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Abstract—Constraint handling is an important extension of
combinatorial testing to exclude irrelevant combinations which
could otherwise lead to the input masking effect. A special han-
dling of invalid values is also important because of potential input
masking. Unfortunately, existing CT approaches only consider
invalid values explicitly. Invalid value combinations are equally
important but only indirectly supported . Therefore, we present
a concept that allows to specify invalid value combinations as
logical expressions to generate negative test cases.
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I. INTRODUCTION

Combinatorial testing (CT) evolved as an efficient approach to

reveal interaction faults [1]. Most real-world applications have

constraints in their input parameter domains restricting the

number of relevant parameter value combinations. If a test case

contains values or value combinations that violate constraints,

it cannot be executed or the execution aborts. Oftentimes,

the first evaluated invalid value leads to an error-handling

procedure within the system under test (SuT). The test fails

and other input values of the same test case are masked and

remain untested [2]. To avoid input masking, CT integrates

constraint handling to annotate irrelevant value combinations

and to exclude them from test case generation.

Positive test cases are used to check that the system func-

tions as intended and negative test cases to check proper

error-handling. To avoid input masking, positive test cases

contain no invalid values and cover all valid t-way value

combinations [2], [3]. Negative test cases should contain

exactly one negative value. Tools like ACTS [4] or PICT [3]

support the exclusion of irrelevant value combinations and the

generation of negative test cases based on invalid values. They

do not directly support negative test cases based on invalid

value combinations. A workaround to model them indirectly

in ACTS or PICT is introduced in the background section.

However, that is oftentimes insufficient. By not considering

invalid combinations, a test case can include more than one

invalid combination and errors may remain undetected. By

modelling them only indirectly, the model loses clarity and

expressiveness making mistakes more likely. In practice, nega-

tive test cases are often not negative because of a single invalid

value but rather because of an invalid value combination.

T itle : {Mr,Mrs}valid
GivenName : {John, Jane}valid ∪ {123}invalid

FamilyName : {Doe}valid ∪ {123}invalid

c1 : T itle = Mrs ⇒ GivenName �= John
c2 : T itle = Mr ⇒ GivenName �= Jane

Listing 1. Exemplary IPM with Error-Constraints

Take a customer registration web-service as an example.

It validates the input to avoid invalid names and a wrong

addressing of men and women. To test the service, Listing 1

depicts an input parameter model with valid and invalid values

above the line. Below the line, error-constraints specify valid

value combinations, i.e. the correct addressing. The validation

is expected to fail for invalid values or invalid combinations

that do not satisfy the error-constraints. Not considering error-

constraints results in test cases like (Mr, Jane, 123) where

an invalid value potentially masks an invalid combination.

In this paper, we extend existing constrained CT algorithms.

Our concept allows to directly specify invalid values and value

combinations as logical expressions to generate negative test

cases automatically. We implement it into the IPOG-C algo-

rithm [4] and apply it to a real-world enterprise application.

The paper is structured as follows. In section II, constraints

in CT and related work are discussed. Section III describes

the concept to generate negative test cases based on hard and

soft-constraints. The evaluation is presented afterwards and we

conclude with a summary of our work.

II. BACKGROUND AND RELATED WORK

Combinatorial testing is a black box test design technique to

create test cases by applying a combination algorithm on a

given input parameter model (IPM) [5]. An IPM is represented

as a finite set of n input parameters IPM = {p1, ..., pn} of

which every parameter pi is related to a finite set of mi > 0

values Vi = {v1, ..., vmi}. An unconstrained combinatorial al-

gorithm with a given strength t ≥ 1 generates a set of complete

test cases that covers all t-way parameter combinations.

