propose an additional metric called the scenario coverage to
reason on the level of confidence in a given monitored behavior
to sustain an adequate architectural conformance checking.

A. Monitoring Concepts

The atomic ARAMIS monitoring unit is a scenario, which
we define (based on the SEVOCAB definition [12]) as a
step-by-step description of a series of events that may oc-
cur concurrently or sequentially and represent a meaningful
business function. By consulting the involved experts and, if
available, various other sources (e.g., use cases or system test
cases) scenarios can be extracted and collected into a so-called
scenario repository. The scenarios are typically defined on a
conceptual level (e.g., log in a user with a valid name and
password), but when monitoring the system, these will be
instantiated with concrete data (e.g., log in using the user name
“x”and password “y”).

We call a set of logically connected scenario instances that
are performed sequentially to be a monitoring episode. Thus,
an episode can be explained as “screenplays” of scenario
instances: a scenario instance can thus occur several times
in a given episode at different time-points. The set of all
episodes performed on a system during its monitoring is called

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

a monitoring session. Theoretically, monitoring episodes can
be automatically generated (e.g., [13]), if the scenarios are
enriched with accurate logical predicates expressing their pre-
and postconditions. However, such an automatic approach
is not feasible in a real-world environment, as the number
of scenarios quickly escalates [13] and defining pre- and
postconditions becomes cumbersome.

Our claim is that a monitoring session represents an ad-
equate basis for a behavior-based architecture conformance
check, if the considered episodes encompass as many relevant
scenarios of the system as possible, and if these are performed
in a large variety of contexts. A scenario is most likely to be
relevant for a behavior-based architecture conformance check,
if (1) it is important2 from the application point of view
regardless whether it is performed rarely or very frequently
or (2) if it is performed very frequently, regardless whether it
is important or not important. The two main assumptions that
underlie this claim are the following:

1) The architectural drift that occurs in non-relevant scenar-
ios has less impact on the overall architectural quality of
a system from an understandability and evolution point
of view. The probability of evolving their corresponding
code is lower: it is more likely to evolve the parts of the
system that correspond to relevant scenarios, because
new or changing requirements are often triggered by
constant usage.

2) There are possibly many different contexts in which a
scenario can be performed and these can reveal different
architectural conformance checking results.

The relevance ranking of scenarios and their possible con-
texts could be extracted from available use case narratives,
test case descriptions or defined by the system experts. The
contexts could be a simple set of story-like representations
with possible references to previously occurring scenarios.

B. Scenario Coverage of a Monitoring Session

To increase the confidence in the trustworthiness of a
behavior-based analysis, we propose a new metric, called
scenario coverage. The scenario coverage of a monitoring
session is defined to be the percentage of scenarios executed
within the session’s episodes, pondered by their relevance and
variance. While the relevance ranking is given by experts,
we define the variance of a scenario to be the percentage of
different, possible contexts in which the scenario was executed
in the given session. The context of a scenario is determined
by the sequence of scenarios that were performed previously in
the considered monitoring session, after a clean system start.

In the following we introduce the metric step by step. At
first, we denote the set of all scenarios of a system SCs.
Due to the abstract, conceptual nature of scenarios, this set is
finite. Conversely, the number of possible scenario instances is
generally infinite and consequently an exhaustive monitoring

2In our understanding, a scenario is important if it corresponds to a key
requirement, or it is regarded by the architect as particularly adequate to
expose the behavior of the system across its architecture units.

is not possible, which resembles closely the problematic of
exhaustive testing.

According to our monitoring model we define an episode
as being an ordered set of so-called scenario performances
defined by triples of type (possc, sc, infosc) where sc ∈ SCs,
possc ∈ N represents its position in the episode, and infosc
represents some textual information. posSc can be referenced
by further scenario performances in the episode, e.g., if infosc
of a later scenario performance specifies that it should expose
some similar conditions to those of a referenced one. Fur-
thermore, infoSc, if not empty, gives additional information
regarding conditions that the actual scenario instance will have
to obey. Thus, an episode is defined by the order of scenario
performances and some additional information to guide the
choice of scenario instances. The “screenplay character” of the
monitoring episodes is manifested in the fact that we allow the
same scenario to be used in different scenario performances
of an episode. This permits us to create, in the same episode,
various contexts of a scenario.

The following examples illustrate the concept of scenario
contexts: Given the scenario “log in with nonexistent user”,
its possible contexts could be: {perform scenario on system
start, perform scenario after deleting the user}. Similarly the
possible contexts of a scenario “create new user” could be:
{perform scenario on system start, perform scenario after
deleting a previously existing user with the same user name}.
Both these context sets make references to the scenario “delete
existing user”, that should occur previously to create the proper
context.

