
Repairing Over-Constrained Models for
Combinatorial Robustness Testing

Konrad Fögen
Research Group Software Construction

RWTH Aachen University

Aachen, NRW, Germany

foegen@swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction

RWTH Aachen University

Aachen, NRW, Germany

lichter@swc.rwth-aachen.de

Abstract—Testing negative scenarios is important to evaluate
robustness of software systems. Error-handling can terminate the
system before all values are evaluated and faults can remain un-
detected. Therefore, extensions for combinatorial testing separate
generation of positive and negative scenarios. Unfortunately, it is
easy to create over-constrained models. Certain values or value
combinations are prevented from appearing in the test suite and
remain untested. In this paper, we define over-constrained models
and present a technique to identify and repair them.

Index Terms—Robustness Testing, Combinatorial Testing

I. INTRODUCTION

Robustness is an important characteristic of software sys-

tems which describes “the degree to which a system or

component can function correctly” in the presence of invalid

inputs [1], e.g invalid values like a string value when a

numerical value is expected, or invalid value combinations like

a begin date which is after the end date. To improve robust-

ness, error-handlers are implemented to appropriately react to

external faults. Unfortunately, error-handlers can contain up to

three times more faults than normal code [2]. Therefore, the

behaviour of a system under test (SUT) should be tested in

both positive and negative scenarios.

Combinatorial testing (CT) is a well-known black-box test-

ing approach [3]. Based on an input parameter model (IPM)

with parameters and values, the objective is to generate a set of

test inputs of that satisfies a combinatorial coverage criterion.

In CT, input masking is a phenomenon which the tester must

take care of [4]. Test inputs can lead to input masking if they

contain at least one invalid value or invalid value combination.

Once the SUT starts evaluating an invalid value, the SUT

is expected to initiate error-handling by switching from the

normal to the exceptional control-flow and to respond with an

error message. The remaining values and value combinations

of the test input remain untested as they are masked.

To avoid input masking, combinatorial robustness testing is

an extension where valid and invalid test inputs are distin-

guished [5]–[8]. Semantic information is added to the IPM to

recognize invalid values and invalid value combinations.

Some CT tools include the concept of invalid values to

divide values into two disjoint subsets: Vi = V valid
i ∪ V invalid

i .

But, invalid value combinations are not directly considered.

To model them, a workaround is required [7]. In contrast,

an approach we proposed in previous work [7], [8] directly

considers invalid value combinations. Invalid values and in-

valid value combinations are described as so-called error-

constraints. A value or value combination is valid if it satisfies

all error-constraints. If not, it is invalid.

A combination strategy generates valid test inputs that do

not contain any invalid values and invalid value combinations.

Invalid test inputs are generated such that each invalid value

and invalid value combination appears in separate test inputs.

While the approaches with additional semantic information

work in general, it is easy to create over-constrained models

when applying it in practice. As a consequence, not all

specified invalid values and invalid value combinations appear

in the test inputs and faults could remain undetected.

In this paper, we therefore define over-constrained models

and present techniques to identify and explain them.

The paper is structured as follows. First, an example to

illustrate the problem of over-constrained models is presented.

Section III and IV summarize foundations and related work. In

Section V, the concept of over-constrained models is defined

and techniques for identification and explanations are dis-

cussed. Afterwards, experiments are presented. We conclude

with a summary of our work.

II. EXAMPLE

Throughout the paper, we use a customer registration service

as an example. To ensure data quality, the service has to check

that the entered data actually matches the intended semantics

of the input fields. The following checks have to be done:

Empty inputs should be avoided, a person’s title should match

the given name and the given name should not be interchanged

with the family name. Since the service cannot correct wrong

data itself, it should return an error message asking the user

to correct the data.

An IPM for the customer registration example is de-

picted in Figure 1. Invalid values and value combinations

are modelled via error-constraints describing invalid val-

ues like [GivenName:123] and invalid value combina-

tions like [Title:Mrs, GivenName:John]. The test input

[Title:Mrs, GivenName:Jane, Family Name:123] is

invalid because it contains a family name that does not satisfy

error-constraint c3. It is also an example for invalid input

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)



p1 : T itle V1 = {Mr,Mrs, 123}
p2 : GivenName V2 = {John, Jane, 123}
p3 : FamilyName V3 = {Doe, 123}
c1 : T itle �= 123
c2 : GivenName �= 123
c3 : FamilyName �= 123
c4 : T itle = Mrs ⇒ GivenName �= John
c5 : T itle = Mr ⇒ GivenName �= Jane

Figure 1. Exemplary IPM with Five Error-Constraints

masking. The family name leads to error-handling which

returns an error message to the user before the values of the

other parameters are evaluated.

To prevent input masking, a combination strategy gener-

ates valid test inputs which satisfy all error-constraints and

according to a given combinatorial coverage criterion [7].

Afterwards, invalid test inputs are generated according to

another combinatorial coverage criterion. Depending on the

coverage criterion, each modelled invalid value and invalid

value combination should appear in at least one test inputs of

which all other values and value combinations are valid.

For the given example, at least one test input must contain

[Title:123] as specified by error-constraint c1 which satis-

fies all other error-constraints. Another example, at least one

test input must contain [Title:Mrs, GivenName:John] as

specified by c4 which satisfies all other error-constraints.