SolveUnconstrained(IPM, t) = {τ1, ..., τk}
A test case is a tuple of values τ = {v1, ..., vl} where vi ∈ Vi

and 1 ≤ l ≤ n. A test case τ is complete if it contains a value

for every parameter of the IPM (l = n). In contrast, incomplete

test cases do not contain values for all parameters (1 ≤ l < n).
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Table I
LOGICAL CONNECTIVES AND THEIR NEGATIONS

Connective Formula Negation
Proposition A ¬A
Negation ¬A A
Disjunction A ∨B ¬A ∧ ¬B
Conjunction A ∧B ¬A ∨ ¬B
XOR A⊕B (¬A ∧ ¬B) ∨ (A ∧B)
Implication A ⇒ B A ∧ ¬B
Equivalence A ⇔ B (¬A ∧B) ∨ (A ∧ ¬B)

Most real-world applications have constraints that restrict

their input parameter domains and separate relevant from

irrelevant test cases. Constraint handling in CT allows to

exclude irrelevant test cases from generation [1]. Exclusion-

constraints are either represented as value combinations that

must not appear in any test case (forbidden tuples) or as

logical expressions (propositional logic) describing conditions

that must be satisfied by all test cases [4]. In the latter case,

a function Γ(τ, c) → Bool evaluates whether a constraint c is

satisfied by a test case τ . Table I summarizes the connectives

of propositional logic and their negations.

A constrained combinatorial algorithm generates a set

of relevant and complete test cases w.r.t. the exclusion-

constraints CEx = {c1, ..., cn} such that ∀τ ∈ {τ1, ..., τn}, ∀c ∈
CEx,Γ(τ, c) = true.

SolveConstrained(IPM, t, CEx) = {τ1, ..., τn}
Every time the constrained CT algorithm chooses a new

value, it translates the (incomplete) test case into a constraint

satisfaction problem (CSP) and checks if a solution exists that

satisfies all exclusion-constraints.

Real-world constraints are often too restrictively formulated

and a solution that satisfies all constraints cannot be found.

Then it is useful to consider soft-constraints as introduced in

related work like [6] or [7]. Hard-constraints specify value

combinations that must be satisfied by all test cases. Soft-

constraints specify value combinations of which a test case

should satisfy as many as possible. In the latter case, the CSP

is transformed into an optimisation problem seeking to satisfy

as many constraints as possible.

It is important to check the behaviour of a SuT with

both positive and negative scenarios. Positive scenarios focus

on valid intended operations of the system as required by

its specification. Negative scenarios focus on robustness and

error-handling triggered by invalid inputs. Hence, not only

relevant from irrelevant test cases should be distinguished, but

also positive from negative ones. Conceptually, the values of

every parameter pi are separated into two disjoint subsets to

represent valid and invalid values Vi = V valid
i ∪V invalid

i . A test

case τ is positive if all values are valid: ∀vi ∈ τ, vi /∈ V invalid
i .

A test case is negative if there is at least one value in the

subset of invalid values: ∃vi ∈ τ, vi ∈ V invalid
i .

Existing tools combine all positive values to a positive test

suite of strength t [2], [3]. Additionally, negative test cases are

created such that every invalid value should be included in test

cases where all other values are valid. This leads to more test

cases but avoids possible input masking.

Tools like ACTS or PICT conceptually distinguish valid

values from invalid ones but do not consider invalid value

combinations. However, invalid value combinations must be

expressed as well to generate negative test cases. In this work,

error-constraints (denoted as CErr) are used to specify and to

reason about the validity of a value or value combination. The

two constraints in Listing 1 are examples of them. Similar to

exclusion-constraints, the evaluation is true in the absence and

false in the presence of invalid values or value combinations.

Since ACTS and PICT do not consider error-constraints, a

workaround must be used. It is possible to introduce a new

input parameter with one valid value and a set of invalid

values: Error : {ok}valid ∪ {err1, ..., errn}invalid . One invalid

value is introduced for each error-constraint. Then, each error-

constraint is transformed into an exclusion-constraint of the

pattern (error = erri) ⇔ ci with ci denoting the negation

of ci. Applying the workaround to the example depicted in

Listing 1, constraint no. 1 can be modelled as follows.