An episode that reflects the log in of a nonexistent user, the
creation of a new user, the logging in of an existing user with
the same user name as the previous one, the deletion of this
user and its new creation can be represented by the following
list of scenario performances (sp):

LoginEpisode={ (1, log in with nonexistent user), (2, create
new user), (3, log in with existing user, same user as in sp 2),
(4, delete existing user, same user as in sp 2), (5, log in with
nonexistent user, same user as in sp 2), (6, create new user,
same user name as in sp 2)}

In the LoginEpisode, the variance of the scenario “log in
with nonexistent user” is 1 because all its contexts were
considered. On the other hand, the variance of scenario “create
new user” is only 0.5 because it was never performed after
system start.

Now we can formally define the variance of a scenario
within an episode. For that, let Es be the (infinite) set of all
possible episodes to be performed on a system s. Then the
variance of a scenario sc within an episode e of a system s
can be defined as follows:
var : SCs × Es 7→ [0, 1]

var(sc, e) = contexts(sc, e)
|CTXsc| ⇐⇒ CTXsc 6= ∅

where, contexts(sc, e) returns the number of contexts of sc
in episode e and CTXsc represents its given context set. As
context sets are not always defined and we want to make
the metric robust, we simply consider that the default context

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

set of a scenario is given by the scenario itself; in this case
|CTXsc| = 1 and var(sc, e) = 1,∀e ∈ Es .

Beside the contexts of a scenario, its relevance is the second
factor influencing the scenario coverage. To keep the metric
simple and applicable, we propose the following four relevance
classes VR (very relevant), R (relevant), N (neutral), NR (not
relevant) to be used by the experts to rank all scenarios. If no
classification is provided, the default class for those scenarios
is neutral.

Thus, for an episode e its scenario coverage is:
sccov : Es 7→ [0, 1]

sccov(e) =

{
0 ⇐⇒ V R ∪R ∪N = ∅∑

sc∈e contexts(sc,e)·relv(sc)∑
sc∈SCs |CTXsc|·relv(sc) ⇐⇒ otherwise

where, relv(sc) =

3 ⇐⇒ sc ∈ V R

2 ⇐⇒ sc ∈ R

1 ⇐⇒ sc ∈ N

0 ⇐⇒ sc ∈ NR
Based on this definition, the scenario coverage of any

episode containing only not relevant scenarios is 0, because
their analysis will also be prone to irrelevance. Furthermore,
we designed the sccov metric in a way, that its value increases
the most when all relevant scenarios are considered in as many
contexts as possible (high variance), preferably in all their
associated contexts (i.e., having variance 1). Also, the value
of the metric decreases rapidly when relevant scenarios that
have large context sets are monitored only with a low variance.

To sum up, the scenario coverage metric is intended to give
an estimation regarding the adequacy of a monitoring episode
with respect to addressing the relevant scenarios of the system
in as many different contexts as possible.

To exemplify the metric, we reuse our login scenarios and
their given context sets and assume that the experts defined
the following relevance classes:

VR ={delete existing user, create new user, edit data of
existing user}; R ={log in with existing user}; N ={log in
with nonexistent user}

Then, the scenario coverage of the LoginEpisode (LE) is
computed as

sccov(LE) =

∑
sc∈LE contexts(sc, LE) · relv(sc)∑

sc∈SCs |CTXsc| · relv(sc)

=
1 · 3 + 1 · 3 + 1 · 2 + 2 · 1

1 · 3 + 2 · 3 + 1 · 3 + 1 · 2 + 2 · 1
= 0.625

Obviously, this value is not high, as a relevant scenario (edit
data of existing user) was not monitored. Furthermore, only
half of the contexts defined for the very relevant scenario
“create new user” were considered.

To compute the overall scenario coverage of a multiple
episode monitoring session we concatenate these episodes
using the function concat : P(Es) 7→ Es, which simply
returns an episode containing all concatenated scenarios of
the input episodes.

Let M s = {e1, ..., en} denote a monitoring session of system
s, defined by an ordered list of episodes. Then, its scenario
coverage is defined as:
sccov(M s) = sccov(concat(e1, ..., en)).

IV. INTERPRETING THE ANALYSES’ RESULTS

Run-time based analyses were claimed to be more accurate
[14], because they reflect systems as they behave during their
actual use. Some existing violations in the code may never
actually happen in reality, as they correspond to dead code
or parts of the system that are not used anymore. This can
imply, that the effort required to redesign the affected part of
the architecture and to eventually refactor the corresponding
code can be spared. Conversely, violations occurring very
often, possibly at very high abstraction levels or producing
important performance losses or similar negative effects should
be given immediate attention. Violations occurring rarely and–
or at very concrete architectural levels (e.g., between source
code packages of a given component) can be prioritized as
having lower importance and even be ignored.

