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Abstract—Fault characterization is an important part of com-
binatorial testing, enabling it to automatically narrow down failed
test inputs to specific failure-inducing combinations. As most
current fault characterization algorithms adaptively generate
more test inputs based on previous test execution results, a
framework that integrates modelling, generation, execution, and
fault characterization is necessary. Until now, no such framework
exists, resulting in much manual work needed to identify failure-
inducing combinations. We therefore introduce COFFEe, which is
a framework for completely automatic combinatorial testing and
fault characterization. In this paper, we derive an architecture
for the framework and present coffee4j, a Java implementation
of COFFEe that integrates the JUnit5 test framework.

Keywords-Software Testing, Test Generation, Combinatorial
Testing, Fault Localization, Fault Characterization

I. INTRODUCTION

Combinatorial testing (CT) is a well-known black-box ap-

proach to systematically detect errors in a system under test

(SUT) based on its specification. Empirical research indicates

that exhaustive testing is neither feasible nor necessary. In-

stead, testing all pairwise value combinations should trigger

most failures, and testing all 4- to 6-wise value combinations

should detect all of them [1], [2]. For instance, an example

by Kuhn and Wallace [1] describes that “a microwave oven

control module fails when power is set on High and time is set

to 20 minutes”. In other words, the interaction of power=High

and time=20 triggers the failure. It is called a failure-inducing
combination (FIC). To trigger the failure, testing all pairwise

combinations is as effective as exhaustive testing, even though

the pairwise test suite is much smaller.

The generation of effective test suites is not the only chal-

lenge in CT. After test execution, the test inputs of failing tests

require further analysis to reveal the FICs. Manual analysis

is a tedious and cumbersome task, especially for SUTs with

many input parameters and values. Therefore, algorithms to

automatically identify FICs are proposed. They extend CT to

not only cover the generation of initial test suites but also the

analysis of test execution results [3]. Nie and Leung [4] refer

to this activity as fault characterization (FC).

The information which can be extracted from failing and

succeeding test inputs is often not enough to identify a FIC.

Then, adaptive algorithms generate additional test inputs, and

their execution results help to further isolate the FIC. If the

information is still not sufficient, the generation of additional

test inputs, their execution, and the analysis of execution

results continues.

Even though CT and FC algorithms are able to automat-

ically generate test inputs and identify FICs, there exists no

approach which integrates both activities. In a typical process

consisting of CT and FC, one tool generates the initial test

inputs, another tool or a tester applies them to test the SUT,

and afterwards the execution results are passed to yet another

tool for fault characterization. Then, either a FIC is identified

or additional test inputs are generated, which must be executed

again. Since each activity requires the tester to copy and

transform information between test generation, test execution,

and fault characterization tools, the process becomes tedious

and error-prone.

Therefore, it would be desirable to have an integration of all

activities, namely input parameter modelling, test generation,

test execution, and fault characterization. Then, the tester only

models the input parameters and develops executable test

scripts, which describe the needed test steps to be performed.

A tool could automatically handle the generation of test inputs,

execution of the test scripts with generated inputs, and fault

characterization, i.e. the computation of FICs and, if needed,

the generation of additional test inputs.

In this paper, we therefore present a concept and a frame-

work architecture, which integrates modelling, generation, exe-

cution, and fault characterization. Furthermore, the framework

provides extension points for the exchange and use of different

CT and FC algorithms. We also present an implementation of

the framework and its integration with JUnit5 [5] — one of

today’s most popular test automation frameworks.

The paper is structured as as follows. Section II introduces

fundamentals of CT and FC, and Section III discusses related

work. The concept and architecture of the framework are

explained in Section IV. First, a search for existing algo-

rithms and their information needs is conducted. Based on the

findings, the interfaces and overall architecture are designed.

To realize the concept and architecture, we then present a

Java implementation and integration with JUnit5 in Section

V. Section VI demonstrates the applicability of the framework

by executing it with different algorithms, SUTs, and injected

faults. We conclude with a summary in Section VII.
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Figure 1. CT Process

Name Values

OS Windows Linux MacOS Android iOS
Browser Chrome Edge Firefox Safari
Ping 10 ms 100 ms 1000 ms
Speed 1 KB/s 10 KB/s 100 KB/s 1000 KB/s

Table I
AN EXEMPLARY IPM

II. BACKGROUND

Combinatorial testing (CT) is a black-box testing technique

used to reveal interaction failures. Varying test inputs are

generated, which are then used to exercise the SUT. Nie and

Leung [4] divide CT into a process consisting of 5 individual

activities. Figure 1 depicts a tailored version. The process starts

with the definition of an input parameter model of the SUT

capturing varying input values. Then, the generation activity

uses this model as an input to generate a set of test inputs (test

suite). Each test input is then used to test the SUT in order

to obtain a result of either failure or success. The subsequent

activity of fault characterization either identifies values that

are responsible for failure or generates new test inputs, which

must be tested to further isolate values responsible for failure.

