© IEEE
https://ieeexplore.ieee.org/document/8590193

Code Smells in Infrastructure as Code

Julian Schwarz
RWTH Aachen University
Aachen, Germany
julian.schwarz@rwth-aachen.de

Abstract—Ensuring high quality in software systems is a well-
known and big challenge. Infrastructure as Code (IaC) gathered
increasing popularity in recent years, but there is only little
research done in terms of quality of this code. Like with
programming languages we find a high diversity of languages
and technologies. Existing research introduced code smells from
traditional software engineering to the popular provisioning
tool Puppet, which uses IaC to specify the desired state of
environments. Results show that code smells are an adequate
method to assess the quality of Puppet code.

In this paper we extend the existing research by first applying
code the IaC smells to an other technology and investigate if
similar results can be achieved. We applied the code smells in
two case studies to open and closed source IaC code repositories.
The presented results indicate that IaC smells are present in
other tools and technologies. Furthermore the results show that
IaC smells are agnostic to the applied technology and can be
defined on a technology agnostic level. Second, we introduce new
code smells from the field of software engineering, which were
not covered yet, to the domain of IaC. The paper presents a
catalogue of 17 code smells which were applied to Chef and
whose implementation is available as Open Source.

I. INTRODUCTION

Infrastructure As Code is an emerging practice to describe
and specify the underlying infrastructure of software systems
and their configuration. Within a DevOps-oriented develop-
ment process laC helps to automatically build, provision,
configure and manage a software system with each change of
the software. IaC covers the specification of virtual hardware
using tools like Terraform !. Other tools like Puppet’ and
Chef? define the required installed software products and their
configuration as [aC. As IaC evolves over time it is a good
practice to store IaC files alongside with the source code of
the respective software.

DevOps emphasizes to apply methods and practices from
development to operation and vice versa. Code smells are a
well known for programs, so applying the idea of code smells
to IaC is obvious. But to the best of our knowledge there is
only very little research available. This paper extends the work
of Sharma et al. [1] who introduced IaC smells for the first
time focusing on Puppet and finally present a tool to detect
them in Puppet files. Puppet is a configuration management

tool which defines an own declarative language to describe
'www.terraform.io

2www.puppet.com

3www.chef.io

Andreas Steffens
Research Group Software Construction
RWTH Aachen University
Aachen, Germany
steffens @swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction
RWTH Aachen University
Aachen, Germany
lichter@swc.rwth-aachen.de

infrastructure. Chef is another often used configuration man-
agement tool offering a Ruby-based declaration language.
Though there are documented best practices for Chef and
especially for Ruby as well as style guides, a comprehensive
list of code smells for Chef is still missing. Obviously, there is
neither tool support to detect Chef [aC smells nor a refactoring
approach to remove those smells systematically.

In this paper we want to answer the following questions;

o Are the Puppet IaC smells applicable to Chef or other
tools and technologies or even to complete domain of
[aC?

o If yes, do we obtain the similar results?

o Are there additional relevant IaC smells not published
yet?

Therefore, at first we transfer a selection of Puppet IaC
smells to Chef IaC to validate the results of Sharma et al.
and to show that the these IaC code smells definitions are
general and can be applied to different technologies and
tools. Furthermore, we propose a set of new IaC smells
based on well-known smells published in books like Fowler’s
Refactoring book [2]. Our overall aim is to propose an initial
catalog of [aC smells for Chef, which can be further extended
to improve the quality of Chef cookbooks.

This paper is organized as follows. At first, we give some
background information on configuration management and
code smells in Section II. Thereafter, in Section IV, we discuss
our research questions followed by the presentation of our
solutions and the results we obtained performing a case study
(Section V). We conclude this paper by summarizing our
results in Section VIII.

II. BACKGROUND
A. Code Smells

The concept of code smells was introduced by Kent Beck
and Martin Fowler [2] and describes flaws in code which may
lead to problems. A code smell does not lead to a run-time
error but usually indicates that the code needs to be improved.
An well-known example is the Duplicate Block (DB) smell,
which occurs if a sequence of identical statements is repeated
throughout the code and should be moved to a method.

B. Infrastructure as Code

Configuration management eventually was born out of
the need to maintain systems with different architectures,

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

© IEEE
https://ieeexplore.ieee.org/document/8590193

software versions and configuration settings inside the same
infrastructure [3]. In 1993, Mark Burgess developed the first
configuration engine CFEngine [3] to deal with different
architectures and operating systems without the need to main-
tain innumerable configuration scripts. IaC is directly linked
to configuration management and is basically a synonym.
Configuration management tools like Chef or Puppet translate
infrastructure code into infrastructure [4].