Furthermore, the monitoring results can be interpreted with
the aid of the well-know reflexion model [15]. Convergences
are the areas of the descriptive architecture that are conforming
to their prescriptive counter parts. In ARAMIS these are repre-
sented by communication that occurred during the monitoring
and that has been allowed in the prescriptive architecture
description either by specified, derived or default rules. The di-
vergences are the areas of the descriptive architecture descrip-
tion that do not conform to the prescriptive description. These
are represented by violations, i.e., communication that breaks
a specified, derived or default rule. The absences are areas of
the prescriptive architecture in which rules were specified that
could not be applied during the actual monitoring. If such a
rule was enforcing a given communication, its absence will
cause a violation in the descriptive architecture. Otherwise, if
the rule was simply allowing a communication, its absence
suggests that this communication was not used in the actual
system. Consequently, an absence hints on an “not pursued
possibility” of implementing a communication between a pair
of architecture units.

However, similar as in the case of testing, the monitoring
of a system’s scenarios cannot be performed exhaustively. The
suitability of the selected scenarios thus directly influences the
quality of the analysis results. Consequently, we propose the
use of the scenario coverage metric, to guide the interpretation
of the results. If a high scenario coverage is achieved, there is a
high probability that the interpretation according to the reflex-
ion model is accurate, at least for the most important parts of
the system. Conversely, in the case of a low scenario coverage,
the interpretation is error-prone: absences might only have
this status, because the associated behavior was not triggered
during the monitoring of some poorly selected episodes. Also,
violations might have simply not been triggered, although
they actually occur often in other relevant, but not considered
scenarios.

V. EVALUATION

We performed the evaluation during two case studies. First,
we evaluated ARAMIS on the backend of ARAMIS itself, to
validate the usefulness of the parametrized and aggregating
rules. Furthermore, by using ARAMIS we could also ensure

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

Fig. 2. Excerpt of the Prescriptive Architecture Description of ARAMIS

that the chosen episode to be monitored has a relatively high
scenario coverage. Second, we applied ARAMIS on a system
for managing life insurances together with one of our industry
partners. In the next two subsections we give an overview of
the performed case studies.

a) ARAMIS-based Evaluation: For clarity reasons, we
briefly present the architecture of ARAMIS that is relevant for
the performed evaluation, as depicted in Figure 2. The source
code of ARAMIS, as used in the current evaluation is publicly
available [16].

ARAMIS can process run-time data collected by Kieker
[17] or Dynatrace [11]. Kieker and Dynatrace Adapters are
thus responsible to employ these monitoring tools and con-
sequently persist the collected logs. Corresponding Kieker
and Dynatrace Monitors will normalize the collected logs
and transform them to a common format. A REST Inter-
face is then used to trigger the processing of monitored
Kieker or Dynatrace logs. The REST Interface thus initial-
izes the monitor components and two so-called Architecture
Information Processors (AIPs): the Architecture Mapper and
the Conformance Checker. The communication between the
monitor, mapper and checker components occurs through
predefined queues provided by an Architecture Information
Broker (AIBR) implemented using RabbitMQ messaging. The
information, normalized by the monitors, is sent to the AIBR
and then forwarded to the architecture mapper that maps the
various run-time interactions on architecture-level units. Next,
the data is redirected to the AIBR and consequently to the
conformance checker that analyzes if the mapped interactions
violate the prescriptive architecture description. If violations
are detected, the conformance checker marks the respective
interactions accordingly. Then, the results are similarly for-
warded through the AIBR to a MongoDB Manager, which
persists them in a MongoDB Database.

We have evaluated the backend of ARAMIS in the context
of a student project, whose goal was to implement the Dy-
natrace Adapter and Monitoring components. Therefore, the
evaluation also focused on these components. Also, because
the capabilities of Dynatrace include those of Kieker and go
much beyond these [10], we have classified our scenarios in

Fig. 3. Specification of the ARAMIS Chain Rule

relevance classes as follows:
VR ={“extract data with Dynatrace”, “trigger the process-

ing of Dynatrace data”} and N ={“extract data with Kieker”,
“trigger the processing of Kieker data”}.

We then designed a monitoring episode that can be ex-
pressed as:

AramisEpisode = {(1,“extract data with Dynatrace ”,“”), (2,
“trigger the processing of Dynatrace data”, “the data extracted
in 1”)}.