The process ends with a data collection and evaluation activity.

In the following, the first four process activities are further

described.

A. Combinatorial Test Modelling

In CT, relevant inputs are represented as input parameters.

The collection of all n parameters is called the input parameter
model (IPM). Each parameter has a number of possible values

[6]. For example, consider the IPM for an online browser game

depicted in Table I. There are four parameters OS, Browser,

Ping, and Speed, and each has an arbitrary number of values,

e.g. Windows, Linux, MacOS, Android, and iOS are the

values of parameter OS.

The activity of modelling is a creative task, which is

manually performed by a tester who has to identify suitable
input parameters and values [6].

B. Combinatorial Test Generation

To generate a set of test inputs (test suite), a combination

strategy is applied to an IPM [7]. A combination strategy

defines how values of the input parameters are selected and

how they are composed to test inputs. Usually, a coverage

criterion is associated to a combination strategy such that the

generated test suite adheres to the coverage criterion if the

combination strategy is correctly applied [7].

For instance, the t-wise coverage criterion requires the test

suite to contain each combination of values between any t
parameters at least once [7]. Consequently, if we look at the

example of Table I with pairwise coverage (t = 2), each value

combination of the parameters OS and Browser has to appear

in at least one test input.

Since each test input contains multiple sub-combinations of

size t with t < n, combinatorial testing strategies lead to fewer

test inputs than exhaustive testing, while still maintaining a

high fault detection rate [1], [2].

Combination strategies are usually automated. IPOG [8] is

a well-known strategy, which can generate t-wise test suites.

It iteratively extends an initial set of incomplete test inputs

until it encompasses all parameters defined in the IPM with

the given strength.

C. Combinatorial Test Execution

After the generation of a test suite, the tester has to stimulate

the SUT with the given test inputs. As tests have to be executed

frequently, modern software development processes call for

automated test execution.

In the context of test automation, a test script encodes

the sequences of steps used to stimulate the SUT and to

observe its response [9]. Oftentimes, the same sequence of

steps is executed again and again with varying test inputs.

Then, data-driven testing is an appropriate abstraction to

improve maintainability of test scripts. A parameterized test
script describes a sequence of steps to exercise the SUT with

placeholders (variables) to represent variation points [9]. They

are then instantiated with varying test inputs. Thereby, the

number of test scripts which must be maintained is drastically

reduced.

An important part of testing is the test oracle, which

provides the expected results for given test inputs. Based on the

test oracle, a test comparator compares the expected and actual

results to decide whether the behavior of the SUT conforms to

the specified one for given test inputs [10]. In other words, the

test comparator labels a test input as either passed or failed.

We assume the presence of an automated test oracle and test

comparator, even though that is an active research area on its

own [10].

Frameworks [11] often play an important part in test au-

tomation. In general, frameworks mostly act as orchestrators

of configurable extension points, for which a user can either

choose between a selection of framework-provided options or

provide custom developed options. As the orchestration of test

suites is similar from test project to test project, it makes

sense to extract it into a framework. The testers can then

register their test scripts via defined extension points, such

as the @Test annotation in JUnit5.
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D. Combinatorial Fault Characterization

After testing the SUT with all test inputs, each test input is

labeled as either passed or failed. But oftentimes, not all values

of a failed test input are responsible for triggering the failure.

Instead, a sub-combination of the values can be identified such

that each test input that contains this sub-combination triggers

the failure. In general, each value or combination of values that

triggers a failure is denoted as a failure-inducing combination

(FIC).

When a developer needs to repair a system that failed, FICs

are of great interest because they can simplify the process of

finding the responsible defect.

Therefore, combinatorial fault characterization is an addi-

tional activity that attempts to find FICs in the input space.

Usually, just finding FICs is not enough. Instead, minimal FICs

should be identified to better explain the cause of a failure. A

FIC is minimal if removing one parameter-value assignment

leads to the combination no longer being failure-inducing, i.e.

there exists a possible test input which contains the reduced

combination but passes the test [12].