To make the model over-constrained, consider a modified

example with a slightly rewritten error-constraint c′4 that uses

the = operator instead of �=.

c′4 : T itle = Mrs ⇒ GivenName = Jane

The error-constraint is semantically equal for the generation

of valid test inputs but has implications for the generation of

invalid test inputs. In addition to [Title:Mrs, GivenName:

John], the modified error-constraint c′4 also describes the

invalid value combination [Title:Mrs, GivenName:123].

Therefore, at least two invalid test inputs must be generated

for both invalid value combinations. However, a combination

strategy cannot find a test input that contains [Title:Mrs,

GivenName:123] and satisfies all other error-constraints at

the same time because of a conflict with error-constraint c2.

This is one example of a conflict caused by an over-

constrained model. As a consequence, not all specified invalid

values or invalid value combinations appear in the test inputs

and faults could remain undetected.

III. BACKGROUND

In this section, we briefly discuss foundations of robustness

testing, CT and combinatorial robustness testing. For more

detailed explanation, please refer to previous work [8].

A. Robustness Testing

According to IEEE [1], “the degree to which a system or

component can function correctly” in the presence of external

faults, is called robustness. External faults are faults in the

environment of a system like invalid inputs from a user or

stressful environmental conditions which causes third-party

services to not respond in time. To make a system robust, the

system must become fault tolerant with regards to external

faults by considering, specifying and implementing error-

handlers. Unfortunately, the error-handlers can contain three

times more (internal) faults than normal code [2].

Therefore, a system under test (SUT) should be tested

with both positive and negative scenarios. Positive scenarios

focus on valid intended operations of the SUT using valid

input values that are within the specified boundaries. Negative

scenarios focus on the error-handling using invalid values and

invalid value combinations as inputs.

B. Combinatorial Testing

1) Overview: Combinatorial testing (CT) is a black-box

test design technique that systematically generates test inputs

based on a given input parameter model (IPM) with the ob-

jective to satisfy a combinatorial coverage criterion. The IPM

is represented as a set of n input parameters IPM = {p1, ..., pn}
and each input parameter pi is represented as a non-empty set

of values Vi = {v1, ..., vmi}. A tuple is a set of parameter-

value pairs for d distinct parameters such as [Title:Mr,

GivenName:John]. A tuple with n parameter-value pairs of

is a test input which can be used to stimulate the SUT. A tuple

τa covers another tuple τb if and only if all parameter-value

pairs of τb are contained in τa.

2) Input Masking Effect: In CT, input masking is a phe-

nomenon which the tester must take care of [4]: “The input

masking effect is an effect that prevents a test case from

testing all combinations of input values, which the test case is

normally expected to test”. Here, input masking is caused by

test inputs that contain certain values or value combinations.

Because of these values or value combinations, the test input

is not or only partially evaluated by the SUT. The other values

and value combinations of the test input remain untested as

long as there is no other test input that includes them.

3) Irrelevant Value Combinations: Most real-world systems

have restrictions in their input domains and most IPMs contain

combinations of parameter values that should not be combined

[9]. These value combinations are irrelevant as they are,

for instance, not executable or just not of any interest. For

instance, a configuration like [Browser:Edge, OS:Linux]

cannot be executed. Since it cannot be executed, the other

values and value combinations remain untested if there is no

other test input that covers them. Irrelevant value combinations

are one cause of the input masking effect. Irrelevant value

combinations mask all other values and value combinations of

the same test input. Therefore, irrelevant value combinations

should be detected and removed from the test suite.

Constraint handling is one strategy to avoid irrelevant

value combinations in test inputs while still preserving the

coverage criterion [9]. Constraints are explicitly modeled as

logical expressions that describe conditions [10]. A function

Γ(τ, C) → Bool evaluates whether a tuple τ satisfies a set of

constraints C. A combination strategy generates test inputs that

satisfy the constraints and excludes irrelevant value combina-

tions. We denote a set of constraints to distinguish between

relevant and irrelevant tuples as exclusion-constraints (Cex).

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)



A tuple τ is relevant if it satisfies every exclusion-constraint:

Γ(τ, Cex) = true. A tuple is irrelevant if at least one

exclusion-constraint remains unsatisfied: Γ(τ, Cex) = false.

C. Combinatorial Robustness Testing

1) Overview: Robust systems process valid inputs and

contain error-handlers to deal with invalid inputs by users or

third-party systems. The first invalid value or invalid value

combination that is evaluated by a SUT is expected to trigger

error-handling and the normal control-flow is left. Broadly

speaking, the error-handler responds with an error-message

and terminates. Invalid values and invalid value combinations

are another cause of the input masking effect. Once error-

handling is triggered by an invalid value or invalid value

combination, all other values and value combinations of the

test input remain untested as they are masked.

Therefore, relevant tuples can be further partitioned into

valid and invalid tuples. Valid tuples are relevant and do not

contain any invalid value or invalid value combinations to

prevent error-handling. Invalid tuples are relevant but contain

at least one invalid value or one invalid value combination to

trigger error-handling. A strong invalid tuple is relevant and

contains exactly one invalid value or exactly one invalid value

combination to prevent that one masks the other.

Valid test inputs are generated such that they satisfy a com-

binatorial coverage criterion like t-wise coverage excluding all

irrelevant and invalid values and value combinations. Invalid

test inputs are generated satisfying another coverage criterion

such as single error coverage [3] which is satisfied if each

invalid value and each invalid value combination appears in

at least one test input of which all other values are valid or

the single error t-wise coverage [6], [7] where each invalid

value and each invalid value combination is combined with all

valid value combinations of t parameters.