Given the simplicity exhibited by the scenarios and their
straight-forward ordering, defining contexts of the presented
scenarios was not necessary.

Thus, the scenario coverage of the chosen episode is:
sccov(AramisEpisode) = 3+3

1+1+3+3 = 0.75.
Consequently, we considered that the chosen episode is

reasonably suitable for showcasing the functionality of the
ARAMIS backend.

Next, using the Rules DSL we defined 21 communication
rules that could express all the architectural intentions captured
in the prescriptive architecture description of ARAMIS. By
default, we have specified any bidirectional interaction to be
denied, i.e., the rules could have been specified on a white-
list basis. However, to explore the expression capability of
the Rules DSL, some redundant rules were also specified
(e.g., one rule explicitly denied that the Dynatrace Adapter
accesses the REST Interface over the REST protocol). The
extracted Dynatrace purepaths, the prescriptive architecture
of ARAMIS, the communication rules to which ARAMIS
must comply and the results of the conformance check of
ARAMIS are publicly available [18]. In the next paragraphs
we exemplify, due to space constraints, only one of the defined
aggregating rules and give a short overview of the results of
the conformance check.

Figure 3 depicts the “AramisChainRule” that enforces
the communication chain Dynatrace Monitor–Architecture
Mapper–Conformance Checker. In the map phase (Lines 2-
17), we search for two types of interactions. First, we search
for interactions over a queue (Line 6) whose name matches
the string value “aramis.monitor.result” (Lines 7, 8), and that
showcase the Dynatrace Monitor as a caller (Line 4) and

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

the Architecture Mapper as a callee (Line 5). These are
marked with the identifier “e” (Line 3) for future reference
in the aggregate phase. Next, we similarly search for queue-
based interactions (Lines 13-15), which have the Architecture
Mapper as a caller (Line 11) and the Conformance Checker as
a callee (Line 12), and mark them with the identifier “f” (Line
10). In the aggregate phase (Lines 18-21), to ensure the correct
timing within the chain, we search for interactions of type “e”
that occur before (Line 19) some of type “f”, i.e., we search
for evidence that the Dynatrace Monitor sent messages to the
Architecture Mapper, prior to the Mapper sending messages
to the Conformance Checker.

All in all, using the Rules DSL we could specify all the ar-
chitecturally relevant rules applicable in the case of ARAMIS.
During the actual analysis, it was confirmed that ARAMIS
adheres to its prescriptive architecture to a great extent, but vi-
olations were also discovered. For example, although adapters
were not permitted to access any other component than the
database, such a call in the Dynatrace Adapter was discovered.
The analysis also revealed a false positive. The REST Interface
and the Conformance Checker seemed to wrongfully access
the MongoDB directly not using the Database Manager as
prescribed. Consequent code inspections could not confirm
these violations. We thus discovered that the violation existed
only during run-time, because the code was silently modified
by the used Spring Data mechanisms. Spring Data leverages
dynamic proxies due to which classes with non-deterministic
names are generated and instances thereof are used at run-
time. Because these generated classes cannot be assigned to
an architectural unit, the prescriptive architecture will appear
to be violated.

b) Evaluation in the Industry: We applied ARAMIS
at our industrial cooperation partner Generali Deutschland
Informatik Services (GDIS) (the IT provider of one the
biggest insurance service groups in Germany and worldwide)
on a commercial, J2EE-based system comprising around 2.5
MLOC and corresponding to an estimated workload of 5000
person days. The system was developed for the domain of
insurance portfolio management, but the actual details and
scenarios of the system are confidential and some of the
information is thus obfuscated. In the next, we will use the
name “InsuranceApp” to refer to this system. A running
version of the InsuranceApp was made available to us in the
form of an EAR file deployed on a Weblogic Application
Service installed on a Windows Virtual Machine.

In this case study, the architect exclusively defined non-
parametrized, non-aggregating rules, that prescribe how the
various architecture units should access each other directly
over simple method calls.

The evaluation process took place as follows. (1) Together
with the architect, we analyzed the system’s prescriptive
architecture, filtered out the non-run-time architecture units
(e.g., components used only for initial code generation) and
performed the code to architecture mapping. The prescriptive
architecture description comprising only the run-time active ar-
chitecture units is depicted in Figure 4. Apart from the default

Fig. 4. Prescriptive Architecture Description of the InsuranceApp System

non-configurable same architecture unit rule, 12 applicable
communication rules were identified:

• 9 caller-callee rules were crystallized from the depicted
arrows that symbolize the control flow in the system

• a callee rule for the Util architecture unit, to allow all
other units to call it