Puppet’s configuration code is a type of IaC. Resources are
the smallest configuration components. Multiple resources can
be consolidated in classes and multiple classes, including other
files needed, can be joined in a module. A module configures
a part of an infrastructure like e.g., a mail server.

Chef, another configuration management tool, defines the
following three major components:

« Resource: smallest unit, specifies one functionality

« Recipe: consists of one or more resources and installs a

component of an infrastructure part

« Cookbook: consists of one or more recipes and describes

an infrastructure or one of its parts

Chef recipes are written in a domain-specific language,
based on Ruby, in a declarative way. In comparison to Puppet
however, it is possible to specify configurations in an impera-
tive way, as cookbooks are written in Ruby. A Chef client is
a binary file which interprets the cookbook(s). It installs the
infrastructure according to the cookbook.

III. RELATED WORK

Current research regarding IaC focuses on specific quality
attributes of infrastructure code, idempotency and conver-
gence. Hummer et al. [5] applied techniques from model-
driven testing to Chef and were able to find non-idempotent
cookbooks. Shambaugh et al. introduced Rehearsal [6], a
configuration verification tool for Puppet, using static analysis.
Rehearsal can verify two central qualities of Puppet manifests,
determinism and idempotency. Wettinger [7] proposed an alter-
native to the convergence oriented approaches using concepts
called compensation and virtualization. Theses approaches
assess very specific properties of IaC but fail to provide
information to developers where and how to improve the
infrastructure code.

More recent research was conducted to assess more quality
attributes of IaC. Bent et al. [8] derived a quality model
for Puppet based on an empirical study, while Rahman and
Williams [9] used text mining techniques. Cito et al. [10]
extended the scope to Docker while Jha et al. [11] took a
look on Android manifests. All these approaches adapt existing
ones, which has been proven successful in other areas of
software engineering like defect prediction or testing.

Sharma et al. [1] proposed to apply the code smell metaphor
for TIaC as well. Fowler [2] claims that code smells have
a negative impact on the quality of code and are a main
indicator to refactor the code. In their study [12], Olbrich et al.
conclude that classes infected with code smells have a higher
change frequency, meaning that such classes seem to need
more maintenance than non-infected classes. Fontana et al.

analyzed in their study [13] the frequency of code smells in
systems of different domains. The analysis yielded that all
domains except of one incorporate a common set of code
smells.

Sharma et al. [1] applied the principles of code smells to
Puppet. They propose a catalog of 24 smells. They distinguish
between implementation and design smells. While implemen-
tation smell involves quality issues like naming conventions,
style, formatting and indentation, design smells involve quality
issues in the module design or structure of a configuration
project. The authors applied their smells on public available
configuration code. We refer to these specific smells as Puppet
smells in the rest of this paper. In our study we compare our
findings with these previous results.

IV. METHODOLOGY

Based on our initial motivation as stated in Section I and
to define the scope of this work, we formulate the following
two research questions.

e RQ1 Are Puppet smells applicable to another configu-
ration management tool like Chef and can we conclude
that they are applicable to the complete domain of laC?
To answer this question, we pick the five most fre-
quently occurring implementation configuration smells
and the five most frequently occurring design configu-
ration smells from the smell catalog proposed by Sharma
et al. [1] and convert them into detection rules for
Foodcritic, a static code analysis tool designed for Chef.
To achieve this we analyzed the code smells and classify
them into three categories. Each category indicates the
necessary actions to apply a smell to specific technology.
To validate our approach, we apply the Chef smells
to public available Chef cookbooks. By comparing our
results with the results of Sharma et al. [1] we are able
to answer our research question.

o RQ2 Are there additional and well-known programming

smells which are relevant for laC?
Following our previously used practice, we first create
abstract smell definitions based on published code smells
definitions and then define the respective concrete IaC
versions. There, we focus on smells from Fowler’s Refac-
toring [14] book. Furthermore, we preferred more com-
plex smells, respectively design and architecture smells,
which are not contained in the Puppet smell catalog. In
addition, we redefined violations against best practices for
Chef as smells. All these new smells were implemented
using Foodcritic and applied to the same cookbooks as
before.

V. RESULTS

A. Abstract Smell Classification

As many of the Puppet smells and their detection methods
are specific to Puppet, we were not able to transfer certain
Puppet smells directly to Chef.