2) Generating Strong Invalid Test Inputs: Two different

approaches for combinatorial robustness testing exist. The first

approach is implemented by CT tools like AETG [5], ACTS

[11] and PICT [6]. They include the concept of invalid values

to generate invalid test inputs that satisfy single error coverage

and single error t-wise coverage. The values are divided into

two disjoint subsets to represent valid and invalid values, i.e.

Vi = V valid
i ∪ V invalid

i . The invalid values of each parameter

are excluded from the generation such that the test inputs

satisfy the t-wise coverage criterion for the valid parameter

values. Afterwards, each invalid value is combined with valid

values of the other parameters such that every test input

contains exactly one invalid value. Invalid value combinations

are not directly supported. A combination of invalid values

and exclusion-constraints is required as a workaround [7].

The second approach was introduced by us to directly

support invalid value combinations [7], [8]. Instead of distin-

guishing valid and invalid values, we introduce a new group

of constraints to describe invalid values and invalid value

combinations: error-constraints (denoted as Cerr).

Again, a tuple τ is relevant if it satisfies all exclusion-

constraints. A relevant tuple is valid if all exclusion-constraints

input: IPM, t, Cex, Cerr

output: A set of test cases
let V = { V1, ..., Vi }

let T+ = gen+(V, t, Cex ∪ Cerr)
let T- = Ø
foreach ci in Cerr

let ci = negation of ci
let C’ = (Cerr\{ci}) ∪ {ci}
T- = T- ∪ gen-(V, t, Cex ∪ C’)

return T+ ∪ T-

Listing 1. Combination Strategy with Error-Constraints

are satisfied and if all error-constraints are satisfied as

well: Γ(τ, Cerr ∪ Cex) = true. A relevant tuple is invalid
if all exclusion-constraints are satisfied but at least one

error-constraint remains unsatisfied: Γ(τ, Cex) = true and

Γ(τ, Cerr) = false. An invalid tuple τ is strong invalid if

and only if exactly one error-constraint remains unsatisfied:

∃!c ∈ Cerr : Γ(τ, {c}) = false and Γ(τ, Cerr\{c}) = true.

Listing 1 depicts the combination strategy. Valid test inputs

are generated such that they satisfy all constraints, i.e. ∀τ :

Γ(τ, Cex∪Cerr) = true. Instead of iterating through all invalid

values, strong invalid test inputs are generated by iterating

through all error-constraints one at a time. Then, the currently

selected error-constraint ci is negated and test inputs are

generated such that all constraints including ci but excluding

ci are satisfied, i.e. ∀τ : Γ(τ, Cex ∪ Cerr\{ci} ∪ {ci}) = true.

IV. RELATED WORK

Robustness is often tested by automated robustness testing

tools [12]. The SUT is stimulated using random values and

boundary values based on parameter types in order to crash the

SUT. This approach does not use information from domain ex-

perts or specification. In comparison, the objective of our com-

binatorial robustness testing is to check whether business rules

are implemented correctly. For instance, an invalid test input

like [Title:Mrs, GivenName:John, FamilyName:123]

is expected to yield an error but the implementation has a

fault and does accept the invalid test input. This is usually not

detected by automated robustness testing tools.

In contrast, black-box testing techniques are able to find

missing but required functionality. CT tools like AETG [5],

ACTS [11] and PICT [6] include the concept of invalid values.

Invalid value combinations are not directly considered. To

model them, a workaround is required [7]. In contrast, an

approach we proposed in previous work [7] directly considers

invalid values and invalid value combinations.

Base-choice is another coverage criteria and combination

strategy that supports invalid values. Base-choice coverage

subsumes single error coverage if the base test input is contains

only valid values [3]. But, test inputs generated with base-

choice do not satisfy single error t-wise coverage.

Grindal, Offut and Andler [3] survey combination strategies

and discuss coverage criteria for invalid test inputs. Wojciak

and Tzoref-Brill [13] report on system level combinatorial

testing that includes testing of negative scenarios. In their case,

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)



Figure 2. CT & Repair Process

single error coverage is not sufficient because error-handling

depends on interactions between invalid and valid values. In a

case study [14], we analyzed bug reports of a software for life

insurances. As a conclusion, only considering invalid values

is insufficient for applications with complex input domains.

Yilmaz et al. [4] reduce the input masking effect iterative

by analyzing test results and generating new test inputs. The

focus is on masking due to failing test cases and not due

to error-handling. The objective of Gargantini, Petke and

Radavelli [15] is also to identify and repair constraints which

are too strong or too weak. Their approach is based on actual

execution and they purposely generate test inputs that violate

some constraints.

V. REPAIRING OVER-CONSTRAINED MODELS FOR

COMBINATORIAL ROBUSTNESS TESTING

A. Overview

Compared to traditional CT, the robustness extensions have

the advantage of avoiding potential input masking. However,

it is easy to create over-constrained models when modeling

invalid value combinations. In fact, real-world models are

often over-constrained and both approaches can suffer from

over-constrained models. When constraints are not correctly

modelled, an invalid value or invalid value combination might

not appear in test inputs and faults can remain undetected [7].

