
Proceedings
of Seminars

Full-scale Software Engineering
New Trends in Software Construction

2019
Editors: Horst Lichter

Peter Alexander
Konrad Fögen
Christian Plewnia
Nils Wild

Table of Contents

Anna Vaassen, Adrian Azemi:
Applicability of Test Oracles in Agile Development

Lukas Malcher, Kristian Lebold:
Current State of Equivalent Mutant Reduction Methods in Mutation Testing

Ajay Pandi, Marian Assenmacher:
On Factors Contributing to the Qualitative Measurement of Test Suite
Effectiveness

Marcel Neis, Niklas Münzer:
Automated Testing of Microservice-based Systems

Tim Jentzsch, Lukas Stief:
Determining Metric Thresholds for Code Smell Detection: A Systematic
Mapping Study

Henrik Kämmerling, Lukas Liß:
Towards a Catalogue of Refactoring Solutions for Enterprise Architecture Smells

Christian Schwier, Philipp Peeß:
Data Processing Frameworks: What is the right tool for my task?

Johannes Leurs, Bernd Schoolmann:
How Resource Management of Kubernetes, Yarn and Mesos Affects Different
Batch Job Workloads

Applicability of Test Oracles in Agile Development

Anna Vaassen
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

anna.vaassen@rwth-aachen.de

Adrian Azemi
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

adrian.azemi@rwth-aachen.de

ABSTRACT
While developing complex software, it is nearly unavoidable
to cause bugs. Those, however, have to be identified to
ensure functional software. One critical activity for find-
ing bugs is structured testing. Thus, methods to generate
test inputs and validate test outputs are needed to assure
a complete testing. Concerning validation, these methods
are provided by test oracles. Since every test oracle strategy
has different requirements for the underlying development
process, not every test oracle is equally suitable for agile de-
velopment methodologies. Therefore, choosing an appropri-
ate approach is an essential factor for successful testing. For
reaching the optimal decision, an objective analysis based on
the right measures has to be conducted. This paper provides
suitable criteria and uses these to evaluate three different,
commonly used test oracle strategies.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Testing and Test Verification—test orcales,
agile development

Keywords
Model-Based Testing, Metamorphic Testing, Fuzzing, Agile
Development, Test Oracle

1. INTRODUCTION
In the last decade, most companies migrated from the tra-

ditional software development method, also known as the
waterfall model, to agile approaches [20]. In the traditional
approach the software project is divided into fixed phases
that have to be processed sequentially, whereby reaching
the next phase requires all prior phases to be completed.
Additionally, repeating a finalized phase is prohibited. On
the contrary, agile approaches allow simultaneous process-
ing and the repetition of completed phases [5, 16]. As a
result of the migration, productivity and software quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

increased [35]. Essential for ensuring software quality is ex-
tensive testing. Testing consists of creating appropriate test
inputs and evaluating the behaviour of the system. Test ora-
cles address the second issue by providing different methods
to validate tests. However, formerly used test oracles that
were suited for traditional software development methodolo-
gies may be insufficient for agile approaches. In traditional
software development processes, the environment is consid-
ered static and, therefore, predictable. In agile development,
the goal is to be flexible to react to changes and therefore
dynamically. In contrast to traditional methods, this keeps
the process iterative [16]. This is one of many aspects that
should be considered when selecting a test oracle in an agile
environment. Further differences are listed in Table 1. Thus,
criteria need to be defined that regard the most important
aspects. These criteria will later help to evaluate the appli-
cability of test oracles. This paper defines applicability as
follows: ”the quality of being relevant or appropriate [38]”.

The paper is structured as follows. First, the theoretical
background of the concepts of agile development and test or-
acles are formally delivered to the reader to establish a com-
mon terminology. Notably, various categories of test oracles
are introduced to the reader. In Chapter 3, the requirements
of test oracles in agile environments are discussed. Based on
that, specified criteria are used to evaluate whether a test
oracle is suitable for the application in an agile environment.
Subsequently, in Chapter 4, an evaluation of a representa-
tive test oracle of every category introduced in Chapter 2 is
conducted. This is done with the defined criteria in section
3. As a basis for that, a definition and illustrating examples
of the test oracles precede the evaluation. Afterwards, the
results of the evaluation of each criterion for every given test
oracle is considered as a whole to discuss their applicability
in an agile environment. Finally, this paper is completed
by analyzing in which way future work could extend results
and a summary.

2. BACKGROUND

2.1 Agile Development
Agility is a broad term meaning that something is ”flexible

and responsive” [12]. Due to the broad meaning, multiple
agile research areas and methods exist [20]. Since explaining
every agile method and its characteristics would go beyond
scope, only agility in general will be discussed.

Every agile method is designed in conformity with these
four principles of the agile manifest, which state [6]:

1. Individuals and interactions over processes and tools

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Table 1: Traditional and agile perspectives on software development [16]

Traditional view Agile perspective

Design process

Deliberate and formal, linear sequence

of steps, separate formulation and

implementation, rule-driven

Emergent, iterative and exploratory, knowing and action

inseperable, beyond formal rules

Goal Optimization Adaption, flexibility, responsiveness

Problem-solving process

Selection of the best means to accomplish

a given end through well-planed,

formalized activities

Learning through experimentation and introspection, constantly

reframing the problem and its solution

View of the environment Stable, predictable Turbulent, difficult to predict

Type of learning Single-loop/adaptive Double-loop/generative

Key characteristics

Control and direction

Avoids conflicts

Formalizes innovation

Manager is controller

Design precedes implementation

Collaboration and communication; integrates different worldviews

Embraces conflict and dialectics

Encourages exploration and creativity; opportunistic

Manager is facilitator

Design and implementation are inseparable and evolve iteratively

Rationality Technical/functional Substantial

Theoretical and/or philosophical roots Logical positivism, scientific method Action learning, John Dewey’s pragmatism, phenomenology

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

Definition 1. [Agility] Every method that respects the
agile manifesto can be called agile [42].

In contrast to other engineering disciplines, there are no
routines that will most likely lead to desirable software [42].
This problem gets addressed by the first and fourth principle
which state that no scheme should dominate the engineering
process in general. This seems to be reasonable because not
all requirements are known at the beginning of a project and
they change [42].

Change is also a reason why documentation is less val-
ued in agile methods than working software. Documenting
something that changes persistently causes overhead. The
lack of documentation is compensated by frequent interac-
tion with the individuals participating in the project [19].
Working software, even in the form of prototypes, is the
basis for that as it is a mean for receiving feedback [19].

The necessity of the third principle also results from the
lack of knowledge of all requirements. It is illogical to be
legally obliged to implement something with regards to out-
dated requirements. Instead, the idea is that all stakeholders
should work in a team merging their knowledge, which al-
lows to identify necessary requirement changes as soon as
possible [19].

2.2 Test oracles

2.2.1 Definitions
The definitions below are adopted from the work of Li et

al. [25], as they are precise enough to establish a common
terminology without the overhead of more formal definitions.

Definition 2. [Output] An output includes everything sent
to a screen, written to a file or database, or sent as messages
to a separate program or hardware device.

Definition 3. [Test Input] Test inputs consist of method
calls to a system under test (SUT) and necessary input val-
ues.

Definition 4. [Expected Results] The results that will be
produced when executing the test inputs if the program sat-
isfies its intended behaviour.

Definition 5. [Test Oracle] A test oracle provides ex-
pected results for some program states as specified by the
test oracle strategy (formally defined later). The test oracle
determines whether a test passes by comparing expected with
actual results.

2.2.2 Categories of test oracles
Determining whether the output of a SUT corresponds

expectedly to the input is a hard problem in general. For
solving this problem various approaches have been developed
[25].

A specified test oracle is designed by specification using
mathematical logic if possible. One approach is to model
the behaviour of a SUT mathematically using a specification
language. The test oracle can then use the specification
to verify the output. However, it is not possible to model
a system completely, thus less important properties of the
system usually aren’t captured by the model. The closer the
specification of the model is to the application, the more
application specific failures can be recognized but the less
reusable the test oracle is [33, 3].

Derived Test Oracles decide if an executed test on a SUT
behaves expectedly or unexpectedly based on already exist-
ing information. These can be derived from documentation,
system execution or different software versions [3].

Implicit Test Oracles distinguish correct from incorrect
behaviour by using implicit knowledge. This implicit knowl-
edge depends on the domain where the system is used in.
In many domains all types of crashes like ”buffer overflows”
are incorrect behaviour, however not necessarily in all. Typ-
ically, only a few classes of failures are covered by this kind
of oracles [33, 3].

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

2.3 Related Work
Lindvall et al. [27, 28] already applied Metamorphic Test-

ing in an agile environment. Barr et al. and Pezzè et al.
created a survey for the test oracle problem [3, 33]. Barr et
al. also did a trend analysis of solutions to the test oracle
problem [3]. Coutinho et al. conducted a mapping study to
investigate how to develop requirements in the agile context
of software testing [14].

Our work, in contrast, focuses on which type of test oracle
to choose when agile methods are used in software develop-
ment. To our knowledge, no related work with a similar aim
exist.

3. AGILE CRITERIA
To evaluate the usability of test oracles in agile processes

later, it is necessary to identify the essential characteris-
tics of agile methods. To achieve this, the following sec-
tion analyses and describes characteristics valued in agile
development and defines four criteria that will later help to
estimate the practicality of oracles in this field.

In Agile development, one of the key factors is to be adap-
tive [1]. In the early stages of development, most require-
ments are unknown to the development team and the cus-
tomers. Instead, they need to adapt over time. This lack
of information causes conditions to change rapidly during
the development phase. Even very late into the process,
changes can and will occur [6]. Therefore, the developers
need to be able to react fast to upcoming changes. Accord-
ingly, the team needs the used test oracles to be flexible and
constructible from a little number of known requirements
(see C1,C2 below).

Another critical factor in agile development is the ambi-
tion to deliver working software to the customer regularly
[6]. To achieve this, the development of new functionalities
within the actual code is essential. Since time is limited in
the process, documentation is considered less crucial for the
development process. Thus, executable code is the primary
concern of the development team, while exhaustive docu-
mentation is not part of agile development [1, 13]. However,
many test oracles need complete documentation to be used
for an effective result verification [3]. Therefore, one crite-
rion for the test oracle demands the ability to operate with
little to no documentation (see C3 below).

Moreover, due to the ambition to deliver working soft-
ware periodically, the process is done incrementally. This
means the software is released in small portions in a fixed
amount of time [1]. In this period, the code needs to be
written, changed if new requirements come up and it also
needs to be tested [1, 13]. As a result, time is precious and
demands a tight schedule. In this scheme, there is little time
to learn new and sophisticated tools or strategies. Therefore,
methods used in agile development must be straightforward.
They need to be easy to learn and quick to modify [1]. Sub-
sequently, test oracles that are complex and hard to adjust
are not ideal in agile development (see C4 below).

For test oracles that are used in agile development, the
following criteria can be derived from these characteristics:

C1 How feasible is the construction of the oracle to un-
known requirements?

C2 How adaptable is the test oracle to fast-changing re-
quirements?

C3 How much documentation does the oracle need?

C4 How time-consuming is the creation of the test oracle?

4. EVALUATION
In this section, three different test oracle strategies are

chosen to be analyzed, namely, Metamorphic Testing, Model
Based Testing and Fuzzing. These three were selected to
each represent one of the three test oracle categories. For
Specified Test Oracles Model Based Testing was elected,
since the graph structure makes it intuitive to understand.
Metamorphic Testing was chosen for Derived Test Oracle
strategies, as it is used often in practice [29, 11, 43]. Lastly,
Fuzzing was selected for Implicit Test Oracles due to being
the most known of this category [3].

4.1 Metamorphic Testing
The term Metamorphic Testing (MT) has first been intro-

duced by Chen et al. [9] in 1998. Since then, this strategy
has been used often in both the academic field and in indus-
try [29, 11, 43]. One reason for this successful integration
is the high fault detection rate of MT. It has found numer-
ous bugs in already established and tested software such
as Siemens Suits [21], C Compilers like the GNU Compiler
Collection (GCC) and LLVM a compiler framework [26, 34]
and in Google Maps [37]. Another reason for the high ac-
ceptance of MT is that it can derive information from faulty
test cases as well as from successful ones. While in all strate-
gies, faulty test cases indicate that the SUT might be flawed
or at least does not behave the expected way. Contrary,
some test strategies often consider successful test cases as
useless because they only validate one specific configuration
[10, 37].

The basis and crucial point of MT is the definition of so-
called Metamorphic Relation(s) (MR). These are predefined
relations between two or more inputs and their correspond-
ing outputs. Thus, MRs describe the fundamental properties
of the SUT [10, 37]. By checking against these characteris-
tics, MT goes beyond testing of individual test cases. Often
MRs are represented by mathematics formulas.

For example, the algorithm G awaits two nodes a, b and
a graph g and should solve the shortest path problem. If
this algorithm is supposed to be verified, the following MRs
could be derived [40]:

MR1 G(g, a, b) = G(g, b, a)
When the shortest path between the nodes a and b
is found, the path should not change if we switch the
nodes. The start becomes the node b and the destina-
tion is changed to a.

MR2 |G(g, a, b)| = |G(g, a, x)| + |G(g, x, b)| for all x on the
path between a and b.
If we find the shortest path between the nodes a and
b, for any other node x on this path, we can calculate
the shortest path between a and x as well as b and
x. Then the length of the sum of both paths must be
equal to the shortest path from a to b

If these relations are not fulfilled, the algorithm is erroneous.
The general procedure of MT is shown in figure 1 and

works as follows: After defining a MR for a system, it has
to be checked if the current implementation of the system
fulfills this relation. At the beginning the so called source

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Define MR

Create and execute
Source Test

Create and execute
Follow-Up Tests

Check MR

MR
ok?

MR
satis-
fied?

System negative System positive

Yes

Yes

No

No

Figure 1: Process of Metamorphic Testing

test is created and executed. The source test is the first part
of the MR (e.g. the left side of a mathematical formula).
By creating a test scenario and calculation of the source
case this first step is done. Next, the follow-up tests are
performed (the other side of the MR e.g. the right side of a
mathematical formula) with the same test scenario as used
for the source test. With the results of source and follow-
up tests the MR is checked to be true. If the MR is not
fulfilled, the SUT does not achieve the desired behaviour
and the implementation has to be rechecked. If the MR
is tested positive, a new test scenario can be created till
a predefined timeout is reached and the MR is considered
satisfied [36, 24, 40].

For example, the source test of MR2 is the generation of
a random graph and the calculation of the shortest path
between a and b (left side of equation |G(g, a, b)|). The
follow-up tests are the calculation of the shortest paths be-
tween a and x as well as x and b (right side of the equation
|G(g, a, x)| and |G(g, x, b)|). To check against the MR the
sum of the follow-up test cases is compared with the result of
the source test case. The two possible results here are that
the MR test is positive or negative. If the result is negative,
the SUT is faulty and has to be rechecked. However, if the
test is positive, either the SUT could be correct, or the erro-
neous results of source and follow-up tests nullify each other.
The latter one is statistically highly unlikely, especially un-
der the condition that multiple executions verify the MR. It
is interesting to see that even if the distance between a and
b would be calculated correctly the SUT could be erroneous
anyway. This is a good example to demonstrate that MT
doesn’t stick to single testcases but checking against global
system characteristics.

4.1.1 How feasible is the construction of the oracle
to unknown requirements?

The key factor in the successful execution of MT is the
identification and definition of MRs. Without them, not
only the generation of follow-up test cases but also the ver-
ification of the system is impossible. To define the MRs the

essential functions of the system need to be known. There-
fore, testers need to know how the system is supposed to
behave under specific conditions. However, this is only pos-
sible if the requirements are known to the testers since they
define the general behaviour of the SUT [10].

Nevertheless, MRs can be especially useful in the early
stages of software development, as they can improve commu-
nication between developers and customers. MRs are often
easy to understand and jet very specific. Hence enabling a
great understanding on the customer’s side, who will be able
to confirm or deny that the MR describes a needed require-
ment of the system. Since MRs should be described formally
they do not have the downside of being misunderstood and
can be adapted into the implementation more easily [36, 10].

4.1.2 How adaptable is the test oracle to fast-changing
requirements?

If a requirement of a system is changed in mid-development,
the behaviour of the system might change as well. This
change could lead to already identified and defined MRs
to no longer be true for the SUT. For example, the algo-
rithm above can be changed to now not calculate the short-
est path in an undirected graph but a directed graph. Due
to this change, the first MR (MR1) is no longer correct and
needs to be reworked. As this example shows, if require-
ments change, so can the related MRs. Therefore, all MRs
have to be checked to decide if they need to be removed
or redefined. Moreover, new MRs might be needed. These
have to be identified and defined. Nonetheless, as seen in
the example, not necessarily all MRs become useless by a
change in requirements. In the example, the second MR
(MR2) can be kept. This property is also likely in bigger
systems with more defined MRs so that only small amounts
need to be adjusted. Which only leads to a small overhead.
Furthermore, the identification of MRs that do need to be
adjusted and the definition of new MRs should be an easy
task, due to the close contact with the customer who can
help to identify those[10].

4.1.3 How much documentation does the oracle need?
Since MT can be used for different tasks, MRs have to

be derived depending on the intended task of the MT. If
the MT is supposed to verify, the MRs need to be derived
based on software specifications. If the task is to validate,
testers define MRs based on the expectations of the user
and the customers. Lastly, if the MT should help with qual-
ity insurance, MRs can be derived by various stakeholders.
Thus, limited documentation is needed to derive the neces-
sary MRs and even without complete specification, testers
should be able to identify the needed MRs [37, 10].

Yet, effective MRs are essential for the successful execu-
tion of MT. Therefore, a systematical method to find good
MRs is useful in the process. As it can be difficult to find
suitable MRs for testers without expertise and experience.
[10] Though there is no specification needed to identify the
MRs it is reasonable to still withhold a level of formalism
when describing MRs. When MRs are described in natural
language, often misunderstandings arise due to misinterpre-
tation. Moreover, it is harder to reuse MRs if they are not
defined specifically. Thus, using predicate logic when defin-
ing the MRs can help the effectiveness [36].

4.1.4 How time-consuming is the creation of the test
oracle?

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

MT is a simple concept that is still highly effective. Fur-
ther, the implementation is straightforward and the process
can be automated to a certain extent. The generation of
different test cases, as well as the execution of MT and the
verification, can be automated quickly and with little ef-
fort. However, the identification of MRs normally needs to
be done manually. Since it demands complete knowledge of
the program and its domain. Although alternative ways to
generate MRs like combining existing relations [30, 15] and
generating MRs automatically [23, 22] have been proposed.
Those techniques still need further investigation before they
can be entrusted. [36] Another way to ease and fasten up
the MR identification process would be guidelines to find
good MRs. Though, this as well needs further investigation
[36, 10]. As already explained above, the MRs have to be
adjusted if the requirements of the system change. This ad-
justment of the MRs leads to overhead on the tester’s side
and does need time. Nonetheless, as also explained before,
this overhead is relatively small, which means that the time
consumption is also limited [10].

4.2 Foundations

Definition 6. [Graph] A graph G is [25]:

• a set N of nodes, where N 6= ∅

• a set N0 of initial nodes, where N0 ⊆ N and N0 6= ∅

• a set Nf of final nodes, where Nf ⊆ N and Nf 6= ∅

• a set E of edges, where E ⊆ N ×N

Definition 7. [Mapping] A mapping is a data structure
that describes how to translate test inputs from model ele-
ments (transitions and state invariants in this research) to
the implementation [25].

Definition 8. [Test case] A test case is a finite structure
of input and expected output [41].

Definition 9. [Test suite] A test suite is a finite set of
test cases [41].

Definition 10. [Test input] The input part of a test case
is called test input [41].

Definition 11. [Test output] The output part of a test
case is called test output [41].

4.3 Model-Based Testing
The following material including the given example is adopted

from the work of Li et al. [25]. In model-based testing the
SUT gets specified by a model representing the system’s be-
haviour. [25]. However, due to complexity reasons, usually
only the most relevant properties get captured by the model
[3]. The same principle, already described for specified or-
acles in general, also holds for model based testing. The
closer the specification of the model is to the application,
the more application specific failures can be recognized [33,
3].

Often, the abstract model is represented by a graph struc-
ture like UML state machine diagrams. Its nodes represent
states of the SUT and the edges represent transitions. By

taking transitions, which is an abstract term for executing
a function on the SUT, the state changes in general. Each
state gets a state invariant assigned, which requires a cer-
tain condition to be satisfied. Typically, this condition en-
sures expected behaviour of the system. After that, tools
like STALE are used to convert the generated more com-
plex graph structure, for example a state machine diagram,
to a plain graph structure specified in definition 6 [2, 25].

After converting, abstract test suites can be created fol-
lowing a specific coverage criterion. If, for example, the
coverage criterion is edge coverage, which requires all edges
to be covered, every test suite has to cover all transitions
from the start of the initial node to the end when a final
node is reached.

These abstract test cases have to be mapped to concrete
test cases in order to draw conclusions for the behaviour of
the SUT. If the specification of the model is powerful enough
and includes information about how to transform the ab-
stract tests to concrete tests or it even provides expected
output values, the problem becomes trivial, as the testing
process would be completely automated [25]. Therefore. we
assume in the following the mappings and the expected out-
put values have to be provided manually, as it is usual in
practice when such formal specification isn’t available [25,
3].

As an example, consider the following extract of the class
vending machine as the SUT and a state machine diagram
as its model, assuming that only dimes, quarters and dollars
are accepted and the price for all products is 90 cent:

public class VendingMachine
{

// Current c r e d i t in the machine
private int c r e d i t ;
. . .
// Constructor : vending machine
// s t a r t s empty .
public VendingMachine () {}

// A coin i s g i ven to the vendingMachine
// Must be a dime , q u a r t e r or d o l l a r .
public void co in (int co in) {}

//Get the current c r e d i t v a l u e .
public int getCred i t () {}
. . .

}

Listing 1: Class VendingMachine (partial) [25]

In that example the abstract model is the state machine
diagram. Constraint 1 is the state invariant of state 1, Con-
straint 2 is the state invariant for state 2 and Constraint 3
is the state invariant of state 3. The node ”State 1” is in
the set of initial nodes and ”State 3” is in the set of final
nodes. If edge coverage is chosen as a coverage criterion,
every transition of the enumeration: (State 1, coin, State
2), (State 1, coin, State 3), (State 2, coin, State2), (State
2, coin, State 3) has to be covered by at least one test case
of the generated test suite. For the model of the vending
machine in Figure 2 paths from an initial node to a final
node can be interpreted as test cases and ((State 1, coin,
State 3)), (State 1, coin, State 2), (State 2, coin State 2),

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 2: Model for the class VendingMachine [25]

(State 2, coin State 3)) can be considered as a test suite. Us-
ing a transition in the abstract model symbolizes the call of
the method coin in the concrete system. A mapping for the
transition between state1 and state 3 could be for example
the test code ”vm.coin(100)” which represents the insert of
a dollar, where vm is an object of the class VendingMachine
to be tested.

Since STALE selects appropriate mappings for a test auto-
matically, this particular mapping can be used for the tran-
sition between State2 and State3 either, but has to be pro-
vided only once. Note that it is still possible and even useful
to provide more than one mapping for one transition. With
regards to the vending machine example, if no further map-
pings apart from ”vm.coin(100)” are provided, some tests
will fail, as for edge coverage the transition (State 1, coin,
State 2) needs to be tested either. If not enough mappings
are provided to satisfy all tests related to a coverage crite-
rion, a tool like STALE will notify the user to provide more
mappings. It is also possible to check properties that dif-
fer from the state invariant, for example, by extending the
mapping in Listing 2 in the following way to ensure that the
credit gets exactly increased by the expected amount:

int creditCopy = vm. getCred i t ;
vm. co in (1 0 0) ;
a s s e r tEqua l s (creditCopy + 100 , vm. ge tCred i t ()) ;

Listing 2: Example Mapping [25]

4.3.1 How feasible is the construction of the oracle
to unknown requirements?

When the requirements are completely unknown, the con-
struction of the OS is not robust at all, since model based
testing needs a model that specifies the systems behaviour.
However, if enough requirements are known so that a rough
notion about the future system exist, one approach to deal
with that issue is creating an under specified model, which
can be refined from time to time [33, 17]. Agile develop-
ment methods usually use iterative approaches as well, in
which systems evolve in every iteration [17]. One advantage
of using this approach is that under specified models may
be reused for future developments of systems with similar
properties [33].

4.3.2 To what degree is the test oracle adaptable to
fast-changing requirements?

When requirements change rapidly the model needs to be
adjusted to the changed requirements and since the map-
pings rely on the model, they need to change as well. Nev-
ertheless, the workload of changing a model and its mapping
is not constant but depends on the degree of change of the
model. If, for example, the requirements change fast but the
changes are rather small, then the workload will be lower in
comparison to changes of requirements that require a com-
plete restructuring of the model.

4.3.3 How much documentation does the oracle need?
As a model of the system needs to be constructed for the

creation of the test oracle, at least enough documentation
for a rough model is necessary. However, even if such a
minimal amount of documentation doesn’t exist, the model
itself can serve as a kind of documentation between all the
stakeholders. Using state diagrams, technical details can be
abstracted away at first allowing even non technically versed
people to be able to participate, which supports the first and
third principle of the agile manifesto.

4.3.4 How time-consuming is the creation of the test
oracle?

When model-based testing is used for the generation of a
test oracle, the time needed for the creation of the test oracle
depends on the tools used and the number of assertions that
have to be provided by hand [25]. By using tools that offer
prefix graph based solution like STALE, the number of tests
can be reduced [25]. Considering the graph in figure one, in
one scenario the edge between state 1 and state 2 can get
checked ten times by ten separate tests, whereas in a more
efficient scenario a single test can cover the edges (State1,
coin, State2), (State2, coin, State2), (State 2, coin State 3)
at once.

Furthermore, not only the number of tests but also the
complexity of the tests, consisting of the number of transi-
tions that appear in a single test, can be reduced. Moreover,
to create the test oracle it is necessary to transform the ab-
stract test cases to concrete test cases using mappings. For
the creation of a mapping assertions have to be provided
by hand. That, however depends, on the coverage criterion
and the properties of a state that are checked. Counter-
intuitively, it has been shown that a stronger coverage crite-
rion does not help for finding more errors [25]. Additionally,
it turned out that only checking the state invariants of all
states after every transition suffices [25]. Considering this
aspects, it can be concluded that the time-consumption for
the construction of the test oracle can be minimized.

4.4 Fuzzing
Fuzzing dates back to 1989 when Professor Barton Miller

proposed his first paper on the matter. His approach was to
test software by generating random input and throwing this
at the SUT. If the program crashed, this was regarded as a
failure. Where when the system did not collapse, the test
was viewed as successful [31].

Since then, this method is considered to be an effective
way to find real errors quickly. Though the main idea has
not changed a lot, there has been room for improvement.
The core of Fuzzing is still to generate random input, so-
called ’fuzz’ and to test this fuzz against the SUT. Often the

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

input examines the implementation limits and data bound-
aries. If the system reacts unexpected, both the fuzz and
the respected output are monitored with the help of special
tools. Allowing the tester to recheck the implementation.
Unexcepted behaviour means crashes of the system or inter-
nal errors like buffer overflows or unhandled exceptions [4,
7, 39].

Since the general idea is fundamental and comfortable,
there is no single method for Fuzzing. Therefore, the effi-
ciency and the error detection highly depend on the creativ-
ity of the tester. Since there are no exact rules and no wrong
approaches, the creativity of the examiners is not limited [7,
39]. However, three different strategies can be identified.
Namely, Blackbox Fuzzing, Whitebox Fuzzing and Greybox
Fuzzing [7, 18].

void algor i thm1 (int x)
{

. . .
i f (x == 15){

f 1 (x) ;
} else i f (x == 10){

f 2 (x) ;
} else {

f 3 (x) ;
}
. . .

}

Listing 3: Example algorthim for execution of
Fuzzing

In Blackbox fuzz testing, the idea stays very basic. The
input is generated randomly and then applied to the SUT.
Therefore, this technique requires no knowledge of the sys-
tem itself. See for example, the algorithm in Listing 3. It
awaits an 32-bit integer. Blackbox tests would generate ran-
dom integer numbers and would check boundaries like −1, 0
and 232 [7, 18]. Whitebox Fuzzing becomes more compli-
cated, however. Here a complete knowledge of the system
and its behaviour is needed to generate the test inputs. One
method of Whitebox testing is presented by Godefriod et al.
[18]. The idea is to execute the program symbolically and,
while doing so, collecting conditional statements to modify
the input. This process is repeated until either a specific
limited is reached or all paths possible were checked. For
example, the algorithm in Listing 3 could be tested with
this technique. The program expects 32-bit integer for the
first execution. First, a random input would be generated;
for example, this could be x = 1. The program is then exe-
cuted with this input. When the execution reaches the IF-
Statement in the algorithm, the Whitebox test recognizes
that and saves the constraint x! = 15. This statement is
then negated and solved to x == 15. The new input x = 15
is then remembered to be tested as well later. The same
procedure would be done with the second IF-Statement, re-
membering x = 10 as an input to be tested. Doing so guar-
antees the execution of a new path in the system. Since
otherwise the chances of executing the functions f1 and f2
would be 1

232
. Therefore, in Blackbox Testing, it is likely,

that the functions f1 and f2 would never be tested. White-
box testing, on the other hand, guarantees the execution of
f1 and f2, since it searches for these specific cases [7, 18].

The last strategy, Greybox Fuzzing, is a mixture of both
Blackbox and Whitebox Fuzzing. Therefore, it tries to take
advantage of the other two and needs a minimal knowledge
of the target behaviour [7]. One commonly used method is
the Coverage-Based Gerybox Fuzzing (CGF). Given a so-
called seed file, the algorithm tries to generate new files out
of the seed, by flipping bits and deleting or copying them.
These are then run against the SUT and the behaviour is
monitored. If they produce unexpected behaviour, the file
is added to the seed list to generate new data for further
inspection [8].

In literature and industry, Fuzzing is viewed as an effective
method to detected security vulnerabilities in software like
memory leaks or denial of service [39, 18].

4.4.1 How feasible is the construction of the oracle
to unknown requirements?

Fuzzing relies on the execution of the SUT and the be-
haviour of the software under different input data. Since
these steps can only be done when the software is already
implemented, unknown requirements at the beginning of de-
velopment do not affect the generation process of the Fuzzing
data or the execution of the method. Moreover, in Blackbox
testing, the input data is generated randomly and therefore
needs no knowledge about the application itself, including
the requirements [18, 7].

4.4.2 How adaptable is the test oracle to fast-changing
requirements?

If requirements change, this could affect the format of the
input data. Leading to a needed adjustment in the fuzzed
data. However, since Fuzzing is a simple method and the
generation of data is dynamic. Data only needs to be gener-
ated when the software needs to be tested, leading to only a
small to no overhead for the generation of new input data.
However, unexpected behaviour of one system might be ac-
ceptable or even intended in another system. A change in
requirement, therefore, might include such a change in the
system. For example, the new requirement could be that
the system shuts down whenever getting an invalid input.
Leading to test cases that crash because of that reason not
being failures of the software at all. To handle these situa-
tions, the tools monitoring the failures can be adjusted not
further to investigate if the input was invalid [18, 4].

4.4.3 How much documentation does the oracle need?
There is no general answer to this question, since different

strategies need different levels of documentation. Something
all methods have in common, however, is that they need no
domain knowledge. As well as no formal specification to im-
plement the Fuzzing strategy. Blackbox testing also needs
only little knowledge about the software itself. Basically,
testing blind for the most part. The only required informa-
tion in Blackbox testing, is the format of the input the SUT
excepts. Whitebox Fuzzing, however, needs complete access
to the source code and different design specifications. As
well as extensive knowledge of the input format. In conclu-
sion, it requires more detailed documentation than Blackbox
testing [4, 39, 32].

Another difference in need of documentation erases with
the way how the test input is created. So-called fuzzers are
used to derive the fuzz for the system. There are two differ-
ent types of fuzzers the first one being Mutation-based and

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Criteria MT MBT Fuzz
C1 Req.

needed
to derive
MRs

few req.
needed to
construct
an (under-
specified)
model

Just few
Req.
needed

C2 MRs can
be adapted
easily

uncertain Is done au-
tomatically

C3 Just few
documenta-
tion needed

model can
serve as
documenta-
tion

Just few
documenta-
tion needed

C4 Automated
to certain
point

mappings
have to be
provided
manually.
Tools can
minimize
time con-
sumption

Highly auto-
mated

Table 2: Summarized results from evaluation

the second one Generation-based. Mutation-based fuzzers
mutate existing valid and functional input samples to cre-
ate test cases. Modifications are applied in a few key areas
and are then submitted to the target. To use these fuzzers
good data is needed. Generation-based fuzzers are based on
specifications. These provide information on how the input
should look. The specific test cases are then modeled from
the system to test the limits and unexpected data. Leading
to a higher need for documentation than the mutation-based
fuzzers [39, 32].

4.4.4 How time-consuming is the creation of the test
oracle?

Fuzzing is a testing technique that can be automated very
easily. From the generation of the test input with different
fuzzers to the motoring of the failed test cases in multiple
tools, everything can be done automated. This automation
enables the testers to test large applications with a lot of
test data in a limited time. Therefore, Fuzzing is considered
to be a cost-effective and fast method for detecting security
vulnerability [18, 39, 32].

5. DISCUSSION
Up to this point, three different test oracles are presented

as representatives of one of the previously mentioned test or-
acle category. In this scope, Metamorphic Testing (MT) be-
longs to Derived Test Oracles, Model Based Testing (MBT)
to Specified Test Oracles and Fuzzing (Fuzz) to Implicit Test
Oracles. This chapter aims to evaluate if the presented test-
ing strategies are suitable for agile development. The results
of the previous section are summarized in table 2.

Metamorphic Testing fits quite right with agile develop-
ment. Testing is easy to adapt to changing requirements
and the amount of required system documentation is man-
ageable. Thus, it supports the agile principle of working
code over excessive documentation. Just the MRs have to

be modified manually and the other steps are performed au-
tomatically. Therefore, testing can be adopted quickly and
flexible to the changing SUT. One difficulty is the identifi-
cation of qualitative MRs with fewer requirements. To over-
come this issue, the development team needs to have great
expertise and frictionless collaboration with the customer is
mandatory [10, 36]. Since it is used in agile development
processes the potential of MT is further underlined [27, 28].

The advantage of a Model Based Test Oracle is that it can
be integrated into an agile environment with minor adop-
tions and its construction is robust to unknown requirements
at the beginning, using underspecification [17]. However,
the amount of workload when requirements change is diffi-
cult to predict. Moreover, the used graph structure for the
specification of the model, which represents the system’s be-
haviour, can serve as a type of documentation, which allows
stakeholders without much technical knowledge to partici-
pate. Additionally, the time consumption of the creation of
a Model Based Test Oracle can be kept to a minimum when
appropriate tools and an inexpensive coverage criterion are
used and only state invariants are checked at the end of each
transition. Ultimately, Model Based Test Oracles are only
with restrictions suitable for an application in an agile en-
vironment, since it provides advantages. Still, the possible
accompanying workload of a change of requirements can be
critical.

Fuzzing fulfills all the derived criteria. As the evaluation
indicates, the strategy is easy to adapt and highly auto-
mated. Moreover, it does not need extensive documentation
which suits the agile development process. However, there
are limitations to Fuzzing that need to be taken into consid-
eration. One issue is the code coverage as Blackbox testing,
where input is generated randomly can not grantee a com-
plete code coverage. While Whitebox testing theoretically
achieves comprehensive code coverage, in complex systems,
this may not be the case. Due to long lines of code, checking
every possible path can take very long. Therefore in prac-
tice, the Testing is stopped before a complete coverage is
reached to keep the testing time reasonable [18]. Another
issue of Fuzzing is the failure assumption. Since this strat-
egy considers failures only as system crashes, many bugs,
like wrong calculation that do not lead to crashes, go un-
noticed. Consequently, Fuzzing can not be used as a stand-
alone test strategy but should be used in combination with
other methods. However, if the software needs testing for
security vulnerabilities, Fuzzing should be applied, since the
approach has proven to perform effectively in this field [18].

6. CONCLUSION
This paper aimed to evaluate the applicability of test or-

acles in agile development. To achieve this, four different
criteria for test oracles in agile processes were derived and
defined. These were used to analyze three test oracle strate-
gies, namely Metamorphic Testing, Model Based Testing
and Fuzzing. This breakdown came to the result that Meta-
morphic Testing suits agile development well and should,
therefore, be considered in agile testing. Model Based Test-
ing, however, is not so easy to adapt and needs more work to
change into an agile process. Though the advantages arising
from the use might overcome the obstacles, therefore be-
fore using Model Based Testing, cost-effectiveness analyses
should be applied. While Fuzzing fitted best in the analyze
the paper still concluded that the use of Fuzzing on its one

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

is not efficient enough. Though there are fields in which
Fuzzing is a very effective method.

To further extend the work of this paper, more test oracles
form the categories Specified, Derived and Implicit Oracles
could be evaluated. Therefore, allowing a more detailed and
specific analysis of suitable oracle strategies in agile develop-
ment. Moreover, different tests could be applied to validate
the results. For example, a cost-effectiveness study could
be done to examine the usability of Metamorphic Testing
in this field further. Costs here mean the time needed to
adjust the MRs to changing requirements. Another work
that could be done in Metamorphic Testing is to establish
guidelines for finding reasonable MRs. Identifying those can
be a challenging and time-consuming task if never done be-
fore. For Model Based Testing, an analysis of the question:
How to make Model Based Oracles more usable?; would be
of great interest for the further applicability of these kinds
of test oracles.

7. REFERENCES
[1] P. Abrahamsson, O. Salo, J. Ronkainen, and

J. Warsta. Agile software development methods:
Review and analysis. arXiv preprint arXiv:1709.08439,
2017.

[2] P. Ammann and J. Offutt. Introduction to software
testing. Cambridge University Press, 2008.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE transactions on software engineering,
41(5):507–525, 2014.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE Trans. Software Eng., 41(5):507–525,
2015.

[5] Y. Bassil. A simulation model for the waterfall
software development life cycle. CoRR, abs/1205.6904,
2012.

[6] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, et al. Manifesto for
agile software development. 2001.

[7] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier.
Finding software vulnerabilities by smart fuzzing. In
Fourth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2011,
Berlin, Germany, March 21-25, 2011, pages 427–430,
2011.

[8] M. Böhme, V. Pham, and A. Roychoudhury.
Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering,
45(5):489–506, May 2019.

[9] T. Y. Chen, S. C. Cheung, and S. M. Yiu.
Metamorphic testing: a new approach for generating
next test cases. Technical report, Technical Report
HKUST-CS98-01, Department of Computer Science,
Hong Kong . . . , 1998.

[10] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey,
T. Tse, and Z. Q. Zhou. Metamorphic testing: A
review of challenges and opportunities. ACM
Computing Surveys (CSUR), 51(1):4, 2018.

[11] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based
testing without the need of oracles. Information and

Software Technology, 45(1):1–9, 2003.

[12] T. Chow and D.-B. Cao. A survey study of critical
success factors in agile software projects. Journal of
systems and software, 81(6):961–971, 2008.

[13] E. Collins, A. Dias-Neto, and V. F. de Lucena Jr.
Strategies for agile software testing automation: An
industrial experience. In 2012 IEEE 36th Annual
Computer Software and Applications Conference
Workshops, pages 440–445. IEEE, 2012.

[14] J. C. S. Coutinho, W. L. Andrade, and P. D. L.
Machado. Requirements engineering and software
testing in agile methodologies: A systematic mapping.
In Proceedings of the XXXIII Brazilian Symposium on
Software Engineering, SBES 2019, pages 322–331,
New York, NY, USA, 2019. ACM.

[15] G.-W. Dong, B.-W. Xu, L. Chen, C.-H. Nie, and L.-L.
Wang. Case studies on testing with compositional
metamorphic relations. Journal of Southeast
University (English Edition), 24(4):437–443, 2008.