• the default unmapped rule was set to allowed, to validate
all calls whose caller and/or callee are not a unit depicted
in the prescriptive architecture. The reasoning was that
the prescriptive architecture comprises all architecturally
significant parts of the system and hence calls involving
any other units are not significant and hence allowed

• the default unconstrained rule was set to denied, to
symbolize that the prescriptive description was elaborated
on a white list basis

(2) We did not have access to any integration tests of
the InsuranceApp. Consequently, based on some preliminary
instructions from the architect, we explored the system and
monitored it, using the following episode:

InitialEpisode={ (1, create a new insurance), (2,
parametrize insurance, same insurance as in 1), (3,
assign insurance to customer, same insurance as in 1 and
already existing customer), (4, save current progress), (5, list
insurances of customer, same customer as in 3)}

(3) We presented the architect the initial analysis results.
This revealed that the architecture units Contract and Vali-
dation were not used at all in performing the InitialEpisode
leading to 4 absent but expected interactions. The absences
suggested that either the initially monitored episode was not
relevant or that (some of) the communication possibilities
foreseen by the prescriptive architecture were not taken into
consideration when building the system. Since a scenario
repository was not available, the architect defined himself the
following relevance classes and scenario contexts, in order
to estimate the coverage of the initial episode and possibly
support the definition of a more comprehensive one:

R ={sc1:“create a new insurance”, sc2:“parametrize in-
surance”, sc3:“assign insurance to customer”, sc4:“save cur-
rent progress”, sc5:“list insurances of customer”} and VR
={sc6:“trigger computation of monthly rate”}.

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

The last scenario was considered more relevant than the
others because it has a more global architectural effect. Fur-
thermore the architect specified the following context set for
scenario 5:

CTXsc5 ={ ctx1: list insurances of customer on system
start), (cxt2: list insurances of customer after creating a new
insurance (sc1), parametrizing it (sc2), assigning it to the
customer (sc3), and saving the progress (sc4)), (ctx3: list
insurances of customer after creating a new insurance (sc1),
parametrizing it (sc2), assigning it to the customer (sc3),
triggering the calculation of the monthly rate (sc6), and saving
the progress (sc4))}

Given that in the InitialEpisode we only considered the
scenarios sc1 - sc5 and only the context ctx2 for sc5, the
scenario coverage was low: only slightly more than half of the
relevant scenarios were monitored in their defined contexts:
sccov(InitialEpisode) = 1·2+1·2+1·2+1·2+1·2

1·2+1·2+1·2+1·2+3·2+1·3 ≈ 0.58.
To better cover the scenarios, the architect recorded, using

Selenium, a more comprehensive episode that consisted of 120
different actions performed in the web-based user interface of
the application. The episode is detailed below:

FinalEpisode={(1, list insurances of customer), (2, create a
new life insurance), (3, parametrize insurance, same insurance
as in 1), (4, assign insurance to customer, same customer as
in 1 and same insurance as in 2), (5, trigger computation
of monthly rate, same insurance as in 2), (6, save current
progress), (7, list insurances of customer, same customer as in
3)}

FinalEpisode thus covered all the scenarios (sc1 - sc6) of the
system and two of the defined contexts (ctx1, ctx3). Therefore,
the scenario coverage of the FinalEpisode (≈ 0.88) was higher
and the architect considered it sufficient to support the archi-
tecture conformance check. However, a later code coverage
analysis, revealed that the FinalEpisode exhibited an statement
coverage of only 34%. This situation, in which the architect
was confident that the architecturally significant relations can
be checked against conformance using an integration-level
episode exhibiting a low instructions coverage, confirmed the
usefulness of the newly introduced scenario coverage metric
to increase confidence in the results.

(4) We monitored the FinalEpisode and presented the re-
sults to the architect. The run-time interactions discovered
by ARAMIS are depicted on the left side of Figure 5 and
the identified violations are depicted with dashed arrows. The
details regarding the frequency of interactions were omitted,
to avoid cluttering. However, these can prove very important
if performance-related optimizations were planned for the
InsuranceApp. The calls to the Util architecture unit are not
displayed, because all components are allowed to call it and
this would just lead to figure cluttering. Using ARAMIS,
we detected multiple violations involving calls to the Prod-
uct architecture unit. Upon analyzing these, the Architect
acknowledged that the initial prescriptive diagram lacks an
important piece of information: the product architecture unit
consists of many domain objects which are also used for
transferring information between the units. Consequently, a