In this work, we focus on a special case of over-constrained

models. Therefore, we assume that the parameters and values

are correctly modelled and the constraints are conflict-free for

valid test input generation. But, when generating invalid test

inputs, conflicts between constraints arise and prevent invalid

values or invalid value combinations from appearing. Then, a

tester must repair the model by relaxing constraints.

Relaxation is often a labour-intensive and complicated task.

Therefore, we propose a process to repair an over-constrained

model that is supported by an automatic identification of

missing invalid tuples and by an automatic identification of

suspect constraints (explanation). The process is depicted in

Figure 2. The grey background indicates manual activities

while the other activities can be automated.

After modelling the parameters with values and constraints,

the model is analyzed to identify invalid values and invalid

value combinations that are missing, e.g. missing invalid

tuples (MIT) that do not appear in the test suite because of

contradicting constraints.

When no missing invalid tuples are identified, the normal
CT process continues with test input generation and execution.

But, when missing invalid tuples are identified, the tester

needs an explanation, e.g. a list of constraints which are

suspected to be incorrect, that helps to understand why an

invalid tuple is missing. Using the explanation, the tester can

analyze and update the suspect constraints. The tester must

decide to either remove the missing invalid tuple from the test

or to relax the conflicting constraints. Afterwards, the model

is again analyzed and either remaining MITs are identified or

test input are generated.

In the following, over-constrained models are defined. Also,

the activities of identifying missing invalid tuples and provid-

ing explanations are described in more detail.

The presented concepts are based on the second approach

to combinatorial robustness testing. However, they can be

transferred to the first approach.

B. Defining Over-Constrained Models

Reconsider the modified example with the rewritten con-

straints c′4 and c′5 that use the = operator instead of �=.

The modifications are semantically equal for valid test input

generation but affect the generation of invalid test inputs.

c′4 : T itle = Mrs ⇒ GivenName = Jane

c′5 : T itle = Mr ⇒ GivenName = John

To further explain the effect, we use another view on

error-constraints. An error-constraint ci is a specification of

a set of invalid tuples (denoted as Ii), i.e. a specification of

either invalid values or invalid value combinations. While each

invalid tuple τ ∈ Ii must not appear in any valid test input,

each invalid tuple is expected to appear in at least one or

more strong invalid test inputs to satisfy single error coverage

or single error t-wise coverage, respectively.

Obtaining the set of invalid tuples for an error-constraint

means to reason about the conditions described by the single

error-constraint. This is contrary to a constraint solver which

reasons about a set of constraints and their inter-dependencies.

A single error-constraint ci describes conditions for a non-

empty set of ki parameters. The parameter-indices for error-

constraint ci are denoted as φi = {li1, ..., liki
}. For instance,

error-constraint c3 of the example (Listing 1) constraints only

values of FamilyName whereas error-constraint c4 restricts

value combinations of Title and GivenName. The sets of

parameter-indices are φ3 = {3} and φ4 = {1, 2}, respectively.

To calculate the set of invalid tuples Ii, the cartesian product

of values for the parameter-indices φi is computed and filtered

such that each tuple does not satisfy the error-constraint ci.

Ii = {τ |τ ∈ Vli1
× ...× Vli

ki

: Γ(τ, {ci}) = false}

For instance, error-constraint c5 describes conditions for the

parameter-subset φ5 = {1, 2}. The cartesian product V1 × V2

180

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)



is {[Title:Mr, GivenName:John], ..., [Title:123,

GivenName:123]}. The subset which does not satisfy error-

constraint c5 denotes the set of invalid tuples I5. All invalid

tuples of the example are shown below.

I1 = {[Title:123]}
I2 = {[GivenName:123]}
I3 = {[FamilyName:123]}
I4 = {[Title:Mrs, GivenName:John]}
I5 = {[Title: Mr, GivenName:Jane]}

In contrast, the rewritten constraints c′4 and c′5 describe

slightly different sets of invalid tuples:

I′
4 = {[Title:Mrs, GivenName:John],

[Title:Mrs, GivenName:123]}
I′
5 = {[Title:Mr, GivenName:Jane],

[Title:Mr, GivenName:123]}

Invalid tuples have a dual role in the generation process.

When generating valid test inputs or invalid test inputs for an

error-constraint other than ci, the invalid tuples τ ∈ Ii must not

appear in any test input. When generating invalid test inputs

for error-constraint ci, each invalid tuple τ ∈ Ii must appear

in at least one test input. For instance, at least one invalid test

input for c1 must contain [Title:123]. Based on the other

invalid tuples and their inter-dependencies, the test inputs for

c1 must not contain [GivenName:123]. A possible solution

is [Title:123, GivenName:John, FamilyName:Doe].

In the modified example, two problems can be observed. Be-

cause of error-constraint c2, some invalid test inputs must con-

tain I2 = {[GivenName:123]}. However, due to I′
4 and I′

5,

[GivenName:123] cannot be combined with [Title:Mr]

and [Title:Mrs] as these are forbidden by I′
4 and I′

5.

Due to I1, [Title:123] is not possible as well. I1, I′
4 and

I′
5 implicitly forbid [GivenName:123]. Hence, there is a

contradiction between error-constraint c2 and c1, c′4, c′5 which

needs to be repaired. Two other contradictions are related to

[Title:Mrs, Given Name:123] of I′
4 and [Title:Mr,

GivenName:123] of I′
5. They are explicitly forbidden by

error-constraint c2 with I2 ={[GivenName:123]}.

