
Designing a Next-Generation Continuous Software Delivery
System: Concepts and Architecture

Andreas Steffens
RWTH Aachen University

Aachen, Germany

steffens@swc.rwth-aachen.de

Horst Lichter
RWTH Aachen University

Aachen, Germany

lichter@swc.rwth-aachen.de

Jan Simon Döring
RWTH Aachen University

Aachen, Germany

jan.simon.doering@rwth-aachen.de

ABSTRACT

Continuous Integration and Continuous Delivery are established

practices in modern agile software development. The DevOps move-

ment adapted theses practices and places the deployment pipeline

at its heart as one of the main requirements to automate the soft-

ware development process and to deliver and operate software in a

more robust way with higher quality.

Over the time a lot of systems and tools has been developed

to implement the deployment pipeline and to support continuous

delivery. But software development is complex, its process even

more and due to the individual organization of software vendors

no real all-in-one solution for CD exists. Literature identified a lot

of challenges when adopting CD and DevOps in an organization.

This paper presents a conceptual model and fundamental design

decisions for a new generation of software delivery systems tack-

ling some of these issues. Our approach focuses on two specific

challenges for adopting CD. The first is the lack of flexibility and

maintainability of software delivery systems. The second is the

insufficient user support to model and manage delivery processes

and pipelines. We introduce an automated mechanism to ease the

effort for developers and other stakeholders.

Based on these results this paper introduces an architectural pro-

posal for a next-generation continuous software delivery system.

KEYWORDS

Continuous Delivery, Continuous Software Engineering, DevOps,

Architecture, Microservices, Framework, Domain Modelling

1 INTRODUCTION

An important activity in the Software Development Life Cycle is the

delivery of the developed software [12]. Depending on the software

development approach used, it can be performed iteratively. Agile

process models like Scrum[25] offer such an iterative approach

to gain short customer feedback cycles and to quickly respond

to changing requirements. In addition, the agile manifesto states

that working software should be delivered frequently[3]. Therefore,

with the increasing adoption of agile development practices like

Continuous Integration and Continuous Delivery became more and

more mainstream [21, 23].

However, adopting Continuous Delivery is challenging. One

major challenge is the tooling support for continuous delivery

[5, 15] indicated by emerging new delivery systems. Companies

like Pivotal, Netflix, Facebook and Google build specific systems

and tool chains tailored for their needs.

Delivery systems need to integrate lots of heterogenous tools and

technologies and need to cope with the evolution of the software

project. The ThoughtWork Technology Radar [26] highlights the

immaturity of existing delivery systems and suggests to not use

a single system across teams in order to prevent conflicts arising

from shared tooling and infrastructure.

For Users it is hard to maintain and reuse their delivery processes

definitions in these systems, which leads to SnowflakeServers.[17].

The second generation of delivery systems tackle these problems

by following the infrastructure as code [18] principle and keep all

delivery process models and related information in a single, version-

controlled file. Thereby calling this approach pipeline as code. The

stakeholders of the delivery system are forced to incorporate deep

technical tool knowledge and to have profound process-related

knowledge to be able to execute a correct and complete software

delivery process.

Therefore, the presented concept, design and architecture for

a new generation of software delivery systems try to tackle the

aforementioned issues.

The paper is structured as follows. The next section provides

the necessary background followed by a analysis of the existing

challenges. Based on this, we introduce a consistent new domain

model for continuous software delivery. The following design deci-

sions and the resulting architecture rely heavily on this presented

delivery model. Before concluding this paper we present related

work how other modern delivery systems tackle these challenges.

2 BACKGROUND: CONTINUOUS DELIVERY

Humble and Farley coined the term Continuous Delivery with their

book [10] and define it as

Continuous Delivery is a set of practices that aims

to deliver value to customers rapidly, reliably and

repeatedly with minimal manual overhead.

TheDeployment Pipeline is a central part of ContinuousDelivery.