new rule was formulated, namely that the Product architecture
unit can be called by any other unit in the InsuranceApp’s
architecture. Next, the architect examined the calls that the Util
unit issues towards the Frontend, Frontend Controller, Product
and Contract. Although the details are out of the scope of this
paper, using the ARAMIS visualizations it was easily possible
to check from which packages, classes and methods in the
source code did the calls originate and which exact methods
were called by these. In doing so, the architect realized that
we initially performed a wrong code to architecture mapping
and, additionally, that the prescriptive architecture should be
enriched with a new architecture unit, generically named
Platform. Thus, given that all the violations caused by Util
originated from two packages, these were extracted from Util
and added to the newly created architecture unit Platform.
According to the architect, Platform is a unit responsible for
various initializations and code injection capabilities. Involv-
ing Platform, a new caller rule was formulated, namely that
Platform is allowed to call all other units in the prescriptive
architecture of InsuranceApp. Furthermore, after a thorough
analysis, aided by further interaction details provided by the
ARAMIS visualizations and accompanied by searches in the
InsuranceApp’s code repository, the architect concluded that
one more allowed bidirectional caller-callee rule should be
added to the prescriptive architecture, Client 7→ Frontend Con-
troller, as this was initially wrongfully identified as a violation.
Having performed these refinement, the architect confirmed
the existence of 5 violations in the descriptive architecture
of InsuranceApp that need further analysis and refactoring:
Product 7→ Frontend Controller, Product 7→ Fronted, Product
7→ Validation, Product 7→ Contract and Fronted 7→ Client.

Another important finding, resulted through the inspection
of the allowed dependency between the InsuranceApp and
the ExternalSystems. The prescriptive architecture suggests,
by means of a derived rule, that any architecture unit en-
compassed in the InsuranceApp is allowed to call the Co-
laborator External System. An analysis of this dependency
revealed that the Collaborator was accessed by three Insur-
anceApp architecture units: Frontend, Contract and Product.
Upon acknowledging this, the architect recognized a fault
in the prescriptive architecture, which was formulated in a
too permissively: future refactorings should ensure a single
dependency to Collaborator, preferably from the Frontend unit.

The invested effort was regarded to be reasonable. The
architect needed half of a working day to define the archi-
tecture, perform the code to architecture mapping and define
the scenarios, their contexts and rankings. We invested two
additional days for the analysis and the preparation of the
presentation of the first version of the descriptive architecture
and the computation of the associated statement coverage us-
ing a JaCoCo agent for the Weblogic Application Server. The
discussion of the first variant of the descriptive architecture
lasted for around one hour, during which the architect analyzed
the findings and proposed new rules to add to the prescriptive
architecture. The consequent changes were performed in an
additional work hour on our side.

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

Fig. 5. Descriptive Architecture of the InsuranceApp

VI. RELATED WORK

The conformance of a system’s architecture to its descrip-
tion has long been in the focus of the research community.
The majority of developed tools focus on recovering the
structure of the analyzed system and represent instantiations
or adaptations of the conceptual software reflexion model [15]
to which, as explained in Section III, ARAMIS also adheres
to. In [19] Pruijt and van der Werf propose a categoriza-
tion of structural dependency types and subtypes that can
be considered by reconstruction tools. Knodel and Popescu
[6] present a comparison of a set of popular reconstruction
techniques. Ducasse and Pollet [5] give a more comprehensive,
but not complete, taxonomy of architecture reconstruction
approaches. According to this taxonomy, ARAMIS proposes
a hybrid process that requires a prescriptive architecture as
input and produces a behavior-based descriptive architecture
as output, by employing exploration-based quasi-manual and
semiautomatic techniques.

Architecture reconstruction solutions based on the analysis
of run-time data are less numerous. Typically, run-time mon-
itoring is employed to support the diagnosis of performance-
related problems. Two commercial tools that are often em-
ployed are Dynatrace [11] and Nagios [20]. Central to these
tools is the monitoring of CPU consumption or the detection
of performance bottlenecks. A residual product of such tools is
the information regarding the architectural interactions within
the analyzed systems. For example, Dynatrace employs the so-
called Purepath technology to “capture timing and code level
context for all transactions, end-to-end, from user click, across
all tiers, to the database of record and back” [11]. ARAMIS is
developed in a modular manner, to allow the easy “docking”
of such monitoring tools to facilitate data extraction and
validate it according to pre-specified prescriptive architecture
descriptions. A Dynatrace adapter for ARAMIS is already
available and it was employed in both of the case studies
presented in the Evaluation section.

Kieker [17] is a university project that also addresses the
run-time analysis of systems. Unlike ARAMIS, the specifi-
cation of rules on an architectural level is not possible. A
Kieker adapter for ARAMIS is available as well and was

employed in some of our initial case studies. Similary, Zipkin
[21] is an open-source project, inspired by Google Dapper [7],
that aims to support engineers to identify and troubleshoot
latency problems in a distributed, microservices environment.
While creating a dependency diagram of the explored systems
landscape, the specification and validation of architectural
rules is not possible.