To further investigate the problem, conflicts and over-

constrained models are defined.

Definition 1: A conflict is a contradiction between error-

constraint ci and some other constraints Cerr\{ci} ∪Cex. The

interaction between ci and some other constraints explicitly or

implicitly prevents an invalid tuple τ ∈ Ii as specified by ci
from being covered by at least one strong invalid test input.

∃τ ∈ Ii such that Γ(τ, Cerr\{ci} ∪ Cex) = false

Conversely, no conflict exists for error-constraint ci if and

only if for each invalid tuple τ ∈ Ii, a test input exists that

covers the invalid tuple and satisfies all other constraints.

∀τ ∈ Ii : Γ(τ, C
err\{ci} ∪ Cex) = true

p1 : T V1 = {1, 2, 3}
p2 : G V2 = {1, 2, 3}
p3 : F V3 = {1, 2}
c1 : T �= 3
c2 : G �= 3
c3 : F �= 2
c4 : T = 2 ⇒ G �= 1
c5 : T = 1 ⇒ G �= 2

Figure 3. Internal Representation of Exemplary IPM

Definition 2: A model is over-constrained if and only if at

least one conflict of an error-constraint exists. Otherwise, the

model is not over-constrained.

C. Identifying Missing Invalid Tuples

To repair an over-constrained model, all conflicts must be

removed by relaxing one or more constraints. First, all invalid

tuples that are specified by an error-constraint but not covered

in the final test suite must be identified. Then, the tester must

decide for each missing invalid tuple if it should be removed

from the test or if the constraints that cause the absence should

be relaxed.

Definition 3: An invalid tuple τ ∈ Ii specified by error-

constraint ci is called a missing invalid tuple if and only

if other error-constraints Cerr\{ci} or exclusion-constraints

prevent it from appearing in any test input. In other words,

invalid tuple τ ∈ Ii is missing because of a conflict for ci that

prevents τ from appearing in any test input.

τ ∈ Ii is missing iff Γ(τ, Cerr\{ci} ∪ Cex) = false

When generating relevant test inputs, constraint handling is

involved every time a tuple is created or changed. It is used to

consider only those values and value combinations that satisfy

the constraints. For that purpose, the IPM, constraints and tuple

under change are transformed into a constraint satisfaction

problem (CSP) [10]. A CSP consists of three components

X, D and C [16]. X is a set of variables, D is a set of

domains with one domain for each variable and C is a set

of constraints that restricts value combinations of variables.

A solution for a CSP is an assignment of values to variables

which is both consistent and complete. An assignment that

does not violate any constraint is consistent. Otherwise, the

assignment is inconsistent. An assignment is complete if every

variable has a value assigned. Otherwise, it is partial. A SAT-

solver is applied to find a solution for the CSP. If a solution

is found, the tuple is accepted and can be further used in test

input generation. If no solution exists, the tuple cannot be used

since one or more constraints cannot be satisfied.

For the sake of clarity, Figure 3 depicts the internal repre-

sentation of our example. Based on that internal representation,

the translation into a CSP is done as follows. Each parameter

pi of the IPM is represented as a variable xi ∈ X. The domain

of xi represents the values Vi of parameter pi as integers

Dxi = {1, ...,mi}. All constraints are translated to constraints

of the CSP. The parameter Title is represented as the variable

T and its values are DT = {1, 2, 3}. Variable G represents

GivenName and F represents FamilyName. Constraints are

translated accordingly. For instance, T itle �= 123 becomes

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)



T �= 3. The values of the tuple are also added as constraints.

We refer to them as tuple-constraints. A tuple [Title:Mr,

GivenName:John] translates to {T = 1, G = 1}τ .

X = {T,G, F}
D = {DT = {1, 2, 3}, DG = {1, 2, 3}, DF = {1, 2}}
C = {T �= 3, G �= 3, F �= 2, T = 2 ⇒ G �= 1, T = 1 ⇒ G �= 2}

∪ {T = 1, G = 1}τ
To identify missing invalid tuples for an error-constraint ci

with one or more conflicts, another CSP can be used prior

to the generation of invalid test inputs. For each invalid tuple

τ ∈ Ii, it is checked if at least one test input exists that covers

the invalid tuple and satisfies all other constraints. Therefore,

the above shown CSP is modified for each invalid tuple τj ∈ Ii.

The invalid tuple is modelled as a tuple-constraint {...}τj and

the specifying error-constraint ci is removed.

The set of all missing invalid tuples for error-constraint ci
is denoted as Mi.

Mi = {τ |τ ∈ Ii : Γ(τ, C
err\{ci} ∪ Cex) = false}

D. Explaining Conflicts

Knowing the missing invalid tuples is a necessary first

step to repair an over-constrained model. Understanding the

absence of a missing invalid tuple is the next step. Then, the

tester must either discard the missing invalid tuple from testing

by relaxing the error-constraint that is contradictory (ci) or the

tester must relax other related constraints Cerr\{ci} ∪ Cex.

To further explain the absence of a missing invalid tuple

caused by a conflict, we introduce the notion of conflict sets.

Definition 4: A conflict set O ⊆ Cerr\{ci} ∪ Cex is a set of

constraints that explains the absence of a missing invalid tuple.

In other words, no invalid test input exists that covers τ while

satisfying the constraints of the conflict set.