There are multiple algorithms to identify minimal FICs,

which we denote as fault characterization algorithms (FCAs).

They can be divided into non-adaptive and adaptive ones.

1) Non-Adaptive Fault Characterization: Non-adaptive al-

gorithms only consider the execution results of the initial test

suite when identifying possible FICs. Since the information

given by most test suites is not enough to discern minimal

FICs, most approaches in this category adjust the combination

strategy such that the initial test suite follows a certain distri-

bution [13]. Dedicated combination strategies like locating and
detecting arrays are used [14]. Due to the way test suites are

constructed, non-adaptive fault characterization leads to larger

initial test suites. Consequently, they introduce an execution

overhead even if no test input leads to failure. Additionally,

they are often constrained in either the number of failure-

inducing combinations they can find, or in the size of possible

failure-inducing combinations [15].

2) Adaptive Fault Characterization: In contrast, adaptive

FCAs do not require dedicated combination strategies. They

can be used in conjunction with conventional combination

strategies that try to minimize the size of a test suite.

Similar to non-adaptive algorithms, the results of executed

test inputs are used to isolate a minimal FIC. When the

information of a test suite is not sufficient, additional test

inputs are generated and executed to obtain more information

[16]. The activities of isolation and generation are repeated

until sufficient information is available.

As a result, the number of executions remains as low as pos-

sible if no test input triggers a failure. However, the repeating

activities make the overall CT process more complicated.

III. RELATED WORK

Since manually applying a combination strategy is virtually

impossible, many tools exist to automatically generate test

suites. Well-known examples are PICT [17], ACTS [18], and

AETG [19]. Each of them takes an IPM in a custom textual

format as an input and returns test inputs in a textual repre-

sentation. In addition, each tool offers a number of advanced

features like constraints, variable testing strength, or seeding.

CITLAB is another test generation tool [20]. It defines

a common input and output format and extension points to

integrate additional combination strategies. Its objective is to

provide a platform that enables the comparison of different

combination strategies.

These tools only automate the generation of test inputs.

Other activities are not considered. To automate the test

execution, a test automation framework like JUnit [5] can be

used, and parameterized test scripts can be instantiated with

the generated test inputs.

In contrast to dedicated generation and execution tools, there

are already frameworks that provide an integration of the two

activities. For example, JCUnit [21], NUnit [22], and Pairwise

[23] can generate test inputs and directly execute them without

importing and conversion. They are realized as extensions

to test automation frameworks. The extension generates test

inputs and repeatedly executes a parameterized test script

written in the test automation framework. However, they are

often tied to a particular combination strategy and often offer

fewer options than stand-alone generation tools. For example,

NUnit and Pairwise only support 2-wise combinatorial testing

and JCUnit does not support seeding.

On the other hand, the integration of generation and exe-

cution has many advantages. When using separated tools, the

generated test inputs must be imported from its textual repre-

sentation and converted into appropriate objects to execute the

parameterized test script. For instance, JCUnit is completely

integrated with JUnit4 and no additional work is required. The

frameworks allow the tester to define values of parameters as

native programming language constructs like objects, which

often makes custom conversion logic obsolete [21].

Another type of combinatorial testing tools are fault char-

acterization tools. To the best of our knowledge only one such

tool is publicly available: BEN [24]. BEN is a dedicated tool

with its own input and output formats. For a given IPM and

test execution results new test inputs are generated, which the

tester then needs to execute again. The execution results of

the new test inputs are again passed to BEN after execution.

The process of generating new test inputs, executing them and

supplying the results to BEN must be repeated until FICs can

be determined.

While BEN as a dedicated tool allows to automate the

generation of additional test inputs and the location of FICs,

the integration with other tools adds complexity to the CT

process. The IPM and execution results must be converted to

BEN-specific formats and, more importantly, the additional

test inputs must be executed. Since the process of executing

test inputs and supplying test results can be repeated an

indefinite number of times, it most likely involves manual

activities. Even though each dedicated tool for generation,

execution, and fault characterization automates an activity,

there exists no holistic integrative solution which combines

all activities in a fully-automated manner.
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Category Papers Initial
Input

Info Per
Test Input

non-adaptive
[14], [13], [25], [26]
[27], [15], [28], [29]

IPM test result

adaptive
[16], [3], [30], [31],
[32], [33], [12], [34],

IPM test result

[35] IPM
test result +
error info

adaptive* [36], [37], [38] IPM test result

Table II
CLASSIFICATION OF PUBLISHED FCAS

IV. FRAMEWORK CONCEPT AND DESIGN

In the following, we present the core concepts and the

top-level architecture of COFFEe, the COmbinatorial test

and Fault characterization FramEwork. In order to design a

framework that supports all defined activities and is flexible

enough to integrate existing as well as future CT and FC al-

gorithms, we conducted a literature search to identify existing

FCAs. Furthermore, we collected additional requirements the

framework needs to realize. Based on the obtained results, we

designed COFFEe’s component-based architecture as follows.