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

© IEEE
https://ieeexplore.ieee.org/document/8590193

TABLE I
SMELL MATRIX

Technology Agnostic

Technology Dependent Technology Specific

Implementation Improper Alignment, Long State- | Improper Quote Usage Hyphens
ment, Unguarded Variable, Mis-
placed Attribute, Long Resource

Design Multifaceted Abstraction, Duplicate | Insufficient Modularization, | Empty Default

Block, Avoid Comments, Too many
Attributes

We discovered that there are at least three kinds of IaC
smells: technology agnostic smells, technology dependent
smells and technology specific smells.

o Technology Agnostic Smells These smells can adapt
from the respective Puppet smells without changing the
defined detection method (often based on metrics, see
Marinescu [15]). Obviously, we may need to change
the implementation of the smell detection method as we
need to consider the different syntax of the languages.
An example of a technology agnostic smell is Duplicate
Block. It can be detected for blocks with a specific count
of characters no matter which characters and thus it can
be detected in any language, even in natural language.

o Technology Dependent Smells These are Puppet smells

that are not directly applicable to Chef IaC due to various
differences between Puppet and Chef, e.g., comprise of
concepts that exist for Puppet but not for Chef.
To apply a technology dependent smells to Chef, we need
to alter its detection method. Therefor, we identified the
needed smell detection information and the structures in
Chef, which provide these information. We used both to
define the corresponding Chef specific detection methods
for those smells. To understand the structures and con-
cepts of Chef we primarily consulted the official Chef
style guide [16], an additional community style guide [17]
and the Chef documentation [18].

Listing 1. Technology Dependent Smell - Modules in Puppet

Download Java
remote_file java do
source url

owner ’‘user’
group ’group’
action :create_if_missing

end

Listing 2. Technology Dependent Smell - Modules in Puppet

class java::install {
file { ’java’:
source => url,
owner => ’user’,

group => ’group,
ensure => present

Weakened Modularity, Unstructured
Module, Law of Demeter, Include
Consistency

An example for a technology dependent smell is the
Insufficient Modularization smell. Puppet uses a concept
called class to structure configuration code, in Chef a
similar concept is called recipe. While the class concept
of Puppet is realized by the keyword classy; Chef’s DSL
does not provide such a keyword. Instead, recipes are
distinguished by using different files. Listing 2 shows a
Puppet module inside a class structure, the equivalent
structure for Chef in shown in Listing 1. Due to the
different realizations of modules, the detection methods
of technology dependent smells need to by changed.

o Technology Specific Smells These kinds of smells
can be only applied to one specific IaC technology. We
derive these smells from common best practices and style
guides. The absence of these practices indicate a code
smell. For Chef we identified two technology specific
smells. One is called Empty Default smell which claims
that the "default.rb" recipe should always be empty. This
is very specific to Chef, since there is no such concept
of recipes in Puppet.

Based on our analysis, we created abstract smell definitions
which should be applicable to every [aC. Moreover, we created
a classification, especially the distinction between technology
agnostic and technology dependent smells. Based on these
results we created concrete smell definitions for Chef. We
suggest this as a process of transferring smells in the domain
of Infrastructure as Code (IaC).

Note, that the abstraction of a smell also provides an
abstraction of the its detection method (and the used metrics)
for technology agnostic smells and therefore simplifies its
application. The concrete implementation of the detection
method needs be adapted in all cases.

B. Catalogue

Finally, we defined a catalog of Chef IaC smells dis-
tinguishing between , technology agnostic and technology
dependentThe definition of all smells are shown in Table II,
Table III and Table IV. Table Table I shows in overview
of our classification with respect to the distinction between
implementation and design smells. It’s obvious that most of
the implementation smells are technology agnostic due to
their nature of being rather simple. They cover mostly style
issues. For the more complex design smells its harder to find
a technology agnostic definition as they need more sources of
information and the metrics are more complex. But the results

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

© IEEE

https://ieeexplore.ieee.org/document/8590193

TABLE II
TECHNOLOGY AGNOSTIC SMELLS
Smell Description Detection
Improper Alignment | The smell is detected if there are any tabulation characters, or | Tabulator characters are detected, by scanning each line of a
(TA) if the Resources parameters are not correctly and consistently | file whether it contains the string "\¢". For the detection of

indented.

the proper alignment, we identify the location of the first non
whitespace character for each inside a block.

Long Statement (LS)

This smell describes code lines or statements which are too
long and thus typically do not fit in a screen.

The smell is detected by counting the number of character of
each line. The limit is 140.

The UV code smell wants to make sure that variables in
strings are properly interpolated. Puppet interpolates a vari-
able via ${}, while Chef interpolates variables like this #{}.
The smell occurs if a variable is not enclosed in braces when
being interpolated in a string.

We use the AST to collect all variables. Then we extract via
RegEx all strings in quotes (single and double quotes) and
search in those strings for a # following a variable.

According to the official Chef styleguide [16] the specific
order of information inside a resource should be followed.

We identify resources in the AST. For each resource we fetch
the used parameters. Each parameter has a predefined priority
number based on style guides. From this we compute the
smell by comparing the list of parameters the ordered list of
possible parameters.

Unguarded Variable
uv)

Misplaced Attribute
(MAY)

Multifaceted

Abstraction (MA)

MA for Chef means that each recipe and each resource should
only specify the properties of a single piece of software.