Humble and Farley define the term as an automated manifestation of

your process for getting software from version control into the hands

of your users., i.e. the deployment pipeline is a software system that

automates the software delivery process. At other places, Humble

and Farley describe the deployment pipeline as a model (the process

© Copyright 2018 ACM
This is a draft version of the paper, for private use only!

4th International Workshop on Rapid Continuous Software Engineering (RCoSE '18). ACM, New York, NY, USA, 1-7
DOI: https://doi.org/10.1145/3194760.3194768

Software Delivery
Process

Software Delivery
Process

Software Delivery
Model

Software Delivery
Model

Software Delivery
System

Software Delivery
System

executesdescribes

configures

Figure 1: Relations between Software Delivery Process,

Model and System

modeled by the deployment pipeline). Bass et al.[2] identify similar

dimensions: First, the DevOps pipeline itself is a piece of software

[. . .]. Second, the DevOps pipeline has characteristics of a process..

We think that these different dimensions lead to ambiguity and

thus complicate understandingwhen using the deployment pipeline

term as is. Based on the ISO 9001 standard [11] we define a new

and consistent terminology.

• A deployment pipeline models a delivery process. Here,

we use Software Delivery Model, abbreviated as Delivery

Model, instead of deployment pipeline.

• A deployment pipeline is an integrated software system.

Here, we use Software Delivery System, abbreviated De-

livery System, instead of deployment pipeline.

• A deployment pipeline itself has characteristics of a process.

Here, we use Software Delivery Process, abbreviated De-

livery Process, instead of deployment pipeline.

Figure 1 shows the relation between the different terms. During

this paper we use Software Delivery and Delivery interchangeable.

Since literature uses the term pipeline, we sometimes may need to

fall-back to this term too.

3 CHALLENGES

Continuous Delivery (CD) offers a lot of benefits. But adopting these

practices is difficult [5]. Laukkanen et al. identified six recurring

problem themes in their systematic literature review [15]. The

themes are build design, system design, integration, testing, release,

and human and organizational resource related problems. Following

the build design theme, Chen postulates the need for a new "CD

platform", since existing tools are inhibitory in achieving CD [4]. In

addition, a systematic mapping study by Rodriguez et al. found, that

only 7% of their analyzed publications contribute to this Delivery

System area [24].

From these insights we can derive two major challenges for

designing delivery systems.

A delivery system has to cope with evolution. Following the

Law of Continuing Change [16], a software will change and evolve.

As the delivery system realizes the project’s delivery process it

needs to reflect and adapt to these changes. The project evolution

comprises multiple dimensions.

The first one is related to the project’s software architecture.

Each architectural decision imposes new functional requirements

on the software delivery system. New components and technologies

might need be integrated into the software delivery system.

Second, the delivery process might evolve, e.g. a new test stage

has to be integrated. At last, from an organizational perspective,

new non-functional requirements or policies might emerge that

affect the delivery process but also the delivery system itself, i.e.,

the project is obligated to comply to new laws and regulations

Overall, the evolution challenge requires delivery systems to be

flexible and maintainable.

ISO 25010 defines Usability as the degree to which a product

or system can be used by specified users to achieve specified goals

with effectiveness, efficiency and satisfaction in a specified context

of use [13]. The identified usability challenge relates to the model-

ing context. Generalizing Laukkanen’s finding, the delivery model

is complex and difficult. Currently, users need to possess lots of

technical details which complicates the construction of a good de-

livery model. The delivery system should minimize the amount of

technical knowledge required to define a delivery model and use a

delivery system.

In addition, the delivery system should also minimize the amount

of process knowledge required to define a delivery model. Users

should not be concerned with parallelization respectively defining

an explicit order. Delivery systems should assist users in defining

the delivery model as much as possible. They are required to of-

fer validation support and mechanisms like auto-completion or

recommendation for delivery models.

McIntosh et al. [20] suggests that build maintenance account for

27% of code development and 44% of test development effort. There-

fore, increasing the usability of delivery systems is essential. Our

paper provides two contributions to tackle these two challenges.