[16] T. Dyba and T. Dingsoyr. What do we know about
agile software development? IEEE software, 26(5):6–9,
2009.

[17] D. Faragó. Model-based testing in agile software
development. 30. Treffen der GI-Fachgruppe Test,
Analyse & Verifikation von Software (TAV), Testing
meets Agility, 2010.

[18] P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated whitebox fuzz testing. In Proceedings of
the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA,
10th February - 13th February 2008, 2008.

[19] J. Highsmith and A. Cockburn. Agile software
development: The business of innovation. Computer,
34(9):120–127, 2001.

[20] R. Hoda, N. Salleh, and J. Grundy. The rise and
evolution of agile software development. IEEE
Software, 35(5):58–63, 2018.

[21] M. Hutchins, H. Foster, and T. Goradia. omas
ostrand. 1994. experiments on the effectiveness of data
owand control ow-based test adequacy criteria. In
Proceedings of the 16th International Conference on
So ware Engineering (ICSE’94). IEEE Computer
Society, Los Alamitos, CA, pages 191–200.

[22] U. Kanewala. Techniques for automatic detection of
metamorphic relations. In 2014 IEEE Seventh
International Conference on Software Testing,
Verification and Validation Workshops, pages 237–238.
IEEE, 2014.

[23] U. Kanewala and J. M. Bieman. Using machine
learning techniques to detect metamorphic relations
for programs without test oracles. In 2013 IEEE 24th
International Symposium on Software Reliability
Engineering (ISSRE), pages 1–10. IEEE, 2013.

[24] U. Kanewala and T. Y. Chen. Metamorphic testing: A
simple yet effective approach for testing scientific
software. Computing in Science & Engineering,
21(1):66–72, 2018.

[25] N. Li and J. Offutt. Test oracle strategies for
model-based testing. IEEE Transactions on Software
Engineering, 43(4):372–395, 2016.

[26] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson.
Many-core compiler fuzzing. In ACM SIGPLAN

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Notices, volume 50, pages 65–76. ACM, 2015.

[27] M. Lindvall, D. Ganesan, R. Árdal, and R. E.
Wiegand. Metamorphic model-based testing applied
on nasa dat: an experience report. In Proceedings of
the 37th International Conference on Software
Engineering-Volume 2, pages 129–138. IEEE Press,
2015.

[28] M. Lindvall, D. Ganesan, S. Bjorgvinsson, K. Jonsson,
H. S. Logason, F. Dietrich, and R. E. Wiegand. Agile
metamorphic model-based testing. In 2016
IEEE/ACM 1st International Workshop on
Metamorphic Testing (MET), pages 26–32. IEEE,
2016.

[29] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen. How
effectively does metamorphic testing alleviate the
oracle problem? IEEE Transactions on Software
Engineering, 40(1):4–22, 2013.

[30] H. Liu, X. Liu, and T. Y. Chen. A new method for
constructing metamorphic relations. In 2012 12th
International Conference on Quality Software, pages
59–68. IEEE, 2012.

[31] B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of UNIX utilities. Commun.
ACM, 33(12):32–44, 1990.

[32] P. Oehlert. Violating assumptions with fuzzing. IEEE
Security & Privacy, 3(2):58–62, 2005.

[33] M. Pezzè and C. Zhang. Chapter one - automated test
oracles: A survey. volume 95 of Advances in
Computers, pages 1 – 48. Elsevier, 2014.

[34] J. Regehr. Finding compiler bugs by removing dead
code. blog, 2014.

[35] D. J. Reifer. How good are agile methods? IEEE
software, 19(4):16–18, 2002.

[36] S. Segura, G. Fraser, A. B. Sanchez, and
A. Ruiz-Cortés. A survey on metamorphic testing.
IEEE Transactions on software engineering,
42(9):805–824, 2016.

[37] S. Segura and Z. Q. Zhou. Metamorphic testing 20
years later: A hands-on introduction. In Proceedings
of the 40th International Conference on Software
Engineering: Companion Proceeedings, pages 538–539.
ACM, 2018.

[38] A. Stevenson. Oxford Dictionary of English. Oxford
University Press, 2010.

[39] M. Sutton, A. Greene, and P. Amini. Fuzzing: brute
force vulnerability discovery. Pearson Education, 2007.

[40] D. Towey, T. Y. Chen, F.-C. Kuo, H. Liu, and Z. Q.
Zhou. Metamorphic testing: A new student
engagement approach for a new software testing
paradigm. In 2016 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering
(TALE), pages 218–225. IEEE, 2016.

[41] M. Utting, A. Pretschner, and B. Legeard. A
taxonomy of model-based testing approaches. Softw.
Test., Verif. Reliab., 22(5):297–312, 2012.

[42] L. Williams and A. Cockburn. Agile software
development: it’s about feedback and change. IEEE
Computer, 36(6):39–43, 2003.

[43] Z. Q. Zhou, S. Xiang, and T. Y. Chen. Metamorphic
testing for software quality assessment: A study of
search engines. IEEE Transactions on Software

Engineering, 42(3):264–284, 2015.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Current State of Equivalent Mutant Reduction Methods in
Mutation Testing

Lukas Malcher
RWTH Aachen University

lukas.malcher@rwth-aachen.de

Kristian Lebold
RWTH Aachen University

kristian.lebold@rwth-aachen.de

ABSTRACT
Mutation testing presents an approach to evaluate a test
suite by mutating the source code while checking if the mu-
tations are detected by the test suite or not. This method
is considered to be a more reliable metric in terms of indi-
cating the quality of test suites than code- or branch cov-
erage. The main drawback is the generation of equivalent
mutants. There is no solution to the Equivalent Mutant
Problem (EMP) yet, but approaches to minimize their oc-
currence do exist. This paper evaluates Weak Mutation
Testing, Higher Order Mutants, Compiler Optimization, and
Control-Flow analysis techniques. The results indicate that
Weak Mutation Testing and Higher Order Mutant methods
which avoid equivalent mutants perform better than Com-
piler Optimization and Control-Flow analysis which try to
detect equivalent mutants. We observed that current muta-
tion testing tools preferably use methods that avoid equiva-
lent mutations.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming
teams, software configuration management

Keywords
Mutation Testing, Equivalent Mutation Problem, Equiva-
lent Mutant Reduction, Mutation Testing Tools

1. INTRODUCTION
Testing software is a tedious act, which requires human

involvement to write tests. Tests may be incomplete, cov-
ering only a fraction of potential execution paths and thus,
missing on potential bugs. In general, writing good tests is
considered not to be a trivial task.

Test suites are written to ensure that a program behaves in
a desired manner. The output of the program is described
in a test case of a given test suite. The quality of such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2019/20 RWTH Aachen University, Germany.

test suites are commonly evaluated by characteristics like
branch or code coverage. Whether those metrics really cor-
relate with the effectiveness of a program is still not clear.
Namin and Andrews [38] and Inozemtseva and Holmes [19]
suggested that there exists a correlation between branch cov-
erage and fault detection, although the correlation varies be-
tween different programs and test suites. While achieving
similar results, Inozemtseva and Holmes [19] argued that the
variance in correlation and the fact that there is no strong
correlation between different programs and their test suites
does not indicate a correlation between high levels of cover-
age and the effectiveness of test suites. However, Kochhar
et al. [28] suggested that real faults in large systems are
indeed moderately or strongly correlated to code coverage.
Chekam et al. [9] examined the effect of applying test suites
to the faulty and fixed version of the program. The results
show that mutation testing seems to be coupled to faults
revelation, while branch- and statement coverage do not.

Mutation testing presents an approach to evaluate a test
suite by mutating the source code based on a collection of fit-
ting mutation operators. These operators inject small bugs
into the code which should be detected by the test suite if
it is covering sufficient test cases. Thus, if the original code
passes the test but the mutated version fails instead, then
the mutant is considered to be killed by the test suite. In the
other case, both versions pass the test; the injected fault is
not detected which may indicate an incomplete testing suite.

By generating a vast variety of different mutated versions,
the relation between killed and survived mutants, also called
the Mutation Score (MS), presents a metric to evaluate the
coverage and quality of the test suite and investigating sur-
vived mutants can also help identifying bugs. The MS is
defined as follows:

MS =
#Killed Mutants

#Mutants − #Equivalent Mutants
· 100[%]

Although in larger programs mutation testing can impose
significant overhead. Each mutation has to be compiled and
executed which is a time consuming and potentially error
prone process. In order to make mutation testing applica-
ble, Offutt and Untch proposed three main approaches, cat-
egorized into doing fewer, faster, and smarter mutations [44]
(see Section 2.2).

Another issue of mutation testing is the creation of equiv-
alent mutants, i.e. mutants that are semantically equivalent
to the original version despite being syntactically different.
This paper evaluates and compares the techniques that fo-
cuses on reducing the number of mutants.

To our knowledge, three systematic literature reviews ab-

1

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

out mutation testing were published which also address the
Equivalent Mutant Problem (EMP). Published in 2011 [22]
(updated by [48] in 2017), a first general overview was pre-
sented. The authors of [34] extended it with the current
EMP research state focusing on the higher order mutation
approach (see Section 2.4.2).

While the existing literature reviews like [22, 34, 48] al-
ready provide a detailed overview, they lack in practical
implementation details. Therefore, reviewed listed papers
and relevant testing tools are systematically evaluated, com-
pared, and summarized.

We contribute an overview and comparison of the most
promising approaches to reduce the number of equivalent
mutants, selected based on research volume and improve-
ment indicators. Current active implementations are evalu-
ated and the state of mutation testing in practice is inves-
tigated. For this, promising equivalence reduction methods
are compared, implementation issues are reviewed and the
effectiveness in real world testing scenarios is evaluated.

The paper is organized as follows: Section 2 concerns with
the underlying mutation testing hypotheses (Section 2.1)
and the challenges it faces (Section 2.2). The EMP in partic-
ular is introduced in more depth in Section 2.3, motivating
why a reduction of equivalent mutants is inevitable for prac-
tical usage. Section 2.4 elaborates on approaches that try to
reduce the number of equivalent mutants. Section 3 presents
related work. Then the effectiveness of these approaches is
compared in Section 4. Section 5 investigates existing mu-
tation testing tools (Section 5.1) and their usage of equiv-
alence reduction methods (Section 5.2). Finally, Section 6
concludes why mutation testing still suffers in practical ap-
plicability.

2. BACKGROUND
This chapter introduces the underlying hypotheses which

explains why mutation testing is considered to be effective in
improving a testing suite. An overview of the challenges that
mutation testing is facing leads to the Equivalent Mutant
Problem which is explained in more detail. Approaches to
reduce the number of equivalent mutants (primarily focusing
on the Do Smarter category) are introduced.

2.1 Fundamental Hypotheses
Generated mutants are expected to simulate real faults

in the software. The mutation operators which introduce
little faults into the program are based on the Competent
Programmer Hypothesis. This hypothesis states that pro-
grammers usually write programs that are already close to
the theoretical ideal bug-free version [13]. Faults in the pro-
gram are most likely small syntactical mistakes.

The coupling effect states that such small errors can be
reliably detected by a test suite which provides sufficient
test data. The test suite can detect these simple faults be-
cause they are said to be coupled to more complex errors.
The coupling effect is an empirical principle and cannot be
proven to hold. However it seems to hold in “real world”
programs [13].

In the context of mutation testing the Competent Pro-
grammer Hypothesis and the Coupling Effect are questioned
critically. Jia and Harman [21] criticized the idea of the com-
petent programmer hypothesis. They exemplarily stated
that “[...] arbitrarily replacing a plus with a minus sym-
bol [...] is likely to create a large number of faults which

no competent programmer would commit”. Many generated
mutants would thus not represent real faults in the program.

In case of the Coupling Effect, Jia and Harman [21] under-
lined that a good testing suite covering all simple mutants
will also cover a large percentage of complex faults. It should
be noted that emphasis is on a “large percentage of complex
faults” and not on “all faults”. Nevertheless, the Higher-
Order Mutation approach is based on this hypothesis and is
discussed in Section 2.4.2.

2.2 Mutation Testing Optimizations
Mutation testing was first introduced in the 1970s and

proved to be a powerful tool for unit testing. Unfortunately
it is still not widely adopted in the industry most likely due
to its computationally expensive requirements and its man-
ual involvement in detecting equivalent mutants. In order
to reduce the overhead generated by mutation testing, three
general categories of approaches are proposed [44].

Do Fewer Research done by Papadakis et al. [46] indicate
that only about 5 % of all generated mutants are sub-
suming. A subsuming mutant contributes to the mu-
tation score and all mutants that are subsumed by it
are killed by the same tests, and thus, are redundant.
Hence, only a small amount of mutants are relevant for
the testing evaluation, whereas the rest is redundant,
unfortunately falsifying the mutation score. The chal-
lenge lies in selecting a subset of mutants such that it
represents the whole set as best as possible. Ma and
Kim [32] proposed to cluster mutants that are expected
to produce the same result. Only one representative of
each cluster is then executed. If this mutant is killed,
all mutants in the cluster are killed as well. Compiler
optimization can also be used to determine the equality
of mutants. If the compiler optimizes two mutants to
the same output, then the mutants are equal. Of mul-
tiple equivalent mutants (do not confuse that equiva-
lent mutants have a different meaning here) only one
has to be executed to determine if these mutants are
killed.

Do Faster Being an embarrassingly parallel workload [7],
mutation testing can be parallelized or distributed in
a larger cluster. There are multiple aspects that can be
evaluated, e.g. compilation, execution, and generation
of mutants [52]. All these tasks can be divided and
distributed among multiple cores or nodes [1].

Do Smarter A more significant problem is equivalent mu-
tants. Due to the halting problem, detecting that two
programs compute the same function is inherently un-
decidable [5]. This leads to the question how to gen-
erate mutants while avoiding semantically equivalent
ones despite being syntactically different. The problem
is often referred to as the EMP which is introduced in
more detail in Section 2.3.

2.3 The Equivalent Mutant Problem (EMP)
Mutants which are not killed by the test suite are called

alive. A mutant which is alive indicates either a weakness in
the test suite or is an equivalent mutant. An equivalent mu-
tant is a mutant which is not distinguishable by its derived
function from the original version, although being syntac-
tically different. Such mutants do not represent a fault in

2

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

int index = 0;
while (...) {

...;
index ++;

- if(index == 10) {
+ if(index >= 10) {

break;
}

}

Listing 1: A simple example for an equivalent
mutant. In this case the condition is mutated from
“==” to “>=”.

the software. Due to the halting problem it is generally not
decidable if the mutant computes the same function as the
original program. An equivalent mutation can be applied in
code that is never executed, can alter the state without be-
ing semantically different from the original program, or can
just suppress speed improvements (e.g. undo optimizations
back to an inefficient version) [17].

Listing 1 shows the original program and the mutated ver-
sion in a content diff. The mutated version obviously com-
putes the same function as the original version under the
assumption that index is not changed anywhere else than
indicated. This mutant will not be distinguishable from the
original by any test suite and will be reported as alive. Hu-
man interaction is necessary to distinguish between a mutant
which is not recognized by the test suite or an equivalent
mutant.

Unfortunately this turned out to be a huge barrier for
the practicality of mutation testing. For each mutant alive,
Schuler et al. [55] reported that it took them in average
30 minutes to decide if the single mutation is related to a
real fault or is an equivalent mutant instead. Other papers
reported an average access time of about 15 minutes [56,
17], which coincides with the observations by Madeyski and
Radyk [34]. It took them between 2 and 26 minutes, whereas
the time decreased for second order mutants (mutants of a
higher order are introduced in section 2.4.2).

However, these numbers should be taken with caution due
to high variance and the fact that the manual inspection was
not done by the developers of the programs under test them-
selves. A higher efficiency can be expected if the inspectors
are familiar with the source code which is tested.

Nevertheless, the sheer amount of equivalent mutants that
is usually generated further underlines the importance of
solving the EMP. Using different mutation operators, test-
ing tools, and programs under test, a clear trend is given:

Considering the possible amount of mutants even for small
projects, processing all equivalent mutants becomes infea-
sible. Out of all mutants it is reported that 6.24% [41],
7.39% [56], and 9% [43] are equivalent. A more recent and
non-approximating study found out that the percentage is
even higher. By manually checking 1230 alive mutants for
equivalence (out of 4181 mutants in total) it was observed
that about 23% of all mutants were equivalent.

2.4 Equivalent Mutants Reduction Methods
In the following, some approaches that aim to reduce the

number of equivalent mutants are introduced. They are
carefully selected from a set of approaches based on research

private int getDepth(Node n){
- int depth = 0;
+ int depth = 1;

Object parent = o;
while((parent = parent.getParent ())

!= null) {
++depth;

}
return depth;

}

Listing 2: An equivalent mutation that alters state
by changing the value of a variable. Comparing
the depth of different nodes would return the same
result before and after the mutation. Adapted from
[17].

volume and success indicators, gathered from multiple liter-
ature reviews (see section 3).

2.4.1 Weak Mutation Testing
Weak Mutation Testing (WMT) is a more weak defini-

tion of traditional mutation testing, which, in this context,
will be referred to as strong mutation testing. Strong muta-
tion testing requires the following three conditions to kill a
mutant:

1. The mutated statement has to be reached.

2. The mutated statement has to infect the state of the
program.

3. The infection has to propagate to the programs’ out-
put.

On the other hand, WMT only requires the first two con-
ditions to hold. Once the state is infected, the mutant will
be killed [18].

Listing 2 shows an example of a mutation where the in-
ternal state of the program changes, but where it does not
affect the computed function. The mutation of int depth =

0; to int depth = 1; shifts the depth of every node in the
program by one. E.g. comparing the depth of two nodes
would thus yield the same result as before the mutation,
effectively resulting in an equivalent mutant.

WMT has the advantage that a mutant will be killed pre-
maturely, although the output in the test case could have
the same value. In Listing 2 the mutant would be killed after
executing the modified instruction as it infects the programs
state. If the output program computes the same function,
even though the program was mutated, WMT effectively
kills an equivalent mutant.

A huge advantage is that it is computationally signifi-
cantly less expensive than strong mutation testing. A dis-
advantage of WMT is that it does not guarantee the ex-
posure of all errors associated with the mutation transfor-
mation [18]. E.g. a function, in which the state would be
infected but the returned result would not change for the
provided test data. Such function would present a potential
case where WMT would kill a mutant, which would other-
wise be alive, and thus missing a possible error.

2.4.2 Higher Order Mutants (HOMs)

3

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

The main idea of Higher Order Mutants (HOMs) is based
on the coupling effect hypothesis which states that complex
faults are coupled to simple faults [13]. Therefore, in con-
trast to simple faults, complex ones cannot be fixed by a
single change within the source code.

In the context of mutation testing this can be extended to
the Mutation Coupling Effect as follows: “Complex mutants
are coupled to simple mutants in such a way that a test data
set that detects all simple mutants in a program will detect a
large percentage [i.e. not all!] of the complex mutants [40].”
Strong confirming evidence for this hypothesis is given by
an empirical study done by Offutt [40] and the statement
of Purushothaman and Perry [54], that the probability of
introducing a new error by making a single line change is
less than 4%, further arguments for HOMs instead of First
Order Mutants (FOMs).

Program

M1

M1,1

M2

M1,2 M2,1 M2,2

original version

1-order mutants

2-order mutants

Figure 1: Exponential growth of mutants in higher
order mutation. Adapted from [53].

Complex mutants, usually referred to as HOMs, are gener-
ated by combining multiple simple mutants or by mutating
a mutant multiple times. As illustrated in Figure 1 there are
exponentially more HOMs than FOMs, which is why only
subsuming HOMs which replace more than one FOM are
targeted.

Multiple algorithms to combine them in a meaningful and
valuable way are developed for this purpose [53, 50]. Fur-
ther approaches were proposed by e.g. Jia and Harman [21]
where the selection of FOMs is based on a fitness function,
effectively taking into account indications for equivalence.

The main goal of HOMs is the general cost reduction,
as significant fewer test cases are required [50]. However,
it also can be leveraged to reduce the amount of equivalent
mutants. This is due to the fact that equivalent mutants hide
behind killable ones as they are more likely to be combined
with at least one non-equivalent mutant. Eventually, this
makes HOMs harder to kill [53, 34].

Despite the possibility that two first-order non-equivalent
mutants compensate into a second-order mutant which is
equivalent, the probability for such a case is considered to
be very low and can be neglected [53].

One of the great advantages of higher order mutations are
the low implementation efforts, resulting in less mutations
in total (and in equivalent ones) while not losing any effec-
tiveness [21].

2.4.3 Compiler Optimization
While compiling a program the source code usually faces

several transformation steps from higher level languages to
machine code. During these steps the code is compiled into

an optimized version. Redundant, unreachable, and non-
impacting statements are removed indirectly. As mutants
apply only very small syntactic changes, the corresponding
source codes are very similar in their nature as well. Thus,
all mutants which differ syntactically but have identical com-
piled code can be declared as equivalent. This is based on the
idea that a compiler might optimize two similar programs
into syntactically equal programs.

This technique together with 6 optimization rules were
suggested by Baldwin and Sayward [4]. But instead of im-
plementing specialized optimization rules, Papadakis et al.
[47] suggested to leverage existing compiler tools and called
their approach Trivial Compiler Optimization (TCE). In
TCE mutations are applied on the source code level, then
compiled and compared. According to them, this makes
avoiding equivalent mutants through compiler optimization
practical and scalable.

Also often referred to as compiler optimization are muta-
tions performed on an intermediate representation like Java
bytecode, LLVM bitcode, or assembly [33, 14, 15]. This is
done because mutating the source code means to invoke the
compiler for each single mutant. Thus, shifting the mutation
generation process to an intermediate representation means
that all mutations can be done in a single pass increasing
performance drastically. On the other hand mutations in
the intermediate layer can cause unwanted behavior. Com-
piling C/C++ code into an intermediate representation can
cause functions to be inlined. Mutating this code might be
unwanted, e.g. it may be part of a library. Additionally,
mutating the intermediate representation can mutate a pro-
gram more fine grained. Typical statements in a higher level
language translate to multiple statements in the intermedi-
ate representation. Mutating one of those statements can
introduce faults that do not correspond to typical human
errors.

This is why TCE generates mutants on the source code
level. As existing compilers (or optimization tools) can be
leveraged, TCE is very easy to implement. On the downside
of that, mutants are generated on the source code, then
compiled and compared. This introduces huge overhead,
as compiling is considered to be computational expensive.
Therefore, many tools first compile and then mutate, as this
prevents recompiling multiple times.

2.4.4 Control-Flow Analysis
Control-flow analysis applies reasoning about the flow of

the program to generate additional test cases that can kill
more mutants.

One example is mutation testing in combination with Dy-
namic Symbolic Execution (DSE) which is also known as
Concolic Execution. The core concept is to generate addi-
tional inputs to reach the mutated statements with the goal
that the program state gets infected and ideally propagates
the error to the output [49].

The input generation is done by executing the program
while collecting the constrains imposed by the particular
execution path as an Satisfiability Modulo Theory (SMT)
formula. By negating the constraint of a branching point,
another input for the execution of the program can be gener-
ated that covers a different flow through the program. If the
collective constraint cannot be satisfied, the current execu-
tion path is infeasible and thus, no input can be generated.
The selection of which constraint is to be negated next is de-

4

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

void test(){
int x;
assertEquals(some_function(x, true), x);

}
int some_function(int x, bool condition){

if(condition){
return x;

} else {
- return x/2;
+ return x*2;

}
}

Listing 3: A mutant which is not discovered by the
test suite, as only one branch where the condition
holds true is tested. The other branch containing
the mutation is not reached. Thus, the semantics
are indeed different between the original and the
mutated version, but the test suite handles it as
either a fault or an equivalent mutant which is
wrong. Therefore, DSE creates additional test
inputs in such a way that the corresponding mutated
branch is reached as well.

cided by a predefined heuristic. For instance, Papadakis and
Malevris [49] use a heuristic that approximates the distance
between the branch and the mutated statement.

Listing 3 shows a mutant where the test set does not kill
the mutant. DSE would find example inputs that satisfy
the constraints to execute return x*2;. After executing
the mutated statement, the error would propagate to the
output of the function. This would generate a new input
for the test case, which would kill the generated mutant. By
generating additional test inputs DSE is able to kill mutants
which would be still alive with the original test suite. If DSE
cannot generate an input to infect the state, there exists
no feasible path to execute the mutated statement. In the
other case, if DSE can reach the infected state but does not
manage to propagate the error to the output of the program,
then there exists no feasible execution path that propagates
the error. In both cases the mutant has to be an equivalent
mutant.

DSE uses SMT solving which imposes heavy computa-
tional constraints with a worst case exponential runtime.
SMT solving has to be performed every time an execution
path is chosen to check if it is feasible and to synthesize an
input for that execution path.

The number of execution paths increases exponentially
with every branch point in the code. This means that this
approach might not be able to reach every reachable infected
statement if a finite amount of time is given. Additionally
DSE struggles with loops, especially with while loops, as
they increase the search-able execution paths drastically, po-
tentially creating infinitely many execution paths.

3. RELATED WORK
Apart from our work, there exist other papers which con-

centrate on mutation testing and try to provide an overview
over the topic.

Jia and Harman (2011) [22] provide a first overview over
different equivalent mutant detection techniques. But their
focus is primarily on mutation testing in general and not
on the EMP, mainly surveying research achievements up

to 2009. They also show different implementations of tools
available at the time, but do not discuss the selection of
reduction methods in those tools.

Papadakis et al. [48] generally speaking provide an up-
date to Jia and Harmans work and extend it. They include
advances to the point of the release of their paper.

Madeyski et al. [34] build on top of Jia and Harman [22]
results and classify the existing methods on EMP reduction.
Unfortunately they miss to evaluate existing implementa-
tions and categorize them.

Pizzoleto et al. [52] build upon all the predecessor reviews.
To our knowledge it is the newest systematic literature re-
view and the most complete one. However, their research
questions focus on cost reduction methods. They found out
that dealing with equivalent mutants has not been addressed
as much as the other problems and they recommend more
research into it.

Compared to the listed papers, we present an evaluation of
different techniques used for the EMP. We gather and com-
pare results from different papers. Additionally, an overview
of active existing mutation testing tools is presented and
their use of different techniques is evaluated.

4. COMPARISON OF APPROACHES
In terms of the reduction of equivalent mutants it is im-

portant to note that research papers differ in their evaluation
setup. Comparing these results should be viewed with cau-
tion, as they might be not as comparable as desired. Some
relevant differences that impede the comparison of the re-
sults are as follows:

• Different mutation testing tools

• Different mutation operators

• Different test programs in various sizes

• Different combining algorithms in case of HOM strate-
gies

• Different evaluation methods, e.g. manual check on
equivalence or approximation methods

• Different metrics: ratio between equivalent mutants
and all other mutants instead of the ratio between the
equivalent ones in the set of all alive ones

However, considering that all evaluations done by other
papers form consensus, a clear trend can be observed, in-
dicating that the introduced approaches indeed can signifi-
cantly reduce the number of equivalent mutants.

4.1 Weak Mutation Testing Effectiveness
WMT unlike strong mutation testing does not require the

error to be propagated. Thus, the equivalent mutants that
are not killed by WMT are a subset of the equivalent mu-
tants of strong mutation testing.

In comparison to strong mutation testing, Kintis et al. [27]
observed a reduction of about 73 %. Additionally, WMT is
computationally less expensive than strong mutation test-
ing, as the error does not have to be propagated. An infec-
tion of the program state is sufficient for WMT to kill the
mutant.

5

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

4.2 Higher Order Mutation Testing Effective-
ness

Papadakis and Malevris [50] concentrated their evalua-
tion on second order strategies which allowed them to avoid
80-90% of equivalent mutants. Using a random selection
approach, the probability of selecting two equivalent FOMs
is reduced to about 5% (≈ (22.5%)2) which coincides with
the results from Polo et al. [53], achieving a reduction from
18.66% to about 5% equivalents.

The authors of [50] and [34] also observed promising num-
bers. Evaluating the same combination algorithms, even
though implemented individually and tested on different pro-
grams, yielded in reductions varying from 72.73% to 81.82%
(85.65%-87.77% respectively).

Earlier benchmarks such as one by Offutt [40] yielded even
better results. The evaluation resulted in a reduction from
about 10% equivalent mutants down to 1%. However, the
programs under test were significantly smaller and the re-
duction improvement seems to decrease with the increase of
the program size under test [34].

In contrast to the good reduction results above, the com-
bination algorithm called NeighPair which matches FOMs
that are as close to each other as possible yields an incre-
mentation instead of a reduction for most of the tested pro-
grams [34]. Reasons for this exception are not known, but
it proves that the choice of the combination algorithm does
matter.

Different approaches for the optimization problem of the
selection process such as the subsuming search-based method
significantly reduces the amount of HOMs, but unfortu-
nately no benchmark was done regarding the reduction of
equivalent mutants [21].

Most benchmarks focus on second-order mutants. While
third-order or even higher HOM indicate further improve-
ments, the amount of mutants would grow exponentially
with the mutation order, which increases the difficulty to
combine the FOMs in a valuable way [40].

4.3 Compiler Optimization Effectiveness
Offutt and Craft [41] studied the 6 optimization rules sug-

gested by Baldwin and Sayward [4] and found out that 45%
of equivalent mutants can be detected. However, at the time
of writing those papers, computational power did not allow
them to test larger projects. The programs under test are
small, ranging from 5 to 52 executable statements, which is
why the results might be impacted by noise [41].

Evaluating the more recently proposed TCE method yield-
ed 30% less equivalent mutants. This is a reduction of about
7% from all mutants, whereas this technique also allowed to
remove another 21% of mutants, as they were redundant
(i.e. duplicates). While Papadakis et al. [47] focused on the
C programming language, Kintis et al. [26] further studied
the TCE technique extending it with Java optimizations. In
case of Java the empirical results are promising as well: on
average, a reduction of about 50% of equivalent mutants was
achieved. This corresponds to 6% of all mutants. Similar
improvements were observed on programs written in C [26].
Interestingly, in Java, 99% (57% in C) of removed equiva-
lent mutants were detected due to a failed propagation of
the mutated statement to the output [26].

Important to note is that for both languages the reduc-
tion results faced large variations between the projects under
test, indicating that program characteristics heavily impact

the performance of TCE [26].

4.4 Control-Flow Analysis Effectiveness
DSE can manage to kill all non-equivalent mutants. Pa-

padakis and Malevris [49] state that most killable mutants
are killed after a few iterations. More persistent mutants
can be killed with a drastic increase in iterations. In the
programs tested by Papadakis and Malevris [49] the num-
ber of killed mutants is always well above 85 %. Zhang et
al. [58] finds similar results of over 80 % of killed mutants
with their tool PexMutator.

Mutated statements that cannot be reached are assumed
to be on unfeasible paths. All such mutants are therefore
labeled equivalent. Mutants which fail to propagate the fault
to the output are also labeled as equivalent. Offutt and Pan
[43, 39] show that the detection rate for equivalent mutants
is at about 45 %. In 7 out of 11 cases the detection rate was
well over 60 %.

Unfortunately the acquired results are over 20 years old.
SMT solving has seen some progress over the last decades.
Symbolic execution has only become practical due to the
recently achieved progresses [6]. Imprecision in the modeling
of data types may caused Offutt and Pan [43, 39] to miss
paths which could have identified more equivalent mutants.

4.5 Comparison
Comparing the reduction of equivalent mutants, Higher

Order Mutation testing seems to outperform the other ap-
proaches. It manages to avoid 80 to 90 % of all equivalent
mutants. But the HOM approach is a reduction method.
It does not identify equivalent mutants, but rather makes
equivalent mutants less likely.

The WMT method, like HOMs, also avoids equivalent mu-
tants by killing mutants after the infection of the state. It
shows a reduction of equivalent mutants of about 73 %. On
the basis of the available data WMT performs worse than
HOM.

Compiler optimization actively detects equivalent mutants
by checking the optimized code for equivalence. Thus it
is fundamentally different from WMT and HOM. TCE is
heavily language and project dependent. It is able to detect
around 30-50 % of equivalent mutants.

DSE also detects equivalent mutants by searching for an
execution path, such that the error introduced by the mu-
tation can be propagated. In average 45 % of all equivalent
mutant could be detected by DSE.

Comparing the different approaches directly seems rather
speculative. Each method has to be applied on a shared
set of test suites in order to compare the presented meth-
ods. Unfortunately every approach uses a different set of
programs for its evaluation.

The used mutation operators varied, as some papers use
only a subset of available mutation operators [21, 55, 45].
Thus, the total number of generated mutants, killable mu-
tants, and equivalent mutants might depend on the used
mutation operators.

Moreover, the used software under test varied in size and
maturity. Some papers only tested very small programs [42].
Others used matured programs like OpenSSL to evaluate
their implementation [14]. Not only size but also designa-
tion of the software differs. E.g. applying mutations in
mathematical operators will heavily impact a math library.
Other types of software may not be impacted in the same

6

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

scope. Thus the ratio of equivalent mutants vary in different
types of software [22].

In conclusion, based on the data available, methods that
try to avoid equivalent mutants seem to be more effective
than methods that actively try to detect them.

5. CURRENT IMPLEMENTATION STATE
This chapter links the theoretical approaches to the cur-

rent state of practical usage of mutation testing. Therefore,
current available testing tools beyond prototype implemen-
tations are evaluated and compared.

5.1 Actively Developed Mutation Testing Tools
At the time of writing this paper, various mutation test-

ing tools were published for all common programming lan-
guages. In order to gather a better overview this section is
limited to Java, C/C++, and Python tools as most develop-
ment was contributed within the scope of these languages.

An overview is provided in Table 1, which shows current
actively developed projects. We consider active projects to
be tools that were either updated recently or are well ma-
tured and are used in a significant amount of research pa-
pers. The development period is considered to be the com-
mit period in the corresponding git repository. If the project
was not open source, we used the available papers to narrow
down the development period.

5.2 Implementations of Reduction Methods
As Table 1 indicates, most tools do only support one or

at most two of the introduced approaches. Interestingly,
currently active projects do not seem to focus on the EMP
problem but on the overall execution speed instead. In the
following our observations grouped by the reduction method
are listed.

WMT The weak mutation approach is found in two testing
tools. Although it is implemented in Mart, it is only
used to measure the mutants infection [8]. The Major
mutation framework is the only one that supports full
WMT analysis [23].

HOM We suggest that due to the low implementation ef-
fort Higher Order Mutants are used more frequently in
testing tools. The most prominent tool in research pa-
pers is MiLu (C language), which is explicitly designed
for HOM strategies [20]. MiLu is used in [21, 26, 47],
but unfortunately development seems to have stopped
and not much documentation is available. More recent
and actively developed tools are LittleDarwin (Java [51],
unfortunately not providing much information about
its support for HOM), PIT-HOM (Java; based on PIT,
extended by [30]), and mutpy (Python [3]). However,
not much information about their adoption is avail-
able.

Choosing the right combination of FOMs can be con-
sidered to be a separate problem. This is why the
authors of [53], for instance, wrapped the tool muJava
with their combination algorithms in such a way that
muJava generates FOMs which are then combined in
an intermediate step. Thus, extending existing tools
with HOM functionality can be considered to be a
rather simple task if the process of generating mutants
is separated from the actual execution phase.

TCE Although not noted explicitly, TCE seems to be used
directly or indirectly more often than other methods.
In every case an already existing compiler is used,
which significantly lowers the implementation effort
of this method. However, while TCE proposes mu-
tant generation on code level, some tools such as mu-
Java [33], Javalanche [56], PIT [10], Mart [8],
MuVM [57], and Mull [14] work directly on the byte-
code/LLVM to prevent re-compiling for performance
reasons. Unfortunately, this introduces further issues,
as mutants are generated on a “desugared” and more
complex version of the sourcecode. Thus, mutants
might be applied on statements which are not included
in the original version and which cannot be mapped
back for manual inspection [23]. Unfortunately, it is
not clear if bytecode level mutant generation is as ef-
fective as TCE, unfortunately no benchmark was done.
Nevertheless, compiling the source code to a mini-
mized and optimized version will remove all unnec-
essary statements such as debug statements that have
no impact on the output.

To our knowledge TCE, as proposed by Kintis et al.
and Papadakis et al. [26, 47], is only implemented
in MiLu (v3.2) and was successfully incorporated in
Proteum, Mart, and muJava.

DSE Dynamic Symbolic Execution is not implemented in
any tool we found. DSE has usages outside of mu-
tation testing and is mainly used for test generation
and automatic testing of software. This could be the
reason this approach is rarely considered for mutation
testing.

Most theoretical papers that incorporated DSE rarely
mention any tool they used. These tools are most likely
closed source and were only prototypes.

6. CONCLUSION
The results indicate that Weak Mutation Testing and

Higher Order Mutants which avoid equivalent mutants per-
form better than Compiler Optimization and Control-Flow
analysis which try to detect equivalent mutants.

Higher Order Mutants avoid equivalent mutants signif-
icantly better than Weak Mutation Testing. HOM is an
probabilistic approach which lowers the frequency at which
equivalent mutants occur, whereas WMT prematurely kills
mutants which manage to infect the state. WMT does not
change the amount of generated equivalent mutants.

Comparing the equivalent mutant detection methods,
ControlFlow analysis is stated to be better than Compiler
Optimization. But the computational demand for tools like
DSE is greater than for TCE, which favors the practical
use of TCE. The stated results are reflected in the usage
of equivalent mutant reduction methods used by mutation
tools.

We observed that the main focus of current tools for mu-
tation testing is in usability. Relatively little work is done
to reduce the number of equivalent mutants. Table 1 shows
that mainly HOM is used to make the generation of equiv-
alent mutants less likely. WMT also sees some use-cases,
although it is significantly less used in the evaluated tools.
Methods to detect equivalent mutants are observed to be
only accomplished with TCE. We assume TCE is often im-

7

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Table 1: Overview of available active testing tools, sorted by latest development news. Reduction methods
refer explicitly to the reduction of equivalent mutants.

Name Lang. Development References Reduction Methods

PIT-HOM Java 2019 – present [30] extension of PIT HOM
LittleDarwin Java 2017 – present [51] HOM

Mull C++ 2016 – present [14]
Mart C++ 2016 – present [8] WMT; mutant generation on opti-

mized intermediate representation
Cosmic Ray Python 2015 – present [1]

mutpy Python 2014 – present [3] HOM
mutmut Python 2010 – present [2]

PIT Java 2010 – present [10]
Major Java 2014 – 2018 [23] WMT

GiGAn C++ 2017 [12, 11] extension of MuCpp
MiLu C 2008 – 2016 [20, 47, 26, 21] HOM; TCE

muJava Java 2003 – 2016 [33, 31, 25, 53, 24, 26, 27] mutant generation on optimized inter-
mediate representation

MuVM C 2016 [57] HOM
Proteum C 1996 – 2015 [37] HOM; mutant generation on optimized

intermediate representation
Judy Java 2008 – 2014 [35, 34] HOM

HOMAJ Java/AspectJ 2014 [45] extension of muJava HOM
CCMUTATOR C++ 2013 [29] HOM

Javalanche Java 2009 – 2012 [16, 56, 55]
Paraµ Java 2011 [36] HOM

plemented due to the usage of an already existing compiler,
which lowers the implementation effort.

7. FUTURE WORK
Despite being in research since the 1970s, mutation testing

is far from matured. Many theoretical proposals have never
been implemented. Even though computational power has
increased significantly over the past decades, mutation test-
ing is still not adapted in the industry.

Another metric could be used by ignoring equivalent mu-
tants, which results in the mutation score indicator (MSI) [34]:

MSI =
#Killed Mutants

#Mutants
· 100[%]

The MSI is still a valuable metric providing a lower bound
of the actual MS. The MSI could be integrated into a fully
automated CI environment, but we did not find any evident
in doing so. The meaningfulness of the MSI needs to be
investigated.

Another question for future work would be how good these
approaches can be combined. For instance, HOM and TCE
could collaborate with each other, whereas the combination
of HOM and WMT is not yet tested.