Vierhauser et al. [22] present an experiment for extracting
and visualizing interactions within systems of systems. The
results should be explored manually. Similarly, ExplorViz
[23] analyzes run-time data and creates scalable visualizations
that aid results exploration. DiscoTect [25], a pioneer of
run-time monitoring, employed the Java Platform Debugger
Architecture, to extract traces from a Java-based system and
enabled their filter-based exploration to create architecturally-
relevant state-machines. In all these three cases, rules cannot
be pre-defined and checked against.

Static reconstruction tools have a richer rules taxonomy.
With Sonargraph Architect [26] layered prescriptive architec-
tures and corresponding rules, resembling the ARAMIS non-
aggregating ones, can be created and checked against. Visual
Studio also introduced the possibility to manually or auto-
matically check the conformance of code to defined layered
prescriptive architecture descriptions [27]. In Structure101 [28]
rules can be specified to dictate how logical containers should
access each other. Other approaches, such as the STAN project
attempt to automatically determine possible violations, without
a prior specification of architectural rules, based on various
heuristics. In all these cases, the considered dependencies are
very close to the source code. Complex rules, as the one
proposed by ARAMIS are not considered.

To the best of our knowledge, coverage metrics to assess
the relevance of architecture reconstruction results were not
defined. Efforts were invested to embed static architectural
checks (e.g., [26], [29]) or low level code health assessments
and technical dept computations (e.g., [30]) in automatic build
processes. In this cases the entire code base is being struc-
turally analyzed. In contrast, as suggested by Yan, Garland
and Schmerl [25], in the case of behavior-based conformance
checking, dedicated metrics are needed to increase confidence

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

in the provided results: “architectural coverage metrics [...]
would be good [...] to have some confidence that in running
a system with various inputs, we have exercised a sufficiently
comprehensive part of the system”. Further authors, such as
Ganesan, Keuler and Nishimura [31] or Silva [32], discuss
that run-time checks can be triggered by the execution of test
cases and thus, the results can be coupled with traditional test
coverage metrics; however, these assess the extent to which
the system was analyzed based on its intrinsic properties. In
contrast, the scenario coverage metric is relying on properties
extrinsic to the system, such as the relevance of the considered
scenarios and their contextual richness. Hence, this approach
supports a more pragmatic analysis, in which, e.g., the first
violations to be addressed are those occurring (or expected to
occur) often in important scenarios.

VII. CONCLUSION

In this paper we proposed a set of concepts for conducting
adequate behavior-based architecture conformance checks. In
our understanding, a behavior-based conformance check is
adequate if (1) it employs expressive, non-trivial rules and
applies these on interactions extracted during the execution
of (2) relevant scenarios. We showcased the definition of
expressive communication rules using ARAMIS. Furthermore,
we proposed a metric to assess the relevance of the episodes
employed during system monitoring. The evaluation was per-
formed in two case studies. First, we applied ARAMIS on
its own backend. Second, we used ARAMIS to evaluate a
large industrial system and explored the usefulness of the
proposed scenario coverage metric. Using ARAMIS we could
check the conformance of the studied architectures to relevant
communication rules. Furthermore, we observed that the pro-
posed scenario coverage metric is also useful for exploring
the adequacy of behavior-based conformance checks beyond
traditional code coverage measures.

REFERENCES

[1] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, “Obtaining ground-
truth software architectures,” in Proc.of the International Conference on
Software Engineering (ICSE). Piscataway, NJ, USA: IEEE Press, May
2013, pp. 901–910.

[2] L. de Silva and D. Balasubramaniam, “Controlling software architecture
erosion: A survey,” Journal of Systems and Software, vol. 85, no. 1, pp.
132–151, January 2012.

[3] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40–52,
Oct. 1992.

[4] D. C. Luckham and J. Vera, “An event-based architecture definition
language,” IEEE Transactions on Software Engineering, vol. 21, no. 9,
pp. 717–734, September 1995.

[5] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 4, pp. 573–591, 2009.

[6] J. Knodel and D. Popescu, “A comparison of static architecture compli-
ance checking approaches,” in 6th Working IEEE/IFIP Conference on
Software Architecture (WICSA), Mumbai, Maharashtra, India, January
2007, pp. 12–21.

[7] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010.

[8] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in the 21st Asia-Pacific Software Engineering
Conference (APSEC), vol. 1. IEEE, December 2014, pp. 191–198.