Error = err1 ⇔ (T itle = Mrs ∧GivenName = John)

Since Error = ok is chosen for all positive test cases, the right-

handed side of the constraint must evaluate to false as well.

Afterwards, every invalid value erri is selected for negative

test case generation and the corresponding ci must be true.

The workaround is suitable for many cases. However, it

increases the complexity of the model and makes mistakes

more likely. It reduces the clarity and expressiveness since

additional values must be used and constraints must be negated

and are required to match a certain pattern. In practice, it

becomes even more complex because a ⇔ b is not supported

by the frontends of ACTS and PICT. Instead, the equivalent

expression a⇒ b ∧ b⇒ a must be used.

In the following section, we present an alternative approach

that supports error-constraints to model invalid value combina-

tions. Furthermore, soft-constraints are integrated to generate

negative test cases for over-constrained models.

III. CONSTRAINTS FOR NEGATIVE TEST CASES

A. General Approach

Existing tools generate relevant test cases based on an IPM,

a given strength t and a set of exclusion-constraints to ex-

clude irrelevant value combinations. To generate negative test

cases, invalid values and invalid value combinations must

be expressed as well. In contrast to the workaround, error-

constraints are explicitly integrated. Invalid values are mod-

elled as unary error-constraints rather than as a set V invalid.

SolveNegative
Constrained(IPM, t, CEx, CErr) = {τ1, ..., τn}

For instance, the values of the parameter FamilyName are

specified as FamilyName = {Doe} and c4 : FamilyName �=
123. The notion of positive and negative test cases is adjusted

as follows. Again, a test case τ is relevant if it satisfies

all exclusion-constraints. A positive test case is relevant and

satisfies all error-constraints: ∀c ∈ CErr,Γ(τ, c) = true. A

negative test case is relevant with at least one unsatisfied error-

constraint: ∃c ∈ CErr,Γ(τ, c) = false.
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Similar to PICT, the generation process starts with positive test

cases. Since positive test cases must satisfy all constraints, they

can be generated by an existing algorithm that considers all

constraints as exclusion-constraints. The negative test cases are

created by additional generation runs for one error-constraint

ci ∈ CErr at a time. In each run, one error-constraint is negated

and a new set of error-constraints is created where ci replaces

ci, i.e. C′ = (CErr \ {ci}) ∪ {ci}.
Applying an existing algorithm to the modified set of

constraints generates negative test cases because the negated

constraint ci can only be satisfied by invalid values and invalid

value combinations. Since only one constraint is negated each

time, the test cases contain one invalid value or value com-

bination. To generate all negative test cases, the replacement

and generation is repeated for all |CErr| error-constraints.

input: IPM, t, CEx, CErr

output: A set of test cases
let T+ = solve(IPM, t, CErr ∪ CEx)
let T- = Ø
foreach ci in CErr

let ci = negation of ci
let C’ = (CErr\{ci}) ∪ {ci}
T- = T- ∪ solve(IPM, t, C’ ∪ CEx)

return T+ ∪ T-

Listing 2. Generation of Negative Test Cases

Listing 2 shows the generation algorithm. T+ denotes the set

of positive test cases, T− the set of negative test cases and the

function solve refers to an existing constrained algorithm.

In the following subsections, the transformation into CSPs

with hard and soft constraints are discussed in more detail.

B. Constraint Satisfaction with Hard-Constraints

An important part of constrained CT algorithms is to check the

relevance of a test case. The IPM, all constraints and the test

case are transformed into a constraint satisfaction problem. A

complete test case τ is relevant if all constraints are satisfied,

i.e. ∀c ∈ C,Γ(τ, c) = true. An incomplete test case τ is relevant

if values can be assigned to all missing parameters so that the

resulting complete test case satisfies all constraints.