First we offer a conceptual domain model for software delivery pro-

cesses and systems, which defines key abstractions and concepts

regarding the modeling of delivery processes and the design of a

delivery system. Due to the separation of the delivery model and the

delivery system we achieve the ability to tackle the aforementioned

problems on separate levels. This conceptual model can be used as

a meta-model to define and describe delivery processes. Through

model to model transformations existing languages can be inte-

grated into our approach. Furthermore the model includes concepts

for the automatic processing and generation of delivery models

without user interaction. The second contribution is a highly flexi-

ble microservice-based software architecture, which, based on our

conceptual domain model and context map, separates the differ-

ent concerns and responsibilities of the software delivery domain.

It provides a clear focus on the most important aspects and com-

ponents to tackle the aforementioned challenge of flexibility and

maintainability.

4 SOFTWARE DELIVERY DOMAIN MODEL

Following the principles of Domain Driven Design [7] this sec-

tion introduces the central concepts of our approach for a next-

generation software delivery system in form of a domain model.

© Copyright 2018 ACM
This is a draft version of the paper, for private use only!

4th International Workshop on Rapid Continuous Software Engineering (RCoSE '18). ACM, New York, NY, USA, 1-7
DOI: https://doi.org/10.1145/3194760.3194768

Delivery Process

Stage

Activity

1..*

1..*

Activity
Specification

conforms to

Configuration
Model

Result
Model

Activity
Result

Logical
Dependency

Functional
Dependency

dependent on

Activity
Execution

instance of

Activity
Configuration

instance of
configured

by

produces*
has

uses

Artifact

External
Delivery Model

Command

triggers

describes

Views

has

Transformation Quality GateAssessment

Execution
Precondition

defines

instance of

ExecutionResult

DeliveryProcess
Execution

1..*

instance of

Figure 2: Delivery System Core Domain

Figure 2 depicts the complete domain model. We modeled only a

few cardinalities as we focus on the general concept relations in

this section. In addition, we only gonna present the most important

concepts which leads to the proposed architecture.

A delivery process comprises of various activities to be per-

formed during its execution, e.g., compilation of source code, run-

ning unit tests or deploying the built software artifacts to a repos-

itory or even a production environment. These activities can be

grouped into stages which forms the delivery process. We introduce

a classification on these activities to distill central concepts for our

approach. Activities encapsulate delivery process behavior. So they

either transform, assess or promote artifacts. Consequently, each

activity can be assigned to one of the following classes: Transfor-

mation, Assessment and Quality Gate. Figure 3 depicts these classes

and their purpose inside a delivery process.

Transformations are the core activity type of a delivery process.

They take one or multiple artifacts as input and transform these

artifacts, i.e., mutate, translate or merge them into a new artifact,

which is the output of the transformation. An example for a typical

transformation is compilation, which transforms source code into

executable machine code. A delivery process must at least comprise

one transformation.

Assessments perform measurements to be able to evaluate cer-

tain properties of the input artifact. They publish these results as a

report. The assessment realization decides which measurements are

performed. An example is a unit test assessment which performs

unit tests on its input to calculate passed test rate and test cover-

age. Each assessment accepts exactly one artifact and produces a

single report for this artifact. The report might contain multiple

measurement results.

TransformationTransformation

Input Operation Output

AssessmentAssessment

Artifact A1

Quality GateQuality Gate

P1

Policy

Artifact B1

Artifact A1 Report R1

Report R1Artifact A1 Artifact A1+
(promoted)

An

...

Figure 3: Activity Classification - Overview

Quality Gates represent decision points in the delivery process to

ensure that defined quality criteria are met. They promote or reject

transformation artifacts either by a manual user approval or auto-

matically based on a given policy and corresponding assessment

reports. The quality gate interprets the result in the given input

report artifact and evaluates if the reported quality characteristics

fulfill the expected values specified in a policy. If so, the artifact

is promoted. Otherwise, the artifact is rejected and the execution

aborted. As the delivery process follows the idea of a stage-gate

process, quality gates are typically performed at the end of a stage.