A. Analysis of Fault Characterization Algorithms

Since many different FCAs exist, an important part of a

general concept for an automated fault characterization frame-

work is to assess the control flow and information needs of

these algorithms. Therefore, we conducted a literature search

to identify existing FCAs and to analyze them according to

their adaptiveness and information needs.

Our literature search delivered 20 papers presenting FCAs

(see Table II). We classified them and identified the informa-

tion that is needed initially and per test input.

All FCAs only require the IPM (including testing strength)

as input during initialization. In addition, the result of each

executed test input, i.e. failed or passed, is required by all

algorithms. One algorithm [35] also requires further error

information like stack-traces to distinguish between multiple

types of failures in one test suite.

As there are no significant differences regarding the needed

information between adaptive and non-adaptive FCAs, the

non-adaptive FCAs can be viewed as a specialization of the

adaptive ones. Instead of generating more test inputs to narrow

down FICs after the first test execution, they immediately

calculate all FICs based on the initial test inputs. The dif-

ference is the generation of the initial test suite with a special

combination strategy, e.g. via locating and detecting arrays

[14]. Consequently, not only FC, but also CT algorithms must

be exchangeable.

Analyzing the adaptive FCAs we noticed an import sub-

category (denoted as adaptive*). These algorithms present an

interleaving approach between initial CT and FCA. They

only execute one test input at a time and, in case it fails,

immediately enter a fault characterization loop to find the FIC

responsible for the failure. As an advantage, these approaches

require fewer test inputs, since any passed test input executed

Figure 2. Complete CT & FC Process

during FC contributes to the t-wise coverage. On the other

hand, the classical approaches execute the complete suite of

test inputs for this criterion regardless of any failing test inputs.

In the following, we concentrate on FCAs using the classical

approach due to a stronger separation of concerns, and since

more FCAs follow this approach.

Figure 2 depicts the general CT and FC process derived

from the conducted literature search. The process starts with an

initial test input generation, which provides test inputs to the

test execution step. Next, an FCA decides whether to directly

terminate the process and return all determined FICs, or to

generate additional test inputs, which are executed to narrow

down possible FICs.

B. Requirements

The overall goal of COFFEe is to coordinate and execute

all automatable activities of the CT and FC process in order

that a tester only needs to focus on providing the IPM and

a parameterized test script. The framework takes over control

and is responsible for test input generation, test execution, and

fault characterization. To this end, the framework has to fulfill

the following mayor requirements:

R1 The framework shall act as a mediator between the chosen

CT and FC algorithms. Therefore, the framework should

automatically switch between the activities depicted in

Figure 2 when necessary, and should provide the required

information to the used algorithms.

R2 Since testers want to perform different kinds of CT, the

framework shall support the exchange of applied CT and

FC algorithms.

R3 For better traceability and analyzability of the results,

the framework shall offer reporting support of general

process events, e.g. start and end of fault characterization,

and of algorithm-specific events, e.g. FIC-likelihoods in

BEN.

R4 As researchers or testers should be able to easily integrate

new CT and FC algorithms, the framework shall offer an

easy to apply extension mechanism (e.g. by means of

simple interfaces).

C. Framework Architecture

Based on the requirements and the characteristics of the

published FC algorithms, we designed the top-level architec-

ture of the framework as depicted in Figure 3. All black-
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coloured boxes indicate predefined framework extension points

to integrate specific third-party components.

To decouple the features of the framework offered to man-

age IPMs and test scripts from those responsible for coordi-

nating the applied CT and FC algorithms, we strictly separated

both concerns by designing a model and an engine subsystem.

The engine subsystem includes a component, EngineLevel-
Reporting, for basic reporting and one, GenerationManager,

implementing the logic to coordinate the algorithms. The

model subsystem consists of the TestModel component, the

ModelLevelReporting component and a component to convert

between externally used formats to store e.g. IPMs and the

engine-specific internal representation format (Conversion).