Similar to IPOG-C, the example of Listing 1 is translated

into the subsequent CSP for positive test cases. Each input

parameter is represented as a variable xi ∈ X. The domain

of xi represents the mi input parameter values as integers

Dxi = {1, ..,mi}. All constraints of the IPM are translated

to constraints of the CSP. The parameter FamilyName is

represented as F and its values Doe as 1 and 123 as 2.

X = { T,G, F}
D = {DT = {1, 2}, DG = {1, 2, 3}, DF = {1, 2}}
C = {G �= 3, F �= 2, T = 2⇒ G �= 1, T = 1⇒ G �= 2,

T = 1 ∧G = 1}
The constraint FamilyName �= 123 becomes F �= 2. Since

the relevance of a test case is to be checked, the values of that

test case are added as constraints as well. The test case (Mr,

John) is modelled as T = 1∧G = 1 and it is relevant because

a solution (Mr, John, Doe) exists.

For negative test cases, one error-constraint of the CSP is

negated but all other constraints remain unchanged. Error-

constraint no. 2 (FamilyName = 123) is negated and trans-

formed to F = 1. (Mr, John, 123) is a possible solution.

C. Constraint Satisfaction with Soft-Constraints

Real-world models are often over-constrained. The constraints

are loose enough such that a solver can find positive test

cases. But when generating negative test-cases, negated error-

constraints often conflict with other constraints.

In fact, it is quite easy to model constraints that conflict

when generating negative test cases. Consider a slightly rewrit-

ten version of the constraints no. 1 and 2 that use = instead of

�=. There is no difference when generating positive test cases.

However, negative test cases cannot be found for constraint

no. 3. The negation c3 conflicts with c′1 and c′2 because no

value for Title can be found that satisfies all constraints.

c′1 : T itle = Mrs⇒ GivenName = Jane

c′2 : T itle = Mr ⇒ GivenName = John

c3 : GivenName �= 123

c4 : FamilyName �= 123

In order to generate negative test cases for over-constrained

models, they can be manually relaxed such that they are not

over-constrained anymore. However, that is a complicated and

error-prone task and sometimes not even possible. Another

solution is to use soft-constraints instead. The IPM, constraints

and test cases are transformed into an optimisation problem

to satisfy as many soft-constraints as possible. Therefore, a

weight ωi ∈ Z
+ is assigned to every soft-constraint and a utility

function sums all soft-constraints satisfied by assignment a.

maxUtility(a) = max

|Csoft|∑

i=1

ωi × csofti (a)

When utilising a CSP to check if a test case is relevant or not, it

is sufficient to search for a complete assignment. However, that

is not sufficient when utilising an optimisation problem. An

assignment that does not satisfy a single constraint is complete,

even with the worst utility value.

Therefore, three improvements are introduced: First,

exclusion-constraints are still hard-constraints that must be

satisfied by every test case. They do not affect the value of

the utility function. Second, the negated error-constraint to

enforce invalid value combinations must also be satisfied by

every test case. All other error-constraints are modelled as

soft-constraints with weights and have an effect on the utility

function. Third, a threshold η ∈ Z
+ is introduced to provide a

means for deciding whether a test case is relevant or not. The

threshold is a lower boundary for the utility function and a

test case is only relevant if the utility value is equal or greater

than the threshold η ≤ Utility(a).

An example to generate negative test cases for c3 is depicted

below. The negated constraint c3 is transformed into the hard-

constraint G = 3. Constraints no. 1′, 2′ and 4 are modelled

as soft-constraints. The constraints are reified and boolean
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variables Rx capture the truth values. A variable Rx is true

if the constraint cx is satisfied and false otherwise (Rx ⇔ cx).

In addition, a constraint for the lower boundary of the utility

function is introduced. The CSP with a threshold of η = 3 and

an equal weight ω = 1 for all soft-constraints is similar to the

previous approach with hard-constraints only.