Table 1 classifies some well known delivery process activities

according to our classification.

© Copyright 2018 ACM
This is a draft version of the paper, for private use only!

4th International Workshop on Rapid Continuous Software Engineering (RCoSE '18). ACM, New York, NY, USA, 1-7
DOI: https://doi.org/10.1145/3194760.3194768

Activity Activity Type Input Output

Compile Transformation Source Code Binaries

Unit Tests Assessment Binaries Test Report

Static Code

Analysis

Assessment Source Code

Binaries

Analysis Re-

port

Check

Smells

Quality Gate Report

Binaries

Policy

Promoted Bi-

naries

Bake/Package Transformation Binaries Deployable

Package

Deploy Transformation Deployable

Package

Deployed

System

Acceptance

Testing

Assessment Deployed

System

Acceptance

Report

Table 1: Delivery Process Activities

This classification of activities and the resulting abstraction of

the delivery model forms the internal delivery model (highlighted

in light grey in Figure 2) , which can act as a meta-model. In a

later section we will introduce models, which can be mapped to

the meta-model. They are represented as external delivery models

in our domain model.

Each activity provides an activity specification which includes an

unique identifier, a configuration or input model and a result model.

The configuration model specifies the admissible input properties

and the result model defines permitted results like artifacts and

meta-data. Using this activity specifications the delivery system

can reason about the whole delivery model, e.g. the compatibility

of consecutive activities. It also allows the system to automatically

calculate dependencies between activities. With the possibility to

compute dependencies, validate sequences of activities or in general

to reason about a model the delivery system minimizes the required

information provided by the user.

The remaining concepts of our domain model are related to the

execution of a delivery process. During the execution instances of

the modeled activities will be triggered and will produce activity

results, which mainly consists of artifacts and meta-data, e.g., per-

formance data. The core domain includes the static and dynamic

aspects of the software delivery domain and how these interact

with each other inside a delivery system.

To ease the understanding of a domain model, Evans suggests to

present the concepts in an explanatory model [7]. This model does

not need to correspond in every detail with the domain model.

Figure 4 provides an explanatory model for our core domain pre-

sented above. It focuses on modeling the general delivery process

building blocks and dynamics. At its heart the modeled delivery

process consists of a series of transformations, which constitute an

artifact value stream. Only these transformations are mandatory.

The transformation activities can be parametrized with configura-

tion from an environmental level. In case of a quality gates, this con-

figuration typically comprises a policy defining artifact acceptance

criteria, e.g. coverage thresholds or the amount or identified code

smells. Following our activity classification, the quality characteris-

tics of an artifact are evaluated by assessments in the assessment

level. Based on their reports, the quality gate decides to promote or

reject the artifact. Although not depicted in the explanatory model,

an assessment can of also be configured. As assessments are op-

tional, a valid delivery process may consists only of transformations,

a minimal process may only have one transformation.

5 ARCHITECTURE

Cohesive parts that are required for the full expression of the model

are factored out into (supporting) sub-domains if they add com-

plexity without communicating specialized knowledge [7]. Our

software delivery domain model, which represents our core do-

main, is accompanied by four sub-domains. We can identify the

model sub-domain, which is responsible for handling the various

possibilities of describing a delivery process. Our approach intro-

duces the concept of external delivery model which is transformed

to an internal delivery model based on our domain model. Via this

separation a delivery system is able to support various external

models or languages.

A key concept in the domain model is the abstraction of activi-

ties as they represent delivery process building blocks. While the

concept of an activity and its specification is stable, each concrete

activity respectively its implementation has several related concepts

not relevant for the intended delivery system, e.g. a deployment

activity to Amazon EC2 uses concepts like buckets. This is a key

decision to achieve a technical agnostic delivery system and to

manage the required heterogenous technologies.

The orchestration and execution of tasks is a needed function-

ality for a delivery system. As there exists proven concepts for

orchestration and many off the shelf solutions for this, we define

orchestration as a generic sub-domain. The same holds for the area

of artifact management and storage. In our case all subdomains

correspond exactly to one bounded context[27].