This design enables the creation of different test models

using custom DSLs as well as new engines, e.g. for the

interleaving FC approach.

D. Components of the Framework

The TestModel component is the primary entry point of the

framework. It defines the format for the tester-supplied IPM

and the format in which generated test inputs are passed back

to the test script. In the beginning, the TestModel passes the

given IPM to the GenerationManager after converting the IPM

in its internal representation.

As different external representation formats should be sup-

ported, the Conversion component offers services to convert

these into the internal format and vice versa.

The GenerationManager component is the most important

one. It starts the initial test input generation using the chosen

GenerationAlgorithm. In addition, this component decides if

the fault characterization is performed after all respective test

execution results are delivered by the Executor. In this case,

the chosen FCA is triggered to generate new test inputs,

which are propagated back to the Executor. Additionally, the

GenerationManager provides useful process information to the

EngineLevelReporting component in the internal representa-

tion format.

The EngineLevelReporting component consumes the in-

formation provided by the GenerationManager and additional

algorithm-specific reports supplied through an interface avail-

able to all CT and FC algorithms. It then offers a single

reporting interface to notify about all important events in the

entire framework.

Since some reports, e.g. the propagation of all FICs, are

done in the internal representation format, the framework con-

tains a second component responsible for external reporting —

the ModelLevelReporting component. It acts as an adapter

between the internal reporting mechanism by registering itself

with the EngineLevelReporting component, and then converts

all reports into an external format.

E. Extension Points

The framework defines five extension points to adopt it

and to integrate external components. One of these extension

points offer functionality to outside of the framework, while

the rest uses functionality provided by external components.

The Orchestrator extension point provides the framework’s

usage API. While the framework implements all functions

to execute one given combinatorial test, it does not know

where to find its configuration information, or how to deal

with multiple tests. Therefore, an external orchestrator is

responsible for determining all combinatorial tests which the

framework should execute one by one, and how each of these

tests is configured.

During a combinatorial test many test inputs need to be

executed. Since the execution is test case specific, the tester

needs to provide a parameterized test script using the Executor
extension point. The framework then calls the given test script

with the test inputs generated by the chosen CT and FC

algorithms.

The initial generation of test inputs is done by an external

GenerationAlgorithm component, that needs to provide an

extension point to support arbitrary combination strategies.

To adhere to approved design principles, the GenerationAl-
gorithm extension point is defined in the GenerationManager
component, in order to avoid a dependency from inside the

framework to an external component [11]. Since all combi-

nation strategies implement the same interface, they are inter-

changeable. Hence, testers can configure different combination

strategies and can also provide their own strategies.

To use and configure FCAs, the CharacterizationAlgo-
rithm extension point provides an interface to pass all infor-

mation needed for fault characterization to a concrete FCA.

This algorithm can then either return an identified FIC or a

set of needed new test inputs.

If a tester wants to use a custom reporter, it can be

implemented based on the interface provided by the Reporter
extension point. The framework calls all registered engine-

level reporters through an interface, and the ModelLevelRe-
porting component converts all collected report items and

propagates them to the registered model-level reporters.

V. COFFEE4J - A REFERENCE IMPLEMENTATION OF

COFFEE

In the following, we present our Java reference imple-

mentation of the COFFEe framework, called coffee4j1, which

implements its architecture and smoothly integrates JUnit5.

Conforming to the architecture, coffee4j consists of the subsys-

tems coffee4j-engine and coffee4j-model. Addition-

ally, the subsystem coffee4j-junit-jupiter consumes

the services offered by both modules as a JUnit5 front-end.

Next, we introduce JUnit5, and subsequently take a more

detailed look at some aspects of coffee4j’s implementation.

A. JUnit5

JUnit5, a widely applied framework for test automation in

Java, replaces its prior versions to enable features introduced

in Java 8 and later [39]. JUnit5 differentiates between the

general testing platform (junit-platform) and the concrete test

engine (junit-jupiter), which is responsible for discovering

1coffee4j is publicly available via https://coffee4j.github.io.
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Figure 3. UML component diagram of COFFEe

and executing the test cases. The concept of parameterized

test scripts is realized via Java methods. These so-called

test methods are annotated with @Test so that they can be

discovered and executed by the test engine. An extension for

parameterized test methods is also provided by JUnit5. Then,

@ParameterizedTest is used to annotate the test method

which is parameterized via its method arguments [39]. In

addition, a source must be configured, which provides a set of

test inputs, and the parameterized test method is invoked for

each test input.