[9] A. Nicolaescu, H. Lichter, A. Göringer, P. Alexander, and D. Le, “The
ARAMIS Workbench for Monitoring, Analysis and Visualization of
Architectures Based on Run-time Interactions,” in Proc.s of the 2015
European Conference on Software Architecture Workshops (ECSAW).
ACM, September 2015, pp. 57:1–57:7.

[10] A. Nicolaescu and H. Lichter, “Behavior-based architecture reconstruc-
tion and conformance checking,” in 13th Working IEEE/IFIP Conference
on Software Architecture, WICSA Venice, Italy, 2016, pp. 152–157.

[11] “The dynatrace tool,” http://www.dynatrace.com, accessed on 2016-12-
19.

[12] “The software and systems engineering vocabulary,” accessed on
2016-12-01. [Online]. Available: https://pascal.computer.org

[13] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel, “Automatic test
generation: A use case driven approach,” IEEE TSE, vol. 32, no. 3, pp.
140–155, 2006.

[14] D. B. Lange and Y. Nakamura, “Interactive visualization of design
patterns can help in framework understanding,” SIGPLAN Not., vol. 30,
no. 10, pp. 342–357, Oct. 1995.

[15] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion
models: Bridging the gap between design and implementation,” IEEE
Transactions on Software Engineering, vol. 27, no. 4, pp. 364–380, April
2001.

[16] “The aramis repository,” https://supp.swc.rwth-aachen.de/stash/projects/
AR/.

[17] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework
for application performance monitoring and dynamic software analysis,”
in Proc. of the 3rd joint ACM/SPEC International Conference on
Performance Engineering (ICPE). ACM, April 2012, pp. 247–248.

[18] “The results of the aramis-based evaluation,” https://rwth-aachen.sciebo.
de/index.php/s/kvwXbM3ABWjF4eF.

[19] L. Pruijt and J. M. E. M. van der Werf, “Dependency types and subtypes
in the context of architecture reconstruction and compliance checking,”
in Proc. of the 2015 European Conference on Software Architecture
Workshops (ECSAW). New York, NY, USA: ACM, September 2015,
pp. 56:1–56:7.

[20] “The nagios tool,” https://www.nagios.org/, accessed on 2016-12-19.
[21] “The zipkin project,” http://zipkin.io/, accessed on 2016-12-19.
[22] M. Vierhauser, R. Rabiser, P. Grünbacher, C. Danner, S. Wallner, and

H. Zeisel, “A flexible framework for runtime monitoring of system-of-
systems architectures,” in Proc.of the 11th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA), April 2014.

[23] F. Fittkau, P. Stelzer, and W. Hasselbring, “Live visualization of large
software landscapes for ensuring architecture conformance,” in Proc. of
the 2014 European Conference on Software Architecture Workshops, ser.
ECSAW ’14. New York, NY, USA: ACM, 2014, pp. 28:1–28:4.

[24] T. B. C. Arias, P. America, and P. Avgeriou, “A top-down approach to
construct execution views of a large software-intensive system.” Journal
of Software: Evolution and Process, vol. 25, no. 3, pp. 233–260, 2013.

[25] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “Discotect:
A system for discovering architectures from running systems,” in The
26th International Conference on Software Engineering (ICSE). IEEE,
May 2004, pp. 470–479.

[26] “Sonargraph-architect,” https://www.hello2morrow.com, accessed on
2016-12-19.

[27] “Layer diagrams in visual studio,” https://msdn.microsoft.com/en-us/
library/dd409462.aspx, accessed on 2016-08-15.

[28] “The structure101 project,” http://structure101.com/, accessed on 2016-
12-19.

[29] M. Goldstein and I. Segall, “Automatic and continuous software ar-
chitecture validation,” in 37th IEEE/ACM International Conference on
Software Engineering (ICSE), vol. 2, May 2015, pp. 59–68.

[30] “The sonarqube project,” www.sonarqube.org, accessed on 2016-12-15.
[31] D. Ganesan, T. Keuler, and Y. Nishimura, “Architecture Compliance

Checking at Runtime: An Industry Experience Report,” in Proceedings
of the Eighth International Conference on Quality Software - QSIC ’08.
IEEE, aug 2008, pp. 347–356.

[32] L. D. Silva, “Towards Controlling Software Architecture Erosion
Through Runtime Conformance Monitoring,” Ph.D. dissertation, Uni-
versity of St. Andrews, 2014.

© IEEE
https://doi.ieeecomputersociety.org/10.1109/APSEC.2017.51

2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, Jiangsu, China, 2017, pp. 446-455.
doi:10.1109/APSEC.2017.51