We suggest to scan execute resources for commands using

o

concatenation or piping like "&&", "I" or ";".

Duplicate Block (DB)

This smell describes blocks of statements occurring more than
once

If a code block of at least 150 characters occurs more than
once, the smell is present. Literature provides clone detection
algorithms, e.g. using AST [19]. We use a simple search-
based algorithm.

Long Resource (LR)

This smell is mapped from the Long Method smell by Fowler
[2]. As for Chef all resources, except bash and execute
resources, are limited in length by the number of their
parameters and the corresponding values. The same takes
effect for bash and execute resources, besides the value of
the command attribute in execute resources is not limited
and code in bash resources is not limited, too. Therefor, we
mapped this smell to be applied only to bash and execute
Resources and changed the name to Long Resource instead
of Long Method. Execute and bash Resources being too long
should be detected.

We calculate one metric, the number of LoC inside bash and
execute Resources. We detect the smell if those Resources
have more than 7 LoC. We count the LoC, by traversing
the AST and counting how many different line numbers the
Resource comprises.

Too many Attributes
(TmA)

The TmA smell is derived from the Long Parameter List
smell combined with the Speculative Generality smell by
Fowler [2]. We combine the ideas of both of the smells and
recommend to not use attributes excessively to simplify code
and minimize the effort needed for maintaining the code.

As a metric, we calculate the number of variables per lines
of code. If the calculated value is greater than 0,5 the smells
is detected. We suggest to search the AST for variables and
variable references. Those are saved in an array and the size
of the array is finally divided through the number of lines.

Avoid Comments (AC)

Based on Fowler [2] comments often lead to bad code or are
used to as a deodorant for bad code. Additionally Robert C.
Martin deals in detail with comments being a possible code
smell [20] by naming a few cases like redundant comments,
bad comments or commented code. Following the sugges-
tion of Fowler and taking Robert C. Martins considerations
into account we advise not to use comments at all. Since
Chef is declarative and has comprehensive resource names,
normal resources are always self-explaining. Comprehension
problems might occur on bash or execute, custom resources,
etc.. In those cases the resource shall either follow single
responsibility principle or needs to be splitted up.

For Chef we decided to detect the smell on every comment,
except all comments until the first non-commented line.
We exclude the first comments, because they often include
licensing information.

indicate that design smells are not technology specific which
supports our assumption for our first research question, that
code smells are a applicable to the complete domain of IaC.

The implementation of the detection methods for all Chef
smells was done in Foodcritic and can be found as open
source under the following URL [22]: https://github.com/swc-
rwth/Infrastructure AsCodeSmells

For answer the second research question, we identified five
new code smells applicable to the IaC. The field of software
engineering provides a extensive collection of code smells and
anti-patterns [2], [23]. The newly identified smells are included
in our catalogue and written in italic.

C. Completeness & Soundness

Soundness and completeness, as introduced by Jalote [24]:
are important properties of a static code analysis approach.
While soundness captures the occurrence of false positives
in the discovered defects, completeness characterizes how
many of the existing defects are not discovered by static code
analysis. As full soundness and completeness is not possible,
a static code analysis should be as sound and as complete as
possible.

The authors claim that there is a trade off involved. A
higher degree of completeness often implies less soundness,
that means more false positives.

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

© IEEE

https://ieeexplore.ieee.org/document/8590193

TABLE III

TECHNOLOGY DEPENDENT SMELLS

Smell

Description

Detection

Improper Quote Usage
IQU)

For Chef we demand not to quote Booleans, not to use
variables in single quoted strings and to quote resource titles,
with the exception of variables as resource titles.

We detect the smell using string search combined with
regexes.

Insufficient Modulariza-
tion (IM)

The IM smell is defined as to avoid abstractions which are
too large or complex. For Puppet [1], the smell includes three
cases which indicate an abstraction which is too large or
complex.

1) a file with more than one classes

2) class declaration too large

3) class declaration too complex
We can only adapt the last two cases for Chef by replacing
class by recipe and thus defining the second case as Recipes
being too large and the third case as Recipe complexity too
high.

To detect the properties of the smell, so Recipes being too
large and Recipes being to complex, we use the following
two metrics.
o the number of lines should be below 40
o the maximum nesting depth: each do_block
and if in the AST increase the nesting
depth and therefor complexity
To compute the nesting depth we scan the AST for the nesting
elements do_block and if.

Weakened Modularity
(WM)

For Chef we demand Cookbooks, Recipes and Resources to
follow the high cohesion, low coupling principle.

The coupling is determined by the two metrics number of in-
cludes which refers to import coupling [14] and the cohesion
by the number of LoC without includes. We therefor calculate
the ratio of the number of includes of other cookbooks and
the LoC and detect the WM smell if this ratio is greater than
0.1.