Given the focus on providing an architecture providing a high

degree of flexibility and maintainability, it is important to provide

strong boundaries enforcing autonomy. Because a monolithic archi-

tecture can only provide logical boundaries, we want our delivery

system to be polylithic. It should be decomposed by means of co-

hesive services that reflect our bounded contexts. This approach is

known as the microservice architectural style [19].

James Hugh [14] states that this architectural style realizes the

SOLID principles, a set of known and proven design principles that

improve both flexibility and maintainability. [1]

Overall, the microservices architectural style harmonizes with

the software delivery domain model and the corresponding design

decisions, like the encapsulation of activities.

5.1 Architecture Blueprint

Applying microservices to our core domain and bounded contexts

results in the architecture depicted in Figure 5, which organizes

the microservices in layers [8]. To prevent misunderstandings we

explicitly want to highlight that each depicted service is isolated

and individually deployable.

The Activity Layer houses Activity Services that realize coher-

ent activities in a self-contained manner. Typically, each activity

microservice encapsulates the functionality of a tool or technology.

All activity service register their implemented activities during

© Copyright 2018 ACM
This is a draft version of the paper, for private use only!

4th International Workshop on Rapid Continuous Software Engineering (RCoSE '18). ACM, New York, NY, USA, 1-7
DOI: https://doi.org/10.1145/3194760.3194768

Tranformation Level

Environment Level

Assessment Level

Config

Transformation QS Gate Transformation

…

…

Policy

A1

Assessment

Assessment

Rn
A2

…

Assessment

Assessment

A2 An

An nth Transformation Artifact

nth Report Artifact

mandatory execution path

optional execution path

R2

…

Figure 4: Core Domain - Explanatory Model

External Provider

Delivery System
Management Tool

OrchestratorModel Service

Process
Planner

Event Store

Event Bus

Events

API Gateway

Visualization

Access

Delivery Process Management

Activity
Specification

Registry

Notification

Infrastructure

Task Queue

Artifact
Storage

Monitoring

Commands Queries

View Service

Internal Model
Representation

External Model
Representation

Model Importer

...

Service
Discovery

Deployment
Tool

Notification
Tool

Static Analysis
Tool ...

<<Transformation>>
Activity
Service

Activity ... <<Assessment>>
Activity
Service

Figure 5: Layers and services in the delivery system architecture

startup by publishing the corresponding activity specifications at

the Activity Specification Registry. Activity services might interact

with external tools or services to realize their activities. As these

providers are external, we do not discuss them in further details. An

activity acts in this case as an adapter to these external services. Fol-

lowing our core domain each activity either is a transformation or

an assessment. Typically, an activity service provides only activities

of a certain type. If an activity service only provides transforma-

tions it is a transformation service. Analogously, it’s an assessment

service if it only provides assessment activities. The service can

also provide activities of both types. We then consider it a hybrid

service.

The Delivery Process Management Layer dedicated contains

services required for managing, analyzing, optimizing and execut-

ing delivery models. From a domain driven design perspective this

© Copyright 2018 ACM
This is a draft version of the paper, for private use only!

4th International Workshop on Rapid Continuous Software Engineering (RCoSE '18). ACM, New York, NY, USA, 1-7
DOI: https://doi.org/10.1145/3194760.3194768

includes the model context, the orchestration context and the core

context. Thus, we consider the management layer as the main area

of our framework. The model service imports, validates and trans-

forms external delivery models into the internal delivery model,

a component called the process planner which optimizes a given

internal delivery model, and the orchestrator which acts as a process

manager [9], that controls the orchestration of the aforementioned

activity services. The activity specification registry, following the

registry pattern [8]) is also included. It keeps track of all available

activities and their activity specifications provided by the activity

services.