For customization, JUnit5 offers an extension mechanism to

register custom functionality for test classes and test methods,

which JUnit5 calls at defined points in its life-cycle. Tech-

nically, JUnit5’s extension mechanism consists of a number

of interfaces whose implementations can be registered to test

methods and test classes using defined Java annotations. Once

JUnit5 reaches an extension point during execution, it calls the

given methods of all registered extensions of the respective

extension point with the current execution context. Using the

execution contexts, a rudimentary communication between

extensions can also be implemented.

All in all, JUnit5 provides two types of extension points.

On one hand, it provides life-cycle callbacks at specific

points of the test execution. On the other hand, it also

provides more complex extension points, which are used to

influence the actual execution of test methods. For example,

a TestTemplateInvocationContextProvider extension

can return a sequence of arbitrary test inputs for parameterized

test methods in the form of so-called invocation contexts. A

ParameterResolver can then resolve actual method param-

eters based on information contained in the contexts. Please

refer to the JUnit5 documentation [39] for more information.

B. Implemented Extension Points

coffee4j realizes all defined framework extension points.

In the following, we present the most important interfaces it

provides, namely the ones for fault characterization and initial

test input generation.

The following Listing 1 depicts the FaultCharacteriza-

tionAlgorithm interface, which realizes the Characteriza-
tionAlgorithm extension point of COFFEe.

Listing 1. FCA Interface

interface FaultCharacterizationAlgorithm {
List<int[]> computeNextTestInputs(

Map<int[], TestResult> testResults);

List<int[]>
computeFailureInducingCombinations();

}

After executing the initial set of generated test in-

puts, the framework passes the obtained results to the

computeNextTestInputs method. An adaptive FCA com-

ponent, implementing this interface, can then decide which

additional test inputs are needed and return them to the

framework, while a non-adaptive one just returns an empty

list. In the former case, the framework repeats the cy-

cle of executing the current set of test inputs and pro-

viding the execution results to the FCA component un-

til it returns an empty list. Next, the framework calls the

computeFailureInducingCombinations method of the

FCA component, that returns the computed FICs.

FCA components are initialized through a FCA factory,

which provides the algorithm with an IPM. This enables to use

multiple FCA components for different groups of test inputs,

e.g. for positive and negative testing.

Listing 2. CT Interface

interface TestInputGroupGenerator {
Collection<Supplier<TestInputGroup>>

generate(CombinatorialTestModel model,
Reporter reporter);

}
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The TestInputGroupGenerator interface as shown in

Listing 2 implements the GenerationAlgorithm extension

point. Based on a CombinatorialTestModel and a reporter,

each generator implementing this interface can return a num-

ber of groups, each containing multiple test inputs. This allows

for a stronger separation of test inputs for different purposes

on the framework level, e.g. negative and positive testing.

Instead of returning a collection of test inputs directly,

Supplier<TestInputGroup> is an additional indirection in

the TestInputGroupGenerator interface. The generation

is encapsulated in a supplier, which is computed lazily on

demand. Thereby, the generation of test inputs for different

test input groups can easily be parallelized.

C. JUnit5 Extension

To offer the full benefits of JUnit5, e.g. a seamless integra-

tion in IDEs and build processes, coffee4j contains a collection

of JUnit5 extensions to offer compatibility with the junit-

jupiter test engine.

The annotation @CombinatorialTest is introduced to be

used to annotate parameterized test methods for combinatorial

testing. We denote them as combinatorial test methods. Each

such method can have multiple annotations to configure how

coffee4j generates the test input. This includes the used CT

and FC algorithms. Additionally, the tester has to specify an

IPM via the @ModelFromMethod annotation. It tells coffee4j

which method to call to get the IPM used for the specific

combinatorial test method.

Coffee4j’s JUnit5 extensions then ensure the complete

execution of the CT and FC process by calling the com-

binatorial test method with all test inputs, and using the

results to generate further tests for FC. When running JUnit5,

each combinatorial test method automatically registers the

CombinatorialTestExtension, which has two responsibil-

ities. Firstly, it loads the complete test configuration including

the IPM via custom Java annotations (see example). The con-

figuration is then used to start coffee4j’s initial test input gen-

eration activity. Secondly, it converts the generated test inputs

into a sequence of invocation contexts for the combinatorial

test method. Therefor, it creates a Java stream, i.e. a lazily eval-

uated sequence, of test inputs using a TestInputIterator,

which functions as the base source of test inputs. During the

actual execution of the combinatorial test method by JUnit5,

each test input of this stream is converted into an invocation

context and finally the values of the test input are passed as

arguments to the combinatorial test method.