Unstructured ~ Module

(UM)

Based on this [17] Chef styleguide we define the following
metrics for the UM smell:

o absence of the required metadata.rb file

e absence of the recipe folder indicating a
poorly structured cookbook (attributes all
specified in recipes), as well as

o absence of the attribute folder

e .rb file ending for all files in the recipe
folder

o .rb file ending for all files in the attribute
folder

o .erb file ending for all files in the template
folder

We scan the directories for each cookbook for the missing
metadata file and missing attributes / recipes folders. For the
file endings we just pull all files of the respective folders and
check their file endings.

Law of Demeter (LoD)

The LoD is a well known design guideline discovered by lan
Holland, originally formulated for object-oriented systems,
and put down by Professor Karl Lieberherr with the following
general definition [21]: Each unit should have only limited
knowledge about other units: only units "closely" related to
the current unit. Or: Each unit should only talk to its friends;
Don’t talk to strangers. For Java this means e.g. that a class
A should not invoke methods on a class C by calling a
getter of a class B which returns a reference to that C class
(which belongs to B). This is also described more narrow in
the object oriented defintion of the LoD. For Chef we want
to avoid transitive dependencies. That means, if one Chef
cookbook A includes another Chef cookbook B, but both of
them include a cookbook C, the smell is discovered.

All cookbooks (so all recipes of all cookbooks) which are
included in the respective cookbook are examined whether
they also include one of the dependencies which are included
in the respective cookbook. Considering implementation we
require all cookbooks and their dependencies and therefor
all dependencies of all cookbooks to be in the same direc-
tory. The first step is to scan all recipes of the respective
cookbook for includes and store them in an array. In doing
so, we exclude includes of recipes of the same cookbook,
distinguishable by strings with the cookbook name of the
respective cookbook followed by 2 colons. The second step
is to scan all other cookbooks if they also include cookbooks
out of the array. If so, the smell is detected. The third step is
to scan all recipes (if the respective cookbook included only
a recipe of a cookbook.

Include Consistency | This smell is adapted from the LoD smell and they are | The detection strategy is very similar to the one of the LoD,
(IC) closely related. Where the LoD searches for exact matches of | except for not looking for exact matches.

transitive includes in other cookbooks, the IC smell searches

for transitive includes of cookbooks where the cookbook

name suggests a similar functionality.

TABLE IV
TECHNOLOGY SPECIFIC SMELLS

Smell Description Detection
Hyphens According to to the Chef styleguide [17] hyphens in cookbook | We just scan the folder of the cookbook for hyphens.

names should be avoided.

Empty Default (ED)

According to the Chef styleguide [17] one should create a
default.rb, but it should be empty and should not include any
includes. Instead there should be other Recipes with specific
functionalities and the user should know about them.

The smell occurs if either there is no default.rb or it is empty.
Therefor, we just scan for the existence of a default.rb and
check if the file is empty by checking if the parser outputs
nil.

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

© IEEE
https://ieeexplore.ieee.org/document/8590193

As in our case a true positive does not discover a defect, but
indicates the existence of a smell, we focused on the soundness
and therefore accept a lower degree of completeness. To assess
and improve the soundness of each smell detection method,
we conducted the following process: First, we applied the
smell detection method on at least 10 sample occurrences,
preferably in 10 different cookbooks. If the detection method
produced too many false positives we iteratively improved
the implementation or even modified the used metrics of the
detection method until no more false positives were found in
the samples. The iterative evaluation and improvement of the
smell detection method regarding completeness and soundness
is a necessary step to ensure acceptable detection results.
For example, when developing the detection method for the
Long Resource (Long Statement) smell, we initially limited
the scope of the detection on a defined set of resources to
ensure a high level on soundness. By changing the scope to
all resources the detection quality was improved drastically.

VI. EVALUATION

In order to evaluate our approach and our results, we
conducted two case studies and examined the property of
soundness and completness.

The main objective of these case studies was to validate
the proposed Chef smells and to compare their application
with the previously published results for Puppet smells. The
case studies were based on two Chef cookbook datasets.
Both cookbook datasets, one representing the official Chef
supermarket and the other one a cookbook repository from
industry, were analyzed using the same code smell detection
methods. We executed the smell detection methods using
Foodcritic 11.3.0 and Ruby 2.4.0. All developed scripts can
be also found on GitHub [22].

A. Completeness & Soundness

Soundness and completeness, as introduced by Jalote [24]:
are important properties of a static code analysis approach.
While soundness captures the occurrence of false positives
in the discovered defects, completeness characterizes how
many of the existing defects are not discovered by static code
analysis. As full soundness and completeness is not possible,
a static code analysis should be as sound and as complete as
possible.