Besides the approaches introduced in this paper there are
many more to investigate, e.g. [34]:

• Leveraging mathematical constrains

• Program Slicing

• Observing differences in the running profile (CPU/mem-
ory usage, running time, . . .)

• Margrave’s change-impact analysis

• Lesar model-checker

• Co-evolutionary search techniques

• Semantic exception hierarchy

• Using the impact of dynamic invariants

• Examining changes in coverage

However, most approaches can only be applied to a smaller
subset of programs or are only theoretical proposals. Due
to the research volume of certain approaches this paper did
not elaborate on these methods in more detail.

8. REFERENCES
[1] Cosmic Ray: Mutation testing for Python — Cosmic

Ray documentation.
https://cosmic-ray.readthedocs.io/en/latest/.

[2] Mutmut - python mutation tester — mutmut
documentation.
https://mutmut.readthedocs.io/en/latest/.

[3] Mutpy/mutpy. mutpy, Dec. 2019.

[4] D. Baldwin and F. Sayward. Heuristics for
Determining Equivalence of Program Mutations.:.
Technical report, Defense Technical Information
Center, Fort Belvoir, VA, Apr. 1979.

[5] T. A. Budd and D. Angluin. Two notions of
correctness and their relation to testing. Acta
Informatica, 18(1):31–45, Mar. 1982.

[6] C. Cadar and K. Sen. Symbolic execution for software
testing: Three decades later. Communications of the
ACM, 56(2):82, Feb. 2013.

8

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

[7] P. C. Cañizares, M. G. Merayo, and A. Núñez.
EMINENT: Embarrassingly Parallel Mutation
Testing. Procedia Computer Science, 80:63–73, 2016.

[8] T. T. Chekam, M. Papadakis, and Y. Le Traon. Mart:
A mutant generation tool for LLVM. In Proceedings of
the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering - ESEC/FSE
2019, pages 1080–1084, Tallinn, Estonia, 2019. ACM
Press.

[9] T. T. Chekam, M. Papadakis, Y. Le Traon, and
M. Harman. An Empirical Study on Mutation,
Statement and Branch Coverage Fault Revelation
That Avoids the Unreliable Clean Program
Assumption. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages
597–608, Buenos Aires, May 2017. IEEE.

[10] H. Coles, T. Laurent, C. Henard, M. Papadakis, and
A. Ventresque. PIT: A Practical Mutation Testing
Tool for Java (Demo). In Proceedings of the 25th
International Symposium on Software Testing and
Analysis, ISSTA 2016, pages 449–452, New York, NY,
USA, 2016. ACM.

[11] P. Delgado-Perez, I. Medina-Bulo, and M. Nunez.
Using Evolutionary Mutation Testing to improve the
quality of test suites. In 2017 IEEE Congress on
Evolutionary Computation (CEC), pages 596–603,
Donostia, San Sebastián, Spain, June 2017. IEEE.

[12] P. Delgado-Pérez, I. Medina-Bulo, S. Segura,
A. Garćıa-Domı́nguez, and J. José. GiGAn:
Evolutionary mutation testing for C++
object-oriented systems. In Proceedings of the
Symposium on Applied Computing - SAC ’17, pages
1387–1392, Marrakech, Morocco, 2017. ACM Press.

[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, Apr. 1978.

[14] A. Denisov and S. Pankevich. Mull It Over: Mutation
Testing Based on LLVM. In 2018 IEEE International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 25–31,
Vasteras, Apr. 2018. IEEE.

[15] A. Derezinska and K. Kowalski. Object-Oriented
Mutation Applied in Common Intermediate Language
Programs Originated from C#. In 2011 IEEE Fourth
International Conference on Software Testing,
Verification and Validation Workshops, pages 342–350,
Berlin, Germany, Mar. 2011. IEEE.

[16] B. Grun, D. Schuler, and A. Zeller. The impact of
equivalent mutants. IEEE International Conference on
Software Testing, Verification, and Validation
Workshops, ICSTW 2009, pages 192 – 199, May 2009.

[17] B. J. M. Grün, D. Schuler, and A. Zeller. The Impact
of Equivalent Mutants. In 2009 International
Conference on Software Testing, Verification, and
Validation Workshops, pages 192–199, Apr. 2009.

[18] W. Howden. Weak Mutation Testing and
Completeness of Test Sets. IEEE Transactions on
Software Engineering, SE-8(4):371–379, July 1982.

[19] L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
Proceedings of the 36th International Conference on

Software Engineering - ICSE 2014, pages 435–445,
Hyderabad, India, 2014. ACM Press.

[20] Y. Jia and M. Harman. MILU: A customizable,
runtime-optimized higher order mutation testing tool
for the full C language. In Testing: Academic
Industrial Conference - Practice and Research
Techniques (Taic Part 2008), pages 94–98, Aug. 2008.

[21] Y. Jia and M. Harman. Higher order mutation testing.
Information and Software Technology, 51(10):1379 –
1393, 2009.

[22] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering, 37(5):649–678, Sept. 2011.

[23] R. Just. The major mutation framework: Efficient and
scalable mutation analysis for java. In Proceedings of
the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, pages 433–436,
New York, NY, USA, 2014. ACM.

[24] M. Kintis and N. Malevris. Identifying More
Equivalent Mutants via Code Similarity. In
Proceedings - Asia-Pacific Software Engineering
Conference, APSEC, volume 1, pages 180–188, Dec.
2013.

[25] M. Kintis and N. Malevris. MEDIC: A static analysis
framework for equivalent mutant identification.
Information and Software Technology, 68:1 – 17, 2015.

[26] M. Kintis, M. Papadakis, Y. Jia, N. Malevris,
Y. Le Traon, and M. Harman. Detecting trivial
mutant equivalences via compiler optimisations. IEEE
Transactions on Software Engineering, PP:1–1, Mar.
2017.

[27] M. Kintis, M. Papadakis, and N. Malevris. Evaluating
Mutation Testing Alternatives: A Collateral
Experiment. In 2010 Asia Pacific Software
Engineering Conference, pages 300–309, Nov. 2010.

[28] P. S. Kochhar, F. Thung, and D. Lo. Code coverage
and test suite effectiveness: Empirical study with real
bugs in large systems. In 2015 IEEE 22nd
International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages
560–564, Montreal, QC, Canada, Mar. 2015. IEEE.

[29] M. Kusano and Chao Wang. CCmutator: A mutation
generator for concurrency constructs in multithreaded
C/C++ applications. In 2013 28th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 722–725, Silicon Valley, CA,
USA, Nov. 2013. IEEE.

[30] T. Laurent and A. Ventresque. PIT-HOM: An
extension of pitest for higher order mutation analysis.
2019 IEEE International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW), 2019.

[31] O. Ma and Kwon. muJava Home Page. 2016.

[32] Y.-S. Ma and S.-W. Kim. Mutation testing cost
reduction by clustering overlapped mutants. Journal
of Systems and Software, 115:18–30, May 2016.

[33] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An
Automated Class Mutation System: Research Articles.
Softw. Test. Verif. Reliab., 15(2):97–133, June 2005.

[34] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala.
Overcoming the Equivalent Mutant Problem: A
Systematic Literature Review and a Comparative

9

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Experiment of Second Order Mutation. IEEE
Transactions on Software Engineering, 40(1):23–42,
Jan. 2014.

[35] L. Madeyski and N. Radyk. Judy - a mutation testing
tool for java. IET Software, 4(1):32–42, Feb. 2010.

[36] P. Madiraju and A. S. Namin. Paraµ – A partial and
higher-order mutation tool with concurrency
operators. In 2011 IEEE Fourth International
Conference on Software Testing, Verification and
Validation Workshops, pages 351–356, Mar. 2011.

[37] J. Maldonado, M. Delamaro, S. Fabbri, A. Simão,
T. Sugeta, A. Vincenzi, and P. Masiero. Proteum: A
family of tools to support specification and program
testing based on mutation. pages 113–116, May 2001.

[38] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In Proceedings
of the Eighteenth International Symposium on
Software Testing and Analysis - ISSTA ’09, page 57,
Chicago, IL, USA, 2009. ACM Press.

[39] A. Offutt and Jie Pan. Detecting equivalent mutants
and the feasible path problem. In Proceedings of 11th
Annual Conference on Computer Assurance.
COMPASS ’96, pages 224–236, Gaithersburg, MD,
USA, 1996. IEEE.

[40] A. J. Offutt. Investigations of the software testing
coupling effect. ACM Trans. Softw. Eng. Methodol.,
1(1):5–20, Jan. 1992.

[41] A. J. Offutt and W. M. Craft. Using Compiler
Optimization Techniques to Detect Equivalent
Mutants. The Journal of Software Testing,
Verification, and Reliability, 4:131–154, 1994.

[42] A. J. Offutt and S. D. Lee. An empirical evaluation of
weak mutation. IEEE Trans. Softw. Eng.,
20(5):337–344, May 1994.

[43] A. J. Offutt and J. Pan. Automatically Detecting
Equivalent Mutants and Infeasible Paths. Softw. Test.,
Verif. Reliab., 7:165–192, 1997.

[44] J. Offutt and R. Untch. Mutation 2000: Uniting the
orthogonal. Mutation Testing for the New Century,
pages 34–44, May 2001.

[45] E. Omar, S. Ghosh, and D. Whitley. HOMAJ: A tool
for higher order mutation testing in AspectJ and java.
In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation
Workshops, pages 165–170, Mar. 2014.

[46] M. Papadakis, C. Henard, M. Harman, Y. Jia, and
Y. Le Traon. Threats to the Validity of
Mutation-based Test Assessment. In Proceedings of the
25th International Symposium on Software Testing
and Analysis, ISSTA 2016, pages 354–365, New York,
NY, USA, 2016. ACM.

[47] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon.
Trivial compiler equivalence: A large scale empirical
study of a simple, fast and effective equivalent mutant
detection technique. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering,
volume 1, pages 936–946, May 2015.

[48] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L.
Traon, and M. Harman. Chapter Six - Mutation
Testing Advances: An Analysis and Survey. volume
112 of Advances in Computers, pages 275 – 378.
Elsevier, 2019.

[49] M. Papadakis and N. Malevris. Automatic Mutation
Test Case Generation via Dynamic Symbolic
Execution. In 2010 IEEE 21st International
Symposium on Software Reliability Engineering, pages
121–130, Nov. 2010.

[50] M. Papadakis and N. Malevris. An Empirical
Evaluation of the First and Second Order Mutation
Testing Strategies. In 2010 Third International
Conference on Software Testing, Verification, and
Validation Workshops, pages 90–99, Apr. 2010.

[51] A. Parsai, A. Murgia, and S. Demeyer. LittleDarwin:
A feature-rich and extensible mutation testing
framework for large and complex java systems. CoRR,
abs/1707.01123, 2017.

[52] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes,
and M. Ribeiro. A systematic literature review of
techniques and metrics to reduce the cost of mutation
testing. Journal of Systems and Software, 157:110388,
2019.

[53] M. Polo, M. Piattini, and I. Garćıa-Rodŕıguez.
Decreasing the cost of mutation testing with
second-order mutants. Software Testing, Verification
and Reliability, 19(2):111–131, 2009.

[54] R. Purushothaman and D. E. Perry. Toward
understanding the rhetoric of small source code
changes. IEEE Transactions on Software Engineering,
31(6):511–526, June 2005.

[55] D. Schuler, V. Dallmeier, and A. Zeller. Efficient
mutation testing by checking invariant violations. In
Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA
’09, pages 69–80, New York, NY, USA, 2009. ACM.

[56] D. Schuler and A. Zeller. Covering and uncovering
equivalent mutants. Software: Testing, Verification
and Reliability, 23(5):353–374, Nov. 2013.

[57] S. Tokumoto, H. Yoshida, K. Sakamoto, and
S. Honiden. MuVM: Higher Order Mutation Analysis
Virtual Machine for C. In 2016 IEEE International
Conference on Software Testing, Verification and
Validation (ICST), pages 320–329, Chicago, IL, USA,
Apr. 2016. IEEE.

[58] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de
Halleux, and H. Mei. Test generation via Dynamic
Symbolic Execution for mutation testing. In 2010
IEEE International Conference on Software
Maintenance, pages 1–10, Timi oara, Romania, Sept.
2010. IEEE.

10

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

On Factors Contributing to the Qualitative Measurement of
Test Suite Effectiveness

Marian Assenmacher
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

marian.assenmacher@rwth-
aachen.de

Ajay Pandi
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ajay.pandi@rwth-
aachen.de

ABSTRACT
In software development, it is of utmost importance to en-
sure the quality of software since flawed software can po-
tentially lead to severe problems like security risks, loss of
sensitive data or loosing business. While the quality of soft-
ware can be ensured through different measures, software
testing plays a crucial role: software testing helps to corrob-
orate that applications are running as intended, helps to find
misbehaving code and reduce the risk of regressions in subse-
quent versions. However, the results of such testing depends
on the effectiveness of test cases and test suites. Further-
more, in order to measure its effectiveness, one should have
a complete understanding of factors influencing the effec-
tiveness of test cases and test suites like coverage criteria,
suite size and other similar notions. Also, it is vital to un-
derstand the relation between test cases, test suite and test
effectiveness.

In this paper, we study the literature regarding test case
and test suite improvement to identify factors that con-
tribute to the effectiveness of test cases, test suites and the
overall testing. Finally, taking all the findings into consider-
ation we briefly describe techniques for both, building effec-
tive test suites and also to measure and improve test suite
effectiveness of existing frameworks, which then reflects in
improving overall quality of the software.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
software tests, test effectiveness, test suites, test evaluation
metrics

Keywords
Software Tests, Test Case, Test Suite, Test Analysis, Test
Effectiveness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2019/20 RWTH Aachen University, Germany.

1. INTRODUCTION
A software product can never be considered as fully de-

veloped, as requirements change frequently. To ensure the
quality of existing and added functionalities across multi-
ple versions of the software, automated testing is needed.
Also excessive testing is not feasible due to limited time and
resources, hence testing has to be effective. An effective test-
ing refers to maximum paths being tested for the SUT. Test
suite that drives such testing is then considered an effective
test suite. In order to create an effective test suite one has
to know what contributes to the effectiveness, how it can be
measured and how that knowledge can be used to improve
the test suite quality.

Some of the prominent test levels are unit testing, integra-
tion testing, system testing and acceptance testing. Each of
the aforementioned test levels has its own significance, and
attributes directly to the quality of the software product.
Testing is performed with test suites which are dependent
on the testing technique. A test suite is nothing but a col-
lection of test cases pertaining to the system/functionality
under test. Oftentimes, it is assumed that the quality of test
cases correlates directly with quality of the overall testing
and that the quality of testing correlates with the quality of
the finished product. So it is of paramount importance to
have an effective test suite for a quality software product.

Extensive research is conducted in studying and improv-
ing the effectiveness of testing. Researchers have performed
experiments in order to understand the significance as well
as relationship between test suite effectiveness and various
plausible contributing factors like code coverage, test suite
size and other similar factors [30, 2, 7, 16]. There is a large
body of empirical studies deriving metrics or, threshold for
existing metrics through research experiments to determine
the effectiveness of the test cases and test suites [6, 24]. In
parallel, due to the introduction of unprecedented software
development processes like Behaviour-Driven Development
(BDD) and Scaled Agile Framework (SAFe), there is also
extensive research performed in order to understand their
testing strategies and proposing methods to measure and
improve test suite effectiveness in such scenarios [26, 11].

There are many different techniques to test software for
potential bugs and deviations from business requirements.
Each technique might perform differently depending on the
adequacy criteria being used, type of software under test and
other similar notions. Furthermore, it is unclear which met-
ric to choose as adequacy criterion to denote the progress

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

and success of testing. This paper captures a comprehen-
sive overview of research done in the field of software testing.
Specifically in understanding test cases, test suites, their ef-
fectiveness and plausible ways to build such effective test
suites. We initially present the techniques and methods for
assessing and improving test case effectiveness leading to as-
sessment of test suite effectiveness and finally the motivation
and technical details about the ways to build effective test
suite.

Our initial observations can be broadly classified into the
following categories according to which we will also structure
our paper:

1. Measuring effectiveness of test cases — Strategies to
measure and improve the effectiveness of test cases.
Prominently, a metric would be proposed to measure
the effectiveness.

2. Measuring effectiveness of test suites — Likewise, strate-
gies or metric to measure and improve test suite effec-
tiveness. Also, there is extensive research being con-
ducted in studying relationship between various prop-
erties: test suite size, coverage criterion and other sim-
ilar properties.

3. Techniques to improve test effectiveness — In the end,
test frameworks which improved test effectiveness by
taking into consideration the findings from the previ-
ous two subsections (3.1 and 3.2) will be presented.
Furthermore, recent test frameworks due to wide ac-
ceptance of particular algorithm or data structure will
also be mentioned.

We provide an overview of such research outcomes per-
taining to the research question of improving test suite ef-
fectiveness. We start with a brief introduction to software
testing, explaining the base concepts of test effectiveness and
measures to quantify effectiveness in section 2. In continu-
ation, then we will give a summary of the findings in main
chapter in section 3. In section 4, we then discuss the results
and giving a brief conclusion of our work. Lastly, we focus
on a look into possible future work in section 5.

2. BACKGROUND
It is important to have sturdy understanding of testing,

and its significance followed by the relationship with test
cases and test suites. Hence, first we will recapitulate soft-
ware testing.

As per the book “Guide to the Software Engineering Body
of Knowledge” by IEEE computer society, the definition of
software testing is as follows:

Software testing consists of the dynamic verification that
a program provides expected behaviors on a finite set of test
cases, suitably selected from the usually infinite execution
domain. [9, p. 4-1]
Or as Myers puts it more simply in his book:

Testing is the process of executing a program with the in-
tent of finding errors. [20, p. 11]

Software testing plays a pivotal role in the software devel-
opment life cycle (SDLC)1 by being a major factor influenc-
ing the quality of the product. The primary goal of software

1SDLC generally describes a number of phases which model
the development process such as the waterfall modell or agile
development.

testing is to validate a given program or piece of software to
find potential errors, improve system performance and en-
sure compliance with the expected functionality while being
robust, reliable, secure and stable. The earlier the discrep-
ancies or defects are identified, the lower is the cost, and
overhead to take corrective measures is reduced. In order
to identify potential discrepancies such as program errors,
deviation from expected functionality, adherence to service
level agreements (SLAs) or misbehavior of parts of the soft-
ware, the test suite should contain effective test cases that
evaluate source code to the maximum potential.

Test Cases
At the end of test design phase, test case specifications are
decided by the project team to assess the conformance of
functional requirements. However, such test cases do not
ascertain to uncover all the defects since there are also fac-
tors like misinterpretation of requirement by the developer
and poor code quality leading to potential defects. Unit test
cases are those test cases that check for compliance of ac-
tual behavior of the smallest unit of the system under test
(SUT) with the expected behavior. Additionally, these test
cases are often written taking into consideration the busi-
ness needs, expected functionality and key performance in-
dicators (KPI) of the SUT. Quality of any testing is largely
dependent on the effectiveness of the test cases.

Test Suites
A test suite is nothing but a collection of test cases. An ef-
fective test suite should be able to evaluate the source code
to the maximum potential for compliance with business re-
quirement. If the test suite size is not accounted for, then
there is liberty in accommodating more test cases pertaining
to every possible data and control flow of the SUT. However,
the size of test suites should also be taken into consideration
since the larger the test suite is, the longer the tests run.
And also, an extensive test suite gets harder to maintain,
hurting the longevity and effectiveness when new changes
are introduced. Therefore, there should be a balance be-
tween the size of test suite and its ability to find potential
defects in the SUT. Additionally, the process of developing
test cases can help finding problems in the design of the
product as well.

Test Coverage
Test coverage describes the amount of code which is cov-
ered by the test cases. Generally, there are multiple cover-
age metrics measuring different aspects of the SUT. Most
often used are statement cov. measuring the amount of ac-
tual statements that are tested, function cov. indicating the
amount of functions under test and branch cov. checking the
number of branches included in test cases.

Mutation Testing
When using mutation testing, the original source code is
mutated slightly according to predefined patters. Tests then
check these mutations of the original code. If a mutation is
detected by a test, it is killed, otherwise the information of
the mutation can be used to generate new tests.

3. OVERVIEW OF FINDINGS
The research done by the team of Vahabzadeh et. al. [29]

emphasizes the importance of software testing and its effec-
tiveness. They investigated test code for existence of bugs
and other flaws. For that, 211 projects in total of the Apache

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Software Foundation and 5.5k test related bugs were exten-
sively examined. It was found that around 50 % of the
projects had buggy test code, whereas most of those were
false alarms, more commonly known as false positives, i. e.
detecting bugs where there were none, some others were
silent horrors, i. e. not detecting actual bugs in produc-
tion code, more often referred to as false negatives. As root
causes, mostly missing or incorrect assertions were identi-
fied regarding the silent horrors. Whereas semantic, flaky
or environment related bugs mostly caused false positives.

From our point of view, while software testing is essential
to have, it does not intrinsically find all misbehavior. There-
fore, it is important to use the appropriate testing method-
ology and technique to increase the effectiveness2 of the test
suites.

During our research, we found that extensive research is
conducted related to evaluating and improving effectiveness
of test cases, test suites and the entire testing technique. To
give an overview we will structure the findings of our litera-
ture review into three categories: firstly, we will start at the
detailed level and present the findings about improvement of
test case quality. We then will broaden our view by examin-
ing research on improvement of test suite quality. Conven-
tional testing techniques did not improve test effectiveness
in the case of specific unprecedented algorithms, data struc-
tures and other development frameworks. Hence, uncon-
ventional testing techniques were applied in such scenarios.
This led to another branch of research in understanding such
framework’s testing procedure and focus on improving test
suite effectiveness. So finally, findings about such unconven-
tional testing techniques together with approaches to build
effective test suites are presented.

3.1 Measuring Effectiveness of Test Cases
In current research about software test case effectiveness,

most of the papers conduct analyses about assessing code,
meaning about the testing code itself. This is done in the
interest of improving quality of test cases for which predom-
inantly multiple coverage criteria like statement, branch and
block coverage are considered as adequacy measures. It was
later discovered that, these criteria themselves would only
have very low if at all negligible significance, when applied
to a single test case. In general, these coverage criteria apply
to a set of test cases or test suites but nevertheless can also
be considered for individual test cases. The measures were
useful in determining test case significance leading to refac-
toring and prioritization in the case of regression testing.

For instance, Park et. al. [24] and Kapfhammer and
Soffa [15] proposed approaches for test case prioritization
by determining the effectiveness of test cases. Park et. al.
suggested to use historical value-based test case prioritiza-
tion that used fault-based metric average percentage of faults
detected (APFD). Where in faults are seeded automatically
or manually into the SUT and test cases are prioritized de-
pending on its bug detecting ability. While this approach ev-
idently improved the effectiveness of the resulting set of test

2In the following, we will use the term of effectiveness fre-
quently. Therefore, we want to emphasize that effective-
ness may not be mistaken with efficiency: effectiveness in-
dicates whether a process is successful in determining the
correct ore expected result whereas efficiency indicates in
how good something can be achieved when considering the
effort needed to do so.

cases, Kapfhammer and Soffa argued to prefer coverage-
based metrics over fault-based metrics like APFD. The mo-
tivation was the fact that high coverage test cases are more
likely to reveal increased program faults [7]. Hence they used
coverage measures as a metric to determine the effectiveness
of test cases and prioritize them. So that, in the next testing
run for the modified set of test cases, potential bugs are iden-
tified earlier. Previously existing methods of this type did
not take into consideration the test case execution times be-
fore prioritizing. Taking coverage and execution times into
account, the authors introduce a metric called CET whose
value is ranged between 0 and 1. A test case is awarded a
high CE value when it quickly covers the test requirement.
This approach is open to a broad, wider spectrum of all the
coverage criteria.

The above mentioned approach for test case prioritiza-
tion also aims to reduce the test suite size after prioritiz-
ing. Since increased test suite size will lead to increased
execution time for the overall testing procedure and effort
for maintaining the suite. Additionally, increased run time
is considered to be an indicator for sub-optimal test cases.
Recent studies suggest that test suite size highly correlates
with test effectiveness [21], [16]. However, Yucheng Zhang
and Ali Mesbah [31] conducted experiments and suggested
that assertion quantities are far more correlating than test
suite size. An assertion is a Boolean expression written in
the program to validate the results of specific variables, to
determine successful execution of certain code blocks and
for many such scenarios. Assertion quantity refers to the
number of assertions written in the program. Furthermore,
assertion coverage is a measure that determines the percent-
age of assertions covered during testing. The experiments
of Zhang and Mesbah identified that the number of asser-
tions and assertion coverage have high correlation with the
effectiveness of test cases. These correlations are even grater
than those of test suite size and statement coverage. The
findings were based on 24,000 assertions collected across 5
cross-domain real world Java programs.

Yuri Chernak [6], studied the significance of testing. In
the interest of reducing or removing software defects prior
to product release, he proposed an approach to validate and
improve quality of existing test cases. To measure the effec-
tiveness, the author proposed the so called TCE (test case
effectiveness) metric to measure the effectiveness of overall
test cases. It is defined as the ratio of defects found by test
cases (Ntc) to the total number of defects (Ntot) reported
during the function test cycle: TCE = Ntc/Ntot · 100.

The author’s test case effectiveness improvement frame-
work was based on test case escapes which refers to ‘software
defects that a given suite of test cases failed to find but that
were found as a side effect in the same test cycle’ [6, p. 3
(83)]. The identified test case escapes depicts deficiencies
in test cases. Hence, going forward the emphasis can be on
such potentially deficit areas in order to improve the quality.

Palomba et. al. [23] also performed an extensive research
on test code quality, driven by the motivation to find non-
coverage related criteria which were able to improve the
quality of automatically generated test code. For measur-
ing the test effectiveness and maintainability, the authors
investigated on two metrics: test cohesion and test coupling.
With cohesion, the team tested how much the tested code
belongs together i. e. is cohesive; this should not be a too
low number as each test should only validate a very spe-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

cific functionality of the SUTin order to receive as precise
results as possible. Test coupling, on the other hand, mea-
sures the overlap of different test cases; here, tests should
overlap as little as possible to ensure maintainability under
future changes. For that, the team derived two metrics based
on core concepts: Coupling between test methods and Lack
of cohesion of a test method. For evaluation of said met-
rics, the researchers used the EvoSuite3 for test generation
on the SF1104 dataset, a dataset containing code samples of
110 representative and/or popular projects on SourceForge5

provided by EvoSuite. After evaluation of the results, the
team found out that there were some problems in automatic
test generation using the already built in methods, although
these already incorporated some quality control measures.
Especially, it was found that the tests suffered from too low
cohesion and to high coupling. Using their developed meth-
ods and implementing them in the test generation process,
the authors were able to improve results in both fields. Fur-
thermore, it was noted, that the inclusion of those metrics
in the test generation had also a positive effect on branch
coverage and test suite size.

3.2 Measuring Effectiveness of Test Suites
While the approaches mentioned in section 3.1 were devel-

oped with test cases in mind, most of them can be considered
for measuring test suite effectiveness as well. This is because
a test suite is a collection of test cases. Improving test case
quality directly reflects in overall suite effectiveness. With
test suites, a broader set of potential factors needs to be con-
sidered which usually do not arise when individual test cases
are examined: size of test suite and relevance to the SUT.
On the positive side, it provides a wider scope for research
in terms of understanding relationship between various fac-
tors like statement coverage, branch coverage, block cover-
age and other similar notions. They determine the percent-
age of statements, branches and blocks of the source code of
a program that are covered by a particular test suite during
testing respectively. For an instance, if .. else block com-
prises of 2 branches, whereas if .. elseif .. else comprises
of 3 branches. Furthermore, a block refers to the atomic key-
words used in building a program statement. Unreachable
program locations can be identified if no test case could be
written so that the specific part of the code is accessed.

Laura Inozemtseva and Reid Holmes,[10] from Uni-
versity of Waterloo studied the relationship between state-
ment coverage, decision coverage and modified condition
coverage against suite effectiveness. They claim it to be the
largest study with 31,000 test suites for five systems with
724,000 lines of source code in Java. The suite’s mutant de-
tection ability was considered as the characteristic to mea-
sure the effectiveness. As a major finding, the study showed
low to moderate correlation between coverage of a test suite
and its effectiveness, when the suite size is controlled. Also,
the authors claim that the type of coverage used had little
impact on the strength of the correlation. However, though
branch and decision coverage are very similar, branch cover-
age takes into account unconditional branches as well, which
wasn’t accounted in this study.

Experiments by Gupta and Jalote [8] determined the
significance of branch coverage over block and predicate cov-

3http://www.evosuite.org
4http://www.evosuite.org/experimental-data/sf110/
5https://sourceforge.net/

erage. The team studied the effectiveness and efficiency
of block coverage, branch coverage, and predicate coverage
with mutation kill of test suites as adequacy measure to
evaluate. In their tests, effectiveness refers to the fault de-
tection ability of a test suite, and efficiency refers to average
testing cost incurred for detecting fault in a program. Their
results suggested the existence of a trade-off between effec-
tiveness and efficiency. Predicate coverage was most effec-
tive but least efficient in fault detection. And block coverage
was most efficient in terms of testing cost but least effective
in fault detection. But branch coverage performed consis-
tently with good effectiveness and efficiency. Wei et. al.
[30] explored in this direction to study the effects of branch
coverage in suite effectiveness.

Wei et. al. [30] conducted studies to understand the re-
lationship between branch coverage and suite effectiveness in
random testing. Random testing is an useful strategy to test
a software when there is no clear or sufficient information to
perform the testing. The testing was carried out for 2520
hours on 14 Eiffel classes using fully automated random test-
ing tool AutoTest6. AutoTest is a open-source framework
for performing automated testing widely used by Google,
IBM, Red Hat, and many others. A major finding from the
study was, branch coverage was not a good indicator for
suite effectiveness. Branch coverage was used as adequacy
criterion to stop the testing once testing reaches specific cov-
erage levels. In the initial 10 minutes of the test most of
the branches were exercised, while the uncovered faults in-
creased gradually. Almost 50% of the uncovered faults were
when the branch coverage was almost stagnant. However,
branch coverage was widely considered as stopping criterion
in random testing. The authors evidently proved with sta-
tistical results that branch coverage increases rapidly but
the uncovered faults only increase gradually. Hence, using
branch coverage to measure test suite effectiveness would
end up with inaccurate values. As an extension, Namin and
Andrews studied the influence of size on test suite together
with structural coverage.

Namin and Andrews [21] proposed that correlation be-
tween coverage and effectiveness can differ for different SUT,
but the combination of coverage and suite size yields more
accurate results in determining the effectiveness of a test
suite. The authors initially performed an analysis of co-
variance (ANCOVA) to verify if either of both influenced
effectiveness. The p values were always less than 0.001 indi-
cating high correlation between coverage, suite size and suite
effectiveness. Test suite size is determined by the number of
test cases in a test suite. In general, suite size grows in pro-
portion to the functionalities offered by the product, due to
increase in test cases. The linear models built by ANCOVA
were then used for building multiple regression models to de-
termine the effectiveness. Among the models, the one with
AM = B1 · log(size)+B2 ·coverage had higher adjusted R2

values indicating it best explains the effectiveness where size
refers to the test suite size, coverage refers to the coverage
percentage, AM refers to mutants adequacy ratio, B1 and
B2 are coefficients.

As it seems that coverage can, in some cases, be used as
an indicator for effectiveness, we also investigated on code
coverage in order to understand its influence better.

A research group of Antinyan et. al. [1] in collaboration

6https://autotest.github.io/

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

http://www.evosuite.org
http://www.evosuite.org/experimental-data/sf110/
https://sourceforge.net/
https://autotest.github.io/

with Ericsson constructed a study on the quality of code and
its related tests with special regard to the code coverage.
The goal was to find, if a high code coverage also indicates
a correlation with defects in code. For that, an analysis
on a relatively large in-house telecommunication project of
Ericsson with approximately 2 million lines of code (LOC)
was conducted. For this analysis, the team gathered infor-
mation about all encountered bugs per file in the course of
one year. As it was found, the defect data was relatively
stable so that the actual evaluation was conducted only on
a smaller sample set. After the evaluation, the researchers
found the following: only a small correlation between the
(statement, function or decision) coverage and the number
of defects could be noted (approx. -0.20 for Pearson Corre-
lation Coefficient or approx. -0.15 as for the Spearman Co-
efficient, respectively). With this result, it could be argued
that coverage, regardless whether it is statement, function
or decision coverage, does only help to a very small extent,
if at all, in finding defects in the examined code. However,
not only coverage was inspected but other metrics as well.
Some of these yielded a much higher correlation with the
number of defects found. For example, the change rate of
certain files in terms of the number of versions (0.79/0.62)7,
the LOC of the inspected files (0.67/0.53), the age of the
file (0.31/0.27), or lastly the block depth (0.42/0.42). Inter-
estingly, the amount of comments added to a file does not
correlate at all with the number of defects. Other metrics,
such as the amount of changed code (0.61/0.55) and the
number of developers of a certain file (0.76/0.63) also indi-
cated a high potential for introducing defects. In summary
this means that long and deeply interleaved files disclose a
high tendency for defects. But also files “under intensive
development” or from a large team of different programmers
introduce a high risk for defects. And ultimately, the pure
amount of test coverage does not necessarily guarantee suc-
cessful detection and/or prevention of defects in the system
under test.

While the above mentioned research investigated on the
code coverage in general, Holmes and Inozemtseva both
also worked together with René Just and Gordon Fraser
on an analysis of mutation testing for detecting real faults in
software considering code coverage in 2014. The results are
found in [13] as a summary and more detailed in [14]. They
conducted a study in which they examined 350 defects from
publicly available software repositories8 with more than 320k
LOC in total and to which they introduced over 200k defects
by using mutation. The goal was to identify if mutant test-
ing is suitable for actually detecting bugs or other real-life
defects. In order to answer that question, the team exam-
ined the bugs found in the aforementioned projects and com-
pared the original version with the one containing the fix.
After that, automatic test suites were generated basing on
the rectified versions which then tested a mutated part of the
software. The researchers found out that an increase in mu-
tation score (i.e. the percentage of mutants detected) shows
significant correlation to an increase in statement coverage.
Furthermore, the researchers investigated the two ends of
the spectrum where a test contributed to an increase in test
coverage and when it did not. In particular, the researchers

7first value is Pearson correlation coefficient, the second one
is Spearman
8JFreeChart, Closure Compiler, Apache Commons Math &
Lang and Joda-Time

noted that in the first case, it detected more than 10 ad-
ditional mutations in 35% of the tests, whereas on the op-
posite side over 40% of the tests were not able to detect
any additional mutations. Concluding, the team found that
generated mutants generally are coupled to real-life defects
and can be detected relatively well. However, considering
the defects which were not detectable in mutation testing
can, according to the authors, be roughly categorized in
three sections: “faults requiring stronger mutation opera-
tors”, “requiring new mutation operators” or lastly “faults
not coupled to mutants”[14, p. 7 (660)]. Whereas most
of these undiscovered defects might be detectable with the
addition of further mutation operators, especially the faults
from the last category are probably not detectable by muta-
tion analysis in general as these require algorithmic or other
changes. Lastly, the team stated that it was able to show
a significant positive correlation between mutant detection
and the detection of real defects.

Based on these findings, Holmes and Just continued the
research together with Gordon Fraser from the Univer-
sity of Sheffield with regard to the efficiency and effective-
ness of mutation testing. The results of their study are also
summarized in [13] and explained more extensively in [12].
The two major constraints of mutation testing, at least ac-
cording to the authors are, scalability and equivalency of
mutants. For that, the team proposed three main optimiza-
tions in mutant generation: firstly, the researchers proposed
a dynamic analysis approach in order to detect whether a
certain mutant is able to infect a program state, meaning
that it actually changes the outcome and/or behavior of the
current test. The second goal is to check whether a mutant
is not only able to infect the current scope but is also able
to propagate and infect other tests. Thirdly, it is consid-
ered, if two mutations result in the same valuation. In order
to evaluate how these optimizations effect testing, the team
examined an extended list of open-source software projects
from above. They implemented their optimizations as ex-
tension of the Major Mutation Framework9 and additionally
created 20 random tests for each class supplementing the al-
ready existing test suites from the projects themselves. Ulti-
mately, their results show that with these optimizations, the
researchers were able to increase the effectiveness and effi-
ciency of the tests. It can be noted that the partitioning and
propagation tests yielded in increased reduction of test code.
Furthermore, the researchers achieved a speedup of muta-
tion analysis by up to 20% by only using state infections
as reduction measure. When considering all optimizations
working hand in hand, the analysis time could be reduced
by around 40% compared to plain coverage optimization.

While code coverage is one possible measure to get an
indication of effectiveness of the tests, there are also others
to think about. For that, we now want to shed some light
on such in the upcoming paragraphs.

Regarding the topic of software testing metrics, Lazic
and Mastorakis [17] presented an extensive study in 2008
covering the entire software development life cycle (SDLC).
In their paper, the authors described where and when to
use metrics, and gave proposals on what metrics to deploy.
For example, in every state of the software project, metric
data should be gathered serving two main purposes: on the
one hand, track progress and on the other hand give other

9http://mutation-testing.org/

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

http://mutation-testing.org/

team members (e.g. the project manager) information on
advancements or regressions. Furthermore, tips and guide-
lines are given on how to construct useful metrics. In partic-
ular, metrics should be kept simple and ultimately follow a
project goal. Metrics not following a goal of the project do
not contribute to the advancement and are a waste of time.
Going hand in hand with simplicity in definition, metrics
should also be constructed unequivocally, meaning that it
is irrelevant who is performing the test with regard to the
outcome. As minimal test metrics, which should be applied
in every software project, the researchers proposed the fol-
lowing: number of test cases, their executions as well as
passed and failed cases, test cases under investigation, cases
that are blocked or re-executed, first run failures, total execu-
tions, total passes and total failures and lastly execution time
of both test cases and individual tests. Based on these, the
team further proposed some derivative metrics, which help
to improve effectiveness of testing in the SDLC. After intro-
ducing these metrics, the authors also give advice on how
to interpret the gathered information, not only in terms of
actual software quality or progress but also from a business
perspective, in particular issues like resources, cost, growth
and stability. Furthermore, it is also suggested to keep de-
tailed information about defects, which were located in the
project. With this valuable information, further progress
can be tracked and problematic components or other abnor-
mal phenomenons can be gleaned. Lastly, various proposals
on test management, test execution and incorporating tests
as central part of the SDLC were proposed.

Similarly, the research team of Niedermayr et. al. [22]
compared 14 different open source projects with regard to
their code coverage and general test quality. During test-
ing with a mutation approach to selectively remove pro-
gram logic to introduce a defect, they found problems with
pseudo-tested methods. In this case, a pseudo-tested method
indicates that there is a test for a specific method, however
it either does not get validated or in a false/erroneous way.
This indicates, that a method is tested incorrectly and thus
might not correctly recognize faults. This is especially the
case for system tests, which tests a certain system in its
whole in comparison to unit tests. During their testing, it
was found that, around 10 % to 19 % of methods tested in
the unit tests showed pseudo-testing characteristics with an
average of 11 % and a deviation of 6 %. This led the re-
searchers to conclude that, method coverage may be a good
indicator of unit test effectiveness, however this does not
hold for system tests. Here the team found a higher ratio of
pseudo-tested methods, ranging from only 6 % to almost 72
% with strong deviation (21 %) from the mean of 34 %. Fur-
thermore, the researchers noted, that “more than half of the
pseudo-tested methods were of medium or high severity”[22,
p. 6 (28)].

3.3 Techniques to Improve Test Effectiveness
In general, prominent research in this direction aims to

measure and improve the effectiveness of test cases, test
suite and studying different properties. However, these have
a causal implication on improving test suite quality and di-
rectly contribute to the problem of qualitative evaluation
and comparison among test suite’s effectiveness. There is
also considerable amount of research conducted in order
to formulate an entirely new and effective frameworks to
keep abreast with emerging trends. We initially present

such new development strategies, algorithms, data struc-
tures and other emerging trends demanding a new testing
technique, followed by methods to scrutinize existing tech-
niques to build effective test suites.