∀τ ∈ Mi ∃O : Γ(τ,O) = false

Technically, a conflict a for missing invalid tuple τ ∈ Mi

can be explained by the set of all other constraints (O =

Cerr\{ci} ∪ Cex). But, since repairing is a manual labour-

intensive task, dealing with many constraints is often not

useful because conflicts can become unclear and confusing.

In addition, only a subset of constraints is responsible for the

conflict and not every relaxation of constraints resolves the

conflict. Rather than dealing with all constraints, it is more

useful to identify and deal with a smaller subset of constraints

that explains the conflict and can be repaired. Therefore, we

search for a minimal conflict set as an explanation that consists

of as few constraints as possible.

Definition 5: A conflict set O for a missing invalid tuple τ ∈
Mi is a minimal conflict set if and only if there exists no

proper subset O′ ⊂ O that can explain the conflict as well.

O is minimal iff �O′ ⊂ O for which Γ(τ,O′) = false holds

For instance, consider invalid test input generation for error-

constraint c′4 of the example. To have an explanation for the

one missing invalid tuple [Title:Mrs, GivenName:123],

the minimal conflict set O = {c2} can be identified. Without

searching, the conflict set containing all other error-constraints

O = {c1, c2, c3, c′5} would function as an explanation. Because

of the small example, the difference between the two conflict

sets is small. However, the benefit of minimal conflict sets

increases for real-world models with many more constraints.

Constraints and conflicts are interconnected, e.g. a constraint

can belong to several conflict sets and a relaxation of one

constraint can solve several conflicts. Therefore, the iterativ

process is reasonable where the tester focuses on one missing

invalid tuple with one minimal conflict set at a a time. Af-

terwards, the updated model is re-analyzed to identify invalid

tuples that are still missing. To further reduce the work, a

tester can mark already analyzed or relaxed constraints as

being sound. Sound constraints are considered correct and are

not again proposed as an explanation. Thereby, the tester can

reduce the size of minimal conflict sets and avoid double work.

The set of sound constraints (denoted as S) is a subset of

all relaxable constraints, e.g. S ⊂ Cerr\{ci} ∪ Cex.

To identify minimal conflict sets, we rely on conflict detec-

tion techniques for CSP. Generally speaking, if there exists no

solution for a CSP, some constraints must be relaxed to restore

consistency [17]. Therefore, constraints are partitioned into

two disjoint groups: Constraints that can be relaxed (denoted

as C) and so-called background constraints that cannot be

relaxed (denoted as B) are distinguished. If no solution exists

for the constraints C ∪ B, the model is over-constrained.

A proper subset R ⊂ C is a relaxation if and only if a

solution exists for R ∪ B. However, no relaxation exists if

B is inconsistent. Again, a conflict set O denotes a subset of

constraints O ⊆ C if and only if no solution exists for O ∪ B.

To find a minimal conflict, an algorithm like QuickXPlain

[17] can be used. Briefly explained, it is a divide and conquer

approach that inspects constraints and determines whether

they belong to the conflict or to the relaxation. To utilize

QuickXPlain, it is necessary to identify the background con-

straints B. Since the conflict set should explain why an invalid

tuple τ ∈ Mi is missing, ci and the tuple-constraints should

not be relaxed. All constraints marked as sound should also

not be relaxed: B = {ci}∪{...}τ ∪S. In contrast, the remaining

unsound exclusion- and error-constraints are potentially too

strict and should be relaxed: C = Cerr\{ci} ∪ Cex\S.

For the example, the constraints are separated as shown

below. The last subset is empty because the example has no

exclusion-constraints. The minimal conflict set is O = {c2}.

M4 = {[Title:Mrs, GivenName:123]}
B = {c′4} ∪ {T = 2, G = 3}τ
C = {c1, c2, c3, c′5} ∪ {}

Once missing invalid tuples and minimal conflict sets are

identified, the model must be updated. Either the negated error-

constraint ci or the conflicting constraints O must be manually

relaxed until no more invalid tuples are missing. Afterwards,

invalid test inputs can be generated such that they satisfy single

error coverage or single error t-wise coverage.

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)



Table I
TEST MODELS USED FOR EXPERIMENTS

Name IPM Cerr Invalid Missing
Example-1 3221 1322 5 0

Example-2 3221 1322 7 3

Registration 61443129 21116 41 11

Banking-1 4134 51 112 0

Ba-1 +10 4134 52 122 20

Ba-1 +50 4134 52 162 100

Banking-2 41214 21 3 0

Ba-2 +1 41214 22 4 2

Ba-2 +1 +1 41214 23 5 4

HealthCare-3 61514536216 210 31 0

HC-3 +3 +4 +5 61514536216 213 43 24

HealthCare-4 71615246312213 27 22 0

HC-4 +3 +4 71615246312213 29 29 7

VI. EXPERIMENTS

A. Experimental Setup

We developed a prototype of the robustness extension

including the detection and explanation of conflicts. It is

integrated into our CT framework [18]. The source code and

experiments are available at our companion website1.

The objective of the experiments is to evaluate the feasibility

of the proposed conflict detection and explanation technique.

Therefore, we generate test inputs and compare the test suite

sizes and times required for test input generation with enabled

conflict explanation versus disabled conflict explanation.