The authors claim that there is a trade off involved. A
higher degree of completeness often implies less soundness,
that means more false positives.

As in our case a true positive does not discover a defect, but
indicates the existence of a smell, we focused on the soundness
and therefore accept a lower degree of completeness. To assess
and improve the soundness of each smell detection method,
we conducted the following process: First, we applied the
smell detection method on at least 10 sample occurrences,
preferably in 10 different cookbooks. If the detection method
produced too many false positives we iteratively improved
the implementation or even modified the used metrics of the
detection method until no more false positives were found in

the samples. The iterative evaluation and improvement of the
smell detection method regarding completeness and soundness
is a necessary step to ensure acceptable detection results.
For example, when developing the detection method for the
Long Resource (Long Statement) smell, we initially limited
the scope of the detection on a defined set of resources to
ensure a high level on soundness. By changing the scope to
all resources the detection quality was improved drastically.

B. Case Study: Industry Repository

We analyzed an internal Chef supermarket of the our
industry partner on the occurrence of smells. Thereby, we
scanned 35 cookbooks with 293 files including 184 recipes.
Those Recipes have a total of 8379 Non-Blank Lines of Code
(NBLoC). Figure 1 shows the total count of occurrences per
smell which sum up to 477 detections.

We can see four rules hitting over 40 occurrences. Those
are 62 usages of tabulator characters and 55 indentation flaws,
49 occurrences of IM, 62 occurrences of duplicate block and
86 Recipes with comments.

Important though is, that those numbers do not directly
reflect the quality of the code and that the number itself
does not necessarily reflect the representation of the smell.
We used this repository to investigate our smell definitions
and implementation in deep. During this we identified a lot
of flaws, e.g. the first definition of smells making use of
chef’s modularization concepts like recipes did not evaluate
extensions made to Chef using custom resources, templates
and libraries. We repeated our study with adapted and extended
smell metrics. The results are shown in Figure 2. The total
number of smells is 648. There is an increase for the smells
IQU, LS, IM, DB and AC. Those are mostly smells which
can be detected in any text file (IQU,LS,DB), which among
others leads to many false positives in templates, or any ruby
file (AC). Concerning the IM smell, there is an increase from
49 to 89 detected smells.

Further analysis shows, that all of the 9 additional oc-
currences of the nesting depth rule are because of custom
Resource definitions, which is immense, because those 9
occurrences only emerge out of 23 custom Resource files,
whereas we analyzed 184 Recipes.

About the half of the additional occurrences of LR are also
detected for custom resources, the other half for templates. All
in all this analysis shows, that especially the custom resources
need refactoring in terms of complexity and maintainability.
We can conclude that the analysis of cookbooks using the
extended smells provides insights about custom resource def-
initions. Although the risk of false positives is increased.

C. Case Study: Supermarket

In the context of this case study we analyzed about 3200
cookbooks out of the official supermarket. We first analyzed
the total occurrences per smell as shown in Figure 3. 44230
smells were detected on 372254 NBLoC. The first conspicu-
ousness is the high number of 23676 (capped at 5000 in Fig-
ure 3) occurrences of the IA smell, where 22157 occurrences

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

© IEEE
https://ieeexplore.ieee.org/document/8590193

140

120

100

80

60

40

2

o

0

. 0 0 0

N D DD N DD QDA DD OLSD
%9 AQ\ ®@V§®%<§b 0@ NS AP \o S QQ@Q
o OV N =y F S Y

m4
m3

mil

'\r'\r\"bv\\(?‘o
'1/\',\"&\)\’\',\‘
NSRS

Fig. 1. Total occurrences of IaC smells in industrial repository

are solely caused by the tabulator character symptom of the
smell. To have a better scaling, we thus limited the x-axis to
5000 in Figure 3.

Apart from the IA smell, there are more smells like AC,
ED and LS which occur more than 2500 times in the dataset.

Regarding our first research question, we see that nearly
each of the proposed smells was detected. Only the UV smell
was not detected. Its interesting to see that technology agnostic
design smells like IM and UM occur very often and more
often than many implementation smells. This indicates that the
current way of developing [aC already benefits from existing
support in IDEs and editors. But for detecting technology-
dependent design smells more effort has to be done. In general
the findings are quite comparable to the industry repository.
Therefore, we conclude that code smells detection can be
applied to IaC in general to assess quality. The second research
question we see, that the new introduced smells can be
identified in a relevant degree.

D. Comparison Puppet Smells

Sharma et al. [1] decided to download all Puppet reposito-
ries with at least 40 commits to ensure a certain maturity of
the puppet code. All of them together comprise 132662 Puppet
files and 8948611 LoC.