For an instance, in recent years multiple forms of agile
software development processes like Scrum, Extreme Pro-
gramming (XP) and Feature Driven Development (FPP) are
extensively in practice. Rahman et. al. [26] proposed an
approach for Behavior-Driven Development (BDD), which is
an agile software development methodology used frequently
in micro-services development, according to the authors. In
BDD, the expected behavior of a system and its acceptance
criteria are described in the form of scenarios using a sim-
ple business readable syntax using Given, When and Then
keywords as follows:

Given some initial context,
When an event occurs,
Then ensure some outcomes

These keywords are called steps. Each of these steps are
parsed and executed by the BDD test framework to verify
the software’s expectation. If the modules after development
complies with the scenarios, an implicit acceptance testing is
already performed. This alleviates the need, or in some cases
reduces the overhead of additional acceptance testing. The
entire range of test cases pertaining to acceptance testing
is then eliminated from the test suite, eventually bringing
down the test suite size. Size of test suite is among the fac-
tors contributing to the effectiveness of a test suite. The
authors further go on to propose a Reusable Automated Ac-
ceptance Testing Architecture (RAATA). The core problem
discussed is not directly relevant to test suite effectiveness,
but although as a repercussion effect, the quality of test
cases would be improved.

Likewise, an ubiquitous use of Deep Neural Networks (DNN)
in machine learning based software is witnessed off late. Tra-
ditional software testing cannot be applied to DNNs due to
its complex structure. Formal coverage criteria are not ap-
plicable since a specific test case might have varying cov-
erage in different times due to backward/forward learning
mechanisms. The complications in testing such software
is exponential with complicated process of developing test
cases. Sun et. al. [27] describe a testing strategy together
with Sign-Sign (SS), Sign-Value (SV), Value-Value (VV)
and Value-Sign (VS) metrics tailored to structural features
of DNNs with ReLU activation function to thoroughly test
and evaluate the quality of the test suite. Sign and value
changes for each activation function input are considered as
the different cases to be tested. The core idea is to have indi-
vidual test cases pertaining to every pair of features with all
possible combinations of sign and value changes. Authors
claim the test results to be promising, with the covering
methods identifying a significant portion of adversarial ex-
amples. Thus, the aforementioned metrics are to examine
the unique properties of DNNs. In this context, considering
these additional metrics for DNNs evidently improves the
test suite effectiveness.

The researchers Jabbarvand et. al. [11] from Depart-
ment of Computer Science at the University of California
came up with energy-aware test suite minimization tech-
nique. They considered energy as a property of interest and
an energy-aware coverage criterion that indicates the degree
to which energy-greedy segments of a program are tested.
The core idea was to divide the program P into p segments

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

S = s1, s2, ..., sp. Test cases in a test suite T = t1, t2, ..., tn
are represented as vectors Vti =< vi,1, ..., vi,mi > where vi,j
with value 1 indicates that ti covers an energy greedy seg-
ment tj and 0 if it covers a normal segment. Moreover, the
metric eCoverage is calculated for every test case that de-
termines the degree to which the energy-greedy segment is
covered. The main components of this approach are cov-
erage calculator to calculate eCoverage and the actual test
suite minimization. Then the researchers investigate to find
the smallest subset T ′ ⊂ T without hampering the effective-
ness of the original test suite. This final task was modeled in
two different approaches: by integer linear programming and
greedy algorithm (based on heuristics) for quicker results.
The team demonstrated this technique on real world applica-
tion from F-Droid10. The conducted experiments provided
statistical evidence supporting the ability to reduce the test
suite size on an average to 84% of its original in the case
of IP and 81% in the case of greedy, while maintaining the
suite quality.

Regression test suites often become as large and complex
as the software itself due to continuous software evolution.
If the test suites are not constantly maintained then ulti-
mately the effectiveness is hampered. The researchers Ten-
geri et. al. [28] proposed a novel approach TAIME (Test
Suite Assessment and Improvement Method) for test suite
assessment and improvement that utilizes code coverage in-
formation, but on a more detailed level and adds further
value aspects derived from the coverage. They plotted a bi-
nary coverage matrix with test cases and program elements
such as statements or functions according to the chosen level
of granularity. Test cases and the program elements are de-
composed further into coherent logical groups called func-
tional units. The subsets of test cases are called test groups
and subset of program elements code groups. The numbers
in the cells of the matrix represent the code coverage ra-
tios that a test group attains with respect to the given code
group. By visualizing it as heat-map they were able to pin
point potential problems where the overall coverage is too
low or which functional units were less coherent. This makes
it easy to identify the potential test cases for removal or
refactoring. Further, they proposed following metrics:

• Coverage Metric (COV) to determine the percentage
of test cases satisfying the program elements, Partition
Metric (PART) characterizes how well a set of test
cases can differentiate between the program elements
based on their coverage information

• Tests per Program elements (TPP) to determine the
number of test cases created on average to test a set
of program elements (procedures, statements, etc.)

• Specialization metric (SPEC) depicts how specialized
a test group is to a code group

• Uniqueness metric (UNIQ) to measure the portion of
the covered elements that are covered uniquely by a
particular test group.

Together with these metrics, they propose an iterative ap-
proach through multiple phases which measure the cover-
age effectiveness. Based on the evaluation, test and code
groups are updated after every iteration until cohesive test

10https://f-droid.org/en/

cases are clustered under the same test group, ultimately
improving the effectiveness of the test suite. The authors
demonstrated the approach with the application of TAIME
on SoDA (Software Development and Analysis framework)
library for improving its regression test suite. SoDA is an
open source library and tool set that aims to provide re-
searchers and practitioners a framework with which various
code coverage-based analyses can be performed.

Test case minimization is another famous approach that
helps in reducing the test suite size by eliminating less sig-
nificant, redundant cases. These cases are identified through
heuristics-based criteria, code and data-flow information,
execution costs and many other similar criteria. For in-
stance, the greedy approach (GRD), Harrold Gupta Soffa
(HGS), Delayed greedy (DGR), 2-optimal greedy (2OPT)
are all approaches that target test case minimization. Along
the same lines, researchers Marchetto et. al. [19] con-
ducted comprehensive experiments taking into consideration
the requirements coverage and test suite execution cost, to-
gether with code coverage. They proposed a three dimen-
sional approach called Multi-Objective test suites reduction
(MORE+). The first dimension uses information on how
test cases exercise the under-test application. The second
dimension concerns how test cases exercise business appli-
cation requirements while the third dimension considers the
time taken to execute test cases. It is more of a refactoring
approach to determine a subset of test cases Sred from the
original test suite S. This reduced subset Sred comprises of
those test cases that cover the mentioned three dimensions
with a higher likelihood. An extension of this high priority
reduced test case set Sred with new cases substantially im-
proved the quality of the suite. About the effectiveness, sta-
tistically significant improvements were shown by MORE+
approach against the traditional strategies in terms of test
suite’s execution time and fault detection capability, but not
the overall size.

On same lines, as a replacement to using greedy approaches
for the same problem of test suite minimization/reduction,
Liu et. al. [18] propose to apply k-medoids clustering. Pre-
viously, researchers conducted the study using k-means clus-
tering. There were shortcomings caused due to the instabil-
ity of the algorithm and its inability to take into consider-
ation the actual code coverage criteria. Hence Liu et. al.
enhanced it with k-medoids clustering algorithm and actual
code coverage criteria. The idea is to consider cyclomatic
complexity and code coverage rate as the axis dimensions.
Every test case will have values generated for both metrics
in the initial run. The original test suite is called R, and
the test cases in R are called the data objects D. Randomly
selected D acts as the center of the cluster and over the it-
erations, the focal points encoding the test case with equal
distances are removed from the cluster. This ensures that
there is no redundancy and every test case is unique within
a cluster. The paper uses greedy approach in forming the
cluster representing the set of test cases. The claim was
quantitatively proven by demonstrating the application of
this approach and comparing the results against traditional
HGS and reduction using k-means. The authors claim that
the results showed improvement not just in test suite size,
but also in terms of efficient coverage and error detection
rate.

To assess the effectiveness of testing in real world develop-
ment teams, the researchers of Chen et. al. [5] conducted a

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://f-droid.org/en/

study with IBM to evaluate the effectiveness metrics pro-
posed for the research and development team for the “IBM
Electronic Commerce Development (ECD)”. They proposed
three different metrics which together form an evaluation
framework. These three metrics shall – according to the
authors – only be used as a whole and not stand-alone, as
these metrics only tell a picture as a whole. The metric cat-
egories are (1) Quality-of-Code, (2) Time-To-Market, and
(3) Cost-To-Market metrics. There are many sub criteria
such as (a) quality of code, measured by weighted defects
in tests plus weighted defects in production divided by the
lines of new or changed code. A lower number indicates
fewer and/or less severe defects. Or, (b) quality of product
considers the weighted errors in the final product divided by
the new/changed lines of code (LOC). This metric is simi-
lar to (a), however takes into consideration the code of the
already shipped version. Last but not least, (c) test im-
provement is measured by the weighted errors found by the
test team divided by the changed/new LOC. This measures
the relationship between the errors found in testing and the
size of the finished and shipped product. A high score indi-
cates a higher number or more severe defects and ultimately
indicates also the effectiveness of the test team. With their
analysis, the team discovered that the quality of the tested
software between the two releases had gotten worse, took
more time to test and that the ratio of testing cost to de-
velopment cost was lower. These results indicate that, on
the one hand, the testing team got more efficient and, on
the other hand, the second version tested seemed to have a
significant increase in complexity. From these results, the
researchers concluded, that the proposed metrics helped in
identifying shortcomings as well as improvements in soft-
ware testing effectiveness of the IBM teams and proposed to
include the metrics in further development processes. How-
ever, it was also noted, that the proposed metrics do not
seem to be sufficient enough in giving suggestions for the
process improvement.

While these proposed metrics can form one possible method
in assessing test effectiveness, also other testing methodolo-
gies can play an interesting part in doing so. In the following,
we want to go through some select interesting methodologies
to present.

The research team of Bures and Ahmed [3] investigated
the effectiveness of combinatorial interaction testing (CIT)
in software testing. Here the two researchers proposed the
use of CIT methodology and investigated in how far the
number of specific test variable combinations is necessary
in order to reliably predict defects in software. Therefore,
the authors examined different folding techniques and came
to the conclusion that ultimately a three-way combinatorial
test offered a high recognition value of mutants introduced
into the system under test, whereas a two-way combination
was insufficient.

While the testing concept of symbolic execution was first
introduced in the late seventies, and therefore is far from
new, it only became technically viable and popular in recent
years. With symbolic execution, a system under test is not
executed with actual variables but with symbolic placehold-
ers instead. Once a diverging point, e.g. an if... else...

statement, is reached, the divergence parameters are added
to a set of constraints exactly describing the path taken.
When the symbolic execution then has reached all possible
paths or consumes all its computational resources, the path

constrains then are evaluated with a solver to receive ac-
tual valuations of the variables. With that the paths can be
reconstructed and defects in the code can easily be found.
This is especially helpful for developers in order to reproduce
defects. However, while symbolic execution can be advanta-
geous to use, there are also some limitations to it. Mostly,
it is hard, if not impossible, to evaluate certain types or
functions in a program. This leads to untestable code, as
the states can simply not be modeled. Additionally, sym-
bolic execution has a problem, once paths are introduced
which can be infinitely long or if there are too many possi-
ble branches. This means that symbolic execution does not
scale well.

As symbolic execution offers an interesting approach for
software testing, the two researchers Cadar and Sen [4] in-
vestigated the back-then current state of symbolic execu-
tion in the year 2013. In their paper, the authors presented
techniques of symbolic execution used to counteract some
of the downsides, gave insights in problems and ongoing
challenges, suggested some solutions, and finally, presented
popular tools for symbolic execution testing. After an ex-
tensive introduction to symbolic execution, the researchers
presented two techniques for improving the use of symbolic
execution. First, Concolic Testing is a technique, where
symbolic execution gets mixed with concrete execution. For
that, the initial valuations are (randomly) selected prior to
the test execution. During the execution, the branching be-
havior is recorded and once the test has reached an end, cer-
tain constraints are picked by a tree search algorithm and
inverted to selectively direct the execution in another, yet
undiscovered branch of the execution tree during the next
execution. That way, the critical valuations are generated
through actual testing and probing only a few constraints
need to be evaluated. The second approach, Execution-
Generated Testing also uses mixing of concrete and symbolic
executions. Here, the testing algorithm decides whether all
valuations in a current step are discrete or symbolic. If all
are discrete, the testing continues discretely, as if the pro-
gram would be executed in that moment, but if at least one
of the variables has a symbolic valuation, a symbolic evalu-
ation of the next processing step is used. Both these tech-
niques reduce the computational cost of symbolic execution
as they make use of actual discrete valuations. Furthermore,
these dynamic approaches also reduce or completely elimi-
nate problems with parts of the code, that cannot be tested
via pure symbolic execution.

As already mentioned above, symbolic execution has some
problems. In the next part of their paper, the authors rea-
soned about these challenges: Usually, the amount paths
increase exponentially with the number of branches in the
code. As the computational cost for exploring all of those
paths, only a select however important number can be vis-
ited in a given time frame. According to the authors, there
are two main methods to countermeasure path exploration:
heuristic measures and sound program analysis. The for-
mer one uses, as the name suggests, heuristics to priori-
tize paths over others. Often, these heuristics are selected
in such a way, that high branch or statement coverage is
reached. However, also other approaches can be effective
such as static control-flow graphs – guiding the exploration
to undiscovered branches using graphs metrics such as dis-
tance or execution times –, random testing – make key de-
cisions based on randomness, e.g. select a branch randomly

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

– or evolutionary search – using a fitness function for deci-
sion making. The second approach uses methods form the
program analysis and verification theory. Here, it is pos-
sible to use the constraint solver in order to make certain
decision. This might work fine, but also leads to few com-
plications. Alternatively, one tests the program repeatedly
and checks if two branches converge together, in which case
one can assume that after their convergence, they will result
in the same execution path. Next, the researchers explore
the problems of constraint solving. According to Cadar and
Sen, the satisfiability checking and solving of clauses gener-
ated oftentimes is the main bottleneck. As a solution, one
needs to try constraint elimination and incremental solving.
In the former, the unused or irrelevant variables are elimi-
nated from the set of path constraints to shrink it and in the
latter, clauses from the constraint set are reused in order to
eliminate duplicate solving and thus speed up the process-
ing. As last two challenges, concurrency and memory man-
agement are named. Lastly, the researchers conclude their
paper with a set of several tools used for symbolic execution
testing, each with their advantages and disadvantages.

Most of the papers presented a platform-independent and
often generic approach. Many of those can also be applied
for testing mobile platforms, such as apps. However, we
found only a few papers concerning those in particular. Nev-
ertheless, we want to include also the platform dependent
research in order to give a better understanding on how test
effectiveness is tackled here.

Regarding mobile platforms, Patel et. al. [25] examined
the testing framework UI/Application Exerciser Monkey11

or Monkey for short with the goal to evaluate if it can ef-
fectively generate and conduct test on Android applications
regarding coverage. The researchers conducted experiments
on actual applications with a large user-base and logged the
behavior during the tests. To the surprise of the authors,
all applications crashed under test load, some of them even
after just a few seconds (e.g Instagram12 after just 7 seconds
or Splitwise13 after 12 seconds), whereas the average time
until a crash was 85 seconds. Furthermore, it was found
out that the parameters of Monkey had no significant influ-
ence on the effectiveness, i.e. coverage, in the specific test
environment. While testing the granularity of the produced
test coverage, it was additionally noted that the testing with
Monkey offered a rather simple and quick way to produce
block coverage. This is, according to the authors, due to a
mostly shallow method structure, supported by a low path
count in the method control flow. In conclusion, this sug-
gests that a coarse coverage at class or method level already
offers a good indicator for fine-grained coverage. Addition-
ally, the team found out that in comparison to manual tests,
Monkey only did two to three percent points worse than the
manually generated tests, which in the analyzing scenario,
was insignificant. Finally, the authors presented that throt-
tling the testing actions also had no significant effect on the
coverage in the given test case.

4. DISCUSSION AND CONCLUSION
As shown by various research presented in this paper, one

can reassuringly say that improving test suite effectiveness is

11https://developer.android.com/studio/test/monkey
12Social Network. See: https://www.instagram.com/
13Expense Manager. See: https://www.splitwise.com/

a crucial part contributing to the quality of software. Factors
like cohesion and coupling between test cases, coverage cri-
teria and other similar notions influence the effectiveness of
test suites. Also there are factors like test suite size that in-
fluences the suite’s effectiveness from the maintainers point
of view, but while executing the test it actually influences
the efficiency and not the effectiveness. Taking these factors
into consideration could lead to improvement in effectiveness
of test suite. For an instance, BDD test framework could be
improved by considering cohesion and coupling of test cases
within the suite. Likewise, test framework for testing Deep
Neural Networks (DNN) could be improved by controlling
test suite size. Due to existence of linear positive correlation
between suite size and number of neurons, increase in neu-
rons would lead to increase in test suite size. Furthermore,
we observed that software testing metrics play a core part in
software testing. These metrics should be kept simple, easily
understandable, coherent, cohesive and only loosely coupled
with other test cases. This enormously helps to keep tests
up to date with the code base to be assessed.

However, metrics about the assessing code, i. e. the test-
ing code, need to be taken with a grain of salt. Research
has shown that high results in test coverage, which indicate
how much of the underlying code is tested, do not always
indicate successful or effective testing. Oftentimes, the tests
are faulty, e. g. bugs might not be correctly identified, but
contribute to the coverage nevertheless. Therefore, it is im-
portant to not only rely on coverage criteria as a measure of
test quality. Constant improvement and inspection of test
code and test effectiveness is needed to ensure the best out-
come and quality of the software project.

5. FUTURE WORK
While we did a relatively broad research and examination

on the topic of factors contributing to the test suite effec-
tiveness, it most definitely is not exhaustive. Most of the
frameworks consider test suite size and coverage criterion
to determine effectiveness. But instead, determining effec-
tiveness by assertion quantity and assertion coverage as sug-
gested by Yucheng Zhang and Ali Mesbah [31] would be
more appropriate. This calculated effectiveness value could
then be used for test case prioritisation to reduce the suite
size. Furthermore, technologies are constantly changing and
new methods for improving software testing will eventually
arise. This consequently means that these might out-date
the results, we were able to gather so far. Therefore, con-
stant pursuit of this topic is needed.

6. REFERENCES
[1] V. Antinyan, J. Derehag, A. Sandberg, and M. Staron.

Mythical unit test coverage. IEEE Software,
35(3):73–79, may 2018.

[2] L. Briand and D. Pfahl. Using simulation for assessing
the real impact of test coverage on defect coverage. In
Proceedings 10th International Symposium on Software
Reliability Engineering. IEEE Comput. Soc, 1999.

[3] M. Bures and B. S. Ahmed. On the effectiveness of
combinatorial interaction testing: A case study. In
2017 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C).
IEEE, jul 2017.

[4] C. Cadar and K. Sen. Symbolic execution for software
testing. Communications of the ACM, 56(2):82, 2013.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://developer.android.com/studio/test/monkey
https://www.instagram.com/
https://www.splitwise.com/

[5] Y. Chen, R. L. Probert, and K. Robeson. Effective
test metrics for test strategy evolution. In Proceedings
of the 2004 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’04, page
111–123. IBM Press, 2004.

[6] Y. Chernak. Validating and improving test-case
effectiveness. IEEE Software, 18(1):81–86, 2001.

[7] P. G. Frankl and O. Iakounenko. Further empirical
studies of test effectiveness. In Proceedings of the 6th
ACM SIGSOFT international symposium on
Foundations of software engineering - SIGSOFT
'98/FSE-6. ACM Press, 1998.

[8] A. Gupta and P. Jalote. An approach for
experimentally evaluating effectiveness and efficiency
of coverage criteria for software testing. International
Journal on Software Tools for Technology Transfer,
10(2):145–160, jan 2008.

[9] IEEE Computer Society, P. Bourque, and R. E.
Fairley. Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0. IEEE
Computer Society Press, Los Alamitos, CA, USA, 3rd
edition, 2014.

[10] L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
Proceedings of the 36th International Conference on
Software Engineering - ICSE 2014. ACM Press, 2014.

[11] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek.
Energy-aware test-suite minimization for android
apps. In Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA
2016. ACM Press, 2016.

[12] R. Just, M. D. Ernst, and G. Fraser. Efficient
mutation analysis by propagating and partitioning
infected execution states. In Proceedings of the 2014
International Symposium on Software Testing and
Analysis - ISSTA 2014. ACM Press, 2014.

[13] R. Just, M. D. Ernst, and G. Fraser. Mutation
analysis for the real world: effectiveness, efficiency,
and proper tool support. In U. Aßmann, B. Demuth,
T. Spitta, G. Püschel, and R. Kaiser, editors,
Software-engineering and management 2015, pages
53–54, Bonn, 2015. Gesellschaft für Informatik e.V.

[14] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering -
FSE 2014. ACM Press, 2014.

[15] G. M. Kapfhammer and M. L. Soffa. Using coverage
effectiveness to evaluate test suite prioritizations. In
Proceedings of the 1st ACM international workshop on
Empirical assessment of software engineering
languages and technologies. ACM Press, 2007.

[16] P. S. Kochhar, F. Thung, and D. Lo. Code Coverage
and Test Suite Effectiveness: Empirical Study with
Real Bugs in Large Systems. In 2015 IEEE 22nd
International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 2015.

[17] L. Lazic and N. Mastorakis. Cost effective software
test metrics. W. Trans. on Comp., 7(6):599–619, 2008.

[18] F. Liu, J. Zhang, and E.-Z. Zhu. Test-suite reduction
based on k-medoids clustering algorithm. In 2017

International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery
(CyberC). IEEE, oct 2017.

[19] A. Marchetto, G. Scanniello, and A. Susi. Combining
code and requirements coverage with execution cost
for test suite reduction. IEEE Transactions on
Software Engineering, 45(4):363–390, apr 2019.

[20] G. Myers. The Art of Software Testing. John Wiley &
Sons, Hoboken, N.J, 2004.

[21] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In Proceedings
of the eighteenth international symposium on Software
testing and analysis - ISSTA '09. ACM Press, 2009.

[22] R. Niedermayr, E. Juergens, and S. Wagner. Will my
tests tell me if i break this code? In Proceedings of the
International Workshop on Continuous Software
Evolution and Delivery - CSED '16. ACM Press, 2016.

[23] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto,
and A. D. Lucia. Automatic test case generation:
what if test code quality matters? In Proceedings of
the 25th International Symposium on Software Testing
and Analysis - ISSTA 2016. ACM Press, 2016.

[24] H. Park, H. Ryu, and J. Baik. Historical value-based
approach for cost-cognizant test case prioritization to
improve the effectiveness of regression testing. In 2008
Second International Conference on Secure System
Integration and Reliability Improvement. IEEE, 2008.

[25] P. Patel, G. Srinivasan, S. Rahaman, and I. Neamtiu.
On the effectiveness of random testing for android. In
Proceedings of the 13th International Workshop on
Automation of Software Test. ACM Press, 2018.

[26] M. Rahman and J. Gao. A reusable automated
acceptance testing architecture for microservices in
behavior-driven development. In 2015 IEEE
Symposium on Service-Oriented System Engineering.
IEEE, mar 2015.

[27] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill,
and R. Ashmore. Structural test coverage criteria for
deep neural networks. In 2019 IEEE/ACM 41st
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE,
may 2019.

[28] D. Tengeri, A. Beszedes, T. Gergely, L. Vidacs,
D. Havas, and T. Gyimothy. Beyond code coverage:
An approach for test suite assessment and
improvement. In 2015 IEEE Eighth International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, apr 2015.

[29] A. Vahabzadeh, A. M. Fard, and A. Mesbah. An
empirical study of bugs in test code. In 2015 IEEE
International Conference on Software Maintenance
and Evolution (ICSME). IEEE, sep 2015.

[30] Y. Wei, B. Meyer, and M. Oriol. Is Branch Coverage a
Good Measure of Testing Effectiveness?, pages
194–212. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[31] Y. Zhang and A. Mesbah. Assertions are strongly
correlated with test suite effectiveness. In Proceedings
of the 2015 10th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2015. ACM Press,
2015.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Automated Testing of Microservice-based Systems

Niklas Münzer
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

niklas.muenzer@rwth-
aachen.de

Marcel Neis
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany
marcel.neis@rwth-

aachen.de

ABSTRACT
We provide an overview of microservice architectures their
benefits and their challenges regarding automated testing
strategies and test frameworks. Microservices are one ap-
proach to split an application into independent parts to in-
crease the scalability and also to improve delivery problems.
We focus on one major challenge which is the testability
of microservices. This is also a problem in monolith appli-
cations, but the shift toward microservices also shifted the
testing focus to more integration testing. The paper reviews
various testing approaches regarding the test pyramid. The
focus of the review is on functional-, fault-tolerance- and
performance tests as these can be found on every layer of
the pyramid. Also, new software like Screwdriver, which is
being used to handle performance and fault-tolerance tests
in large microservice systems, is reviewed. As microservices
are highly scalable the testing complexity also increases. But
testability should not suffer as a result and so a challenge
is to keep it manageable. The review shows that each of
these testing approaches is needed for a full system check,
but applications might specialize in a specific one for results
corresponding to their goals.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

; D.2.9 [Software Engineering]: Management—produc-
tivity, programming teams, software configuration manage-
ment

Keywords
Microservice, Distributed Systems, Automated Testing, Test
Pyramid

1. INTRODUCTION
The recent trend to shift from monolith architecture to-

ward microservice architecture solved a few monolith scaling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

problems, but also lead to new problems in software engi-
neering. Monolith applications represent the classic design,
every feature is include in one application. Compared to
this, microservices attempt to split these features into small
and independent parts. The aim is to increase the scalabil-
ity by distributing independent services across multiple ma-
chines. But this scaling created new problems in the field of
testing the developed software. Testing a monolith software
included unit tests for the modules and integration between
these modules, so mostly internal tests. In microservice ar-
chitectures, testing shifted to more integration testing of
distributed services. So the internal testing shifted to inter-
service testing with services physically decoupled. However,
one microservice can have several units that also need to be
tested on the unit test level as well as on the integration level.
Systems can be tested for certain test aspects like functional
tests or performance tests. The new structure of indepen-
dent services communicating with each other leads to a new
communication layer. Testing this layer appeared to be a
new challenge in software engineering. Because more and
more large companies like Google 1 and Netflix 2 apply the
mircoservice based architecture, the interest in optimal test
strategies and test frameworks increases. In the following
paper, we introduce the microservice architecture, related it
to the classic monolith architecture, show challenges to test
these services and present testing solutions.

2. RELATED WORK
T. Clemson [1] describes a way to systematically test-

ing distributed systems like microservices by referring to
the testing pyramid. The author expand the pyramid by
the additional layers: Component between Integration and
End-to-End and Exploratory on top of the pyramid. The
basic concept of Unit, Integration and End-to-End testing
are described. Unit testing is split into sociable and solitary
methods. Sociable as a black box test variation of unit test-
ing. Solitary uses test doubles, which simulate real objects,
on the connections from the service to its dependencies to
test possible interaction errors. Another relevant part is the
defined Component testing layer which separate a part of

1Google is an American multinational technology company
that specializes in Internet-related services and products,
which include online advertising technologies, search engine,
cloud computing, software, and hardware
2Netflix, Inc. is an American media-services provider and
production company headquartered in Los Gatos, Califor-
nia, founded in 1997 by Reed Hastings and Marc Randolph
in Scotts Valley, California

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

the application and define new test boundaries, including
the use of test doubles to check interactions. Also a impor-
tant detail is the use of contract tests. Each time a service
use another service a contract is defined which mark all val-
ues the given service requested. Now this contract is used
to test if the service differ in its requests.

Savchenko et al. [2] aim to summarize challenges and mi-
croservice testing solutions. They split the testing process
into three testing parts: component, integration, and sys-
tem. The testing process is step by step described starting
with the basic requirements. These are for automatic test-
ing: a well-defined interface and usable testing components
for each of the different code bases. In this context their solu-
tion is presented: an HTTP API based microservice testing
service. The service provides extensions for different code
bases and testing solutions like JUnit. Their results are that
microservice testing is similar to Service Oriented Architec-
ture(SOA) testing with added complexity especially in the
infrastructure. The authors also specify that the complex-
ity can further increase when the microservice uses different
environments.

Ma et al. [3] describe their microservice testing approach
using a graph-based solution with service dependency graphs.
They aim to decrease upcoming problems in the early stages
of development. Each service is represented by a node and
each link to another service as an edge. This leads to a graph
showing all the connections between the service. When In-
tegration tests between these nodes are run, the results can
be shown in the graph to simplify the search for the point of
failure. The graph solution also aims to find cyclic depen-
dencies which could result in a system crash or unlimited
service calls. The authors show that their solution can han-
dle small and large microservice-based systems and is able
to handle complex service interactions.

3. MICROSERVICE ARCHITECTURE FOR
DISTRIBUTED SYSTEM

Microservices are distributed systems, but their focus is
to break down the components into small services. It is
an approach to modulate monolith applications, to increase
the scalability and cohesion for better maintainability. It re-
duces development time and coupling of the system. Classic
monolith applications are limited in size and complexity, as
the full application runs on a system. In large applications
unnecessary or less frequently used features can increase the
complexity and so reduce the performance. There was a
need to improve monolithic applications. Such an approach
to this problem is the use of microservices. Monolith appli-
cations are split into tiny parts, each as an individual service.
These services each handle single functionality. The size is
not limited, but to prevent scaling problems the size should
be kept small. Each service can be modified to work on
different code bases or hardware, increasing optimization.
Microservices use horizontal scaling by distributing services
across the hardware and adding multiple layers of each ser-
vice. This scale-out from microservices handling monolith
scaling problems. The scaling problems result from limited
resources on the hardware. So the vertical scaling of a mono-
lith application is always limited. Microservices use their in-
dependent service structure for the distribution and so scal-
ing of tasks. When service requests a packet in a monolith
application the corresponding answer is sent from a specific

module. With microservices, there might be more than one
layer of this service and so the requesting service does not
have to care from which of these layers the answer comes.
This results in the scaling of the communication rather than
the hardware. Another idea for the use of microservices is
to deliver ideas faster into features and optimize operations,
e.g. databases for specific functionalities. These functional-
ities can be single operations, but can also cluster functions
to modules to provide monolith style interfaces. These ser-
vices can be quickly included without harming other parts
of the application, as the services are loosely coupled. This
allows independent development of these services. They can
be seen as tiny applications with each of its own development
teams.

3.1 Characteristics of a Microservice Archi-
tecture

One of the main characteristics of microservices is the shift
from internal to external communication. The communica-
tion is often web-based with Hypertext Transfer Protocol
(HTTP) as a RESTful API [4] and shifts toward event-based
models. This trend leads to a full API based implementa-
tion of the services. Each service providing a single func-
tion. They commonly used HTTP interfaces to interact with
other Microservices and can be realized by different topolo-
gies like bus, central controller or container-based [5]. The
aspect of the communication between microservices differs
from monolith applications, in these the communication was
often fully internal. Internal in the aspect of communication
between modules inside the application. With microservices,
communication is based on inter-service communication, like
an API. This leads to additional factors with an impact on
communication like latency, bottlenecks in the bandwidth or
timeouts. These factors have a small impact on physically
near services e.g. routing inside a data center. But cus-
tomers mostly use these services from outside the personal
area network of a data center. This leads to different ap-
proaches for handling the communication: HTTP Interfaces
like a RESTfull API or event-based.

REST API.
Representational State Transfer or short REST, is an at-

tempt on handling the communication between services. The
REST technology uses specific constraints to define a struc-
tured interface for individual use. The basic concept is based
on a client-server structure and requests between these using
HTTP (Hypertext Transfer Protocol) [4, 6].

• Client-Server: The use of an interface decouple client
and server from the data storage. This means a client
does not have to handle the underlying structure and
the server not the user interface. The result is a sim-
plified and scalable server structure.

• Stateless: Each request needs to send all necessary in-
formation to the server which are required to process
it. So the stats are fully saved on the client and not on
the server. That increases the independence of each
resource on the server as they are not connected di-
rectly to a specific request. Used resources can quickly
be freed and reused for further requests.

• Cache: Data packets can be marked as cacheable so
a server can reuse this packet for later requests. This

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 1: An example structure using REST API
[6]

can lead to reduced packets sent but needs to be han-
dled with care as an updating packet can be lost which
results in false/outdated packets being requested.

• Uniform Interface: Using a standard and unique inter-
face for all requests simplifies the system architecture.
Requests can only use a specific format which prevents
unknown options and furthermore increase the secu-
rity. The downside of this feature is less efficiency as
specific requests to services matching their implemen-
tation can increase the speed and amount of data send.

• Layered System: Each layer only can see components
of the same layer, which results into caped complex-
ity from the reduced amount of nodes known. Espe-
cially this prevents unnecessary information gain for an
client, which increase the security of the system. On
the server side there is the option to increase scalability
by using load-balancing for the underlying layer.

The effect of the microservice communication is that it
allows communication between physically decoupled loca-
tions. Also, REST is a rather secure communication option,
so services can have public access. Figure 1 describes an ex-
ample structure using microservices with a REST API. The
users do not directly interact with the services. The commu-
nication is handled by a user interface connected to a web
API gateway. Both the web API and the microservices are
connected with REST solutions. This means that only spec-
ified requests are handled and with the Web API gateway
also load balancing as a central node is possible. But this
concept can lead to a single point of failure. The implemen-
tation of the inter-service as also the service to Web API
connection can widely differ. Especially when the hardware
solution has to be considered.

Event-based method.
The idea of event-based communication is that every ac-

tion used by a service is handled as a trigger event. So when
we have two services A, B, and A request something from B.
Then B would answer directly, but there are multiple layers
of B so there is no direct connection to one layer. So this
request is sent as a broadcast to all layers of B and one of

these answers the call. A does not have to care from which
layer of B the answer came which reduces the communica-
tion overhead. This broadcasting would send a message to
every service on the e.g. bus connection. Every service lis-
tening to this connection can then react on its own when
an event occurs. Such an implementation of an event-based
model is for example Serfnode [7]. Each node represents
a service inside the microservice architecture. This system
uses clustering of, also physically decoupled, nodes and ad-
vertise changes as events to these. The only requirement for
this is that every node which wants to join a cluster must
be reachable by an address, so a pair of IP and port. When
a change occurs, e.g. a node join, leave or fail a broadcast
is sent to the cluster to inform all nodes. Also on events
like joins or address changes the new address of a node is
broadcast to the cluster. The clustering of nodes reduces
the number of events each node has to process, these scale
up by the number of nodes joining the cluster. This is im-
portant because in large systems a large number of messages
can slow down the service [8].

Another aspect of event-based communication is that each
service has to listen to the broadcasts all the time. Other-
wise, the service might be unavailable for an unknown rea-
son. This means there must be a service that supervises the
event communication and takes care when services fail to
process an event, by e.g. restarting or excluding from the
system when it might be compromised [9].
Each of these attempts has in common, that a system for
handling the communication between the services is required.
This also means that the effectiveness of this communication
system directly impacts the effectiveness of the microser-
vice. This leads to the shift from REST to more lightweight
communication models, as these reduce the communication
overhead. The basic problems of this external communica-
tion are related to the fact that microservices are distributed
systems, so communication might fail sometimes. Especially
with many services and a lot of messages between these ser-
vices. This means that the internal communication from the
monolith application was outsourced to the infrastructure of
the communication [10].

Figure 2 shows the path from monolith applications to-
ward microservices. The technology was not invented just
in time, as more coupled variations were already used as
so-called SOA, Service-Oriented Architecture. SOA was es-
pecially used in a web-based application and cloud services
[5]. These can be seen as an early more coupled stage of mi-
croservices. The key feature used to be decoupled services
with important functionalities and the option of monitoring
these services. The architecture services are coupled to a
central bus that manages and coordinates the services. This
central bus is used to increase security, use load-balancing
and for simplifying to add services. The structure support
service reusability and service discovery. But these services
are still not independent as they are in microservices, the
coupling with the bus lead to dependencies between the ser-
vices. So when the service needs to update the bus system
it takes down all services as they are fully managed by the
bus. Another problem is the size of these services because
functions and resources might not be properly scaled [12].

3.2 Advantages of Microservices
The key benefits of microservices are scalability, indepen-

dent development, synchronized changes, fast and continu-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 2: Monolithic vs SOA vs microservice[11]

ous delivery of new features and using different frameworks
or libraries for different microservices [13, 14]. Monolith ap-
plications are limited scalable, for various reasons. One as-
pect is the size of the application as it has to be run fully on
the devices. Increasing features or complexity will affect all
users. Adding features in a microservice architecture can be
realized as adding a new service. Such a change affects only
the users of this specific service. This leads to the scalability
as the application is not overloaded with unused services, the
user chooses which of these services should be in the used
application. Another scaling problem is based on the devel-
opment, changes in monolith applications involve the whole
development team. Each change must be verified to prevent
possible errors. Also, a code error or interaction problem
affects the full application. Using microservices can help in
this case, when changing a service only the participating ser-
vice developers and related services, basically, services and
user which use this specific service, are involved. All other
services are unharmed by these changes, so it is possible to
independently develop services with the microservice archi-
tecture. With microservices faster and continuous delivery
of features is possible. The faster aspect results from less
involved developers in a specific change.

Monolith applications update the full application and for
online services, this results in downtime for the service. This
might be less of a problem for big applications with a few
updates per year, but has a big impact on applications like
cloud services. Continuous delivery can be essential for this
type of service. This feature can be achieved by adding
independent services or changing minor linked services inside
the architecture.

3.3 Disadvantages of Microservices
Microservices also entail challenges like orchestration com-

plexity in deployment of multiples services, managing and

controlling tests for each service, the maturity of the team to
coordinate changes, define the service boundaries and con-
trol shared libraries and code reuse [13]. There is no exact
definition of the microservice size, so the definition can vari-
ate from a few hundred to a thousand lines of code. Over-
loading a service can lead to the same problems as using
the classic monolith design. With the growth in size and
complexity of the microservice, the number of managed and
monitored services also increases. A central controller might
be less usable with a scaled system, the number of occurring
events harm the chance of choosing the right decision in
real-time. Another aspect is the use of a monolith part as a
central controller which leads to all downsides of the mono-
lith architecture. Distributed systems are fragile and so the
failure handling is a downside of microservices. In the classic
monolith architecture just a few or none external calls where
made. Services used to be clustered inside of packages and
the majority of calls where internal. With microservices, the
internal calls shifted toward the ’communication layer’. The
components of the system decoupled into services and com-
munication might fail. Failure sources can be the hardware,
local unavailable systems or a message overload of the ser-
vice. Especially, the external communication can timeout as
the services might be physically decoupled. Another prob-
lem is located in the development. The independent devel-
opment of services can lead to different interpretations of the
functionality, complexity or architecture. Each development
team working on a different service still has the opportunity
to communicate future plans. This includes the structuring
and distribution of functionalities across all services. This
can lead to multiple functionalities of equal services, with
different code handling.

4. AUTOMATED TESTING OF MICROSER-
VICES

Testing a microservice-based application differs from test-
ing a monolith application. Monolith applications and their
parts work on the same basis, a framework. With the in-
vention of microservices, these parts of the application got
outsourced to small services. So the internal testing of a
part like a package is equal to an integration test of this
part as an independent service in the microservice archi-
tecture. Classic designs of testing an application follow the
testing pyramid. The focus is on Unit tests which still have a
leading role in testing microservices, followed by integration
tests. Integration in monolith applications needs coopera-
tion from all involved developers. In a microservice architec-
ture only the developers of this service and from each service
the tested service reach, by using API interfaces, needs to
be concerned.