For CT without FC, the concept of TestInputIterator

would not be necessary. Every Java collection holding the

initial test inputs can be converted to a stream. However,

concurrent modification of the stream’s source collection is

not allowed during the execution, and therefore no FC test

inputs could be added after the execution of the first test input

began. The special iterator solves this problem by maintaining

an internal queue of test inputs which need to be executed,

and it only allows very basic operations on this queue hidden

behind clearly defined public methods.

Once JUnit5 executes an invocation context, the context

registers two additional context specific extensions: a param-

eter resolver, which passes the values of the context’s test

input to the arguments of the combinatorial test method, and

a callback to propagate the execution result to coffee4j. Then,

the framework can compute additional test inputs based on

the results using the FCA component, and append them to

the stream created in the combinatorial test extension for later

execution.

For a minimal coffee4j combinatorial test setup with JU-

nit5, the tester has to (a) use the CombinatorialTest

annotation on the defined test method and (b) define an

InputParameterModel in a method which is linked to the

test method via @ModelFromMethod(<methodName>).

Listing 3 shows this configuration, also specifying a FCA

and a reporter, which simply outputs all information to the

console. It models the parameters and values from Table I. The

combinatorial test method is left empty but normally contains

instructions to exercise the SUT and check its output.

Of course, coffee4j’s JUnit5 extension can handle more

complex cases. If the defined annotations are not expressive

enough to model a test configuration, a special annotation can

be used to provide the complete test configuration via one

custom method, thus giving complete freedom.

As the coffee4j-junit-jupiter implementation resolves pa-

rameters using the same external interfaces as junit-

jupiter-params, testers can also reuse junit-jupiter-params

specific features such as an ArgumentAggregator or

ArgumentConverter [39].

VI. APPLICATION EXPERIENCE

To demonstrate the flexibility and extensibility of coffee4j,

we implemented the BEN [24], IterAIFL [30], AIFL [3]

and Improved Delta Debugging [31] FCAs. Furthermore,

we implemented different combinatorial test input generation

algorithms; an IPOG-C strategy based on optimization and

implementation advice from Kleine and Simon [40], and an

extended algorithm to generate negative test inputs [41].

To evaluate the applicability of the overall framework, we

applied the framework to the following three example systems

with injected faults2:

• DRUPAL (47 boolean parameters and 45 constraints)

• BUSYBOX (68 boolean parameter and 16 constraints)

• LINUX (104 boolean parameters and 83 constraints)

The faults were injected via a special test comparator, which

always lets the test fail if the input parameters contain specific

combinations.

Tables III and IV show the results of applying the BEN and

Improved Delta Debugging FCAs with some injected faults on

the chosen systems. They name the used test model with the

initial number of generated test inputs and needed generation

time, the size of the identified FICs (here xy = y FICs of

size x), needed execution time for FC, number of found FICs,

number of valid reported FICs, and number of test inputs

2The models and injected faults are provided by Wu et al. [42].
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Figure 4. Architecture of coffee4j’s JUnit5 extension

Listing 3. Coffee4jExample.java

class Coffee4jExample {
@CombinatorialTest
@CharacterizationAlgorithm(Ben.class)
@Reporter(PrintStreamExecutionReporter.class)
@ModelFromMethod("model")
void combinatorialTest(String os, String browser, int ping, int speed) {

// stimulate the SUT and check its output
}

private static InputParameterModel.Builder model() {
return inputParameterModel("exampleTest")

.strength(2)

.parameters(
parameter("OS").values("Windows", "Linux", "MacOS", "Android", "iOS"),
parameter("Browser").values("Chrome", "Edge", "Firefox", "Safari"),
parameter("Ping").values(10, 100, 1000),
parameter("Speed").values(1, 10, 100, 1000));