Table I lists the used benchmark IPMs. Example1 and

Example2 are the unmodified and modified examples used

throughout this paper. Registration is a real-world IPM

from one of our industry cooperation partners. The other IPMs

originate from [19] and are often used to compare combination

strategies. For these experiments, they are modified such that

all constraints are error-constraints.

The identifier A +n indicates that IPM A is extended by

an error-constraint that specifies n missing invalid tuples.

For instance, two error-constraints are added to Ba-2 +1 +1.

Each one specifies one invalid value that is already specified

for Banking 2. The IPM describes the parameter values in

exponential notation; xy refers to y parameters with x values.

CErr uses exponential notation to describe error-constraints.

Here, xy refers to y error-constraints for x parameters. The

Invalid column states the number of invalid tuples specified

by all error-constraints and Missing states the subset of

missing invalid tuples for which no test input is generated.

The experiments are carried out as a build job on a server

with an Intel Xeon 1.9 GHz CPU and 16 GB of memory. The

experiments are repeated for the strengths t = 1 and t = 2

since these are mostly used.

B. Data and Analysis

The results of the experiments are summarized in Table II.

The t column refers to the testing strength, Size refers to the

sizes of test suites. The columns Disabled and Enabled list

1https://github.com/coffee4j/cta-2019

Table II
RESULTS OF EXPERIMENTS

Name t Size Disabled Enabled Diff.
Example-1 1 10 0.003 s 0.004 s 0.001 s

2 10 0.004 s 0.004 s 0.000 s
Example-2 1 8 0.005 s 0.008 s 0.003 s

2 8 0.005 s 0.008 s 0.003 s
Registration 1 109 1.556 s 1.691 s 0.135 s

2 372 17.028 s 17.195 s 0.167 s
Banking-1 1 116 0.552 s 0.812 s 0.260 s

2 128 1.058 s 1.325 s 0.266 s
Ba-1 +10 1 106 1.072 s 5.095 s 4.022 s

2 118 1.649 s 5.636 s 3.987 s
Ba-1 +50 1 66 1.475 s 31.671 s 30.196 s

2 78 2.280 s 32.392 s 30.112 s
Banking-2 1 11 0.019 s 0.019 s 0.000 s

2 51 0.196 s 0.194 s -0.002 s
Ba-2 +1 1 9 0.026 s 0.028 s 0.002 s

2 39 0.274 s 0.278 s 0.004 s
Ba-2 +1 +1 1 7 0.033 s 0.038 s 0.004 s

2 27 0.371 s 0.374 s 0.003 s
HealthCare-3 1 230 4.610 s 4.624 s 0.014 s

2 1431 109.657 s 109.699 s 0.041 s
HC-3 3 +3 +4 +5 1 145 5.220 s 5.839 s 0.619 s

2 849 135.984 s 136.027 s 0.042 s
HealthCare-4 1 161 3.558 s 3.602 s 0.044 s

2 1280 123.324 s 123.268 s -0.056 s
HC-4 +3 +4 1 112 3.860 s 4.064 s 0.204 s

2 882 147.304 s 147.596 s 0.292 s

the measured times in seconds for test input generation with

conflict explanation disabled and enabled, respectively.

The experiments reveal a small overhead in generation time

caused by the additional constraint solving for identification

and explanation of minimal conflict sets. On average, the

measured overhead, i.e. the absolute difference between gen-

eration times with and without explanation, is 2.706 seconds.

For experiments with correct models without any conflicts,

the average overhead is only 0.056 seconds. In contrast, the

average of all experiments with over-constrained models is

4.362 seconds. Two experiments (Ba-1 +10 and Ba-1 +50)

are significantly slower than the other experiments with the

highest measured overhead of 30.196 seconds. They are slower

because more missing invalid tuples (10 and 50) must be

identified and explained. In addition, the constraints involve

five parameters whereas all other scenarios only have con-

straints that involve two parameters. Therefore, more searches

are necessary and the search space is much larger.

In relative terms, enabling identification and explanation

increases the generation time by 20.70% on average. The

two slow experiments have a relative overhead ranging from

70.73% up to 95.34%. Ignoring the slower experiments results

in an overhead of only 9.11% for the remaining experiments.

In two cases, the time measured for the generation with

explanation even decreases slightly by 0.056 seconds. Differ-

ences in the range of milliseconds can be interpreted as envi-

ronmental noise because the execution cannot be completely

controlled. However, the small differences highlight that the

additional overhead can be neglected.

The experiments also show that the identification and ex-

planation are independent from the specified testing strength.

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)



Increasing the testing strength from one to two increases the

generation time on average by 39.655 seconds. In contrast,

practically no difference for identification and explanation

could be measured. On average, the difference is -0.0049

seconds which can be explained by noise.

In summary, the experiments indicate that the additional

computations for identification of missing invalid tuples and

explanation with minimal conflict sets is feasible and appli-

cable to real world scenarios. In most cases, the measured

overhead is very little. But even for the significant overhead,

we believe that the manual tasks benefit from knowing why

invalid tuples are missing and the additional time is worth it.

VII. THREADS TO VALIDITY

We compared test input generation with conflict explanation

enabled versus conflict explanation disabled. Since the com-

parison is based on actual test input generation, our results

might depend on the implementation of the algorithms and

on the design of the test scenarios. To ensure an unbiased

implementation, we follow the suggestions for an efficient

implementation by Kleine and Simos [20]. The test scenarios

are based on existing benchmark IPMs. The implementation

and test scenarios are published to allow a replication of the

experiments1. During execution of experiments, resource con-

sumption of other applications may have distorted the results.