4.1 Testing Pyramid
The testing pyramid first invented by Mike Cohn is repre-

sented in figure 3 and uses the classic testing process: Unit,
Service and User Interface testing. This structure might be
outdated for microservices and must be improved. There are
a few attempts for such improvements: adding new layers,
renaming or shuffling [1]. In Cohn’s article, he describes the
layers and their meaning about the position and size. The
bottom layer, Unit testing, describes the most efficient and
impacting aspect of testing. These Unit tests can be written

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 3: Testing pyramid by Mike Cohn [15]

and executed fast. Cohn notes the impact is already given
while developing the service as the results can be accurately
compared to usual bug reports. The second layer, Service
testing, refers to a feature of the code as a service. This
layer represents the middle way between the low costs, in
the form of time to write and execute, Unit testing and ex-
pensive UI testing. UI or User Interface testing is expensive
in writing and executing time, as each time a test case runs
not only the specific functionality is tested but also every
code the functionality use. This leads to the fact that these
UI tests need more time to write and execute compared to
Unit or Service tests [15]. Compared to microservices the
pyramid is still viable but needs to, at least, rename some of
the layers. A modern but small version of the test pyramid
would be Unit, Integration, End-to-End (E2E) testing, from
bottom to top. Unit testing still applies to microservices be-
cause compared to a monolith application is each service the
same, just smaller. E2E testing as equivalent to UI testing
is related to the fact that microservices are not directly used
by a user. Microservices describe the underlying infrastruc-
ture and so it is not directly a software solution. So the E2E
layer acts the same as a user interface testing. Each time a
test runs, full code structure generating the tested feature
is checked. Checking the code multiple times lead to expen-
sive results [16]. The middle part Integration just differs in
its implementation for microservices compared to the Ser-
vice layer. Service is defined by Cohn as the testing of the
interaction from each service with each other. These interac-
tion tests between modules inside an application can lead to
lower-cost testing by reducing the writing time of test cases
and the execution time [15]. In microservices interaction
need to be tested inside each service as an own application
but also between each service. So the Service/Integration
layer can be seen as a doubled layer because the technique
needs to be applied twice for microservices. The abstract
concept of the testing pyramid does not show solutions for
the testing, so the fundamental aspects of each layer need
to be extracted.

4.2 Test types
There are several aspects of the software that can be in-

spected. At first, the software should be working correctly.
Functionality is the most essential aspect of the software.

If the functionality of the software is not given, the perfor-
mance of it is irrelevant. If the software works correctly the
resiliency of the system could be important. What if ser-
vices go down? Does the whole system break down or do
the other services continue to work? Another focus could
be the performance of the system, the run time of single
services or whole test scenarios could be analyzed. Every
test type mentioned can be evaluated with the help of the
test pyramid and used in each stage. These test types have
different purposes but need to considered while designing a
test for an application.

4.2.1 Functional Testing
Functional Tests will be found in every layer of the test

pyramid. In the beginning, the functionality of the smallest
units of the overall system will be tested. It is also possible
that one microservice has several units that can be tested.
For this purpose, unit tests are the most suitable [17]. But
there are two ways to test a unit in software: black-box test
and white-box test. Black-box tests are only considering
the interface. The input parameters are often assigned to
different equivalent classes, for example, positive numbers,
negative numbers, zero and expected specific outputs. But
the implementation of the unit is insignificant for the black-
box test. One advantage of black-box tests is that there are
well-suitable for a test-driven development (TDD) approach
[18]. The test case can be written first and the code im-
plementation afterward. With this approach, there will be
a well-written test suite which is very important when the
code base increased. On the other hand, white-box tests are
not suitable for the TDD approach because to write a white-
box test you need to know how the functionality is imple-
mented. Nevertheless, a white-box test is way more expres-
sive and reliable than a black-box test because they cover
every path of a code base and black-box tests might miss
important cases. Because the functionality of a unit is the
most important aspect and it often has a manageable code
base the white-box tests are recommended for this purpose.
If all white-box tests for every unit of a microservice pass,
the microservice itself can be inspected on his functionality.
Here it depends on the size and complexity of the microser-
vice whether to use black-box tests or white-box tests. If
the microservice uses an HTTP interface and responds with
JSON files it is helpful to use a Consumer-driven Contract
(CDC) test [19]. By using CDC tests the consumer who
wants to make use of service defines a contract. In this Con-
tract, the syntax of the expected response is well-defined.
The consumer defines his expectations on a specific request.
An example of such a contract is represented in figure 4.
The consumer sends an HTTP request with the parameter
”/person/1” and expects a ”Status OK”, an id, a name, and
a surname. The content of the response will not be tested
here, only the schema will be matched. The advantage of
a consumer written contract is that the consumer better
knows the usage of the microservice than the microservice
developer themselves. Additionally unused responses in the
service can be eliminated. This contract then can be checked
automatically for the microservice. This test strategy si-
multaneously covers parts of the integration tests because if
the interface is well defined and checked, two microservices
speaks on the same syntactic level. A more modern way to
communicate between microservices is an event-driven ar-
chitecture [21]. When a microservice wants to share some

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 4: Example of a Contract [20]

piece of work it produces an event that contains the output
of its work. Any consumer service which is interested in
the results of the provided service consumes this event. Un-
like with REST, services that create requests do not need to
know the details of the services consuming. One advantage
of this approach is that the events can be stored in queues or
buffers and the service would not be blocked by waiting on a
response of a consumer. Furthermore scaling becomes easier
because if new microservices are interested in existing task
solvers, they only need to subscribe to them. A disadvan-
tage of an event-driven microservice architecture is that it is
challenging to provide the microservice functionality in pub-
lic or public APIs that are required in your software. Also
on an event-driven microservice architecture, it is possible
to use CDCs with the difference, that now we have several
consumers who will test the same event. If we go higher in
the test pyramid we need to check the integration between
several microservices. For this purpose mocks become im-
portant and helpful [22]. Mocks simulate the behavior of
services. It is very time-consuming and unreliable to run
integration tests on the runtime environment. If external
APIs like the GitHub API will be used, a network connec-
tion will be needed, the latency can be time-consuming and
there is no impact on whether the service is down or not.
Furthermore, there is no longer control over the data that
will be used by the external service. To avoid these problems
mocks will be used. Mocks fake such services on the local
environment. Thus there is no internet connection needed
and a fast correct response can be guaranteed. To solve
the problem that there is no control over the data that will
be received mocks can respond with data that is expected.
There is a way to combine CDCs with mocks. Mocks simu-
late the response which is specified in the contract and the
consumer is decoupled from the provider and can be tested
independently. Providers can also decouple from consumers
for their testing. Mocks can be used to simulate consumer’s

Figure 5: Thin Thread tree of a banking system
[16]

requests which are defined. On the top layer, the E2E test
will be attended. Tsai proposes an approach to design E2E
integration testing, including test scenario specification in
his paper [16]. His approach is to generate test cases sys-
tematically by using thin-threads. For example, the E2E
functionality of a banking system can be tested by defining
a thin thread tree, like in figure 5.

But testing is not limited to the execution of atomic func-
tions. It is also possible to test a complex combination of
atomic functions.

4.2.2 Fault-Tolerance Testing
Fault-tolerance tests check the resiliency of the overall sys-

tem which can occur by failures such as node failures or
network failures. To ensure that the system operating prop-
erly commonly occurring fault can be simulated by injecting
them and evaluate the consequences. For example, if a shop-
ping website has a rating system then it should be possible to
buy items even if the rating service is down. The whole sys-
tem should not completely break down if one service is not
available. To prevent this scenario the individual services
should simulate a downtime while the overall system will
be monitored. Because software build in a microservice ar-
chitecture involves many independent components that may
not be reachable at any time, it is important that the over-
all system is not breaking down. This test type is settled
in the integration- or the E2E-layer of the test pyramid, be-
cause only components or microservices will be deployed on
different containers or servers. The following test method
simulates downtimes of services and it is difficult to classify
this method as a black or a white-box test. No input and
output can be checked. Moreover the absence of services will
be tested. Software often contains different types of compo-
nents like load balancers (LB), network cores, service node
or database nodes. These components have different types
of failures such as high CPU, high memory utilization, full
node failure, LB failure and network failure. They affect the
behavior of overall system differently.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

To realize an automated fault tolerance test approach,
Adithya Nagarajan [23] declares five requirements :

• Ability to inject faults in a controlled manner

• Representation of system topology

• Identification of appropriate faults to inject on a se-
lected machine

• Recovery from fault state

• Metrics representing the health of the overall system

He introduces a test tool that satisfies all the above require-
ments. It is called Screwdriver and is developed by the
Groupon 3company [24]. The infrastructure of Screwdriver
is shown in figure 6.

Figure 6: Infrastructure of the Screwdriver frame-
work [23]

A Capsule Builder injects faults in a controlled manner.
On every fault injection request, a Capsule is built to solve
all the above requirements. It exposes a secure REST API
through which we can control the fault, and stop it if nec-
essary. It uses a Topology Translation Service which stores
the system topologies in a SQL datastore to understand the
service dependencies. In the so-called Playbook, the differ-
ent types of appropriated faults will be stored. Using this
Playbook service, one can define the set of scripts, and the
commands to inject a fault, and also to abort the fault.
Groupon builds a Metric Adapter to observing the behav-
ior of the machine when injecting a fault using the Capsule.
All machines are equipped with agents to monitor the host
both on the system level as well as the application level.
The monitors uses the metrics published by each host, and
alerts on any outliers based on custom thresholds. It can be
adapted with any given metrics system such as RRDtool,
and Splunk [25, 26].Theses tools aim to handle time series

3Groupon is an American global e-commerce marketplace
connecting subscribers with local merchants by offering ac-
tivities, travel, goods and services in 15 countries

data such as network bandwidth, temperatures or CPU load.
The so-called Capsule component guarantees that a fault in-
jection run can be killed and recovered at any time. Faults
are configured as Java objects and are run as bash scripts
thereby providing a layer of abstraction. Ming-Yee Laia and
Steve Wang recommended a so-called Software Fault Injec-
tion Testing (SFIT) technique in their book ”Software Fault
Tolerance” [27] which is similar to the Groupon companies
approach. There is no need for waiting on occurrence of fail-
ures and testing happens in a systematic way [27]. In the
pursuit of methodology for testing fault tolerance, Ming-Yee
Laia and Steve Wanga also define several challenges:

• Complexity of telecommunications and software

• Dormancy of faults

• Diversity of telecommunications systems

• Constraint of resource availability

Because the book ”Software Fault Tolerance” was published
in 1995 and ”Screwdriver” was published in 2016 they have
different views on how a Fault Tolerance Testing Tool should
be designed. The Complexity of telecommunication and
software is comparable with the representation of the system
topology, both agree that the systems must be understood to
test the components and services. One aspect which Screw-
driver my not be put attention on but Ming-Yee Laia and
Steve Wang do, is the dormancy of faults. Some faults may
only be triggered when a system is under extreme stress,
abnormal use, or severe failures. Ming-Yee Laia and Steve
Wang established that services have different telecommuni-
cation interfaces but today this is not a problem anymore
because most developers offer their product on an API In-
terface like weather data or the Git API. On the other hand,
Ming-Yee Laia and Steve Wang do not consider the Recov-
ery Steps which the Groupon company did. Furthermore,
they do not care about the metric representing the health
of the overall system. As seen in the following both prefer a
Fault Insertion method to test the underlying system. The
testing Methodology from Ming-Yee Laia and Steve Wang
is depicted in figure 7. The Proactive Software Architecture
Analysis step, the Reactive Root Cause Analysis on trou-
ble reports step and the test selection step are all Pre SFIT
Steps which will be executed before the actual test will be
running. Ming-Yee Laia and Steve Wang tried to analyze
the software architecture in a proactive way similar to the
Groupon company by analyzing the system topology. Addi-
tionally, the root cause faults infuse in the test cases. These
could result from internal testing or external field problems
like customer reports. They help to identify common prob-
lems. Both approaches have a library or a Playbook where
they store different test cases and fault insertions. The test
set needs to be selected before the actual SFIT testing. Re-
garding Ming-Yee Laia and Steve Wang, the test set should
consider criteria like test cases for errors that have direct
customer service impact. If the test cases were selected the
tests will be planned by writing scripts that inject different
faults in the system, for example, the break down of an ex-
tern API should be simulated. Then the actual SFIT step
will be executed the fault insertion step involves the actual
insertion of faults, while the test execution trigger will ac-
tivate the inserted faults by input values from the user for

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 7: SFIT Methodology [27]

example. If the fault is inserted the overall system reac-
tions need to be observed. Finally, the Post SFIT step will
be executed and the test results which were recorded need
to be analyzed and evaluated and after that the test case
library can be updated if the test coverage were assessed.
Summarized both approaches have three steps in common:
Analysing the underlying system, creating test cases, insert-
ing faults, observe the behavior of the system and evaluate
the results. If the overall system has been passed the fault
tolerance test the performance of the software can be in-
spected.

4.2.3 Performance Testing
Performance tests are located on the system level and be-

long to black-box tests according to Camargo [13]. Primar-
ily the performance which the user experience on the end
product is the most important because it could affect buy
decisions for users. But to ensure good performance on the
end product the single microservice has to be performant.
Performance tests measure the throughput and the response
time of selected services or the overall system. Performance-
related tests are load tests, stress tests, and capacity tests.
Because with a microservice approach there are single and
well-defined tasks the measurement of the above aspects is
much easier than in a monolithic system. On the following
approach by Camargo, the microservices communicate over
HTTP operations like GET and POST. To test metrics like
throughput and response time of microservices a test runner
is needed which sends a request to microservice and measure
the criteria with tools like JMeter. Because the test should
be executed in an automated way the test runner needs to
know which request is possible to a microservice and what
is the expected response. By increasing the number of mi-
croservices in a system, it is costly to write every possible
request on a microservice. For this purpose, Camargo devel-
oped a framework that automated this process. The basic
idea is that the test runner can send an OPTION request to
a microservice and get a response with the test specification
in a JSON schema. This test specification contains all possi-
ble request which can be sent to the microservice, for exam-
ple, a POST command to save a new financial transaction
in a banking system or GET request to receive the trans-
action by id. The framework for performance test (FPTS)
build these test specification and delivers them to the test
runner. Figure 8 shows the procedure of the way the test
specification will be added to the FTPS.

Every time a service client runs an HTTP request (GET,
POST, DELETE or PUT) the FTPS processes this request
by saving the structure a forwarded them to the REST ser-
vice which then gives a response to the service client. Fur-
ther in his paper, he shows this framework does not notice-
ably affect the performance of the system itself. Sai Prakash
describes an approach for performance tests on event-driven
microservices [11]. Event-driven microservices communicate
over messages. Microservices can subscribe to queues and
receive all messages that will be put in this queue. The ad-
vantage of this approach is that several microservices can
subscribe to the same queue which results in less communi-
cation overhead. The performance test described by Prakash
works as follows. A tool like JMeter sends numerous mes-
sages to a so-called Notification Service and then calculate
the metrics like the throughput or the response time.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 8: Framework Behavior for HTTP Requests
[13]

5. DISCUSSION
Comparing different testing strategies for microservices

and their benefits, but also we have to keep the downsides
in mind. Tailing a system under development around test-
ing can lead to a better quality of the service. First, we
start with the functional tests there we have introduced two
strategies: black-box test and white-box test. Both have
their advantages and disadvantages it depends on the con-
cept the team developed the software. If a TDD approach
will be preferred the white-box test is not suitable. But if
the path coverage must be on 100 % a white-box test should
be used. If teams have enough time and want a very high
quality of code both tests can be implemented. First, they
write a black-box test for the specific service, then the code-
base will be implemented and finally, a white-box test can be
created. Next, we introduced CDCs. With these tests, it can
be guaranteed that all service speaks the same language but
it is not guaranteed that the system works correctly. For this
purpose, Tsai has introduced an approach that tests several
scenarios and cases by simulating systematically users be-
haviors. After that, we focus on fault tolerance testing here
two approaches will be opposed. The one from Groupon and
Lyu but there also resemble in a few aspects. For example,
the Screwdriver tool developed by Groupon does not con-
sider about root cause analysis or trouble reports. On the
other hand, screwdriver attaches great importance to recov-
ery from fault states and Lyu does not broach this subject.
Both use fault insertion to systematically check different test
cases. Finally, we approached for performance tests. There
we had an approach published by Camargo and one pub-
lished by Prakash. They use different communication bases.
Camargo technique is based on a simple HTTP communi-
cation and Prakash uses event-driven microservices which
internal is based on HTTP communication but not visible
to the outside.

6. CONCLUSIONS
Automatic testing of an application that is based on a mi-

croservice architecture is different compared to a monolith
application. The problems of testing a monolith applica-
tion were not solved by using the microservice architecture,

they shifted and also created new problems. But on the
other hand, microservices simplify the building and main-
tenance of applications compared to monolith development.
Parts of an application can now be independently developed,
faster delivered and hardware optimized. There were new
test methods developed for several test types. Unit tests on
the lowest layer of the testing pyramid can be implemented
easier than in a monolithic system because a microservice
is a well-defined task. But the less the effort on the unit
test layer the more a good integration between the services
is needed. But the benefits of the microservice prevail which
is recognizable by many large players like Google or Netflix.
They already use microservices in their software. In this
paper, we introduced functional tests, fault tolerance tests,
and performance tests but more aspects can be inspected in
the future like security checks or user interface tests.

7. REFERENCES
[1] T. Clemson, “Testing Strategies in a Microservice

Architecture,” 2014. [Online]. Available: https:
//martinfowler.com/articles/microservice-testing/

[2] D. Savchenko, G. I. Radchenko, T. Hynninen, and
O. Taipale, “MICROSERVICE TEST PROCESS :
DESIGN AND IMPLEMENTATION,” 2018.

[3] Y. C. W.-T. L. S.-J. L. N.-L. H. Shang-Pin Ma,
Chen-Yuan Fan, “Using service dependency graph to
analyze and test microservices,” IEEE Software, 2018.
[Online]. Available:
https://ieeexplore.ieee.org/document/8377834

[4] R. T. Fielding, “Representational state transfer
(rest),” 2000. [Online]. Available: https://www.ics.uci.
edu/˜fielding/pubs/dissertation/rest arch style.htm

[5] C. Esposito, A. Castiglione, and K.-K. R. Choo,
“Challenges in Delivering Software in the Cloud as
Microservices,” IEEE Cloud Computing, vol. 3, no. 5,
pp. 10–14, Sep. 2016.

[6] S. S. Divyanand Malavalli, “Scalable microservice
based architecture for enabling dmtf profiles,” IEEE
Software, no. 11, Jan. 2015. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/7367395

[7] waltermoreira, “Serfnode,” May 2015. [Online].
Available: https://github.com/waltermoreira/serfnode

[8] R. D. Joe Stubbs, Walter Moreira, “Distributed
systems of microservices using docker and serfnode,”
IEEE Software, no. 7, 2015. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/7217926/

[9] D. T. Björn Butzin, Frank Golatowski, “Microservices
approach for the internet of things,” IEEE Software,
no. 21, Nov. 2016. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/7733707

[10] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and
S. Tilkov, “Microservices: The Journey So Far and
Challenges Ahead,” IEEE Software, vol. 35, no. 3, pp.
24–35, May 2018.

[11] S. Prakash, “Performance Testing of Event-Driven
Microservices,” Dec. 2018. [Online]. Available:
https://medium.com/capital-one-tech/performance-
testing-of-event-driven-microservices-f5de74305985

[12] D. D. Ervin Djogic, Samir Ribic, “Monolithic to
microservices redesign of event driven integration
platform,” IEEE Software, May 2018. [Online].
Available:

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/
https://ieeexplore.ieee.org/document/8377834
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://ieeexplore.ieee.org/abstract/document/7367395
https://ieeexplore.ieee.org/abstract/document/7367395
https://github.com/waltermoreira/serfnode
https://ieeexplore.ieee.org/abstract/document/7217926/
https://ieeexplore.ieee.org/abstract/document/7217926/
https://ieeexplore.ieee.org/abstract/document/7733707
https://ieeexplore.ieee.org/abstract/document/7733707
https://medium.com/capital-one-tech/performance-testing-of-event-driven-microservices-f5de74305985
https://medium.com/capital-one-tech/performance-testing-of-event-driven-microservices-f5de74305985

https://ieeexplore.ieee.org/document/8400254

[13] A. Camargo, I. Salvadori, R. Mello, and F. Siqueira,
“An architecture to automate performance tests on
microservices,” Nov. 2016, pp. 422–429.

[14] L. Chen, “Microservices: Architecting for Continuous
Delivery and DevOps,” in 2018 IEEE International
Conference on Software Architecture (ICSA), Apr.
2018, pp. 39–397.

[15] M. Cohn, “The forgotten layer of the test automation
pyramid,” 2009. [Online]. Available:
https://www.mountaingoatsoftware.com/blog/the-
forgotten-layer-of-the-test-automation-pyramid

[16] W. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal,
“End-to-end integration testing design,” in 25th
Annual International Computer Software and
Applications Conference. COMPSAC 2001, Oct. 2001,
pp. 166–171, iSSN: 0730-3157.

[17] D Language Foundation, “Unit Tests.” [Online].
Available: https://dlang.org/spec/unittest.html

[18] S. saini, “How TDD Changed the Way I Approach
Software Development,” Oct. 2019. [Online]. Available:
https://medium.com/better-programming/how-tdd-
changed-the-way-i-approach-software-development-
38509263f9ec

[19] T. Hombergs, “7 Reasons to Choose Consumer-Driven
Contract Tests Over End-to-End Tests,” Nov. 2017.
[Online]. Available: https://reflectoring.io/7-reasons-
for-consumer-driven-contracts/

[20] P. Software, “Getting Started · Consumer Driven
Contracts.” [Online]. Available:
https://spring.io/guides/gs/contract-rest/

[21] mostlyjason, “Best Practices for Event-Driven
Microservice Architecture,” Sep. 2019. [Online].
Available: https://hackernoon.com/best-practices-for-
event-driven-microservice-architecture-e034p21lk

[22] J. June, “How to test software, part I: mocking,
stubbing, and contract testing,” Apr. 2019. [Online].
Available:
https://circleci.com/blog/how-to-test-software-part-i-
mocking-stubbing-and-contract-testing/

[23] A. Nagarajan and A. Vaddadi, “Automated
Fault-Tolerance Testing,” in 2016 IEEE Ninth
International Conference on Software Testing,
Verification and Validation Workshops (ICSTW),
Apr. 2016, pp. 275–276.

[24] Groupon and kavin, “Screwdriver: Improving Platform
Resiliency at Groupon.” [Online]. Available: https:
//engineering.groupon.com/2016/java/screwdriver/

[25] Tobias Oetiker, “About RRDtool,” Feb. 2017. [Online].
Available: https://oss.oetiker.ch/rrdtool/

[26] “About Splunk Enterprise.” [Online]. Available:
https://docs.splunk.com/Documentation/Splunk/8.0.
1/Overview/AboutSplunkEnterprise

[27] S. Wang and M.-Y. Lai, Software Fault Tolerance,
1st ed., M. R. Lyu, Ed. Chichester ; New York:
Wiley, Apr. 1995.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://ieeexplore.ieee.org/document/8400254
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://dlang.org/spec/unittest.html
https://medium.com/better-programming/how-tdd-changed-the-way-i-approach-software-development-38509263f9ec
https://medium.com/better-programming/how-tdd-changed-the-way-i-approach-software-development-38509263f9ec
https://medium.com/better-programming/how-tdd-changed-the-way-i-approach-software-development-38509263f9ec
https://reflectoring.io/7-reasons-for-consumer-driven-contracts/
https://reflectoring.io/7-reasons-for-consumer-driven-contracts/
https://spring.io/guides/gs/contract-rest/
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://circleci.com/blog/how-to-test-software-part-i-mocking-stubbing-and-contract-testing/
https://circleci.com/blog/how-to-test-software-part-i-mocking-stubbing-and-contract-testing/
https://engineering.groupon.com/2016/java/screwdriver/
https://engineering.groupon.com/2016/java/screwdriver/
https://oss.oetiker.ch/rrdtool/
https://docs.splunk.com/Documentation/Splunk/8.0.1/Overview/AboutSplunkEnterprise
https://docs.splunk.com/Documentation/Splunk/8.0.1/Overview/AboutSplunkEnterprise

Determining Metric Thresholds for Code Smell Detection:
A Systematic Mapping Study

Lukas Stief
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lukas.stief@rwth-aachen.de

Tim Jentzsch
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

tim.jentzsch@rwth-aachen.de

ABSTRACT
Code smells in software systems indicate possible issues in
the software architecture or its design. They are widely con-
sidered an important indicator for design flaws in source
code. They signal that the software quality and maintain-
ability should be improved through code refactoring. Met-
rics, such as lines of code of a method, are being used to find
code smells in software projects. The definition of thresholds
for these metrics is a difficult process, as its determination
may result in undetected or falsely detected code smells.

This paper provides an overview of current techniques
to define metric thresholds for code smell detection. Ap-
proaches are found and classified by conducting a systematic
mapping study. This is a secondary study investigating all
papers in a given field to identify research gaps. Most of the
articles are using techniques from the following fields: Rule
Based Detection, Probalistic Systems and Machine Learn-
ing. Mainly the categories of Design, Implementation and
Architecture code smells have been investigated. We could
not identify any studies determining thresholds for Energy
and Test smells. Java and its object-oriented nature is being
referenced the most in the papers.

Keywords
software engineering, code smell, metric thresholds, system-
atic mapping study

1. INTRODUCTION
During the development process, bad code structures are

introduced into software [15]. While they do not add func-
tional errors, they can hinder maintenance, readability and
comprehensibility of the code base [10]. Code smells are
indicators of these issues. They are an important indica-
tor that the software quality should be improved to prevent
possible errors [15]. Different metrics, such as the number
of code lines, can be used to find code smells. For exam-
ple, a class with a very large number of code lines could

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2019/20 RWTH Aachen University, Germany.

indicate the need to separate the functionality into multi-
ple classes. To avoid false positive or negative results, it is
essential to choose effective thresholds, which determine if
a smell indicates a valid threat to the software quality [16].
So far, many different techniques have been used to derive
the thresholds, but it is difficult to choose an adequate one
for a given project [1].

To simplify this selection process and to reveal potential
research gaps in this area, this paper presents a systematic
mapping study to classify the different techniques. This is a
type of secondary study that aims to provide a comprehen-
sive overview over a given research topic. It primarily anal-
yses the metadata, title and abstract of the primary studies
to provide a classification scheme of the research area. A
systematic literature review (SLR) is another type of sec-
ondary study which analyses every paper in-depth to pro-
vide answers to more detailed research questions. It could
be conducted after a systematic mapping study.

The remaining paper is structured as follows: Section 2
gives an overview of systematic studies and reviews that are
targeting similar topics. Section 3 describes the research
questions used for this systematic mapping study. In sec-
tion 4 the used methods to execute this study are explained,
resulting in the extracted date presented in section 5. The
data’s interpretation has been done in section 6. The threats
to validity are discussed in section 7 and in section 8 a dis-
cussion of possible research gaps and the studies conclusion
is presented.

2. RELATED WORK
To the best of our knowledge, two mapping studies have

been presented in this research area. Bandi et al. [2] con-
ducted a systematic mapping study, but focused on code de-
cay, a gradual process which negatively affects the software
quality. Kitchenham [8] proposed a preliminary mapping
study about trends in software metric studies. SCOPUS1

has been searched, resulting in 91 relevant papers. Tech-
niques to derive the code smell thresholds have not been
investigated.

Additionally, we identified five SLRs. Rasool et al. [13]
performed a SLR on the detection of code smells in 2015.
They executed the search on Google Scholar2 and identi-
fied 46 relevant studies. Castro Lima et al. [4] performed
a SLR in order to obtain reference values and thresholds
for software metrics. They investigated 19 studies out of

1SCOPUS (scientific database): https://www.scopus.com/
2Google Scholar (scientific search engine): https://
scholar.google.com/

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://www.scopus.com/
https://scholar.google.com/
https://scholar.google.com/

five databases. Fernandes et al. [5] also conducted a SLR
and selected 107 studies out of six electronic data sources.
Gupta et al. [7] presented another SLR which focused on
code smells in Java and reviewed 60 papers. Additionally,
Azeem et al. [1] proposed a SLR specifically to analyze ma-
chine learning techniques to detect code smells.

Furthermore, Vale et al. [16] presented an ad-hoc litera-
ture review on 50 selected articles to identify methods to de-
termine thresholds. However, the study focused only on the
available methods and did not investigate the demographics.
Moreover, it did not aim for completeness and only searched
four electronic databases.

In summary, no systematic mapping study with the focus
on code smell metric thresholds has been performed yet.

3. RESEARCH QUESTIONS
The goal of this research is to give an overview over the

techniques currently used to derive code smell thresholds
and to classify the current solutions. Research questions
(RQs) were defined to steer towards this objective. They
were used to guide the definition of the search string, the
selection process and the data extraction. The presented
mapping tries to answer the RQs.

RQ1 : What are the demographics of the studies, their
authors and their publishers?
Rationale: We are interested in the demographics of the
studies backgrounds: Their publication years, their source
and their authors’ professional background. This way, we
can determine a trend of the interest in this research topic.

RQ2 : Which techniques can be used to determine code
smell metric thresholds?
Rationale: Since there are different kinds of code smells
and their corresponding metrics, different techniques can be
used to determine thresholds for them. We should give an
overview over the available techniques.

RQ3 : Which domains have been targeted by the given
approaches?
Rationale: Several approaches are available to define code
smell thresholds, but not all of them be suitable for every
business domain. Domains with a lot or very little sup-
port should be highlighted in the study as an indication for
practitioners. We are also interested in the programming
languages referenced in the articles.

RQ4 : Which software tools are mentioned in the stud-
ies?
Rationale: Multiple tools are available to detect code smells
in software systems. The tool used or mentioned in each
study are extracted in order to give an overview available
tools for certain derivation techniques.

4. MAPPING STUDY METHODS
We followed the guidelines provided by Kitchenham et

al. [9] and Peterson et al. [12] to perform the systematic
mapping study. Additionally, we used the study by Li et
al. [11] about technical depth as a reference.

4.1 Study Search

4.1.1 Search Scope
The search scope is an important aspect of a systematic

mapping study, as it directly influences the completeness of

Table 1: Selection of electronic databases

Database Selected
DB1 ACM Digital Library Yes
DB2 CiteSeerX Yes
DB3 dblp Yes
DB4 IEEE Xplore Yes
DB5 IET Digital Library Yes
DB6 ScienceDirect Yes
DB7 Scopus Yes
DB8 Springer Link Yes
DB9 Web of Science Yes
DB10 Wiley Online Library Yes
DB11 Ei Compendex No
DB12 Google Scholar No

the search [11]. In order to perform an exhaustive search
and to find all relevant primary studies, it is necessary to
search in many different electronic databases [3, 9, 12].

We conducted the search in ten electronic databases, which
are depicted in table 1. The investigated databases have
been proposed or used by Brereton et al. [3], Kitchenham et
al. [9] or Li et al. [11]. Additionally we chose to include dblp3

to increase the completeness of the study. We excluded Ei
Compendex, as the trial searches did not yield any relevant
results. Google Scholar was excluded as its contents are
mostly covered by the other databases. Furthermore, the
configuration of the search query is very limited, leading to
many irrelevant results.

The start of the search period is 2002, as the term ‘code
smell’ has been coined at that time [6]. The end is November
24 2019, the time of the search.

4.1.2 Search Strategy
The goal of the search strategy is to gather all relevant

papers in the databases to increase the completeness of the
study. At the same time we also want to minimize the
amount of irrelevant results. Because this is difficult to
achieve with the database search alone, we additionally per-
formed snowballing as described in section 4.3. We used the
following strategy:

1. Trial searches with multiple search strings were per-
formed on each databases in table 1. During this
process we determined effective search strings for the
topic.

2. The search string (software OR code) AND (smell OR

antipattern) AND threshold has been selected for the
formal search.

3. DB1–DB10 were formally searched with the defined
search string.

4.2 Study Selection
During the study selection, the results of the electronic

data bases are filtered manually by the researchers. This
process determines the relevant papers for the data extrac-
tion.

3dblp (computer science bibliography): https://dblp.uni-
trier.de/

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://dl.acm.org
https://citeseerx.ist.psu.edu/
https://dblp.uni-trier.de/
https://ieeexplore.ieee.org
https://digital-library.theiet.org
https://www.sciencedirect.com/
https://scopus.com/
https://link.springer.com
https://apps.webofknowledge.com
https://onlinelibrary.wiley.com/
https://www.elsevier.com/solutions/engineering-village/content/compendex
https://scholar.google.com/
https://dblp.uni-trier.de/
https://dblp.uni-trier.de/

4.2.1 Selection Criteria
We defined different criteria for inclusion and exclusion

of the studies. We included papers that meet the following
criteria:

I1 The paper is a primary study. Some of the secondary
studies were used during the snowballing process, de-
scribed in section 4.3.

I2 The paper is related to software engineering.

I3 The paper is focused on code smell detection metrics
and their thresholds.

We excluded papers according to the following criteria:

E1 The paper is not written in English.

4.2.2 Selection process
The study’s selections process consists of the of the fol-

lowing steps:

1. Study selection by metadata (title and keywords). In
this step, mainly papers about other research areas
(e.g. biology and geology) have been excluded.

2. Study selection by abstract. This step identified most
papers which did not focus on the identification of code
smells in software projects.

3. Study selection by conclusion/full text. Here, we could
exclude studies which did not present techniques to
derive metric thresholds for code smells.

Each step has been conducted by two researchers inde-
pendently. If they disagreed about the inclusion/exclusion
of a study it has been included for the next step. In the last
step, if no agreement could be found, the seminar supervisor
reviewed the paper.

4.3 Snowballing
To increase the scope of the search, snowballing was used.

This is a process where the references of the selected papers
are investigated and filtered according to the selection cri-
teria [17]. For example, papers which do not use the term
‘code smell’, but are still relevant to the research question
can be identified by this technique. We only performed a
single iteration of snowballing.

Additionally, the studies selected by similar literature re-
views [16, 5, 4] have been investigated to improve the com-
pleteness of the search.

4.4 Data Extraction
For answering the defined Research Questions the data

listed in table 2 has been extracted. The drawn data was
recorded on a spreadsheet. The definition of the extraction
has been carried out after reviewing 20 studies.

4.5 Data Synthesis
The extraction was done with the help of spreadsheet tools

and descriptive statistics. The data items D1-D8 (table 2)
have been pulled from each study and recorded in a spread-
sheet. The data has been visualized using plotting tools,
these visualizations are presented in section 5.

D4 was derived by extracting the approach used to de-
termine metric thresholds, they have been categorized into

their fields description. D5 was extracted by categorizing the
papers targeted domain, this was based on the targeted pro-
gramming languages paradigm or the targeted development
environments. When specific programming languages were
targeted solely they were extracted. D6 has been classified
by collecting information about programming languages tar-
geted by the study as well as programming languages used
for showcases and examples. To determine D7 the tools
which were used for showcased or examples or for which the
proposed approach was implemented for were gathered. The
data extraction for D8 has been carried out by tracking the
targeted code smells of each study and then mapping them
to the categories proposed by Suryanarayana et al. [14].

5. STUDY RESULTS
In the following section the results of the study will be

presented. It is structured as follows: Section 5.1.1 depicts
the demographic results, section 5.1.2 shows the approaches
used to derive the thresholds, section 5.1.3 presents the tar-
geted domains and the targeted code smells are listed in
section 5.1.5.

5.1 Search Results
The number of papers after each step of the selection pro-

cess is depicted in figure 1. The search in the electronic
databases returned a total of 429 results. The selection by
metadata reduced the total number of papers to 215. After-
wards, 73 duplicates have been identified, resulting in 142
studies. With the full text selection, 54 relevant papers have
been selected. The snowballing process added 19 papers. In
total, 73 studies have been selected for the data extraction.
The final selection is listed in appendix A.

5.1.1 Demographic Results
The demographic results aim to answer RQ1 by presenting

the statistics obtained by the extraction of D1, D2 and D3.

Classification by Publication Date.
The distribution of studies by publication year is shown

in figure 2. Starting at 2009, the interest in this research
field has increased significantly.

Figure 2: Amount of publications of the selected studies
per year.

Classification by Author Type.
Figure 3 shows the number of studies classified by the

origin of the authors. Most of them work in academics.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Table 2: Data extracted from each study.

Extraction data Description Targeted RQ
D1 Year The year the study has been published in. RQ1
D2 Author Type Wheather the study has been published by academia,

industry or both.
RQ1

D3 Publication Type Wheather the study has been published on a conference,
in a journal, workshop, book or thesis.

RQ1

D4 Presented technique To give an overview of available techniques to determine
code smell metric thresholds the presented derivation
techniques of the studies are presented.

RQ2

D5 Targeted domain The targeted software domains to give an overview of
the approached domains.

RQ3

D6 Programming language To determine the representation of certain programming
languages, the references of studies on them are tracked.

RQ4

D7 Mentioned tools Available software solutions to determine the mentioned metric
thresholds are identified.

RQ4

D8 Targeted code smells For the detection of research gaps, the studies targeted
code smells are tracked.

None

Figure 1: The number of papers after each selection step of the study.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 3: Number of selected studies by origin of the
author.

Figure 4: Number of selected studies by origin of the
paper.

Classification by Publication-Type.
The distribution of the origins of the selected studies is

shown in figure 4. Most of the papers have been released in
either a conference or a journal. Additionally, a few thesis,
books and workshops about this topic have been published.

5.1.2 Approaches Used to Determine Metric Thresh-
olds

The main approaches used to derive the metric thresh-
olds are Probabilistic, Rule Based, Machine Learning and
Iterative approaches. Probabilistic techniques use statisti-
cal or probabilistic models such as Bayesian Belief Networks
and regression algorithms. Rule Based approaches use logic
based models like majority functions and boolean expres-
sions. Machine Learning systems use models such as Artifi-
cial Neural Networks or Support Vector Machines. Iterative
techniques use iterative algorithms, e.g. search based and
greedy algorithms.

These results are depicted in figure 5 and answer RQ2.

5.1.3 Targeted domains
According to RQ3, the extracted studies are mapped to

their approached domain. Almost all code smell research
has been focused on object oriented programming (OOP),
as shown in table 3.

This trend is also observable when comparing the refer-
enced programming languages. Figure 6 shows that Java
has been used the most to evaluate the approaches.

Figure 5: Approaches used to derive the metric
thresholds.

Table 3: The domains targeted by the given approaches.

Targeted domain # of studies
Object Oriented Programming 53
General Software Engineering 11
Web Applications 7
Mobile Applications 2
C Programming 2

Figure 6: Referenced programming languages.

5.1.4 Referenced Tools
In order to answer RQ4, the tools referenced by the studies

are shown in table 4, grouped by the targeted code smell cat-
egory. The extracted tools either have the targeted metric
derivation technique implemented or were used for showcas-
ing examples.

5.1.5 Targeted Code Smells
A large number of code smells have been investigated to

derive the appropriate thresholds. The code smells have
been clustered in the following categories: Design, Imple-
mentation, Architecture, Performance, Energy and Test [14].
Most of the studies are dealing with design smells, while
none of the studies approaches energy or test smells. Fig-
ure 7 shows the number of selected studies per defined cat-
egory.

Figure 7: The code smell categories targeted by the
threshold derivation.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Table 4: Referenced tools depending on code smell category.

Smell category Mentioned tools
Design Analyst4J [S48], CodePro Analytix [S19], Columbus Tool [S15], FindSmells [S65], FxCop [S48],

InFusion [S43, S45], iPlasma [S29, S45], JDeodorant [S45, S60, S65], JSmell [S60], PMD [S29,
S32, S34, S43, S45, S48], Pysmell [S72], Sonar Qube [S19], WekaNose [S12, S30], Xerces [S20, S29]

Implementation Pysmell [S72], Sonar Qube [S19], WekaNose [S73]
Architecture PMD [S34], McCabe IQ [S1], WekaNose [S30]
Performance McCabe IQ [S1]

6. DISCUSSION
There is a steady interest in the derivation of code smell

metrics. Starting from 2009, approximately 6 studies have
been published per year in this research area. Only two pa-
pers have been released in 2019 so far, but it can be assumed
that several more have been written, but not published yet.