}
}

Model FICs Time Found Valid Inputs

Busybox
18

10s 517ms

12 12s 47ms 1900 1 20
2 453ms 1 1 61
1 9s 562ms 1817 1 20

Drupal
17

5s 164ms

2 219ms 1 1 39
25 1s 628ms 5 5 147
25 2s 610ms 970 5 13

Linux
28

107s 633ms

2 499ms 1 1 31
1 12s 440ms 1884 0 16

Table III
BEN EXECUTION RESULT

Model FICs Time Found Valid Inputs

Busybox
18

10s 517ms

12 58ms 2 2 12
2 93 1 1 10
1 76ms 1 1 6

Drupal
17

5s 164ms

2 77ms 1 1 9
25 79ms 2 1 17
25 78ms 2 1 12

Linux
28

107s 633ms

2 94ms 1 1 12
1 64ms 1 1 7

Table IV
IMPROVED DELTA DEBUGGING EXECUTION RESULT
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needed for FC. Coffee4j was executed within the JetBrains

IntelliJ IDE on a AMD FX-6100 CPU with 16 GB of DDR3

RAM, using Java 8.

The number of FICs identified by BEN is so high because

of the specific implementation and the way the algorithm is

designed. BEN maintains an internal list of all possible FICs

of size t. An internal function assigns a probability of actually

being failure-inducing to each possible FIC. However, when

the actual FIC consists of fewer values than the testing strength

t, all t-sized combinations which that contain the FIC are

considered as failure-inducing. Consequently, BEN keeps them

in its internal list. Since our implementation simply returns all

possible FICs of size t and calculates which smaller ones could

also be failure-inducing, many combinations are returned in

such a case. By introducing a limit to the number or probability

of returned FICs the number would be much lower while still

maintaining a high percentage of correctly discovered FICs.

As can be noticed, both algorithms found the correct FICs

in many cases, with Improved Delta Debugging requiring less

time and fewer test method executions. However, this result

cannot be generalized, since the injected faults were not chosen

for a systematic comparison of FC algorithms.

We also tried to execute the scenarios with AIFL and

IterAIFL, but both algorithms failed with an OutOfMemory-

Error, because they maintain an internal list of all possible

FICs, not only of those with a size smaller than the testing

strength. Since the models contain up to 104 parameters,

execution was not possible, as this would require an internal

list containing up to 2104 items, which results in an Java

exception as the heap is too small.

All in all, the application of coffee4j is promising and

clearly demonstrates that coffee4j can effectively integrate

different CT and FC algorithms as well as test models. It

ensures the correct execution of the given FCAs and initial

test input generation algorithms.

VII. CONCLUSION

Test automation is an important part of current software

development. While some tools offer the isolated ability to

automate combinatorial test generation, test execution or fault

characterization, yet no tool exists that integrates all three

activities in one automated process.

When using tools with isolated abilities, the tester has

to copy and transform information between test generation,

test execution, and fault characterization tools. The process

becomes tedious and error-prone. Therefore, it would be

desirable to have an integration of all activities, namely input

parameter modelling, test generation, test execution, and fault

characterization. Then, the tester only models the input param-

eters and develops executable test scripts. A tool that integrates

all activities could automatically handle the generation of test

inputs, execution of the test scripts , and fault characterization,

i.e. the computation of FICs and, if needed, the generation and

execution of additional test inputs.

The objective of this paper was to create a framework that

integrates all these activities in a extensible fashion such that

different algorithms for CT and FC can be developed and used.
Therefore, we first summarized the current state of research

for tools, and clearly identified the lack of an automated tool

covering all three activities of the CT process and motivated

the necessity of integrating all three activities. In a first step to

close this gap in available tools, a literature search examined

current FCAs according to their needed information and cate-

gorization into non-adaptive and adaptive algorithms. Next, we

presented the concept of a general architecture named COFFEe

- a combinatorial test and fault characterization framework.

Based upon collected requirements, COFFEe supports a strong

separation of test model and test engine related functions by

defining respective subsystems.
Furthermore, we presented coffee4j, which is a Java imple-

mentation of the proposed COFFEe framework. In coffee4j,

we also provided a JUnit5 integration, allowing for a seamless

integration of combinatorial test generation and fault charac-

terization into IDEs and automated build processes.
Finally, we demonstrated the capabilities of COFFEe and

coffee4j by applying it to different test scenarios using dif-

ferent algorithms and different injected faults. It showed that

coffee4j is able to effectively integrate different algorithms

for CT and FC However, the different algorithms and injected

faults showed differences in execution time and found FICs.

To determine which FC algorithms performs best under which

conditions, further investigations are required.
As future work, we will extend the framework to support

interleaving approaches as well, and we will also implement

the other identified FCAs. Then, we plan to design experiments

and to utilize the framework in order to conduct a comparison

among the different FCAs.
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