Thereby, they distinguished the total number of detected
smell instances by volume and existence. Volume thereby
means the total number of occurred smells within a project,
whereas existence describes the number of how many different
types of smells were detected within a project.

Table V shows the volumes of the top smells in chef and
their corresponding result for Puppet. Position one to three

TABLE V
ToP 10 CHEF SMELLS VS. PUPPET
Smell Chef Puppet Class
Rank Smell Occ. Freq. Occ. Freq

1A 23,676 15
LS 2,823 131

780,265 11 I/'TA
527,637 16 I/TA

1

2

3 MAt 2,336 159 22,976 389 I/TA
4 M 2,075 179 96,033 93 D/TD
5 UM 1,806 206 4,653 1923 D/TD
6 DB 1,201 309 17,601 508 D/TA
7 IQU 1,108 335 428,951 20 I/TD
8 MA 449 829 64,266 138 D/TA
9 WM 29 12836 13,944 641 D/TD
10 uv 0 - 71,339 125 TTA

reflect the top three implementation configuration smells and
position four, five and six the top three design configuration
smells. Taking only the technology agnostic and technology
dependent smells into account, results of Puppet and Chef are
nearly identical, e.g. same top smells, IA and LS. Interesting
are the differences between Puppet and Chef. The IQU smell
is one of the top three smells in Puppet but in Chef it can be
found on position seven. We could not identify a direct reason
but assume that the DSL of Chef is more likely to prevent this
smell, e.g. quoting is more mandatory in Puppet. Even more
interesting the the absence of the UV smell in Chef, where
as in Puppet it ranks quite high. For MA smell the difference
occurs, because our implementation only considers a small
set of resources and do not consider inter-resource resource
cohesion. In this case the more strict DSL from Puppet eases
the detection of this kind of smells.

If we compute the frequency of the smells in relation to the

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

© IEEE
https://ieeexplore.ieee.org/document/8590193

140
120

100

80
60
40
dIFR
0 [|

o

M rules
B deprecated

\ \O, @\ Q\be» \®®?§®®O®\)® ‘2“'» (Qv C’\ 0\6\0\@

‘b
\5 \)\/ v \)\/ \)\/ 0\’ \)\So\x)\/ 3\)\’

)

D

S 0\’\)\/ '1/ NG 0\)‘ N4 \)\,

Fig. 2. IaC adapted code smells for industry repository

amount of code , we can identify that only a few smells are
more likely to occur in Chef than in Puppet. This might be due
to the focus on sound rules and thus not having complete rules,
which means we do not detect each occurrence of a smell
or the Chef supermarket has a higher code quality. Another
aspect may be, that the used metrics and the used smells are
not suitable to evaluate the quality of Chef cookbooks at all.
There may be better metrics which detect quality issues in
Chef code more accurately.

The comparison shows, that code smells occur in both
technologies. We find a similar rankings of smells, which
leads to the assumption that [aC suffer from similar problems
and developing a catalogue of general [aC code smells is
needed. Further more the comparison shows, that the smell
detection is highly sensitive to defined metrics and the choosen
implementation. So far it is not advisable to compare IaC from
different technologies to identify the best language or tool.

VII. THREATS TO VALIDITY

As a threat to validity we regard our choice of metrics
for Chef. As seen in the evaluation, broadening the scope
of metrics, respectively changing them has a big impact
on the results and thus is a big factor to be considered.
Furthermore, the implementation of the detection contains
a certain risk, since e.g. deciding whether a rule is rather
sound than complete gives varying results regarding false
negatives and false positives as stated in Section VI-A. During
our study we encountered several bugs in Foodcritic which
may influence the detection of smells, e.g. the erroneous
detection of recipes breaks the defined detection scope. Other
implementation issues lead to rules not being sound as wanted.

VIII. CONCLUSION AND FUTURE WORK

The aim of this paper was to identify code smells in IaC,
more specifically we focused on Chef. Based on the foundation
done by Sharma et al. [1] in their paper "Does Your Configu-
ration Code Smell", we formulate two research questions. For
the first research question, we adapted the top 10 Puppet smells
for Chef. Thereby, we introduced a classification to be able
to distinguish between technology agnostic and technology
dependent smells. The comparison with Sharma et al. showed
an accordance of detected smells and of a similar distribution
in the data. Therefore, we conclude, that these smells are
adequate to be used to investigate the quality of IaC in general.
We identified more code smells from the field of software
engineering, which can be applied to IaC. The application
to Chef code indicates a high relevance of these smells.
In addition our newly defined smells cover more complex
design related problems and offer therefore more valuable
results. Due to their nature of being technology dependent
smells, design smells are more complex to implement and
more sensitive to the specific choice of the metric used to
detect the smell. Our paper shows that the previous results are
valid and transferable to other kinds of IaC. This indicates
that a further investigation of code smells in the area of
Infrastructure As Code is needed. We identified several aspects
for future research. e.g. other configuration and provisioning
tools using IaC like Ansible, Salt and Terraform needs to
be investigated to validate our results. Our catalogue of IaC
smells is not complete. Further existing code smells from
software engineering can be investigated, especially design and
architectural smells needs to be taken into account. Based on
code smells known refactoring practices can also be applied
to [aC. In software engineering research code smells are often
used to calculate risk or technical of a software project.