The research field is dominated by authors from academic
origin. Only about 10% of the selected studies have been
(partially) performed by practitioners.

Most of the articles have been released on a conference or
in a journal. However, a few have been published as a thesis,
book or workshop.

The majority of approaches uses a rule based concept to
determine the metric thresholds. Probabilistic techniques
have also been thoroughly researched. Not as many studies
investigated machine learning as a possible solution to the
problem. This is still a growing area of research and inves-
tigated in more detail in the SLR by Azeem et al. [1]. Only
8 papers evaluated the potential of iterative processes.

The applicable business-domains of the derivation tech-
niques reveal a big potential for future research. Kitchen-
ham [8] presented that in the area of software metrics, about
a third of papers are related to object oriented programming
(OOP). However, for the derivation of thresholds, we iden-
tified that approximately 70% of the approaches are con-
nected to OOP. This trend is also visible in the selection
of programming languages. Java was used or referenced in
over half of the studies. This observation is also supported
by the SLR of Rasool et al. [13]. They show that 92–95% of
code smell detection tools are based on Java. In contrast to
the rising popularity of Python4, only a few papers used it
or other interpreted languages for their research.

The majority of articles investigated design related code
smells. Here, we find a research gap for energy and test
smells, as categorized by Suryanarayana et al. [14]. None of
the selected papers explored their possible thresholds.

7. THREATS TO VALIDITY
The determination of threats to internal and external va-

lidity follows the definition by Wohlin et al. [18]. A possible
bias of the researchers should be considered during data se-
lection, data extraction and data evaluation.

7.1 Threats to Internal Validity
To avoid threats to internal validity [18], all steps of the

study filtering and data extraction have been executed by
two researchers independently and were discussed by both

4As of December 2019, the TIOBE Index (https://tiobe.
com/tiobe-index/) considers to make Python the program-
ming language of the year for the second time. It has iden-
tified a growing interest in Python.

until an agreement was found. For research steps where
no agreement was found the research’s supervisor was con-
sulted. This approach aims to minimize the influence of
subjective interpretation of each researcher.

7.2 Threats to External Validity
Conditions which hinder the ability to generalize the re-

sults of a study are called threats to external validity [18].
One of those threats is the selection of the search string. We
used snowballing to increase the scope of the search and to
remove a potential bias of the employed search string. The
large number of studies identified by the snowballing pro-
cess (19) indicate that the search string has been too spe-
cific. Most of the added papers did not use the terms ‘code
smell’ or ‘antipattern’ and have therefore been excluded by
the initial search.

8. CONCLUSION AND FUTURE WORK
To present an overview over the research on deriving met-

ric thresholds for code smells, we performed a systematic
mapping study. We conducted an automated search on 10
electronic databases, resulting in 429 papers. They were
filtered according to our criteria and snowballing was per-
formed, leaving 73 relevant studies to be mapped. We ex-
tracted data according to our research questions and pre-
sented it visually.

This mapping study should be used as a starting point for
both primary and secondary studies. While code smells in
object oriented programming languages such as Java have
been well researched, we identified gaps for other systems
like interpreted languages. Additionally, we suggest to ex-
plore thresholds for code smells related to energy and testing
(as defined by Suryanarayana [14]), as we have not found any
research on these subjects.

9. REFERENCES

[1] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang. Ma-
chine learning techniques for code smell detection: A sys-
tematic literature review and meta-analysis. Inf. Softw.
Technol., 108:115–138, 2019.

[2] A. Bandi, B. J. Williams, and E. B. Allen. Empirical
evidence of code decay: A systematic mapping study.
pages 341–350, 2013.

[3] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner,
and M. Khalil. Lessons from applying the systematic
literature review process within the software engineering
domain. Journal of Systems and Software, 80(4):571–
583, 2007.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://tiobe.com/tiobe-index/
https://tiobe.com/tiobe-index/

[4] E. de Castro Lima, de Resende, Antônio Maria P, and
T. C. Lethbridge. The Uncomfortable Discrepancies of
Software Metric Thresholds and Reference Values in Lit-
erature. ICSEA 2016, page 14, 2016.

[5] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and
E. Figueiredo. A review-based comparative study of bad
smell detection tools. In S. Beecham, editor, Proceedings
of the 20th International Conference on Evaluation and
Assessment in Software Engineering, pages 1–12. ACM,
2016.

[6] M. Fowler. CodeSmell. https://martinfowler.com/

bliki/CodeSmell.html, 2006. Accessed: 2019-11-16.

[7] A. Gupta, B. Suri, and S. Misra, editors. A System-
atic Literature Review: Code Bad Smells in Java Source
Code, volume 10408, 2017.

[8] B. Kitchenham. What’s up with software metrics? –
A preliminary mapping study. Journal of Systems and
Software, 83(1):37–51, 2010.

[9] B. Kitchenham and S. Charters. Guidelines for perform-
ing Systematic Literature Reviews in Software Engineer-
ing. 2007.

[10] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical Debt:
From Metaphor to Theory and Practice. IEEE Software,
29(6):18–21, 2012.

[11] Z. Li, P. Avgeriou, and P. Liang. A systematic mapping
study on technical debt and its management. Journal of
Systems and Software, 101:193–220, 2015.

[12] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.
Systematic Mapping Studies in Software Engineering.
2008.

[13] G. Rasool and Z. Arshad. A review of code smell mining
techniques. Journal of Software: Evolution and Process,
27(11):867–895, 2015.

[14] G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for software design smells: Managing tech-
nical debt. Elsevier Morgan Kaufmann Morgan Kauf-
mann is an imprint of Elsevier, Amsterdam and Boston,
2015.

[15] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di
Penta, A. de Lucia, and D. Poshyvanyk. When and
Why Your Code Starts to Smell Bad. In BIGDSE 2015,
pages 403–414, Los Alamitos, California and Washington
and Tokyo, 2015. Conference Publishing Services, IEEE
Computer Society.

[16] G. A. D. Vale and E. M. L. Figueiredo. A Method
to Derive Metric Thresholds for Software Product Lines.
pages 110–119. Institute of Electrical and Electronics En-
gineers Inc, 2015.

[17] C. Wohlin. Guidelines for snowballing in systematic
literature studies and a replication in software engineer-
ing. In Proceedings of the 18th international conference
on evaluation and assessment in software engineering,
pages 1–10, 2014.

[18] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in soft-
ware engineering. Springer Science & Business Media,
2012.

APPENDIX
A. SELECTED STUDIES

[S1] O. Alan and P. Cagatay Catal. An outlier detection
algorithm based on object-oriented metrics thresholds.
In 2009 24th International Symposium on Computer
and Information Sciences (ISCIS 2009), pages 567–
570, Piscataway N.J., 2009. IEEE.

[S2] T. L. Alves, J. P. Correia, and J. Visser. Benchmark-
Based Aggregation of Metrics to Ratings. In Joint
conference of the 21st Int’l Workshop on Software
Measurement, 2011 and 6th Int’l Conference on
Software Process and Product Measurement (IWSM-
MENSURA), pages 20–29, Piscataway, NJ, 2011.
IEEE.

[S3] T. L. Alves, C. Ypma, and J. Visser. Deriving metric
thresholds from benchmark data. In IEEE Interna-
tional Conference on Software Maintenance (ICSM),
2010, pages 1–10. IEEE, Piscataway, NJ, 2010.

[S4] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and
L. B. Said. On the Use of Machine Learning and
Search-Based Software Engineering for Ill-Defined Fit-
ness Function: A Case Study on Software Refactoring.
In C. Le Goues and S. Yoo, editors, Search-based soft-
ware engineering, volume 8636 of LNCS sublibrary. SL
2, Programming and software engineering, pages 31–
45. Springer, Cham, 2014.

[S5] M. T. Aras and Y. E. Selcuk. Metric and rule based
automated detection of antipatterns in object-oriented
software systems. In I. C. o. C. S. Technology and
Information, editors, 2016 7th International Confer-
ence on Computer Science and Information Technol-
ogy (CSIT), Piscataway, NJ, 2016. IEEE.

[S6] D. Arcelli, V. Cortellessa, and D. Di Ruscio. Applying
Model Differences to Automate Performance-Driven
Refactoring of Software Models. In M. S. Balsamo,
W. J. Knottenbelt, and A. Marin, editors, Computer
performance engineering, volume 8168 of LNCS subli-
brary: SL 2 - Programming and software engineering,
pages 312–324. Springer, Heidelberg, 2013.

[S7] D. Arcelli, V. Cortellessa, and C. Trubiani. Ex-
perimenting the influence of numerical thresholds
on model-based detection and refactoring of perfor-
mance antipatterns. Electronic Communications of
the EASST, 59:1–30, 2013.

[S8] D. Arcelli, V. Cortellessa, and C. Trubiani.
Performance-Based Software Model Refactoring in
Fuzzy Contexts. In A. Egyed and I. Schaefer, editors,
Fundamental approaches to software engineering, vol-
ume 9033 of LNCS sublibrary. SL1, Theoretical com-
puter science and general issues, pages 149–164, Hei-
delberg, 2015. Springer.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html

[S9] F. Arcelli Fontana, V. Ferme, M. Zanoni, and A. Ya-
mashita. Automatic Metric Thresholds Derivation for
Code Smell Detection. In Proceedings of the 2015
IEEE/ACM 6th International Workshop on Emerg-
ing Trends in Software Metrics, WETSoM ’15, pages
44–53, Washington, DC, USA, 2015. IEEE Computer
Society.

[S10] T. arsons and J. Murphy. Detecting Performance
Antipatterns in Com-ponent Based Enterprise Sys-
tems. In In Middleware Doctoral Symposium, vol-
ume 7, page 55, 2008.

[S11] K. Asano, S. Hayashi, and M. Saeki. Detecting Bad
Smells of Refinement in Goal-Oriented Requirements
Analysis. In S. de Cesare and U. Frank, editors, Ad-
vances in conceptual modeling, volume 10651 of LNCS
sublibrary. SL 3, Information systems and applica-
tions, incl. Internet/Web, and HCI, pages 122–132.
Springer, Cham, Switzerland, 2017.

[S12] U. Azadi, F. A. Fontana, and M. Zanoni. Poster:
Machine learning based code smell detection through
WekaNose. pages 288–289. IEEE Computer Society,
2018.

[S13] R. Baggen, J. P. Correia, K. Schill, and J. Visser.
Standardized code quality benchmarking for improv-
ing software maintainability. Software Quality Jour-
nal, 20(2):287–307, 2012.

[S14] T. Bakota. Tracking the Evolution of Code Clones.
In I. Černá, editor, SOFSEM 2011, volume 6543 of
LNCS sublibrary. SL 1, Theoretical computer science
and general issues, pages 86–98. Springer, Heidelberg,
2011.

[S15] D. Bán and R. Ferenc. Recognizing Antipatterns and
Analyzing Their Effects on Software Maintainability.
In B. Murgante, editor, Computational science and
its applications - ICCSA 2014, volume 8583 of LNCS
sublibrary. SL 1 - Theoretical computer science and
general issues, pages 337–352. Springer, Heidelberg,
2014.

[S16] H. Barkmann, R. Lincke, and W. Löwe. Quantita-
tive Evaluation of Software Quality Metrics in Open-
Source Projects. In 2009 International Conference on
Advanced Information Networking and Applications
Workshop (WAINA 2011, pages 1067–1072, Piscatr-
away NJ, 2009. IEEE.

[S17] S. Benlarbi, K. El Emam, N. Goel, and S. Rai. Thresh-
olds for object-oriented measures. In 11th Interna-
tional symposium on software reliability engineering,
pages 24–38. 2000.

[S18] T. Beranič, V. Podgorelec, and M. Heričko. To-
wards a Reliable Identification of Deficient Code with
a Combination of Software Metrics. Applied Sciences
(Switzerland), 8(10):1902, 2018.

[S19] M. A. Bigonha, K. Ferreira, P. Souza, B. Sousa,
M. Januário, and D. Lima. The usefulness of soft-
ware metric thresholds for detection of bad smells and
fault prediction. Inf. Softw. Technol., 115:79–92, 2019.

[S20] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh,
and S. Ben Chikha. Competitive Coevolutionary
Code-Smells Detection. In G. Ruhe and Y. Zhang, ed-
itors, Search based software engineering, volume 8084
of LNCS sublibrary. SL 2, Programming and software
engineering, pages 50–65. Springer, Heidelberg, 2013.

[S21] Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, and
B. Xu. Understanding metric-based detectable smells
in Python software: A comparative study. Inf. Softw.
Technol., 94:14–29, 2018.

[S22] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer.
Managerial use of metrics for object-oriented software:
an exploratory analysis. IEEE Transactions on Soft-
ware Engineering, 24(8):629–639, 1998.

[S23] T. Coq and J.-P. Rosen. The SQALE Quality and
Analysis Models for Assessing the Quality of Ada
Source Code. In A. Romanovsky and T. Vardanega,
editors, Reliable Software Technologies - Ada-Europe
2011, volume 6652 of LNCS sublibrary. SL 2, Pro-
gramming and software engineering, pages 61–74.
Springer, Heidelberg, 2011.

[S24] S. Ducasse. Reengineering object-oriented applica-
tions.

[S25] K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lou-
nis, and S. N. Rai. The optimal class size for object-
oriented software. IEEE Transactions on Software En-
gineering, 28(5):494–509, 2002.

[S26] W. Fenske, S. Schulze, D. Meyer, and G. Saake. When
code smells twice as much: Metric-based detection of
variability-aware code smells. In M. Godfrey, D. Lo,
and F. Khomh, editors, 2015 IEEE 15th Interna-
tional Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 171–180. IEEE, Pis-
cataway, NJ, 2015.

[S27] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F.
Mendes, and H. C. Almeida. Identifying thresholds for
object-oriented software metrics. Journal of Systems
and Software, 85(2):244–257, 2012.

[S28] T. G. S. Filó, M. Bigonha, and K. Ferreira. A cata-
logue of thresholds for object-oriented software met-
rics. Proc. of the 1st SOFTENG, pages 48–55, 2015.

[S29] F. A. Fontana, M. Zanoni, A. Marino, and M. V.
Mantyla. Code Smell Detection: Towards a Ma-
chine Learning-Based Approach. In 2013 29th IEEE
International Conference on Software Maintenance
(ICSM), pages 396–399, Piscataway, NJ, 2013. IEEE.

[S30] M. Foucault, M. Palyart, J.-R. Falleri, and X. Blanc.
Computing contextual metric thresholds. In Y. Cho
and A. S. I. G. o. A. Computing, editors, Proceed-
ings of the 29th Annual ACM Symposium on Applied
Computing, pages 1120–1125. ACM, 2014.

[S31] N. Göde and R. Koschke. Studying clone evolution us-
ing incremental clone detection. Journal of Software:
Evolution and Process, 25(2):165–192, 2013.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

[S32] M. Gradǐsnik, T. Beranic, S. Karakatic, and G. Mausa.
Adapting God Class thresholds for software defect pre-
diction: A case study. In M. Koricic, editor, 2019
42nd International Convention on Information and
Communication Technology, Electronics and Micro-
electronics (MIPRO), pages 1537–1542. Croatian So-
ciety for Information and Communication Technology,
Electronics and Microelectronics - MIPRO, Rijeka,
Croatia, 2019.

[S33] S. Hassaine, C. S. Hamel, E. David, and W. Binkley.
Evaluating Design Decay during Software Evolution.
Doctoral Dissertation, Universite de Montreal, Mon-
real, P.Q., Canada, 2012.

[S34] S. Herbold, J. Grabowski, and S. Waack. Calculation
and optimization of thresholds for sets of software met-
rics. Empirical Software Engineering, 16(6):812–841,
2011.

[S35] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based
approach to identifying refactoring opportunities for
merging code clones in a Java software system. Journal
of Software Maintenance and Evolution: Research and
Practice, 20(6):435–461, 2008.

[S36] M. Kessentini, W. Kessentini, H. Sahraoui,
M. Boukadoum, and A. Ouni. Design Defects
Detection and Correction by Example. In 2011 19th
International Conference on Program Comprehension,
pages 81–90, Piscataway, July 2011. IEEE.

[S37] M. Kessentini and A. Ouni. Detecting Android Smells
Using Multi-Objective Genetic Programming. In Pro-
ceedings of the 4th International Conference on Mo-
bile Software Engineering and Systems, MOBILESoft
’17, pages 122–132, Piscataway, NJ, USA, 2017. IEEE
Press.

[S38] M. Kessentini, H. Sahraoui, M. Boukadoum, and
M. Wimmer. Search-Based Design Defects Detection
by Example. In D. Giannakopoulou and F. Orejas, ed-
itors, Fundamental Approaches to Software Engineer-
ing, volume 6603 of LNCS sublibrary. SL 1, Theoret-
ical computer science and general issues, pages 401–
415. Springer, Heidelberg, 2011.

[S39] W. Kessentini, M. Kessentini, H. Sahraoui,
S. Bechikh, and A. Ouni. A Cooperative Paral-
lel Search-Based Software Engineering Approach for
Code-Smells Detection. IEEE Trans. Softw. Eng.,
40(9):841–861, 2014.

[S40] F. Khomh, S. Vaucher, Y.-g. Guéhéneuc, and
H. Sahraoui. A Bayesian Approach for the Detection
of Code and Design Smells. In B. Choi, editor, QSIC
2009, pages 305–314, Los Alamitos, Calif., 2009. IEEE
Computer Society.

[S41] F. Khomh, S. Vaucher, Y.-g. Guéhéneuc, and
H. Sahraoui. BDTEX: A GQM-based Bayesian ap-
proach for the detection of antipatterns. Journal of
Systems and Software, 84(4):559–572, 2011.

[S42] L. Lavazza and S. Morasca. Identifying Thresholds
for Software Faultiness via Optimistic and Pessimistic

Estimations. In A. S. I. G. o. S. Engineering, editor,
10th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, pages 1–
10, New York, NY], 2016. Association for Computing
Machinery.

[S43] S.-J. Lee, L. H. Lo, Y.-C. Chen, and S.-M. Shen. Co-
changing code volume prediction through association
rule mining and linear regression model. Expert Syst.
Appl., 45:185–194, 2016.

[S44] H. Liu, Q. Liu, Z. Niu, and Y. Liu. Dynamic and Auto-
matic Feedback-Based Threshold Adaptation for Code
Smell Detection. IEEE Trans. Softw. Eng., 42(6):544–
558, 2016.

[S45] X. Liu and C. Zhang. DT : a detection tool to au-
tomatically detect code smell in software project. In
Y. Fang and Y. Xin, editors, Proceedings of the 2016
4th International Conference on Machinery, Mate-
rials and Information Technology Applications, vol-
ume 71 of Advances in Computer Science Research,
pages 681–684, 2016.

[S46] R. Mahouachi, M. Kessentini, and K. Ghedira. A New
Design Defects Classification: Marrying Detection and
Correction. In J. D. Lara and A. Zisman, editors, Fun-
damental Approaches to Software Engineering, volume
7212 of LNCS sublibrary. SL 1, Theoretical computer
science and general issues, pages 455–470. Springer,
Heidelberg, 2012.

[S47] R. Marinescu. Detection strategies: metrics-based
rules for detecting design flaws. In ICSM 2004, pages
350–359. 2004.

[S48] N. Moha, Y.-g. Guéhéneuc, L. Duchien, and A.-F. Le
Meur. DECOR: A Method for the Specification and
Detection of Code and Design Smells. IEEE Trans.
Softw. Eng., 36(1):20–36, 2010.

[S49] A. Mori, G. Vale, M. Viggiato, J. Oliveira,
E. Figueiredo, E. Cirilo, P. Jamshidi, and C. Kast-
ner. Evaluating domain-specific metric thresholds.
In TechDebt 2018, TechDebt ’18, pages 41–50, New
York, New York and [Los Alamitos, California], 2018.
The Association for Computing Machinery and IEEE
Computer Society, Conference Publishing Services.

[S50] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N.
Nguyen. Mining interprocedural, data-oriented usage
patterns in JavaScript web applications. In Proceed-
ings of the 36th International Conference on Software
Engineering, pages 791–802. ACM, Hyderabad, India,
2004.

[S51] P. Oliveira, F. P. Lima, M. T. Valente, and A. Sere-
brenik. RTTool: A Tool for Extracting Relative
Thresholds for Source Code Metrics. In Proceedings,
30th International Conference on Software Mainte-
nance and Evolution, pages 629–632. Conference Pub-
lishing Services, IEEE Computer Society, Los Alami-
tos, California, 2014.

[S52] P. Oliveira, M. T. Valente, and F. P. Lima. Extracting
relative thresholds for source code metrics. In Software

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Maintenance, Reengineering and Reverse Engineer-
ing (CSMR-WCRE), 2014 Software Evolution Week -
IEEE Conference on, pages 254–263. IEEE, 2/3/2014
- 2/6/2014.

[S53] A. Ouni, M. Daagi, M. Kessentini, S. Bouktif, and
M. M. Gammoudi. A Machine Learning-Based Ap-
proach to Detect Web Service Design Defects. In
I. Altintas, S. Chen, and I. I. C. o. W. Services, ed-
itors, 2017 IEEE 24th International Conference on
Web Services - ICWS 2017, pages 532–539, Piscat-
away, NJ, 2017. IEEE.

[S54] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. In-
oue. Web Service Antipatterns Detection Using Ge-
netic Programming. In Proceedings of the 2015 An-
nual Conference on Genetic and Evolutionary Com-
putation, GECCO ’15, pages 1351–1358, New York,
NY, USA, 2015. ACM.

[S55] A. Ouni, M. Kessentini, M. Ó Cinnéide, H. Sahraoui,
K. Deb, and K. Inoue. MORE: A multi-objective
refactoring recommendation approach to introducing
design patterns and fixing code smells. Journal of Soft-
ware: Evolution and Process, 29(5):e1843, 2017.

[S56] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. de Lucia, and D. Poshyvanyk. Detecting Bad
Smells in Source Code using Change History Informa-
tion. In E. Denney, editor, Proceedings of the 28th
IEEEACM International Conference on Automated
Software Engineering, pages 268–278, Piscataway, NJ,
2013. IEEE Press.

[S57] R. Ramler, K. Wolfmaier, and T. Natschlager. Ob-
serving Distributions in Size Metrics: Experience from
Analyzing Large Software Systems. In 31st Annual In-
ternational Computer Software and Applications Con-
ference (COMPSAC 2007): Beijing, China - 24-27
July 2007, pages 299–304, [Place of publication not
identified], 2007. IEEE Computer Society Press.

[S58] L. Rodriguez and Angela. Assessing the effect of
source code characteristics on changeability. PhD the-
sis, Open University, 2009.

[S59] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb.
Code-Smell Detection as a Bilevel Problem. ACM
Trans. Softw. Eng. Methodol., 24(1):1–44, 2014.

[S60] G. Saranya, H. K. Nehemiah, and A. Kannan. Hy-
brid particle swarm optimisation with mutation for
code smell detection. Int. J. Bio-Inspired Comput.,
12(3):186, 2018.

[S61] R. Shatnawi. A Quantitative Investigation of the Ac-
ceptable Risk Levels of Object-Oriented Metrics in
Open-Source Systems. IEEE Transactions on Soft-
ware Engineering, 36(2):216–225, 2010.

[S62] R. Shatnawi. Deriving metrics thresholds using log
transformation. Journal of Software: Evolution and
Process, 27(2):95–113, 2015.

[S63] R. Shatnawi, W. Li, J. Swain, and T. Newman.
Finding software metrics threshold values using ROC
curves. Journal of Software Maintenance and Evolu-
tion: Research and Practice, 22(1):1–16, 2010.

[S64] I. Shoenberger, M. W. Mkaouer, and M. Kessentini.
On the Use of Smelly Examples to Detect Code Smells
in JavaScript. In G. Squillero and K. Sim, editors,
Applications of evolutionary computation. Part II, vol-
ume 10200 of LNCS sublibrary. SL 1, Theoretical com-
puter science and general issues, pages 20–34, Cham,
Switzerland, 2017. Springer.

[S65] B. L. Sousa, P. P. Souza, E. M. Fernandes, K. A. M.
Ferreira, and M. A. S. Bigonha. FindSmells: Flexible
Composition of Bad Smell Detection Strategies. In
I. I. C. o. P. Comprehension, editor, 2017 IEEE 25th
International Conference on Program Comprehension
- ICPC 2017, pages 360–363, Piscataway, NJ, 2017.
IEEE.

[S66] G. Vale, E. Fernandes, and E. Figueiredo. On the
proposal and evaluation of a benchmark-based thresh-
old derivation method. Software Quality Journal,
27(1):275–306, 2019.

[S67] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz.
Comparative analysis of evolving software systems us-
ing the Gini coefficient. In 2009 IEEE International
Conference on Software Maintenance, pages 179–188,
New York, 2009. IEEE.

[S68] B. Vasilescu, A. Serebrenik, and M. van den Brand.
You can’t control the unfamiliar: A study on the re-
lations between aggregation techniques for software
metrics. In 27th IEEE International Conference on
Software Maintenance (ICSM), 2011, pages 313–322,
Piscataway, NJ, 2011. IEEE.

[S69] H. Wang, M. Kessentini, and A. Ouni. Bi-level Iden-
tification of Web Service Defects. In Q. Z. Sheng,
E. Stroulia, S. Tata, and S. Bhiri, editors, Service-
oriented computing, volume 9936 of LNCS sublibrary.
SL 2, Programming and software engineering, pages
352–368. Springer, Switzerland, 2016.

[S70] H. Washizaki, H. Yamamoto, and Y. Fukazawa. A
metrics suite for measuring reusability of software
components. In 9th International software metrics
symposium, pages 211–223. IEEE Comput. Soc, 2003.

[S71] K. Yamashita, C. Huang, M. Nagappan, Y. Kamei,
A. Mockus, A. E. Hassan, and N. Ubayashi. Thresh-
olds for Size and Complexity Metrics: A Case Study
from the Perspective of Defect Density. In 2016 IEEE
International Conference on Software Quality, Reli-
ability and Security, pages 191–201, Los Alamitos,
California, 2016. IEEE Computer Society, Conference
Publishing Services.

[S72] C. Zhifei, C. Lin, M. Wanwangying, Z. Xiaoyu,
Z. Yuming, and X. Baowen. Understanding metric-
based detectable smells in Python software: A com-
parative study. Inf. Softw. Technol., 94:14–29, 2018.

[S73] Y. Zhou, B. Xu, and H. Leung. On the ability of com-
plexity metrics to predict fault-prone classes in object-
oriented systems. Journal of Systems and Software,
83(4):660–674, 2010.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Towards a Catalog of Refactoring Solutions for Enterprise
Architecture Smells

Lukas Liß
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lukas.liss@rwth-aachen.de

Henrik Kämmerling
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

henrik.kaemmerling@rwth-aachen.de

ABSTRACT
Enterprise Architecture (EA) embodies the integration be-
tween business and IT architectures which aims to optimize
the business value of IT investment. The qualities of EA
greatly support businesses in achieving their goals. EA
smells can decrease the quality of this architecture. Re-
cently, there has been an advance to transfer the concept
of code smells into the domain of EA to support the iden-
tification of those weaknesses. To improve the quality of
code, code refactoring solutions are an already well-known
tool. But, despite the recent foray into the research of EA
smells, the field of EA refactoring solutions still remains un-
explored. To address this research gap, we introduce the
concept of refactoring solutions to EA. Therefore, a map-
ping from EA smells to code refactoring solutions is built.
Then, we transform these code refactoring solutions to EA
refactoring solutions. As a result, a catalog of EA refactor-
ing solutions is set up.

Keywords
Enterprise Architecture, Refactoring, Smell, Catalog

1. INTRODUCTION
Lately, the concept of code smells has been transformed

into EA [20]. This opens up the opportunity as well as the
need to transfer the concept of refactoring solutions to EA.
This paper presents a collection of EA refactoring solutions
and their transformation from code refactoring solutions,
which is a solution to the business problem of refactoring
EA. The refactoring solutions allow correcting found EA
smells in a standardized way and help to improve the quality
of an EA. Moreover, a definition of EA refactoring solutions
can serve as a first step towards software that automatically
refactors EA smells.

In order to obtain a collection of EA refactoring solutions
it is important to answer the question which EA refactor-
ing solutions can be derived from existing code refactoring
solutions. The main research question is split up in three

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2019/20 RWTH Aachen University, Germany.

sub-questions to clarify and separate the steps needed to
answer the research question.

RQ1: What EA refactoring solutions can be derived from
the existing code refactoring solutions?

RQ1.1: What code refactoring solutions are known in
scientific literature or other catalogs?

RQ1.2: What is an adequate definition of EA refactoring
solutions?

RQ1.3: How to derive EA refactoring solutions from code
refactoring solutions?

The structure of this paper derives from the research ques-
tions as follows. Section 2 describes the basic concepts of
smells and their refactoring solutions in code as well as in
EA. Section 3 describes the method we used to transform
refactoring solutions from the domain of code to EA. In sec-
tion 4 the resulting EA refactoring solutions are presented
and grouped. A discussion of the results can be found in
section 5. Afterward, threats to validity are pointed out in
section 6. In the conclusion, the method and the results are
summarized and future work is proposed. The resulting cat-
alog of EA refactoring solutions and the related EA smells
can be found in section 4.1.

2. KEY CONCEPTS AND RELATED
WORK

2.1 Code Smells
A code smell is a “surface indication that usually corre-

sponds to a deeper problem of the system” [17]. The benefit
of this indication is that it speeds up the process of search-
ing for errors. Although, it is not certain that there is a real
problem connected to a smell. Therefore, it can sometimes
be a valid consideration to not change the detected smell.

About code smells there exist the following major studies:

• Sabir et al. [4] presented a list of code smells that were
object-oriented as well as service-based anti-patterns.

• Bogner et al. [10] focused his systematic literature re-
view on service-based anti-patterns.

• The book Refactoring: improving the design of existing
code by Martin Fowler [5] contains a collection of code
smells.

2.2 Code refactoring solutions
Code refactoring solutions were introduced by William

Griswold [6] in 1991 into the world of functional and pro-
cedural programming. One year later William Opdyke [18]

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

transferred this concept to the world of object-oriented pro-
gramming.

Code refactoring describes the process of changing the
structure of code while preserving the semantics of the code.
It aims to improve the following system quality features:

• Maintainability: The code is shorter, better named
or rearranged. This makes it easier for a developer
to understand the functionality of each section of the
code. It improves debug speed and shortens the period
of vocational adjustment [16].

• Extensibility: Software features are easier to add to the
existing ones. This makes the software flexible enough
to adapt to frequent changes in requirements. As a
result, the overall technical debt of the code should be
lower than before [13].

The work in the field of code refactoring solutions is
strongly connected with the one in code smells. There are
several collections of code refactoring solutions:

• The book Refactoring: improving the design of existing
code by Martin Fowler contains a collection of code
refactoring solutions [5].

• Kebir et. al. about Automatic Refactoring of
Component-based Software by Detecting and Eliminat-
ing Bad Smells [12].

• In the book Anti Patterns, Brown et. al. collect refac-
toring solutions [2].

All of the refactoring solutions described in the resources
above can be applied to code regardless of the context. This
is achieved by a level of abstraction on top of the context-
sensitive functionality of the code. But this level of abstrac-
tion is not enough to apply the refactoring solutions to EA.
Therefore the code refactoring solutions needs to be trans-
formed before refactoring EA.

2.3 EA
The ISO/IEC/IEEE FDIS 42010:2011 standard [9] de-

scribes architecture as following: “fundamental concepts or
properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design
and evolution”.

As stated by Booch [1], it is mandatory to differentiate
between technical architecture, which “attends to the archi-
tecture of the software-intensive systems that support that
business”, and EA, which ”attends to the architecture of a
business that uses technology” [1]. When comparing EA to
technical architecture, EA gives a more holistic overview and
a higher abstraction level. EA should be an important tool
in achieving and supporting the goals of the business and
not be focused on the technical domain only [14].

According to Saint-Louis et al. [19] there still exist many
varying definitions for EA despite a growing interest in re-
cent years. Most of these definitions describe EA either as
a “Deliverable”, “Process”, “Tool”, or “Discipline and Prac-
tice” [19]. One of the more common approaches is to de-
fine architecture as “a collection of artifacts (models, de-
scriptions, etc.) that define the standards of how the en-
terprise should function or provide an as-is model of the
enterprise” [11].

Winter and Fischer [24] introduced a separation of EA
into different domains. As they propose, EA is subdivided in
the five domains “Business Architecture”, “Process Architec-
ture”, “Integration Architecture”, “Software Architecture”,
and “Technology Architecture” [24]. Every domain has
different subsystems which should communicate with each
other (horizontal integration). Also, the domains should
not be treated separately but have an integration with one
another (vertical integration). The components of every do-
main should, despite being horizontally integrated, “orga-
nized in their own hierarchies” [20]. This scheme matches
with the from the TOGAF Standard [23] proposed architec-
ture domains “Business Architecture”, “Data Architecture”,
“Application Architecture”, and “Technology Architecture”.

2.4 EA Smells
Due to their analogy with code smells, the definition of

EA smells is derived from code smells.
They highlight common bad examples and patterns of EA

design and can, when ignored, decrease the quality of an EA.
Because an EA is supposed to support the goals of a busi-
ness [1] this could harm the performance of an organization
as a whole. To prevent this, EA smells should be taken care
of or at least be documented and kept in mind when tak-
ing future EA design decisions. EA smells should assist an
EA architect in improving an existing system and making
unconscious EA debt visible. While using this method an
automated approach in discovering these anti-patterns can
be developed [20].

The later mentioned EA smells in this work are mainly
based on the catalog proposed from Salentin [20]. Also,
Salentin [20] comes up with the following categories: “Busi-
ness Antipatterns”, “Application Antipatterns”, and “Tech-
nology Antipatterns” [22, 23].

3. METHOD
In this section, we present how we answer our research

questions. At first, we collect code refactoring solutions from
existing catalogs and scientific literature (RQ 1.1). Then,
we set up a scheme to present the later found EA refactor-
ing solutions (RQ 1.2). Finally, we evaluate how to derive
EA refactoring solutions from the collected code refactoring
solutions (RQ 1.3).

3.1 EA Refactoring Solutions
As introduced in chapter 2.4, EA smells need to be re-

solved if future harm is meant to be avoided. These so-
lutions for EA smells are called EA refactoring solutions.
They are best practices in transforming an anti-pattern to
an improved state.

While code refactoring solutions serve the purpose of com-
pensating technical debt, EA refactoring solutions compen-
sate EA debt. In contrast to code refactoring solutions, EA
refactoring solutions do not concentrate on changing single
lines of code, but adjusting the design of an EA or certain
components. As code refactoring solutions should not alter
the semantics of the code, EA refactoring solutions should
not change the function of an EA. An EA refactoring should
lead to a more flexible and maintainable architecture, and
thus should directly or indirectly support the business goals.

It is important to note that the refactoring solutions
should not improve the quality of only the technological ar-
chitecture but the EA as a whole. This approach is consis-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

tent with Booch’s [1] differentiation of technical architecture
and EA.

3.2 Refactoring Selection Process
Because there exist many code refactoring catalogs in sci-

entific literature, it is mandatory to have a defined pro-
cess of choosing the refactoring solutions for this catalog.
Isaenko [8] discusses three different approaches in his thesis
on microservice refactoring solutions. The approaches all
have in common that they collect smells first, and then find
refactoring solutions for the specified smells. As Isaenko [8]
evaluates, the approach Match Bad Smells to Microservice
Smells leads to the most information to work with, and
therefore, has the most sound basis of those three differ-
ent approaches. Due to the need of building a catalog with
a valid basis, we chose this approach and adapted it to the
domain of EA (Match Code Smells to EA Smells). This
approach consists of six main steps [8]:

1. Collect code smells from defined reliable resources.

2. Take one code smell from the bank.

3. Extract the general idea of the design issue the code
smell represents.

4. Find a characteristic of EA that indicates the same
design issue as the original code smell.

5. Adapt the code smell to an EA smell based on the
identified design issue.

6. Adapt the code smell refactoring techniques to EA
refactoring solutions.

Because this work is based on the EA smell catalog proposed
from Salentin [20], we mainly focus on step 6.

3.3 Transformation to EA
As mentioned earlier, this work starts with a pre-defined

EA smell catalog. Salentin[20] derived those EA smells from
code smells. For said code smells already exist code refac-
toring solutions. The whole list of EA smells can be found
in Salentin’s catalog [20].

3.3.1 Transformation Process
The next step is to adapt the code refactoring solutions

connected to the EA smells into the domain of EA. At
first, we collect those code refactoring solutions from scien-
tific catalogs and literature. Most of those refactoring so-
lutions can be found in Refactoring: improving the design
of existing code by Martin Fowler [5], Automatic Refactor-
ing of Component-based Software by Detecting and Elimi-
nating Bad Smells by Kebir et al. [12], and AntiPatterns:
refactoring software, architectures, and projects in crisis by
William H. Brown[2]. The most relevant aspect in matching
the refactoring solutions are the earlier detected code smells
and connected EA smells.

Figure 1 shows the necessary steps to build up the cata-
log. As earlier mentioned, the Matching phase was already
done by Salentin [20]. Then, there is the need for Discov-
ering the matching code refactoring solutions. After that,
the Transforming of code refactoring solutions to EA refac-
toring solutions is the remaining step. Because there exist
no established rules for this transformation yet, guidelines
for this process need to be proposed. Therefore, the next
section explains the transformation process in more detail.

Figure 1: Visualization of the process we used to get
EA refactoring solutions from given EA smells

3.3.2 Transforming Code Refactoring Solutions to
EA Refactoring Solutions

The main step in this work is to adapt code refactoring
solutions to EA refactoring solutions. Later, the adapted
EA refactoring solutions need to be evaluated towards their
applicability [8].

The code refactoring solutions, which need to be adapted,
are associated with at least one code smell, which is already
matched to an EA smell. Also, there are analogies in the
adaption of smells and refactorings. Therefore, the matching
process between the code smell and the EA smell can be
taken into consideration when transforming code refactoring
solutions to EA refactoring solutions. The code refactoring
solutions need to be closely investigated to get awareness on
the possible motivation for the refactoring solutions in the
field of EA. Due to the high abstraction level of EA, the
motivation is most of the time also on a higher abstraction
level. The mechanics of the EA refactoring solutions can be
adapted from the mechanics of the code refactoring solution.
When doing this, the components involved in the mechanics
can be transformed from the domain of code to the domain
of EA.

Still, it can occur that some refactoring solutions cannot
be transformed. Also, due to the abstraction level of EA,
some distinctive code refactoring solutions could be trans-
formed to the same EA refactoring. Therefore, it needs to
be considered, that different components from the domain of
code can be matched to the same component in the domain
of EA. Because these guidelines are not that well estab-
lished yet, they may change during different iterations of
the transformation process.

3.4 Categorization of EA Refactoring Solu-
tions

As mentioned earlier, there already exist definitions of
sub-domains of EA in scientific literature. Because the cat-
alog of EA refactoring solutions is based on Salentin’s [20]
catalog of EA smells, the categories for this catalog are taken
from the EA smells catalog. From the four architecture do-
mains proposed in The TOGAF Standard, Version 9.2 [23]
and the three layers proposed by the ArchiMate 3.0.1 Spec-
ification [22], Salentin [20] derived the following three main
categories:

• Business anti-patterns impact business services,

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

which are realized in the organization by business pro-
cesses performed by business actors.

• Application anti-patterns impact application ser-
vices that support business and applications that real-
ize them.

• Technology anti-patterns impact technology ser-
vices that support the business and its applications,
including IT infrastructure such as logical software and
hardware capabilities, communication, processing or
storage, etc.