Summing up, the separation of concerns between the import,

the planning and the execution control increases robustness and

allows to easily extend and modify each aspect, e.g. to use off-

the-shelf solutions e.g. the orchestrator. To employ isolation, loose

coupling and location transparency between these services, they

communicate asynchronously via events.

5.2 Architecture Control Flow

Import Planning Execution

Figure 6: Architecture Control Flow

The delivery system architecture provides several hotspots to

adapt functionality. To control the flexibility at individual service

level, the architecture defines a higher-level control flow. We call

this flow Architecture Control Flow. Figure 6 depicts its three phases.

The import phase of the architecture control flow fetches the

latest version of the referenced external delivery model and trans-

forms the model into a representation of the internal delivery model.

Its implemented by the model service. Providing additional model

to model transformation components or services the delivery sys-

tem can be extended to support additional models and languages,

e.g. the Pipeline DSL from Jenkins[6].

The second phase initiated by the architecture control flow is

planning. In this phase the automatic completion and optimization

of an internal delivery model will be performed. On receiving a

internal delivery model, the planning process starts.

Following defensive programming practices, the planner first

validates the received delivery model. Since the model can be in-

complete at this early stage in the process, the validation is limited

to a technical level (e.g. syntax). Our architecture supports the us-

age of multiple planners to process a delivery model. We identified

two strategies for planning, the model-based and the project-based

planning.

Model-based Planner use the model-based planning strategy.

More precisely, they analyze the modeled delivery process

activities and their activity specification. With these the

planner derive dependencies between those activities by

e.g. performing constraint solving based on the artifact con-

straints defined in the activity specification. That way, they

eventually arrive at a valid delivery model. Overall, model

planner are independent of the concrete project and thus

technology-agnostic.

Project-based Planner apply the project-based planning strat-

egy. As such, they are typically technology-specific. They

use additional project-specific information sources like the

code, configuration or documentation. An example for a

project planner is a maven multi-module planner, which de-

tects if the project is a maven multi-module project and then

substitutes parent project activities with subproject activi-

ties according to the project dependency tree. Project-based

planning therefore can be more expensive than model-based

planning but may be more powerful as it uses a larger knowl-

edge base (project sources).

During the planning process matching planners are dynamically

selected and will be executed sequentially. A project-based planner

therefore can optimize a model, which was derived or completed

by a model-based planner before. So the model can be iteratively

improved. A delivery system can be extended by providing addi-

tional planner implementation tailored to the needs and scope of

the development process and used technologies.

The power of this approach can produce a fully automated deliv-

erymodel and process generationwithout any required information

about the build process provided by the users. In the end this would

solve the usability challenge and is the envisioned long-term result

of our approach.

The last phase of the architecture control flow is the execution, in

which the orchestrator processes the final generated and optimized

delivery model and triggers the required activity services. In this

phase the architecture can be extended by adding additional activity.

Our approach forms an architectural framework for software

delivery systems.

6 RELATEDWORK

The previous sections identified challenges software delivery sys-

tems face and introduced an architecture to meet these challenges.

This section evaluates existing software delivery systems. We only

evaluate bleeding-edge software delivery systems.

Spinnaker1 is a cloud-deployment-focused delivery system, open-

sourced by Netflix in November 2015. Main focus of Spinnaker is to

decouple deployment activities from a specific cloud provider. As

of today various cloud providers like Amazon, Google, Microsoft

and Openstack are supported. Spinnaker originated from Netflix’s

previous cloud-deployment focused delivery system, Asgard. The

Netflix team noticed that Asgard was not flexible and extensible

enough to support their growing needs, thus they chose to design

Spinnaker using the microservice architectural style.

Spinnaker handles only a part of the delivery process and set it

focus to deployment. Therefore a dedicated Continuous Integra-

tion Tool (e.g. Jenkins) is required to handle the previous stages.

Spinnaker delivery models are configured either through the UI or

via API calls. The netflix team is actively working on a declarative

pipeline description language [22] to allow for pipeline as code.