X = { T,G, F} ∪ {R1, R2, R4 }
D = { DT , DG, DF , DR1,2,4 = {0, 1} }
C = { R1 ⇔ (T = 2⇒ G = 2), R2 ⇔ (T = 1⇒ G = 1),

R4 ⇔ (F �= 2),

G = 3,

η ≤ ω1R1 + ω1R2 + ω1R3 + ω1R4 }
IV. EXAMPLE AND FIRST EVALUATION

To illustrate the usefulness of our approach, we implemented

it into IPOG-C (called IPOG-CNeg) and compared it to PICT.

Test cases are generated by both with a strength of t = 2.

A Count-metric is used to compare them. Since PICT only

supports invalid values directly, invalid value combinations are

not annotated and modelled as if they were valid. Please note,

the results of IPOG-CNeg and PICT would be equal with the

workaround applied to the PICT model.

Count(τ) = |CErr| −
|CErr|∑

i=1

Γ(τ, ci)

The metric counts the number of invalid values and value com-

binations per test case by subtracting the number of satisfied

error-constraints from the total number of error-constraints.

A count of zero unsatisfied error-constraints denotes positive

test cases. A count of one denotes strong negative test cases

that avoid input masking. Numbers greater than one denote

negative test cases that deviate from that suggestion and may

lead to input masking.

The customer registration example is used as a first scenario.

The three inputs are validated at the beginning. If they do

not succeed, false is returned immediately. Otherwise, the

customer is registered. Table II lists the generated pairwise test

cases. Only invalid values are considered by PICT whereas all

error-constraints are considered by IPOG-CNeg. The counts are

listed in the #-column. Two test cases generated by PICT re-

spectively have two unsatisfied error-constraints. Suppose the

registration is implemented as shown in Listing 3. Then, the

underlined statement is never reached due to input masking.

The second validation also fails for the test cases which were

supposed to check invalid family names.

boolean register(String title, given, family){
if(!isAGivenName(given)) { return false; }
if(genderOf(title) != genderOf(given)) {

return false; }
if(!isAFamilyName(family)) { return false; }
...

}

Listing 3. Implementation of the Example Customer Registration

Validation rules for a customer management system of an

insurance company are used as a second scenario. The IPM

Table II
GENERATED TEST CASES

PICT Extended IPOG-C
Title Given Family # Title Given Family #
Mrs Jane Doe 0 Mrs Jane Doe 0
Mrs John Doe 1 Mrs John Doe 1
Mr Jane Doe 1 Mr Jane Doe 1
Mr John Doe 0 Mr John Doe 0
Mrs John 123 2 Mr John 123 1
Mr Jane 123 2 Mrs Jane 123 1
Mr 123 Doe 1 Mr 123 Doe 1
Mrs 123 Doe 1 Mrs 123 Doe 1

consists of 10 parameters, no exclusion-constraints and 15

error-constraints of which 6 are unary. PICT generates 96 test

cases whereas IPOG-CNeg generates 117 test cases. However,

the test cases of IPOG-CNeg have at most one negative value

combination per test case. Not a single positive test case is

generated by PICT. On average, PICT’s test cases have 3.4

unsatisfied error-constraints and a maximum of seven unsatis-

fied error-constraints. More evaluation work is necessary but

the figures demonstrate the overall usefulness of our extension.

V. CONCLUSION

Testing negative scenarios is as important as testing positive

ones. Existing CT tools ignore irrelevant combinations and

provide a special treatment to invalid values. However, they

do not consider invalid value combinations.

In this paper, we presented an approach that extends existing

constrained algorithms to directly include invalid value com-

binations. They can be specified using logical expressions and

negative test cases are generated such that one error-constraint

is unsatisfied. We experienced over-constrained models when

generating negative test cases and provided an alternative

solving strategy with a threshold and soft-constraints. Further,

the concept was implemented and applied in two scenarios

concerned with input validation. Even though further evalua-

tion work is necessary, the results are promising and highlight

the usefulness of the concept.
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