The EA refactoring solutions found in this catalog are as-
signed to those three categories based on the categorizations
in the EA smell catalog [20].

These three categories gain their legitimation as they are
based on two well-established EA subset definitions. Al-
though, as Salentin [20] states, this taxonomy “does not
provide a complete mapping” yet and should be further de-
veloped in the future.

3.5 Representation of EA Refactoring Solu-
tions

To achieve a consistent catalog of EA refactoring solutions
there needs to be a reusable scheme for the representation of
said refactoring solutions. This scheme also leads to a more
defined method of transforming the refactoring solutions to
EA, because this scheme should be applicable to most EA
refactoring solutions.

The used scheme is derived from the one Isaenko [8] uses in
his catalog on microservice refactoring solutions [15, 21, 13].
It consists of 10 sections:

Name. The name should give the reader a first insight
into what the EA refactoring is about and what it does.

Connected EA smells. This should list the EA smells
which can be resolved by applying this refactoring solution.

Derived from. This is the code refactoring which this EA
refactoring is derived from.

Summary. A short summary to explain what this refac-
toring is about. This should not explain the refactoring in
detail or describe the steps necessary to perform this refac-
toring. It should serve as a first point of information after
that the readers can decide, whether it is necessary to look
into the following sections.

Intent. This describes the main goal of the refactoring. It
explains to the reader what will be done in the refactoring.
This should not already explain the mechanics in detail.

Motivation. While the intent describes the what, the mo-
tivation describes the why of the refactoring. This section
should explain the reasons to use said refactoring.

Prerequirements. For some refactoring solutions there
can be conditions for applying the refactoring. Those con-
ditions should be stated here. It is possible for a refactoring
to have no prerequirements.

Impact. The goal of any refactoring is to improve the
quality of an EA. Therefore, this section should describe
which quality factors are affected in which way.

Mechanics. The mechanics should be concrete steps on
how to perform the refactoring. After understanding the
mechanics, the reader should be able to perform the refac-
toring.

Discussion. In the discussion should be evaluated when
to use said refactoring. Also, possible trade-offs should be
mentioned.

Example. There should be given a small visual example.
All the examples given in this catalog are from one domain
of EA.

The categorization is added to the connected EA smells,
as the categorization is based on these smells. We used
abbreviations to shorten the resulting catalog. The letter
”b” represents ”business anti-patterns”, the letter ”a” repre-
sents ”application anti-patterns”, and the letter ”t” repre-
sents ”technology anti-patterns”.

3.6 Validation of transformed EA Refactor-
ing Solutions

A good validation is important when building a refactor-
ing solution catalog, because then, the quality and appli-
cability in real-life scenarios, and therefore, the usability of
the catalog can be evaluated. To qualify a valid refactoring,
it needs to be applicable in a possible scenario. Therefore,
the refactoring solutions in this catalog are derived from EA
smells and have an explicit application. Other than that,
validation helps to identify mistakes and also can be used
to improve the mechanics of each refactoring. To validate
a refactoring, there should be a first evaluation if there is
a practical use for it. Second, it should be assessed if the
refactoring actually leads to an improvement in EA quality.
Also, it needs to be classified if the refactorings are realis-
tically applicable. A refactoring can theoretically improve
the quality of an EA, but does not have any value, if the
mechanics cannot be performed.

Additionally, the method of setting up the catalog needs
to be evaluated. It needs to be checked for internal and
external validity.

4. RESULTS
As seen in figure 2, the transformation process starts with

Salentin’s [20] catalog of 49 EA smells. 20 out of those 49 EA
smells are directly derived from code smells and can, there-
fore, be easily matched with those code smells. The other 29
EA smells are left out, because they are not directly derived
from code smells, and therefore, do not fit the used method.
For the 20 matched code smells, we found 20 code refac-
toring solutions in scientific literature and catalogs. Then,
we transformed those 20 code refactoring solutions to EA
refactoring solutions.

For the catalog, we use the scheme proposed in section 3.5.
Due to space limitations, we leave out the Intent and Mo-
tivation, as they are already described in the Summary. In
the catalog, the Summary follows directly after the refactor-
ing name. The Examples are also left out because of space
limitations.

4.1 Catalog of EA Refactoring Solutions

5 Viewpoints. As different viewpoints and different stake-
holders focus on different parts of a system, it is necessary

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 2: Visualization of the amount of smells and
refactoring solutions for each step during the set up
of the catalog

to document the viewpoint together with the model of the
system. This refactoring does so by using the viewpoints
corresponding to the layers of EA: Business, application,
technology, strategy, implementation, and migration [24].

Connected EA smells. Ambiguous Viewpoint (a, b, t)
Derived from. 3 Viewpoints: Business, Application or Tech-
nology
Prerequirements. None
Impact. Efficiency: The program can be understood faster.
And it is easier to evaluate if this model fits your own view-
point.
Mechanics. 1. Define the Layer the model belongs to (Busi-
ness, Application, Technology, Strategy, Implementation &
Migration). 2. If the viewpoint is mixed, differentiate the
model by the viewpoint connected to the layer. 3. Explicitly
note down the viewpoint.
Discussion. Sometimes even different stakeholders with the
same viewpoint focus on different parts of a model. Then it
can be useful to differentiate them as well and note down to
which stakeholder they belong.

Add Middleman. When a service is dependent on the
implementation of a second service, it can lead to issues
when the second service needs to be changed. This can
be resolved by adding a level of abstraction to the second
service. Then, the first service becomes independent of the
actual implementation of the second service. This leads to
a more maintainable system.

Connected EA smells. Message Chain (a, t)
Derived from. Hide Delegate
Prerequirements. A chain of services, where the first one
depends on the structure of the following because the first
one operates on this structure.
Impact. Efficiency: It decreases as abstraction increases.
The model will be harder to understand and an extra layer
of abstraction costs resources. Maintainability: As there is
less coupling and dependency on the structure of the archi-
tecture, it becomes easier to maintain. This is especially the
case when multiple components depend on the same struc-

ture of service calls.
Mechanics. 1. Check if there already exists an abstraction
of the service chain. Then use this one by changing the calls
in the first component to calls to the abstraction service.
Done. 2. Else: Create a new Service with an interface. 3.
For each needed trigger in the chain of services starting by
the second, create one in the interface. 4. The new service
delegates these calls to the chain of services. Test after one
is added. 5. Change calls, where the first service calls the
second one, to calls to the newly created one. 6. Test.
Discussion. When chains are long this refactoring can be
applied multiple times within the rest of the chain. But this
will increase complexity.

Architecture Framework. A stovepipe system has high
complexity and is hard to adapt. When using architecture
frameworks to introduce a component architecture, the sys-
tem becomes more flexible and adaptable. Therefore, effi-
ciency and maintainability are increased.

Connected EA smells. Stovepipe System (a, b, t)
Derived from. Architecture Frameworks
Prerequirements. None.
Impact. Adaptability and Extensibility: Due to the nature
of a component architecture it is easy to add new com-
ponents to extend the architecture and adapt to changes.
Maintainability: Changes need to be made only at a single
place. Efficiency: Work can be split according to the differ-
ent services.
Mechanics. 1. Introduce a component architecture. 2.
Identify a base level of functionality that most of the ap-
plications should support (mostly for data interchange and
conversion). 3. Define a system interface for those base func-
tionalities. 4. Create a base level of component services. 5.
Create thin application services that use the base services.
Those application services should only add specialized func-
tions and interfaces.
Discussion. Exceptions: Mock-ups or prototype systems.
When entering a new domain it can be useful to build a
stovepipe system first to gather domain knowledge.

Architecture Partitioning. Intermixed vertical and hor-
izontal design elements destabilize an architecture. This
refactoring stabilizes it by partitioning the design elements.
Each layer is separated and an interface is created to manage
the interaction between the layers.

Connected EA smells. Jumble (a, b, t)
Derived from. Architecture Partitioning
Prerequirements. An architecture with intermixed design el-
ements.
Impact. Maintainability: A clear design is a key aspect to
make the system modifiable.
Mechanics. 1. Partition the architecture with respect to
horizontal and vertical design. 2. Separate the groups and
define an interface for interaction if needed. Use the Move
Component refactoring to move the components in their
group.
Discussion. A clear separation between design elements im-
proves the maintainability a lot. But an experienced worker
is needed to determine how to group the elements.

Enterprise Architecture Planning. There is a big ef-
fort in maintaining a stovepipe system. To lower the re-
sources needed for maintaining the system, it is important
to increase the consistency of the architecture by using EA

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

planning. A consistent architecture is easier to understand
and because of that, adjustments are more straightforward.

Connected EA smells. Stovepipe System (a, b, t)
Derived from. Enterprise Architecture Planning
Prerequirements. None.
Impact. Efficiency: The fewer resources are concerned with
maintaining the system, the more resources can focus on the
business goals themself. Maintainability: A consistent archi-
tecture needs less maintenance than a stovepipe system.
Mechanics. 1. Use EA planning to coordinate system con-
ventions at several levels. 2. Use Move Component, Extract
Component, Merge Components and other refactoring so-
lutions to refactor the complete system regarding the new
conventions.
Discussion. When the architecture has already grown to a
certain size, it can be a lot of effort to refactor it as a whole.
This process can lead to a lot of challenges and can result
in further problems. Therefore, the taken steps need to be
evaluated carefully in advance.

Extract shared functionality. Duplication increases
complexity and is hard to maintain. This refactoring re-
duces duplication. The functionality that multiple compo-
nents have in common is centered on a separate component
that is triggered by the others. Then it is possible to make
changes to this functionality in one place.

Connected EA smells. Duplication (a, b, t)
Derived from. Pull up Method
Prerequirements. Multiple components have at least par-
tially the same functionality.
Impact. Maintainability: Changes can be done in one place.
But this increases the coupling of the components.
Mechanics. 1. Move the duplicated functionality into a new
component. 2. Everywhere, where the duplicated function-
ality appears, change it to use the new component. 3. Test
after each replacement. 4. When a component now only
calls the newly created, use Encapsulate Component to re-
move it.
Discussion. It is important to keep in mind that this refac-
toring increases the coupling in exchange for lowering dupli-
cation. Especially in the context of microservices a certain
amount of duplication is tolerated.

Ghostbusting. Components with limited responsibility
that simply pass messages clutter the architecture. As their
responsibility is so limited they should be removed. This
refactoring removes these components. The functionality of
the architecture is sustained because the limited responsi-
bility to pass the messages is transferred to the callers, so
they have to send the message directly.

Connected EA smells. Lazy Component (a, b, t)
Derived from. Poltergeist, Remove Middle Man
Prerequirements. A component that is short-lived or is just
delegating messages to other components.
Impact. Efficiency: Faster to understand due to de-cluttered
design. Maintainability: Less abstraction leads to less com-
plexity, but also comes with the cost of flexibility.
Mechanics. 1. Remove the lazy component. 2. Every trig-
ger that triggered the lazy component before now needs to
directly trigger the one that was triggered by the lazy com-
ponent. 3. Test.
Discussion. The evaluation whether a level of abstraction
is needed or not is a hard one in some cases. As well as

increasing the understandability of the architecture it also
decreases the flexibility.

Goal Question Architecture. Experienced architects
tend to not document implicit architecture. This can lead
to a hidden risk. To remove them, this refactoring aims to
document all parts of the system, also the implicit ones.

Connected EA smells. Architecture by Implication (a, b,
t)
Derived from. Goal Question Architecture
Prerequirements. None
Impact. Efficiency: A Person with less domain-specific
knowledge can understand the model faster. Maintainabil-
ity: Less hidden risk.
Mechanics. 1. An experienced person document all the im-
plications into the model.
Discussion. Implications are risky as it is very time-
consuming to find out about them. When an experienced
employee leaves the company there is a danger that a lot of
implicit knowledge is lost.

God Object Decomposition. When one component has
too many purposes it can become too convoluted. This leads
to unclear EA where the tasks of each component are not
well-defined. To tackle this issue, the god object can be
split into multiple components with a well-defined purpose
to increase coherence [3].

Connected EA smells. The God Object (a, b, t)
Derived from. God Class Decomposition
Prerequirements. There exists a bloated service, that does
too many tasks, so his purpose is not well-defined anymore.
Impact. Maintainability: It is easier to change the process
of different tasks when the task has a dedicated service. Ex-
tensibility: It is easier to extend the functionalities of the
services when creating a new well-defined service instead of
extending a bloated service. The internal structure of each
service does not need to be known to extend the functional-
ities this way.
Mechanics. 1. Identify the tasks of the bloated service. 2.
Arrange those tasks into purposeful groups. 3. Create a
new service for each group. 4. Check where the service is
accessed from outside and change the usages. 5. Test. 6.
Remove the bloated service.
Discussion. Most of the time, a bloated service is not the
result of bad design, but it grows in time whenever new fea-
tures are added. Therefore, it is necessary to evaluate if a
service can be split whenever new features are added to it.

Inline Service. Services with very simple and short
functionality can be integrated into callers of the service.
Thereby the architecture gets de-cluttered. This refactoring
moves copies of all the sub-components from a simple ser-
vice into all the components that call the service. Then the
service can be removed safely. As this refactoring increases
duplication, it should only be applied to services with simple
functionality that change very rarely.

Connected EA smells. Lazy Component (a, b, t)
Derived from. Inline Function
Prerequirements. A service with very little complexity. The
components that realize this service are self-explaining.
Impact. Efficiency: Faster to understand due to de-cluttered
design. Maintainability: Less abstraction leads to less com-
plexity. As duplicates of the former service are now in every

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

caller changing this functionality will be harder than before.
Mechanics. 1. Move components from the service into every
component that triggers the service. Start with the one with
the least dependency, the last one triggered in the service.
Use the Move Component refactoring to do so. 2. Remove
the service. 3. Test.
Discussion. When the service is triggered by many com-
ponents and needs to change often, the duplication created
by this refactoring will be extreme. In this case, it could
be useful to keep the abstraction. But when this is not the
case, this refactoring can improve the understandability of
the architecture.

Isolation Layer. When using a proprietary product there
can be a strong dependency on the vendor. To resolve this
dependency, it can be necessary to introduce an additional
isolation layer. Then, most services do not interact with the
bought-in product directly, but interact with the isolation
layer. This reduces the risks involved in being too dependent
on one single vendor and also increases the extensibility of
the architecture.

Connected EA smells. Vendor Lock-in (a, t)
Derived from. Isolation Layer
Prerequirements. Changes in the vendor product are antici-
pated and the isolation layer will be changed accordingly.
Impact. Maintainability: New features can be added easier
through the isolation layer. Reduced Risk: The dependency
on the vendor will be reduced.
Mechanics. 1. Detect what functions of the product are
used. 2. Create a layer between the services used by busi-
ness actors and the bought-in product.
Discussion. The vendor lock-in is acceptable when a single
vendor’s product makes up the majority of the used business
functions.

Merge Components. An EA can become too complex
when there are multiple components with a shared concern
or functionality. This leads to poor maintainability and
therefore decreases efficiency. To take care of this scattered
functionality the components with shared concern can be
merged into one component to increase cohesion.

Connected EA smells. Scattered Parasitic Functionality
(a, b, t)
Derived from. Merge Components
Prerequirements. Components with a shared concern.
Impact. Efficiency: The created component is easier to
reuse. Maintainability: The complexity is reduced, as it
is easier to find which components are responsible for what.
Mechanics. 1. Create a new component. 2. Move all the
sub-components from the concerned components into the
new one. Use Move Component refactoring to do so. Begin
with the one with the least dependencies. 3. Delete the old
components. 4. Test.
Discussion. Sometimes it is difficult to decide if to service
have the same function or serve a slightly different purpose.
Then, the different components need to be evaluated care-
fully.

Merge Input. A service with a long list of required input
is hard to understand. This refactoring reduces this com-
plexity by grouping the input. A new data-object with all
the required information is created. Then this data-object
is given to the service and not all the individual data.

Connected EA smells. Bloated Service (a, b, t)
Derived from. Replace Parameter with Query
Prerequirements. A Service that has a lot of required infor-
mation from a common object.
Impact. Efficiency: The service becomes less complex to un-
derstand.
Mechanics. 1. If necessary merge the required information
into an abstract object. 2. Make the service require this
object. 3. Replace each use of a required input with the
referenced object. Test after each change.
Discussion. It can be hard to decide which information to
merge into an abstract object. There is needed to find a
well-suited metric in future work.

Move Component. As architecture is constantly chang-
ing sub-components sometimes need to be moved from
one component to another. Starting with sub-component
with the least dependency, this refactoring moves sub-
components. It can be necessary to rename the moved com-
ponents with the rename component refactoring.

Connected EA smells. Feature Envy (a, b, t)
Derived from. Move function
Prerequirements. A sub-component that belongs to a com-
ponent and another component where the sub-component
should be moved to.
Impact. Efficiency: Moving a component can increase un-
derstandability. Maintainability: Moving a component can
make the architecture less complicated.
Mechanics. 1. Decide if by this component triggered com-
ponents should move too. Then move them first with the
Move Component refactoring. 2. Copy the component to
the target context. Adjust it to fit in there. 3. If necessary
rename the component with the Rename Component refac-
toring. 4. Refer from the old home to the moved component.
5. Remove the component from the old home. 6. Test.
Discussion. Whether the impact of moving a component
is positive or negative depends on the reason why to move
the process. In general, moving a process is mainly only
meaningful when it removes a smell.

Move Service to different Layer. When having an
architecture with several layers, every layer must be well-
defined. This architecture can be violated when services
access other services from non-adjacent layers. By moving
one or more services to their respective layers, the structure
of the architecture can be made more coherent [7].

Connected EA smells. Strict Layer Violation (a, b, t)
Derived from. Move Class
Prerequirements. Having an architecture with multiple lay-
ers.
Impact. Maintainability: When every service is in the layer
it belongs, the system is easier to understand and thus, can
be easier maintained.
Mechanics. 1. Identify a service that uses a service from a
non-adjacent layer. 2. Identify which of those two services is
in the wrong layer. 3. Add a copy of the service to the right
layer. 4. Update every usage of the service. 5. Test. 6. Re-
move the old service. 7. Reuse when this refactoring leads
to another service that uses a service from a non-adjacent
layer.
Discussion. Sometimes it is hard to identify which service
should be moved to which layer. It can be useful to create a
delegate service in the layer between the two services. Also,

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

sometimes this refactoring can lead to more layer violations.
In those two cases, it can be better to leave the architecture
in its current state.

Remove Dead Component. Unused components clut-
ter the model of a system. This refactoring removes unused
components in a safe way. Thereby this increases the main-
tainability and efficiency.

Connected EA smells. Dead Component (a, b, t)
Derived from. Remove Dead Code
Prerequirements. The component is not used. There are no
concrete plans to use this component in the near future.
Impact. Efficiency: Resources consumed by the unused com-
ponent are available again. Maintainability: Removing the
unused component lowers the complexity.
Mechanics. 1. If the component has an interface then check
that no one refers to this. 2. Remove the component. 3.
Test.
Discussion. Sometimes an unused component is intended to
serve as a documentation in case this component or a simi-
lar component is needed in the future. But as even unused
components consume resources this is not a good way.

Rename Component. Unfitting names for components
slow down the process of understanding the model. They
can even lead to errors when they are misleading. This
refactoring changes the name of a component to increase
efficiency.

Connected EA smells. Deficient Names, Documentation
(a, t)
Derived from. Rename Field
Prerequirements. A component with a name that does not
fit well to the functionality of the component.
Impact. Efficiency: Faster to understand.
Mechanics. 1. If the scope of use of this component is lim-
ited: 1.1 Rename the component. 1.2 Rename all accesses.
1.3 Test. 2. Else: 2.1 Use Add Middleman to create abstrac-
tion. 2.2 Rename internally. 2.3 Adjust internal accesses.
2.4 Test.
Discussion. Renaming a component should only be done
when the old name is not fitting anymore or was never fit-
ting. Otherwise, it could lead to increased search times when
the name is changed too often.

Small Project. A process with too many business actors
involved can decrease productivity. Also, few milestones
with a big scope instead of more milestones with smaller
scope decrease the motivation and therefore productivity of
every business actor. To resolve this, large teams working
on one process can be split into smaller groups that work on
sub-tasks for this process.

Connected EA smells. Warm Bodies (a)
Derived from. Small Project
Prerequirements. There exists a process with more than
five business actors involved or a duration longer than four
months.
Impact. Efficiency: Smaller project teams need less coordi-
nation and are more likely to succeed. Therefore, there are
fewer resources needed to fulfill the goals of the process.
Mechanics. 1. Split large project teams into smaller groups
of four people. 2. Split the main task into smaller sub-task
that can be solved by the smaller groups. 3. Split big mile-
stones into smaller ones.

Discussion. Processes with 100 or more actors involved have
very low efficiency. Working in smaller groups will bring the
efficiency level up. Although, coordinating too many teams
can produce coordination overhead and can, therefore, lower
efficiency again.

Split Phase. There can be a component with multiple re-
sponsibilities and a low cohesion in general. This can lead to
decreased maintainability because of the component’s high
complexity. Then, the component can be split into one sepa-
rate component for each responsibility of the old component,
to increase maintainability.

Connected EA smells. Multifaceted Abstraction (a, b, t)
Derived from. Split phase
Prerequirements. A component where the cohesion is low.
Impact. Maintainability: This separation increases the
change that the components can be changed independently.
Mechanics. 1. Extract the second part in its own compo-
nent using the Extract Component refactoring. 2. Test this
component. 3. Introduce an intermediate interface and data
object. 4. Test. 5. The first component now triggers the
second one.
Discussion. When there are more than just two phases this
refactoring can be done recursively to split the phases until
they only have one responsibility.

4.2 Transformation
A full description of all the refactoring solutions would be

very long. Therefore, we demonstrate the process with the
Remove Dead Component refactoring.

The goal is to create a refactoring for the EA smell called
Dead Component [20]. First, it is necessary to understand
the EA smell. It can be helpful to clarify the structure that
defines the smell especially as this is needed for the pre-
requirements attribute of the EA refactoring. In the given
example of a Dead Component, Salentin states that ”iso-
lated elements” (p. 47 [20]) are elements, where the element
itself, as well as sub-elements, have no incoming or outgoing
behavioral dependencies to other components. We used this
structure as the prerequirements for the found EA refactor-
ing.

The next step is to match a code refactoring to the EA
smell. The given EA smell was derived from the code smell
Dead Code. Fowler describes a refactoring for this smell
called Remove Dead Code [5]. We extracted the main idea
of the given code refactoring: First, check if the thing you
want to delete is really unused. Then remove it. Then test.

Now the terminology of the main idea needs to be matched
to EA: First, check if the component you want to delete has
no external behavioral dependencies. Then remove it. Then
test.

By matching the terminology the mechanics of the EA
refactoring are derived from the main idea. This is also done
with the motivation and intention. The remaining attributes
of the EA refactoring definition, like summary, impact, or
example, can be derived from the already defined attributes.
In the end, we derived the following definition of the Remove
Dead Component refactoring:

Name. Remove Dead Component

Connected EA Smells. Remove Dead Component

Derived from. Remove Dead Code

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Summary. Unused components clutter the model of a
system. This refactoring safely removes unused components.
Thereby this increases maintainability and efficiency.

Intent. The intent is to remove unused components.

Motivation. Unused components do not signal that they
are unused at a first glance. Therefore it takes time to un-
derstand them. People and resources will be concerned with
this component until it is removed.

Prerequirements. The component is not used. There are
no concrete plans to use this component in the near future.

Impact. Efficiency: Resources consumed by the unused
component are available again. Maintainability: Removing
the unused component lowers the complexity.

Mechanics. 1. If the component has an interface then
check that no one refers to this. 2. Remove the component.
3. Test.

Discussion. Sometimes an unused component is intended
to serve as documentation in case this component or a sim-
ilar component is needed in the future. But as even unused
components consume resources this is not a good way.

Example. The example is shown in figure 3. An insurance
company modeled the business process of dealing with a
request to review a previous decision. In the past, they used
to print the result of this process to document it in their
files. Nowadays they only save the document digitally but
the ”Print Documentation” process is still in the model. By
deleting it the model is de-cluttered.

5. DISCUSSION
An aspect that needs to be discussed is the legitimation.

As described before testing the EA refactoring solutions is
not in the scope of this paper. Thus the legitimation for real-
world applicability remains uncertain. But the main idea of
the EA refactoring solutions gains legitimation from the fact
that the used code refactoring solutions are well established.

Also, there may be additional EA refactoring solutions
than the ones that can be derived from code refactoring so-
lutions. The reason for this is that EA has a higher level of
abstraction than the domain of code. Thus there could be
refactoring possibilities that exist in the domain of EA but
not in the domain of code. These possibilities stay unex-
plored when transforming code refactoring solutions to EA
refactoring solutions.

In addition to that, for EA smells, that have no corre-
sponding code smell, it is not possible to find a refactoring
with the used method.

Despite these limitations, the used method follows estab-
lished guidelines. Therefore, the results of this method can
be validated easier. Moreover, the transformation process
can be replicated and further advanced. It is precisely these
characteristics that are decisive in a field as young as EA
refactoring solutions.

A discussion about each EA refactoring can
be found in the catalog in section 4.1.

6. THREATS TO VALIDITY

6.1 Internal Validity
Threats to internal validity are influences that can affect

the independent variable with respect to causality [25]. As
this work relies on several systematic literature reviews it is
necessary to point out the threats to internal validity that
derive from that. Although guidelines have been developed
for performing a systematic literature review, there are still
subjective influences possible. Soft criteria for including and
excluding work for example. In addition, the transformation
process from a code refactoring into an EA refactoring has
subjective parts as well. There are multiple definitions or
slight variations of most code refactoring solutions. Hence
we needed to extract a common idea out of all of them.
Thereby subjective perspectives are a threat to internal va-
lidity.

6.2 External Validity
Threats to external validity are conditions that limit the

ability to generalize the result [25]. EA operates with a high
level of abstraction. Because of this, it is important that the
resulting EA refactoring solutions are generalizable enough
to be used in a wide variety of architectures. Thus we tried
to minimize dependencies that could be a threat to external
validity. We focused on the structure of the architecture to
able to generalize the refactoring solutions to every view-
point and stakeholder. But there are threats remaining that
need to be taken under consideration. All the EA smells
we created a refactoring for are derived from code smells.
That makes the process of transformation only suitable for
those smells. Another threat to external validity is the lim-
ited number of sources. The resources used in this work, as
well as this work itself, base on a limited number of data-
sets and search engines. Because of this, there are variations
and special cases that may not be taken into consideration.
Here we especially need to point out that there was only one
source for EA smells available.

7. CONCLUSION AND FUTURE WORK
In this paper, we present a catalog of EA refactoring so-

lutions. We propose refactoring solutions for recently intro-
duced EA smells. We adapt code refactoring solutions into
EA refactoring solutions to come up with said catalog. The
process of adapting the refactoring solutions was modified
from already known code refactoring adaptions. We derived
an existing refactoring representation scheme for the catalog
due to the particularities of EA. This should improve the re-
usability of this scheme, because of its similarity to already
established schemes. This scheme should also encourage the
extensibility of the catalog, due to its general applicability
to EA refactoring solutions.

The catalog should serve as a starting point for the re-
search field of EA refactoring solutions. It can be further
extended with other EA refactoring solutions derived from
code refactoring solutions an EA refactoring solutions com-
ing from different domains of EA (i.e. Process Architecture).
The catalog is right now in its first iteration. It is part of
the future work to publish the full catalog including the
examples, which are left out in this paper due to space lim-
itations. Because the refactoring solutions are derived from
theoretical sources, they need to be tested in a real-world
environment. Other than that, the catalog can be reviewed

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 3: EA refactoring: Remove Dead Component

to increase its validity. Also, other sources for refactoring so-
lutions and EA smells should be taken into consideration.

References
[1] G. Booch. Enterprise architecture and technical archi-

tecture. IEEE Software, 27(2):96, 2010.
[2] W. H. Brown, R. C. Malveau, H. W. McCormick, and

T. J. Mowbray. AntiPatterns: refactoring software, ar-
chitectures, and projects in crisis. John Wiley & Sons,
Inc., 1998.

[3] B. Du Bois, S. Demeyer, J. Verelst, T. Mens, and
M. Temmerman. Does god class decomposition affect
comprehensibility? In IASTED Conf. on Software En-
gineering, pages 346–355, 2006.

[4] F. Sabir et al. A systematic literature review on the de-
tection of smells and their evolution in object-oriented
and service-oriented systems. Software: Practice and
Experience, (49.1):3–39, 2019.

[5] M. Fowler. Refactoring: Improving the design of exist-
ing code. A Martin Fowler signature book. Addison-
Wesley and Pearson Education , Boston and Amster-
dam and London and Boston and Amsterdam and Lon-
don, second edition edition, 2019.

[6] W. Griswold. Program restructuring as an aid to soft-
ware maintenance. Juli 1991.

[7] S. Hickey and M. O. Cinn é ide. Search-based refac-
toring for layered architecture repair: An initial inves-
tigation. In Proc. 1st North American Search Based
Software Engineering Symposium, 2015.

[8] V. Isaenko. Towards a catalog of refactorings for mi-
croservices. 2019.

[9] ISO/IEC/IEEE, editor. Systems and software engi-
neering — Architecture description: ISO/IEC/IEEE
42010:2011(E).

[10] J. Bogner et al. Towards a collaborative repository
for the documentation of service-based antipatterns and
bad smells. Mar. 2019.

[11] L. Kappelman, T. McGinnis, A. Pettite, and
A. Sidorova. Enterprise architecture: Charting the ter-
ritory for academic research. AMCIS 2008 Proceedings,
page 162, 2008.

[12] S. Kebir, I. Borne, and D. Meslati. Automatic refac-
toring of component-based software by detecting and
eliminating bad smells. In Proceedings of the 11th In-
ternational Conference on Evaluation of Novel Soft-
ware Approaches to Software Engineering, pages 210–
215. SCITEPRESS-Science and Technology Publica-
tions, Lda, 2016.

[13] J. Kerievsky. Refactoring to patterns. Pearson Deutsch-
land GmbH , 2005.

[14] M. Lankhorst. Enterprise Architecture at Work.
Springer Berlin Heidelberg , Berlin, Heidelberg, 2017.

[15] F. Martin et al. Refactoring: improving the design of
existing code. Pearson Education India, 1999.

[16] R. Martin. Clean code. 2009.
[17] Martin Fowler. Codesmell, 09.02.2019.
[18] W. Opdyke. Refactoring object-oriented frameworks.

1992.
[19] P. Saint-Louis, M. C. Morency, and J. Lapalme. Defin-

ing enterprise architecture: A systematic literature re-
view. In S. Hall é , editor, 2017 IEEE 21st Interna-
tional Enterprise Distributed Object Computing Con-
ference workshops - EDOC 2017: 10-13 October 2017,
Quebec City, Quebec, Canada : proceedings, pages 41–
49, Piscataway, NJ, 2017. IEEE.

[20] J. Salentin. Towards a catalogue of enterprise architec-
ture smells and their detection. 2019.

[21] G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for software design smells: managing tech-
nical debt. Morgan Kaufmann, 2014.

[22] The Open Group. Archimate 3.0.1 specification.
[23] The Open Group. The togaf standard, version 9.2. 2018.
[24] R. Winter and R. Fischer. Essential layers, artifacts,

and dependencies of enterprise architecture. In Pro-
ceedings / 10th IEEE International Enterprise Dis-
tributed Object Computing Conference: Workshops];
Hong Kong, China, October 16 - 20, 2006, page 30,
Piscataway, NJ, 2008. IEEE.

[25] C. Wohlin, P. Runeson, M. H ö st, M. C. Ohlsson,
B. o. r. Regnell, and A. Wessl é n. Experimentation
in software engineering. Springer, Berlin, 2012.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Data Processing Frameworks: What is the right tool for my
task?

Philipp C. Peeß
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany
philipp.peess@rwth-

aachen.de

Christian Schwier
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

christian.schwier@rwth-
aachen.de

ABSTRACT
Data processing is a central topic in this digital age, both
on a very large corporate scale as well as in smaller busi-
nesses and private projects. But with the large amount of
available frameworks and the variety of different require-
ments for projects it is difficult to find the right framework
for a task. This paper will explain the importance of key
characteristics the processing mode, the architecture, and
the interface and language support, to support making the
right decision. Furthermore, five important data processing
frameworks, Apache Hadoop, Apache Spark, Apache Storm,
Apache Heron, and Apache Flink will be compared based on
these aspects. Additionally, a few commercial solutions as
well as frameworks which provide a visual coding approach
for data processing will be presented. Even though no gen-
erally best framework is found, advice is given for a small
number of scenarios and use-cases.

Keywords
Data Processing, Stream Processing, Processing Frameworks,
Comparison

1. INTRODUCTION
Large scale data processing is a wide spread requirement

in modern businesses as well as research. Well known com-
panies which rely heavily on their capability to handle big
data are Google, Facebook, or Twitter. CERN is one of the
most prominent examples in academia which collected 12.3
petabytes of data in a single month [9]. Besides big inter-
national parties like the ones named above, scientists from
the machine learning and the Industry 4.0 [6] communities
are noticeable demand carriers. Furthermore, the growing
Internet of Things (IoT) and in particular the Industrial In-
ternet of Things (IIoT) share challenges caused by the high
amount of devices which provide data to a process. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2019/20 RWTH Aachen University, Germany.

global amount of generated data in 2018 was estimated to
be 33 zettabytes and is expected to grow to 175 zettabytes by
2025 [14]. Working with the large amounts of data gathered
in these contexts presents distinct challenges. It requires ef-
ficient algorithms, well-organised server infrastructures and
solutions that integrate well with existing soft- and hard-
ware.

Data processing frameworks are a family of software stacks
which promise to handle these scenarios. In the last decade
a variety of them have emerged with focus on different as-
pects of the problem domain. The Apache Foundation in
particular, hosts many projects related to this topic, e.g.,
Apache Spark1, Apache Storm2, Apache Heron3, Apache
Flink4, Apache Beam5, and Apache Samza6. In addition,
commercial players like Google and IBM advertise propri-
etary solutions which are hosted on their cloud platforms.

With the rise of ubiquitously accessible cloud computing
infrastructure these technologies are no longer exclusive to
companies but become available for individuals. Picking an
appropriate platform for a given use case is still a non-trivial
task due to the variety of characteristics the systems have.
This paper presents a guide to help with the selection process
by aggregating and comparing current noteworthy systems.

This paper is structured as follows: First, we discuss a set
of criteria used to characterize data processing frameworks
in Section 2. In Sections 3 to 5 we present a selection of
systems split in three categories: The Hadoop Eco-System,
Commercial Solutions, and Special Systems. Lastly, we com-
pare the systems in relation to different design vectors in
Section 6.

2. CHARACTERISTICS
This paper will focus mainly on three aspects which are

crucial when choosing a framework: the offered processing
modes, the architecture the framework uses for structuring
the nodes in clusters, and the offered interfaces and sup-
ported programming languages as described below.

1
https://spark.apache.org (visited: 11/02/2019)

2
https://storm.apache.org (visited: 11/02/2019)

3
https://heron.apache.org (visited: 11/02/2019)

4
https://flink.apache.org (visited: 11/02/2019)

5
https://beam.apache.org (visited: 11/02/2019)

6
https://samza.apache.org (visited: 11/02/2019)

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://spark.apache.org
https://storm.apache.org
https://heron.apache.org
https://flink.apache.org
https://beam.apache.org
https://samza.apache.org

2.1 Processing Mode
The processing mode is probably the most important dif-

ference between the different frameworks. It determines for
which applications the framework is suitable. The covered
approaches are batch processing and stream processing as
well as micro-batching as an in-between solution.

2.1.1 Batch processing
Batch processing is the traditional approach for comput-

ing large amounts of data. This approach usually requires
a static, most of the times historical collection of data as
input. The data is then processed with little to no human
interaction, outputting the result when finished.

2.1.2 Stream processing
The obvious restriction of batch processing is that all data

has to be available before processing can be started. Stream
processing is a more modern approach which became more
common when demand of near real-time data processing be-
gan to rise. Instead of receiving a single collection of data,
these frameworks are capable of dealing with a constant data
stream. Data is processed as soon as it is received. This
makes them capable of dealing with input like constant sen-
sor data, ongoing event logs, and similar data sources.

2.1.3 Micro-batching
Between batch and stream processing, a third solution ex-

ists. So-called micro-batching uses principles of batch pro-
cessing to emulate real stream processing. Incoming data is
grouped into batches, which are regularly processed depend-
ing on chosen rules. Different methods for creating these
batches exist, processing could for example start when a cer-
tain threshold of data has been met or a fixed time interval
has passed.

2.1.4 Comparing Processing Modes
While stream processing enables the use for near real-

time applications, traditional batch processing still has ad-
vantages in certain situations. It can be more efficient for
complex operations on static data. In addition to that, not
all algorithms can be used efficiently with stream processing
in their current implementation [4]. Furthermore, it is eas-
ier to implement fault tolerance and load balancing while
simultaneously have a higher throughput with batch pro-
cessing [12]. However, stream processing can deal with any
case that batch processing can compute and more [4], even
though for pure batch processing applications it should not
be the preferred solution due to the reasons above. Its main
advantage is the ability to process unbounded data streams.

Micro-batching on the other hand comes with its own ad-
vantages and drawbacks. The manual splitting of the data
stream into smaller batches leads to abstraction which can
be disadvantageous. In addition to that, micro-batching
generally has a worse performance when compared to na-
tive stream processing. It is also more difficult to maintain
states across multiple different batches of data. On the other
hand, micro batching maintains the advantages of normal
batch processing previously mentioned [12]. It is a good
compromise when mainly batch processing is needed, but
stream processing should also be supported.

Overall, all processing modes come with their own ad-
vantages and drawbacks, making the decision central to the
design and success of an application.

2.2 Architecture and Scaling
Another central aspect is the underlying architecture of

the framework. When data processing is only done in a
small scale with a single machine, this is no significant con-
cern. But when large amounts of data need to be processed
or processing time is crucial, single machines hardly are an
option.

2.2.1 Clusters
To be capable of processing large amounts of data, so-

called clusters are used. These are networks of many con-
nected real or virtual machines called nodes. The processing
job is then distributed into smaller tasks which are run in
parallel on these nodes.

While this increases the processing capabilities, it also
creates problems that have to be solved. The tasks and
resources have to be scheduled and distributed, making a
resource manager necessary. Node failures have to be ex-
pected in large clusters, making fault tolerance a fundamen-
tal requirement.

In addition to that, the organisation of the cluster needs to
allow easy and efficient scaling options. Scaling is generally
done horizontally by adding more nodes as the workload
increases, as opposed to vertically, where single machines
receive more computation power.

2.2.2 Scheduling and Resource Management
In general, two things have to be managed when executing

a job on a cluster: the task distribution and the resource al-
location. Most architectures use one or more special master
nodes for managing this. These take care of distributing the
tasks and the resources in the cluster, managing the task
progress, and keeping track of the node status. In special
cases like node failures or exceptionally slow progress in a
task, they may intervene and recover or redistribute the task
or approximate solutions ahead of time to provide a tempo-
rary result.

While each application usually has its own cluster, newer
approaches allow for pooling of resources across multiple
server clusters, enabling multiple applications to share the
resources. Using this approach, resources can be used more
efficiently and assigned to different applications based on
their current needs. This makes it very advantageous when
frameworks allow the use of such a resource and cluster man-
agement.

2.2.3 Processing Guarantees
The architecture can also allow for specific processing guar-

antees. Three different options exist here: exactly-once-,
at-most-once- and at-least-once-processing. In at-least-once-
processing, every bit of data is processed at least once, but
potentially multiple times. While this can be inefficient re-
garding the use of resources, it also can decrease process-
ing time in case of single node failures, if the same data
was simultaneously processed on multiple nodes. At-most-
once processing is the other extreme, where data may po-
tentially be never processed. This is useful for near-real-
time applications, where new data may already be available,
making timely reprocessing after failures possibly unwanted.
Exactly-once-processing is the most complex guarantee, but
can in return assure that every part of the data is processed
exactly once.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

2.3 Interfaces and Languages
An argument that should not be overlooked is the com-

patibility of frameworks with pre-existing software and hard-
ware. Different frameworks often require different program-
ming languages and come with distinct application program-
ming interfaces (APIs).