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

(1]

(2]

[7

(8]

[9]

[10]

© IEEE
https://ieeexplore.ieee.org/document/8590193

| 2
ml
0]

4
m3

N N A DN DD O
@Q ,\9@ ,\/Q’Q‘ é@v \?"Ob‘woo %QO b@o
¥ Vv O

P Y

Fig. 3. Total occurrence of IaC smells in public Chef supermarket

5000
4500
4000
3500
3000
2500
2000
1500
1000
500
QQVN Q09\ Q’%\%@\ @@6§@@® §®%
PP S
REFERENCES

T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), May 2016, pp. 189-200.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

J. Cowie, Customizing Chef: Getting the Most Out of Your Infrastructure
Automation, 1st ed. O’Reilly Media, 9 2014. [Online]. Available:
http://amazon.com/o/ASIN/149194935X/

K. Morris, Infrastructure As Code: Managing Servers in the
Cloud. Oreilly & Associates Incorporated, 2016. [Online]. Available:
https://books.google.de/books?id=kOnurQEACAA]J

W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, “Testing idem-
potence for infrastructure as code,” in Middleware 2013, D. Eyers and
K. Schwan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 368-388.

R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A configuration
verification tool for puppet,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’16. New York, NY, USA: ACM, 2016, pp. 416-430.
[Online]. Available: http://doi.acm.org/10.1145/2908080.2908083

J. Wettinger, U. Breitenbiicher, and F. Leymann, “Compensation and
convergence — comparing and combining deployment automation
approaches,” International Journal of Cooperative Information
Systems, vol. 24, no. 03, p. 1541001, 2015. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/S0218843015410014
E. van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is your
puppet? an empirically defined and validated quality model for puppet,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), March 2018, pp. 164-174.

A. Rahman and L. Williams, “Characterizing defective configuration
scripts used for continuous deployment,” in 2018 IEEE 1l1th Inter-
national Conference on Software Testing, Verification and Validation
(ICST), April 2018, pp. 34-45.

J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and
H. C. Gall, “An empirical analysis of the docker container ecosystem

on github,” in Proceedings of the 14th International Conference
on Mining Software Repositories, ser. MSR ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 323-333. [Online]. Available:

https://doi.org/10.1109/MSR.2017.67

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]
[21]
[22]

[23]

[24]

A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in writing
android manifests: An empirical study of configuration errors,” in
Proceedings of the 14th International Conference on Mining Software
Repositories, ser. MSR "17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 25-36. [Online]. Available: https://doi.org/10.1109/MSR.2017.41

S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,” in
2009 3rd International Symposium on Empirical Software Engineering
and Measurement, Oct 2009, pp. 390—-400.

F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka,
“Investigating the impact of code smells on system’s quality: An
empirical study on systems of different application domains,” in 2013
IEEE International Conference on Software Maintenance, Sept 2013,
pp. 260-269.

B. D. Bois, S. Demeyer, and J. Verelst, “Refactoring - improving
coupling and cohesion of existing code,” in /1th Working Conference
on Reverse Engineering, Nov 2004, pp. 144-151.

R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in Proceedings of the 20th IEEE International Conference
on Software Maintenance, ser. ICSM ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 350-359. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1018431.1021443

[Online]. Available: https://docs.chef.io/ruby.html

[Online]. Available: https://github.com/pulseenergy/chef-style-guide
[Online]. Available: https://docs.chef.io/

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in Proceedings of the
International Conference on Software Maintenance, ser. ICSM ’98.
Washington, DC, USA: IEEE Computer Society, 1998, pp. 368-.
[Online]. Available: http://dl.acm.org/citation.cfm?id=850947.853341
R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008.
[Online]. Available: http://www.ccs.neu.edu/research/demeter/demeter-
method/LawOfDemeter/general-formulation.html

[Online]. Available: https://github.com/swc-
rwth/InfrastructureAsCodeSmells

W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis,
Ist ed. New York, NY, USA: John Wiley & Sons, Inc., 1998.

P. Jalote, An Integrated Approach to Software Engineering, 3rd ed.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

2018 11th Int. Conference on the Quality of Information and Communications Technology (QUATIC), Coimbra, Portuga, pp. 220-228.
doi: 10.1109/QUATIC.2018.00040