Therefore, the measurements are based on 30 repetitions.

VIII. CONCLUSION & FUTURE WORK

Combinatorial robustness testing is an extension for CT

to test negative scenarios. They generate separate sets of

test inputs to avoid the input masking effect. Therefore, they

require additional semantic information to separate valid from

invalid test inputs. While the approaches work in general, it is

easy to create over-constrained models. Then, not all specified

invalid values and invalid value combinations appear in the test

inputs and faults could remain undetected.

In this paper, over-constrained models and conflicts are

defined to further explain the phenomenon of missing invalid

tuples. To support the labour-intensive manual work of repair-

ing over-constrained models, the necessary steps are integrated

into a CT & repair process. In addition, automated techniques

are presented to identify missing invalid tuples and to provide

explanations in form of minimal sets of conflicting constraints.

The presented techniques are implemented in a Java-based

prototype called coffee4j and experiments are conducted

using a set of benchmark models. The source code and

experiments are available at our companion website1.

The experiments indicate that the overhead for the identifi-

cation and explanation is rather small and negligible. Enabling

the techniques leads to no relevant overhead for not over-

constrained models but to some overhead for over-constrained

models. Although, we believe the benefits of the better ex-

planation in manual work are worth the additional time in

automated generation work.

In future work, we will focus on techniques that allow

to generate invalid test inputs directly from over-constrained

models and on techniques that allow to repair over-constrained

models automatically.

REFERENCES

[1] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,”
IEEE Std, vol. 610.12-1990, 1990.

[2] P. Sawadpong, E. B. Allen, and B. J. Williams, “Exception handling de-
fects: An empirical study,” in 2012 IEEE 14th International Symposium
on High-Assurance Systems Engineering, Oct 2012, pp. 90–97.

[3] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
A survey,” Software Testing, Verification and Reliability, vol. 15, no. 3,
2005.

[4] C. Yilmaz, E. Dumlu, M. B. Cohen, and A. Porter, “Reducing masking
effects in combinatorial interaction testing: A feedback driven adaptive
approach,” IEEE Transactions on Software Engineering, vol. 40, no. 1,
2014.

[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The aetg
system: An approach to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, vol. 23, no. 7, 1997.

[6] J. Czerwonka, “Pairwise testing in real world,” in 24th Pacific Northwest
Software Quality Conference, 2006.

[7] K. Fögen and H. Lichter, “Combinatorial testing with constraints for
negative test cases,” in 2018 IEEE Eleventh International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
7th International Workshop on Combinatorial Testing (IWCT), 2018.

[8] ——, “Combinatorial robustness testing with negative test cases,” in
2019 IEEE International Conference on Software Quality, Reliability
and Security (QRS), July 2019.

[9] M. Grindal, J. Offutt, and J. Mellin, “Managing conflicts when using
combination strategies to test software,” in 2007 Australian Software
Engineering Conference (ASWEC’07), April 2007, pp. 255–264.

[10] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and D. R. Kuhn,
“An efficient algorithm for constraint handling in combinatorial test
generation,” in Software Testing, Verification and Validation (ICST),
2013 IEEE Sixth International Conference on. IEEE, 2013.

[11] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Acts: A combinatorial
test generation tool,” in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on. IEEE, 2013,
pp. 370–375.

[12] A. Shahrokni and R. Feldt, “A systematic review of software robustness,”
Information and Software Technology, vol. 55, no. 1, 2013.

[13] P. Wojciak and R. Tzoref-Brill, “System level combinatorial testing
in practice - The concurrent maintenance case study,” Proceedings -
IEEE 7th International Conference on Software Testing, Verification and
Validation, ICST 2014, 2014.

[14] K. Fögen and H. Lichter, “A case study on robustness fault charac-
teristics for combinatorial testing - results and challenges,” in 2018 6th
International Workshop on Quantitative Approaches to Software Quality
(QuASoQ 2018) co-located with APSEC 2018, 2018.

[15] A. Gargantini, J. Petke, and M. Radavelli, “Combinatorial interaction
testing for automated constraint repair,” in 2017 IEEE Tenth Interna-
tional Conference on Software Testing, Verification and Validation Work-
shops, ICSTW, 6th International Workshop on Combinatorial Testing
(IWCT), 2017.

[16] S. J. Russell and P. Norvig, Artificial Intelligence A Modern Approach.
Prentice Hall PTR, 2010.

[17] U. Junker, “QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems,” in Proceedings of the Nineteenth National
Conference on Artificial Intelligence, Sixteenth Conference on Innovative
Applications of Artificial Intelligence, July 25-29, 2004, San Jose,
California, USA, 2004.

[18] J. Bonn, K. Fögen, and H. Lichter, “A framework for automated
combinatorial test generation, execution, and fault characterization,” in
2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), April 2019, pp. 224–233.

[19] I. Segall, R. Tzoref-Brill, and E. Farchi, “Using binary decision diagrams
for combinatorial test design,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. ACM,
2011.

[20] K. Kleine and D. E. Simos, “An efficient design and implementation of
the in-parameter-order algorithm,” Mathematics in Computer Science,
vol. 12, no. 1, 2018.

© IEEE 
DOI 10.1109/QRS-C.2019.00045

2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)