Concourse 2 is a Pivotal sponsored delivery system. Its focus is

to be simple and scalable. Thereby, it follows the pipeline as code

principle. Each delivery process is defined in a single declarative

delivery model file. Under the hood, concourse natively uses docker

1https://www.spinnaker.io/
2https://concourse.ci/

© Copyright 2018 ACM
This is a draft version of the paper, for private use only!

4th International Workshop on Rapid Continuous Software Engineering (RCoSE '18). ACM, New York, NY, USA, 1-7
DOI: https://doi.org/10.1145/3194760.3194768

to encapsulates and run all delivery process activities. Overall con-

course uses three core concepts: Resource, Task and Job.

Since resources are used to model the artifact flow through a

delivery process, users do not need to explicitly define the execu-

tion order or job dependencies. Instead, Concourse automatically

schedules the execution based on the job’s resource dependencies.

Initially developed as a web-based git repository manager, Git-

lab3 evolves to - as they call themselves - the leading integrated

product for the entire software development lifecycle. Delivery pro-

cesses in GitLab CI / CD are defined declaratively via pipeline as

code. The delivery model contains a set of jobs with constraints

specifying certain execution conditions (e.g. only execute on master

branch). Shell scripts are defined for single jobs, which are executed

sequentially. To execute such a job, Gitlab uses several indepen-

dent GitLab Runners. The delivery process activities are executed

inside such runner. Thus runners provide means to integrate new

technology.

With release of version 10.0 GitLab introduced a beta feature

called Auto DevOps. Auto DevOps is their vision of automatically

building, testing, deploying and monitoring applications with mini-

mal to zero configuration. The idea is to automatically detect the

project technologies and to generate an opinionated delivery pro-

cess based on best practices. The Auto DevOps feature is based on

a delivery model template.

In summary Spinnaker, Concourse and Gitlab adopt similar ideas

like microservices to tackle similar challenges. But in general they

miss to tackle the usability challenge and focus on the technical

challenge to support various technologies and tools. Mechanisms

to automatically derive and process delivery models are an very

early stage.

7 CONCLUSION & FUTUREWORK

Adopting Continuous Delivery is hard. An organization needs in-

troduce a lot of new concepts, methods and techniques. Developers

are often overwhelmed by the requirements when switching to con-

tinuous delivery. This paper identified two key challenges which

provides severe obstacles for the adoption of continuous delivery.

The challenges can be observed in the software system implement-

ing the delivery process.

The concepts and the architecture introduced in this paper offer

a consistent blueprint to build a next-generation of continuous

delivery systems. These systems can adapt to the evolution of the

software projects, processes and the organization.

Therefore, the approach provides an extensible framework to

includemore user support mechanisms into the process of modeling

and executing the delivery process. A long-term vision is to achieve

a fully automated generation of the delivery process by analyzing

all available sources of information, which would free developers

to deal with the delivery process and to focus developing value for

the customer.

Our approach has been implemented in a prototype called JARVIS

and has been validated by conducting a small case study. The case

study showed promising results like improving fast feedback on

errors and a higher performance. Due to the limited space in this

paper the case study could not be included.

3https://docs.gitlab.com/ce/development/architecture.html

In the future, we want to evaluate the potential of our approach

in more detail with more and bigger case studies. Especially incor-

porating more and advanced analytics, AI planning and machine

learning to build more powerful and smarter process planners

promises great potential. Another possibility will be to include

additional stakeholders from other areas like business IT alignment

to integrate continuous delivery with further activities inside the

organization. But in general the open design of our approach offers

a broad range of future work.

REFERENCES
[1] Derick Bailey. 2009. S.O.L.I.D. Software Development, One Step at a Time. CODE

Magazine, 2010 Jan/Feb (2009). http://www.codemag.com/article/1001061
[2] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s

Perspective (1st ed.). Addison-Wesley Professional.
[3] Kent et al. Beck. 2001. Agile Manifesto. (2001), 28–35 pages. http://agilemanifesto.

org/
[4] Lianping Chen. 2017. Continuous Delivery: Overcoming adoption challenges.

Journal of Systems and Software 128 (jun 2017), 72–86.
[5] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. 2015. On

the journey to continuous deployment: Technical and social challenges along
the way. In Information and Software Technology, Vol. 57. 21–31.

[6] Cloudbees Inc. [n. d.]. Jenkins. ([n. d.]). https://jenkins-ci.org/
[7] Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of

Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[8] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[9] Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. 736 pages.
[10] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Re-

leases through Build, Test, and Deployment Automation (1st ed.). Addison-Wesley
Professional. http://dl.acm.org/citation.cfm?id=1869904

[11] Ieee. 1990. IEEE Standard Glossary of Software Engineering Terminology. Office
121990, 1 (1990), 1. https://doi.org/10.1109/IEEESTD.1990.101064

[12] IEEE. 2002. IEEE Standard 610.12-1990 Glossary of Software Engineering Termi-
nology (Reaffirmed 2002). Vol. 121990. 1 pages. http://ieeexplore.ieee.org/xpls/
abs{_}all.jsp?arnumber=159342

[13] ISO 25000. 2015. ISO 25010. (2015), 3 pages. http://iso25000.com/index.php/
normas-iso-25000/iso-25010

[14] James Hugh. 2013. Micro Service Architecture. (2013). https://yobriefca.se/blog/
2013/04/29/micro-service-architecture/

[15] Eero Laukkanen, Juha Itkonen, and Casper Lassenius. 2017. Problems, causes and
solutions when adopting continuous delivery—A systematic literature review.
Information and Software Technology 82 (feb 2017), 55–79.

[16] Meir M. Lehman. 1980. Programs, Life Cycles, and Laws of Software Evolution.
Proc. IEEE 68, 9 (1980), 1060–1076.

[17] Martin Fowler. 2012. SnowflakeServer. (2012). https://martinfowler.com/bliki/
SnowflakeServer.html

[18] Martin Fowler. 2016. InfrastructureAsCode. (2016). https://martinfowler.com/
bliki/InfrastructureAsCode.html

[19] Martin Fowler and James Lewis. 2014. Microservices. (2014). https://martinfowler.
com/articles/microservices.html

[20] Shane McIntosh, Bram Adams, Thanh H.D. Nguyen, Yasutaka Kamei, and
Ahmed E. Hassan. 2011. An empirical study of build maintenance effort. In
Proceeding of the 33rd international conference on Software engineering - ICSE ’11.

[21] Perforce Software Inc. 2015. Continuous Delivery: The New Normal for Software
Development. (2015). http://www.perforce.com/continuous-delivery-report

[22] Rob Zienert. 2017. Codifying your Spinnaker Pipelines – The
Spinnaker Community Blog. (2017). https://blog.spinnaker.io/
codifying-your-spinnaker-pipelines-ea8e9164998f

[23] Pilar Rodríguez, Jouni Markkula, Markku Oivo, and Kimmo Turula. 2012. Survey
on agile and lean usage in finnish software industry. In Proceedings of the ACM-
IEEE international symposium on Empirical software engineering and measurement
- ESEM ’12. ACM Press, New York, New York, USA, 139.

[24] Pilar et al. Rodriguez. 2017. Continuous deployment of software intensive prod-
ucts and services: A systematic mapping study. Journal of Systems and Software
123 (2017), 263–291.

[25] Ken Schwaber and Mike Beedle. 2001. Agile Software Development with Scrum
(1st ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.

[26] Thoughworks Inc. 2017. A single CI instance for all teams | Technology Radar |
ThoughtWorks. (2017). https://www.thoughtworks.com/de/radar/techniques/
a-single-ci-instance-for-all-teams

[27] Vaughn Vernon. 2016. Domain-driven design distilled. Addison-Wesley.

© Copyright 2018 ACM
This is a draft version of the paper, for private use only!

4th International Workshop on Rapid Continuous Software Engineering (RCoSE '18). ACM, New York, NY, USA, 1-7
DOI: https://doi.org/10.1145/3194760.3194768