Ideally, the development should be possible in a program-
ming language the developers are already familiar with and
that is fitting for the problem. Some frameworks come with
the ability to use simple std-in and std-out. Instead of only
being able to use programming languages supported by the
framework, this makes it possible to create scripts in any
programming language that supports std-in and std-out.
These scripts are then run on the nodes and communicate
with the framework using only std-in and std-out. This can
be a major advantage, providing much more flexibility in
the choice of programming language.

Choosing a fitting API is also crucial. Some technolo-
gies can be mandatory, for example support for specific file
systems, preferred database structures or for certain input
sources. Ideally, support of these technologies would already
be offered by the framework itself. Otherwise, depending on
the importance of these technologies for the project, inter-
faces may have to be implemented manually or switching
to different solutions has to be considered. Additionally,
frameworks often offer features like pre-made operations for
data processing. This can simplify the process of developing
complex programs.

3. SYSTEMS
In the following, five data processing frameworks will be

presented in detail: Hadoop, Spark, Storm, Heron, and
Flink. The focus of this section will be on the character-
istics mentioned above in addition to special features and
key implementation details.

3.1 Hadoop MapReduce
Hadoop is a widely used batch processing frameworks

which also spawned a large ecosystem around it. The fo-
cus of this section will be mainly on the MapReduce algo-
rithm, the foundation of data processing with Hadoop. In
addition, the Hadoop Distributed File System (HDFS) will
be discussed in detail, since it is the second core component
of the Apache Hadoop. Its architecture provides the neces-
sary components to support large-scale data processing with
high amounts of nodes. Unless otherwise noted, this section
is based on the information provided in the official docu-
mentation [3].

3.1.1 Processing: The MapReduce Algorithm
The idea of the MapReduce algorithm was proposed by

Google developers in 2004 [5]. After that, development on an
open source implementation began, leading to the creation
of Hadoop and the implementation of Hadoop MapReduce.

The MapReduce algorithm consists, as the name suggests,
of two parts, a map function and a reduce function. A job
is split into many smaller tasks that can then be executed
on different nodes in parallel to use a cluster efficiently. The
input data is distributed on a series of map-processes, which
then start the work. This is done by the framework which
splits the input into partitions. A subtask is created for each

of the partitions, resulting in each of the data splits being
processed separately.

The map function takes an input and applies the key-
value-combination needed for processing the data. It is pos-
sible to start the processing with any sort of data, the map
function is then used to create the fitting key-value pairs. If
key-value-pairs were already associated with the data, then
the map function creates new intermediate key-value-pairs.

The reduce function then applies the actual transforma-
tion and works in three phases. In the shuffle phase, data
is transferred from the nodes which mapped the data to the
nodes that are tasked with the reduce job. Simultaneously,
the sort phase takes place. In the sort phase, the key-value-
pairs are sorted and then grouped by the key. Thus, a list
of values is now associated to every key. Thereafter, the
reduce function is applied, iteratively reducing the list of
values that were associated with a key. In this process, the
processed data is merged and the result is calculated. The
output can then be stored in the file system.

It is possible to apply a combiner function between map-
ping and shuffling. This function is run on the node which
also mapped the data before the data is passed to different
nodes. Using this, the logic of the reduce function could al-
ready be applied to the separate data splits before they are
passed into the network. This can, if applicable, reduce the
network traffic by already merging equal keys or reformat
data to allow easier processing in the following steps.

3.1.2 The Hadoop Distributed File System
A key component that is often compatible with other

frameworks or even necessary for them to work is the HDFS.
As such, it is also interesting to discuss the HDFS in detail.
It supports a variety of useful features, with the most promi-
nent ones being fault tolerance, support for large distributed
data sets, and tools for cluster rebalancing.

The HDFS uses a master-slave-architecture to organize
the file system. The cluster nodes are divided into the Na-
meNode which is the master and the DataNodes which are
the slaves that handle the actual storage.

The NameNode organizes the filesystem. It manages the
namespace of the filesystem as well as the file access and op-
erations like renaming files or directories. Because of their
size or available storage, files may be partitioned into multi-
ple smaller files, blocks, and stored on different DataNodes.
The creation of these blocks and the assignment to DataN-
odes is also task of the NameNode. DataNodes reply to
read or write requests by the NameNodes and perform the
requested action.

The HDFS is fault tolerant, with high availability imple-
mented in current versions. Fault tolerance is achieved by
replicating data blocks and storing them on different nodes.
The NameNode regularly checks the status of the DataN-
odes and the stored blocks. When the DataNodes do not
reply, failures are assumed. Due to the data replication, the
block of data can be retrieved from a different node.

The high availability is achieved by running redundant
NameNodes. With only a single NameNode managing the
entire cluster, a single point of failure exists. As soon as
the NameNode fails, the files can no longer be accessed.
To prevent this, a second NameNode can be used. This
secondary NameNode regularly receives backups by the pri-
mary NameNode and is otherwise on standby. If the primary
NameNode fails, the secondary NameNode takes its place.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Because of the regular backups, the state of the file system
is mostly known at any point in time and can be restored
easily.

3.1.3 APIs and Ecosystem
The Hadoop framework comes with a whole ecosystem of

sub-systems that are widely used by other frameworks.
A noteworthy part of the ecosystem is Hadoop YARN (Yet

Another Resource Negotiator)7. It is, as the name suggests,
a tool to manage the resources of a cluster. The core concept
is the division between a global ResourceManager and Ap-
plicationMasters for each application which accept resource
requests and supervise the nodes. With the introduction
of YARN, it became possible to use different processing en-
gines like Apache Spark instead of MapReduce. This made
the framework very flexible.

In addition to that, a large amount of related projects
exist which make Hadoop more versatile. As an example, a
machine learning engine, Hadoop Submarine8, exists.

Hadoop is mainly used with Java, but any language can be
used with it since it offers data input via std-in and output
via std-out using Hadoop Streaming.

3.2 Spark
Apache Spark is a cluster computing system implemented

in Java and Scala with a focus on large batch processing. Its
central concept is the Resilient Distributed Dataset (RDD)
which is a data sharing abstraction. This allows a running
process to be oblivious if it is processing the complete data
or only a partition. The computational model is similar to
MapReduce, that is a sequence of operations which either
map a value via an operation or reduce multiple values. Ap-
plying an operation on an RDD creates a new RDD. The
abstraction allows tasks to access data while its physical lo-
cation is transparent to the process. By default these RDDs
are ephemeral. If two different subsequent computations are
to be done on an RDD it has to be explicitly persisted. This
step allows sharing of intermediate results between different
computations. As a consequence it is possible to create a tree
of computations instead of a set of linear processes. This is
depicted in Figure 1. Since RDDs are immutable there is no
risk of side effects due to concurrent computations on the
same data set.

To provide fault tolerance each RDD tracks its lineage,
that is, the history of operations on previous data sets it was
derived from [16]. This allows Spark to avoid the costly ma-
terialization of intermediate results to a hard disk or a net-
work storage. In case of a failure Spark can recompute the
required data from the last known data set. Since the history
of a data set can become quite large, manually checkpointing
intermediate results allows to limit the amount of recompu-
tations. This trade-off between recomputation in case of
failure and processing slow down due to I/O-Operations is
configurable by the user to align it with its requirements.

3.2.1 Architecture
A process implemented with Spark has an application at

its center which is called Driver. It uses a Cluster Manager
which distributes tasks on a cluster. Spark ships its own im-
plementation of a cluster manager but can connect to others,

7
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-

yarn-site/YARN.html (visited on 12/13/2019)
8
https://hadoop.apache.org/submarine/ (visited on 12/13/2019)

O_6O_5O_2O_1

O_4O_3O_2O_1

(a) Two computations with ephemeral intermediate results.

O_6O_5

O_4O_3

O_2O_1

(b) Two computations with a materialized intermediate result after
O 2.

Figure 1: A comparison of two independent computations
with and without a persisted intermediate result.

e.g., YARN or Mesos9, if they are already present on the
infrastructure. The only requirement is that the manager
can spawn an executor process on any of its worker nodes.
The driver contains the application and the spark context
which allows interaction with the executor processes. It is
the drivers responsibility to run jobs on the executors which
notify the driver of results of the computation. To enable
this, the executors need network access to the driver. The
executors should be run close to where the required data is
stored (regarding network topology) to reduce I/O overhead.

Worker Node NWorker Node 1

Driver

Cluster Manager

Executor M

Executor ...

Executor N

Executor ...

SparkContext

Executor AExecutor 1

Task MTask ...

Task B

Cache

Task A

Task NTask ...

Task 2

Cache

Task 1

Figure 2: Spark cluster architecture. Spark uses multiple
Nodes which each run multiple Executors. The Driver holds
process state in the SparkContext and uses the Cluster Man-
ager to distribute its Tasks on the executors.

It is important to note that a Spark application is not a
single data processing job but a complete application which
spawns jobs on the cluster continuously over its lifetime. To
achieve this it uses the Spark Context which hides most of
the complexity. An overview is given in Figure 2.

9
http://mesos.apache.org/ (visited on 11/20/2019)

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

3.2.2 Spark Streaming
Spark Streaming is an extension to Spark designed to sup-

port continuous live data processing. Instead of working on a
single RDD representing a partition of a large batch data set,
Spark Streaming uses Discretized Streams (D-Streams) [17].
This is a sequence of RDDs which are created by sam-
pling the incoming data into small batches in a given inter-
val. Other stream processing systems, e.g., Apache Storm,
use long running operators which continuously consume and
produce data. Spark Streaming models its computations as
functions on an element of an RDD and invokes them each
time a new micro batch is aggregated. Since the batches are
provided as RDDs, the advantages from Spark translate to
Spark Streaming.

To exploit the full potential of this approach the functions
are required to be 1) stateless and 2) deterministic. If both
requirements are fulfilled it allows to run multiple instances
concurrently on partitions of the D-Stream. If state is re-
quired it has to be shared between the different processes
which incurs I/O overhead for the communication and syn-
chronization of mentioned state. The functions can be run
on different machines which is orchestrated by a scheduler
controlling the distribution.

3.3 Apache Storm
Apache Storm ”is a real-time distributed stream data pro-

cessing engine” [15] originally developed at Twitter and open
sourced as an Apache Incubator project. At first, it was im-
plemented in Clojure but was re-written in Java for its 2.0.0
release to increase the accessibility for contributors. The
core concept of Storm is the Topology which is a graph of pro-
cessing vertices which are connected via data streams. The
vertices are split into two categories: Spouts and Bolts. The
former are sources with only outgoing edges, which are used
to introduce data into the system. The latter are generic
processing nodes, which consume data from their predeces-
sors and emit data to their successors. The data tokens are
modeled as tuples of arbitrary types.

3.3.1 Architecture
Storm uses a distributed cluster to execute topologies as

shown in Figure 3. The computations of a topology are
done on worker nodes which are physical machines in a
Storm cluster. A master node, called Nimbus, orchestrates
all worker nodes. When a new topology is started it is sub-
mitted to Nimbus. This sends instructions to the Supervisors
running on the worker nodes which manage multiple worker
processes. The actual computations are done by the worker
processes. They separate the workload on multiple execu-
tors which are threads within the worker process. Each of
the executors runs tasks of a single Bolt or Spout.

This architecture allows Storm to distribute the compu-
tation for a topology over multiple physical machines. The
executors isolate the Bolts and Spouts to avoid conflicts be-
tween different topologies. A cluster of heterogeneous com-
putational power is supported by allowing each worker node
to run a different amount of worker processes.

3.3.2 Processing Guarantees
Storm provides a mechanism to track tuples through the

topology which allows it to provide at-least-once, at-most-
once and exactly-once-semantics for the processing. This is
implemented by attaching a unique 64-bit number to each

Worker Node N

...

Worker Node 1

Worker Process N

...

Worker Process ...

...

Worker Process 1

Worker Node ...

...

Nimbus Master Node

Supervisor

Supervisor

Executor ... Executor NExecutor 1

Supervisor

Task N

Task ...

Task 1

Figure 3: Storm architecture overview. A nimbus supervi-
sor manages multiple worker nodes by communicating with
the supervisors running on them. Each supervisor spawns
a configurable number of worker processes which start an
executor thread per Bolt/Spout they are running.

created tuple. When a tuple tn is received and as a new
tuple tm is created this relation is stored by declaring tn
the anchor of tm. It is possible for a tuple to have multiple
anchors if it was computed as the result of multiple pre-
decessors. This creates a directed a-cyclical graph (DAG)
representing the pedigree for each tuple. For historic rea-
sons this graph is called tuple tree. Bolts can then either
fail or acknowledge a digested tuple. In the first case, the
source tuples are replayed which then causes the computa-
tions through the graph to be done again. When all tuples
in a tuple tree are acknowledged the source message is con-
sidered fully processed and the meta data is discarded. If
this does not happen within a configurable timeout the tu-
ple is considered to have failed and the Spout will replay
its message. This mechanism allows fine grained configura-
tion of computational dependencies and trade-offs between
processing time and reliability. Since Storm’s topologies can
contain cycles the user has to ensure that these processing
loops terminate to prevent triggering timeouts indefinitely.

3.3.3 APIs and Ecosystem
In addition to its Trident API Storm, provides less ver-

bose wrappers for Java and Python. These allow for easy
configuration and execution of topologies. Since Storm runs
on the JVM the preferred method to implement Bolts is
Java although every other JVM compatible language works
as well. Other technologies can be used by spawning the
Bolt or Spout as a separate process which is connected to
Storm via a JSON-based protocol communicating on std-in
and std-out. Adapter implementations for Ruby, Python
and Fancy are shipped with the default distribution.

3.4 Heron
Heron [10] is Twitter’s successor to Storm which aims at

overcoming the limitations which became apparent during
its deployment. Heron still shares a lot of the terminology
with similar semantics like the topology which consists of

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Spouts and Bolts. Since it was aimed to replace Storm in
production, one of Herons key features is the API compat-
ibility. While this has little impact in a green field project
it allows for an easier migration of existing solutions. One
of the key benefits is the possibility to use existing shared
infrastructure where Storm required dedicated resources for
itself. Furthermore, the different tasks in a Heron process
are more isolated from each other which allows for better
resource management and performance monitoring. Addi-
tional design decisions aimed at increasing the separation of
concerns cause a more complex architecture but decoupled.

3.4.1 Architecture
While a Heron topology configuration is conceptually sim-

ilar to Storm’s, the materialization is vastly different. First,
each Spout and Bolt task is executed in a separate Heron
Instance which is a JVM process instead of sharing the same
physical process. This enables Heron to manage the re-
sources a single Spout has available in a more fine grained
manner and prevents failures from directly impairing other
tasks. Next, Heron uses containers to group tasks and re-
lated processes which can be deployed on a server cluster
without requiring pre-installed Heron specific services on
each machine. One of the above mentioned related processes
is the Stream Manager of which an instance resides in each
container. It manages the routing of data between different
Heron Instances within a container as well as between dif-
ferent containers. This special service allows for an easier
monitoring of traffic and workload for each Heron Instance.
The k Stream Managers create a network of O(k2) physical
connections. If Heron Instances communicate within a con-
tainer the connection is short circuited by the Stream Man-
ager. All other connections from Heron Instances between
two specific containers are multiplexed over a single connec-
tion between the associated Stream Managers. A Metrics
Manager can be spawned to extract additional information,
e.g., for debugging purposes.

When a topology is submitted a Topology Master is in-
stantiated as an orchestrator. It creates the execution plan
from the configuration and manages the execution through
the complete life-cycle. Once the execution plan is created
a set of containers is spawned via a resource management
system. This can either be done with the Heron internal
manager or deferred to the manager of a shared infrastruc-
ture like Mesos, YARN or ECS10. Each container contains
a set of Heron Instances. One of the optimization crite-
ria of the execution plan creation is to keep related Heron
Instances close to each other, preferably in the same con-
tainer, to reduce communication overhead. An exemplary
Heron topology materialization is depicted in Figure 4.

3.4.2 Processing Mode
Heron, like Storm, is a pure stream processing frame-

work. While a Spout can consume batch data and serialize
it into the topology, the internal computation model works
on streams of tuples.

Different to Storm, Heron implements multiple back pres-
sure mechanisms. Their purpose is to prevent the repeatedly
replaying of data from the Spouts in case a bottleneck in
the processing graph is causing delivery failures. The sim-
plest implementation uses the TCP buffers for back pressure
propagation. When the receive buffer of a Heron Instance

10
https://aws.amazon.com/ecs/ (visited on 01/14/2020)

fills up the upstream sending buffers will fill up which is de-
tectable by the sender. The disadvantage of this approach
is that a single slow node can congest the physical connec-
tion between two containers. This will cause all upstream
Heron Instances to stall, too, potentially bringing the com-
plete topology to halt.

The second approach is to slow down Spouts in case of
an overloaded Heron Instance. This directly reduces the
amount of new tuples introduced into the topology. The
local Stream Manager than communicate this information
to the other Stream Managers which leads to a complete
slow down of the topology. While this allows a single slow
Heron Instance to slow down the complete computation it
keeps the topology in a sane state where all data is delivered.

The last method is to propagate the back pressure from
the faulting node backwards through the graph layer by layer
up to the Spouts. This has the advantage to only affect its
upstream nodes and to not globally slow down the process-
ing.

3.5 Flink
Flink is a data processing framework which offers both

batch and native stream processing. This makes it a very
versatile data processing framework, allowing its usage in a
variety of projects. Unless otherwise noted, this section is
based on the information provided in the official documen-
tation [2].

3.5.1 Processing Modes
Flink offers both batch and stream processing. This is

particularly advantageous when both modes can be utilized
in a project, e.g., when both large static collections of data as
well as streams of inputs need to be processed. In addition, if
experience with the framework has been acquired, it can be
used well in almost any future project since both important
processing modes are supported.

Stream processing is the central principle of Flink as data
is always treated like streams. Flink programs consist mainly
of two components, streams and transformations. Transfor-
mation refers to any operation with at least one stream as
input. The result of a transformation is another stream.
To realize parallel operations, streams are split into stream
partitions and each operator can be split into subtasks.

During execution, a so-called dataflow graph is created
consisting of the previously mentioned components. This
dataflow is a DAG with at least one source and at least
one sink, representing the general structure and flow of the
program.

Stateful processing is one of the key features of Flink. Op-
erators can require information of multiple events on a con-
tinuous, possibly unbounded stream of data. To resolve this,
stateful processing is used. Windowing in Flink is a prime
example of stateful processing. Flink offers the use of differ-
ent windows, in which events and data are aggregated and
can then be used collectively. As an example, these windows
can aggregate data and events over a certain amount of time
or store a certain amount of elements.

Fault tolerance and exactly-once processing are provided
by Flink. For that, checkpoints are created, relating to the
current point of the input stream as well as the state of the
operators at that time. By recovering from a checkpoint,
the state can be kept consistent when replaying the events
starting at that point.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Container

Monitoring

ContainerContainer

Heron API Server Topology Manager

Metrics ManagerMetrics Manager

Bolt 6

Bolt 5

Spout 2

Bolt 1

Stream Manager

Bolt 3

Bolt 2

Spout 1

Bolt 1 Stream Manager

Figure 4: Heron architecture overview. Two containers with a stream manager and a metrics manager each are orchestrated
by a topology manager. If multiple tasks are spawned for the same Bolt, here Bolt 1, they do not have to reside in the same
container. The data between the containers is routed over the stream managers.

Batch processing in Flink is treated like stream process-
ing, with the difference that it assumes a bounded stream
since the input data set is finite. As a result of this, the
previously presented ideas also apply with minor changes.
Stateful operations are implemented in a different way since
the data is available all at once, making windows obsolete.
Additionally, no checkpoints or backups are made for fault
tolerance. In case of failures, the whole data is simply re-
processed as this will always lead to the same end result.
This may be inefficient when failures occur, but the cost for
making checkpoints is saved and makes correct processing
cheaper.

3.5.2 Architecture
Flink uses a slave-master-architecture to organize its nodes.

The JobManagers are in control of coordinating the process-
ing in the cluster. At least one has to exist, with the option
of having additional JobManagers to guarantee high avail-
ability of the cluster. If multiple JobManagers exist, only
one is actually managing the cluster. The other JobMan-
agers are in standby and are used for keeping checkpoints.
In case of a failure, recovery is easy because of the constant
backups, enabling the system to always restore its state.
Overall, Flink offers a comparably high fault tolerance for
a stream processing framework [1]. The processing is done
on TaskManagers, the workers which execute the tasks and
subtasks.

Each operator in the dataflow graph is considered a sub-
task which needs to be processed. The framework offers
some tools to speed up processing. An example is the so-
called chaining of operators. Multiple operators can be
linked together and are then treated as a single task. This
can improve the performance since related operations can be
run together on the same node instead of potentially being
passed on to a new node which would increase overhead in
terms of network traffic and coordination.

3.5.3 APIs and programming languages
An interesting feature of Flink is its Table API and SQL

support. This allows for a relational view on the stream and
batch process. Query operations can easily be done using
either of these APIs with SQL being the higher-level API.
The operations provided work the same for both, batch pro-
cessing as well as stream processing, leading to the identical
results.

While Flink does not provide its own storage management,
it has a variety of connectors to third-party systems, notably
Apache Kafka, the HDFS and Amazon Kinesis Streams.

In terms of programming languages, Flink currently sup-
ports Java, Scala and Python.

4. COMMERCIAL SOLUTIONS
Besides open source solutions various proprietary systems

exist. In this section, two commercial data processing op-
tions will be presented: IBM Streams and Google Cloud
Dataflow.

IBM Streams is a stream processing solution. It offers
connectors to use data from outside IBM Streams as an
input and options for exporting the data to external stor-
age. In addition to that, a set of predefined operators and a
high-level interface that require no manual interaction with
low-level tasks are already implemented. Featuring a visual
coding solution, IBM Streams allows a graphical approach
that requires less understanding of the subject. This visual
representation can be used for dashboard views of the pro-
cessed data, as a graph view of the processing flow or as an
overview of the current stream of tuples. Congestion detec-
tion, scaling during runtime as well as parallelization can
also be done using the visual representation [8].

Google Cloud Dataflow is a tool for serverless data pro-
cessing as part of the Google Cloud Platform. The imple-
mentation is based on Apache Beam, which is a very flexible
framework. Apache Beam can run a variety of other execu-
tion engines like Spark, which makes it possible to use other,
more suitable frameworks to process the data. During devel-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

opment, the processing logic is defined in pipelines. Cloud
Dataflow then manages the backend, focussing on cluster or-
ganization and other details. The Google Cloud Platform of-
fers services that can be used together with Cloud Dataflow
like their cloud machine learning solutions [7].

These two commercial options are clearly separated from
the other presented frameworks since they are proprietary
products and run in the cloud of their respective providers.
Choosing one of these solutions is particularly advantageous
if the other services provided in the cloud can be used as
well. Overall, using a fully managed product can have a
lot of advantages, but also leads to restrictions in customiz-
ability and independence. As such, a clear difference has to
be made between commercial solutions and the open source
frameworks.

5. SPECIAL SYSTEMS
The previously mentioned systems are all primarily used

programmatically. Two systems stand out of the plethora
of data processing frameworks by providing sophisticated
graphical editors. These have the advantage to enable non
programmers to interact with the system and increase the
accessibility.

5.0.1 Node-RED
Node-RED is a platform used to wire IoT devices and ser-

vices together [11]. It was originally developed by IBM be-
fore being contributed to the OpenJS Foundation11 in 2016.
It runs on Node.js and provides a visual editor running in
the browser. This editor is used to implement a flow-based
program, called flow, which consists of nodes passing mes-
sage objects around. Node-RED is a system which fills the
gap for small use cases or private users which do not have or
require a large computation cluster. A Node-RED instance
is light weight enough to run on a Raspberry Pi.

An example flow is provided in Figure 5. The data prop-
agates from the outputs on the right side of the node to
inputs on the left side of connected nodes. The flow has
an HTTP endpoint, which passes the received payload to a
parser. The resulting object is then logged to a file and send
via email if it passes the filter function.

Figure 5: A Node-RED flow. It is providing an HTTP-
endpoint where health reports can be send to, which are
then parsed and logged. If a filter criterion is fulfilled an
email alert is send.

Node-RED has a community maintained repository of nodes
for a plethora of uses cases and systems which are easily
installed with the package manager NPM. This sharing
of functionality allows for fast development of prototypes
and easy integration into other systems since many required
functionalities exist already and do not have to be imple-
mented repeatedly.

11
Formerly known as JS Foundation before it merged with the Node.js

Foundation in 2019.

A limitation of Node-RED is horizontal scaling for in-
creased performance, since a flow always runs on a single
Node.js instance. Node-RED does exploit Worker Threads
to parallelize I/O operations but not for the computation
of individual nodes. This implies, there is no mechanism to
parallelize the execution of a node in the flow to compensate
for inhomogeneous computational complexity. Ways to mit-
igate this depend on the method the flow digests data from
its environment12. If it provides, e.g., an HTTP-API, a load-
balancer can distribute requests over a cluster of instances,
which are all running the same flow. For MQ Telemetry
Transport (MQTT)13, which is a publish/subscribe messag-
ing protocol, each instance could listen on a different topic
and incoming messages would be distributed on those top-
ics by the messaging broker. Additionally, Node-RED han-
dles state of nodes only within a single flow. For horizontal
scaling, it is required to implement this feature by external
means, like a database, which all instances have to write
to and read from. In all cases, the architecture of the sys-
tem has to be adapted to the program that a user wants to
run. This is tightly coupling the business logic with cluster
design and maintenance. Thus, we do not expect Node-
RED to be suitable for heavy load data processing. This is
backed, by an anecdote of the original developer, OLeary,
where he compares using Node-RED to manage a million
message per second with crossing the Atlantic in a bathtub.
Theoretically possible but not reasonable [13].

5.0.2 Nifi
Apache Nifi14 is a system, which allows the creation of

dataflow graphs [Sarnovsky.2017]. They consist of nodes,
called processors, which consume data from either external
sources or a queue within the graph. It provides compre-
hensive monitoring features including, e.g., the number of
queued messages, highlighting for processors that are the
bottleneck of a dataflow or the consumed processor time of
each node. Nifi is extensible by implementing additional
custom processors, which are deployed to the system. Data
is propagated through the graph as Flow Files. The configu-
ration of processors reaches from simple things like assigning
a name up to details like the amount of concurrent threads
executing the node, the scheduling time and back pressure
thresholds for congestion control. All processors run within
a single JVM. Horizontal scaling is realized by spawning
multiple instances, which all execute the same tasks but on
disparate subsets of data. The consequence of this is, that
dataflows of different users are run on the same machine
and only separated by rights management. The only way
to increase isolation is to run exclusive clusters for each of
them.

The focus of the system is to combine process design, con-
trol and monitoring within a single application. Thus, it is
possible to change configuration in the UI while the process-
ing is running and updating it ad-hoc.

12
Google Groups discussion on horizontal scalability,

including the original Node-RED developer Nicholas
O’Leary: https://groups.google.com/forum/#!msg/node-
red/Nx1WWqBeLbI/xjZBkWRaAAAJ (visited on 07/28/2019)

13
http://mqtt.org/ (visited on 11/23/2019)

14
https://nifi.apache.org

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

6. COMPARISON
A short and conclusive full-on comparison of the above

frameworks would be hardly possible, since the purpose and
the implementation of the frameworks differ greatly. With
their distinct features, it would only be possible to com-
pare select frameworks in a much smaller context which is
not the goal of this paper. Instead we try to guide through
the decisions to make when starting with data processing.
The information which are presented in the previous sec-
tions (Section 3, Section 4, Section 5) are the bases for the
following guide. In addition, the key facts about the pre-
sented systems are aggregated in Table 1 which can serve as
a quick lookup.

6.0.1 Processing Mode
At the very first it must be decided if one needs a system

which handles stream data or not. If only batch processing
is required most stream processing systems are still suffi-
cient since they have means to serialize the data and then
use their native processing mode to consume the data. This
goes not apply vice versa. If one has continuously produced
data which has to be processed live, this is not natively
possible with a batch processing system. The micro batch-
ing approach offers a compromise but should be considered
carefully since it brings its specific category of problems. For
batch processing we would recommend Spark since it is well
integrated with other technologies and its streaming exten-
sion allows to cover a lot of additional scenarios. For stream
processing the most versatile system is Heron with its focus
on modularity.

6.0.2 Resource Management
The second decision to make is how resources are man-

aged. If one has dedicated hardware reserved only for data
processing purposes no constraints are applied to the frame-
work selection. This is different if the infrastructure has
to be shared. Then, some kind of technology is needed to
protect different deployed applications from overzealous re-
source requirements of other running services. It is possible
to manually tweak this but we would not recommend to do
so but instead use a resource manager like Mesos or one of
the many alternatives. This limits the frameworks to Spark,
Flink and Heron which all bring resource manager support.
If one would strongly prefer another system we want to point
out third-party support for, e.g. Mesos, exists at least for
Storm and Hadoop MapReduce.

6.0.3 Language Support
Another factor to consider is the need to integrate with

legacy code bases or other demands for a specific program-
ming language. The dominating language in the data pro-
cessing system environment is Java and its related JVM
compatible languages. For other languages the system needs
either support for writing wrappers or a generic adapter pro-
tocol. The all rounders in this category are Hadoop, Spark
and Storm which all implement a protocol based on std-
in and std-out streams used to integrate arbitrary processes
into their computation. The outlier in the presented systems
is Node-RED which has native JavaScript support.

6.0.4 Use Cases and Recommendations
We want to briefly describe three use cases and give a

recommendation and it’s justification.

1) A small scale private data processing endeavor where we
install a couple of dozens of sensors and want to aggregate
the information. We would recommend Node-RED since it
can be deployed on a recent Raspberry Pi, has an accessible
UI and a big library of processing steps. Its limitations in
raw computational power can be overcome to some degree
by just deploying additional instances (e.g., on additional
Raspberry Pis) and deploying a load balancer.

2) A business level real time data processing project de-
veloped by a small team. We would recommend Storm de-
spite its drawbacks due to the fact that it is easily deployed
without dependencies to other systems. In addition it has
a stand-alone mode which is interesting in particular dur-
ing development where a small light weight instance can be
spawned on a developers machine for testing.

3) A new enterprise level data processing project on reg-
ularily arriving sets of batch data. We would recommend
Spark due to its integration with other systems like HDFS
which is a common backbone for data lakes. Its support
for shared infrastructure helps with the integration in ex-
isting clusters and does not hinder the deployment of fu-
ture applications. Furthermore, it supports possible future
stream processing scenarios via micro-batching which gives
it a great amount of flexibility.

7. CONCLUSIONS
The amount of data processing solutions prohibits to give

a complete overview in any reasonable way. In this paper we
gave a short introduction into a set of wide spread systems
and compiled a list of central criteria to consider if selecting
a system for a particular use case. Due to the wide variety
of advantages and drawbacks of different systems and the
wide variety of possible use cases, from a small home IoT
project over scientific machine learning, up to a full scale
Industry 4.0 production facility it is not possible to give a
general recommendation.

Nonetheless, the comparison should give a first direction
when selecting a system with the most important criteria
being highlighted. Selecting a framework that supports the
right processing mode is clearly crucial, since this is the key
aspect of every framework. Making the choice of a stream
processing framework for a project working with constant
input data of sensors or choosing a batch processing frame-
work when working with strictly static historic collections
of data should now be clear. In addition to that, options for
smaller-scale projects up to frameworks for large-scale oper-
ations have been presented. As an example, Storm allows for
a relatively easy setup for single projects, because no large
stack has to be necessarily installed. Special frameworks like
NiFi and Node-RED have also been discussed, which allow
for visual coding instead of complex programming, making
data processing very accessible.

In conclusion, this paper provided a general overview of
a select list of frameworks, enabling the reader to make the
right decision based on the three discussed main criteria: the
processing mode, the architecture, and APIs and language
support.

References
[1] Safaa Alkatheri, Samah Abbas, et al. “A Compara-

tive Study of Big Data Frameworks”. In: International

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Category Hadoop Spark Storm Heron Flink NodeRed Nifi
Processing
mode

Batch Batch &
Stream*

Stream Stream Batch &
Stream

Stream Stream

Stream
processing

micro-
batching

native native native native native

Processing
guarantees

exactly once exactly once configurable
at-least/at-
most/exactly
once

exactly once exactly once N/A exactly once

Supported
Languages

Java &
std-io

Java,
Python &
std-io

Java &
std-io

Java Java, Scala
and Python

JavaScript Java

Supported
Languages

Java &
std-io

Java,
Python &
std-io

Java &
std-io

Java Java, Scala
and Python

JavaScript Java

Table 1: Comparison of the presented frameworks according to different feature. (*Streaming via Spark Streaming)

Journal of Computer Science and Information Secu-
rity, (Jan. 2019), p. 8.

[2] Apache Software Foundation. Apache Flink Documen-
tation. Version 1.9. url: https://ci.apache.org/

projects/flink/flink-docs-release-1.9/ (visited
on 12/18/2019).

[3] Apache Software Foundation. Apache Hadoop Docu-
mentation. Version 3.2.1. url: https://hadoop.apache.
org/docs/r3.2.1/ (visited on 12/18/2019).

[4] Paris Carbone, Asterios Katsifodimos, et al. “Apache
flink : Stream and batch processing in a single engine”.
In: Bulletin of the IEEE Computer Society Techni-
cal Committee on Data Engineering 36.4 (2015). url:
http://sites.computer.org/debull/A15dec/issue1.

htm.

[5] Jeffrey Dean and Sanjay Ghemawat.“MapReduce: Sim-
plified Data Processing on Large Clusters”. In: Com-
mun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-
0782. doi: 10.1145/1327452.1327492.

[6] Rainer Drath and Alexander Horch. “Industrie 4.0:
Hit or Hype?” In: IEEE Industrial Electronics Mag-
azine 8.2 (2014), pp. 56–58. doi: 10.1109/MIE.2014.
2312079.

[7] Google. Google Cloud Dataflow Documentation. url:
https://cloud.google.com/dataflow/docs/ (visited
on 12/18/2019).

[8] IBM. IBM Streams Documentation. Version 4.3.0. url:
https://www.ibm.com/support/knowledgecenter/

SSCRJU_4.3.0/com.ibm.streams.welcome.doc/doc/

ibminfospherestreams-introduction-overview.html

(visited on 12/18/2019).

[9] Harriet Jarlett. Breaking data records bit by bit. 2017.
url: https://home.cern/news/news/computing/

breaking-data-records-bit-bit (visited on 11/02/2019).

[10] Sanjeev Kulkarni, Nikunj Bhagat, et al.“Twitter Heron:
Stream Processing at Scale”. In: Proceedings of the
2015 ACM SIGMOD International Conference on Man-
agement of Data - SIGMOD ’15. Ed. by Timos Sellis,
Susan B. Davidson, et al. New York, New York, USA:
ACM Press, 2015, pp. 239–250. isbn: 978-1-4503-2758-
9. doi: 10.1145/2723372.2742788.

[11] M. Lekić and G. Gardašević. “IoT Sensor Integration
to Node-RED Platform”. In: 17th International Sym-
posium INFOTEH-JAHORINA. INFOTEH. 2018, pp. 1–
5. doi: 10.1109/INFOTEH.2018.8345544.

[12] Hamid Nasiri, Saeed Nasehi, et al. “Evaluation of dis-
tributed stream processing frameworks for IoT appli-
cations in Smart Cities”. In: Journal of Big Data 6.1
(2019). issn: 2196-1115. doi: 10.1186/s40537-019-
0215-2.

[13] Nicholas O’Leary. A Tale of Getting Stuff Done when
You’re 1 in 379,593. 2016. url: https://youtu.be/
Bbg1017amZs?t=1650 (visited on 11/02/2019).

[14] David Reinsel, John Gantz, et al. The Digitization of
the World from Edge to Core. 2018. url: https://

www.seagate.com/files/www-content/our-story/

trends/files/idc-seagate-dataage-whitepaper.

pdf (visited on 11/02/2019).

[15] Ankit Toshniwal, Siddarth Taneja, et al.“Storm @Twit-
ter”. In: Proceedings of the 2014 ACM SIGMOD In-
ternational Conference on Management of Data. SIG-
MOD ’14. New York, NY, USA: ACM, 2014, pp. 147–
156. isbn: 978-1-4503-2376-5. doi: 10.1145/2588555.
2595641.

[16] Matei Zaharia, Mosharaf Chowdhury, et al. “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing”. In: Proceedings of the
9th USENIX Conference on Networked Systems De-
sign and Implementation. NSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, p. 2. url: http://dl.

acm.org/citation.cfm?id=2228298.2228301.

[17] Matei Zaharia, Tathagata Das, et al.“Discretized Streams:
Fault-tolerant Streaming Computation at Scale”. In:
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. SOSP ’13. New York,
NY, USA: ACM, 2013, pp. 423–438. isbn: 978-1-4503-
2388-8. doi: 10.1145/2517349.2522737.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://ci.apache.org/projects/flink/flink-docs-release-1.9/
https://ci.apache.org/projects/flink/flink-docs-release-1.9/
https://hadoop.apache.org/docs/r3.2.1/
https://hadoop.apache.org/docs/r3.2.1/
http://sites.computer.org/debull/A15dec/issue1.htm
http://sites.computer.org/debull/A15dec/issue1.htm
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/MIE.2014.2312079
https://doi.org/10.1109/MIE.2014.2312079
https://cloud.google.com/dataflow/docs/
https://www.ibm.com/support/knowledgecenter/SSCRJU_4.3.0/com.ibm.streams.welcome.doc/doc/ibminfospherestreams-introduction-overview.html
https://www.ibm.com/support/knowledgecenter/SSCRJU_4.3.0/com.ibm.streams.welcome.doc/doc/ibminfospherestreams-introduction-overview.html
https://www.ibm.com/support/knowledgecenter/SSCRJU_4.3.0/com.ibm.streams.welcome.doc/doc/ibminfospherestreams-introduction-overview.html
https://home.cern/news/news/computing/breaking-data-records-bit-bit
https://home.cern/news/news/computing/breaking-data-records-bit-bit
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1109/INFOTEH.2018.8345544
https://doi.org/10.1186/s40537-019-0215-2
https://doi.org/10.1186/s40537-019-0215-2
https://youtu.be/Bbg1017amZs?t=1650
https://youtu.be/Bbg1017amZs?t=1650
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2517349.2522737

How Resource Management of Kubernetes, Yarn and
Mesos Affects Different Batch Job Workloads

Bernd Schoolmann
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

bernd.schoolmann@rwth-
aachen.de

Johannes Leurs
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany
johannes.leurs@rwth-

aachen.de

ABSTRACT
In the last years, the containerization of applications has
played a leading role in cloud computing because of resource
efficiency and scalability benefits. To assign workloads to
hardware in compute clusters there exist resource manage-
ment frameworks, such as Kubernetes, Yarn, and Mesos.
However, when deciding which of them to employ, there is
no overview which compares them directly and evaluates
strengths and weaknesses. To help with a consultation, this
paper compares Kubernetes, Yarn, and Mesos with respect
to batch job processing. First, a general overview of the ar-
chitectures is provided, with respect to scheduling, storage,
networking, resilience, and control interface. After that their
features are compared. An in-depth comparison of the three
frameworks follows in the aspects of data locality, inter con-
tainer communication, resilience, set-up overhead, and spe-
cific resource requirements. Finally, there is a comparison
in terms of scalability. We conclude that it is not a trivial
choice, which resource negotiator to employ, but it depends
on several requirements which the user places on the cluster:
While Kubernetes offers simple operation for less complex
workloads, Yarn supports easy mechanisms to achieve data
locality and Mesos is the most flexible one when complex
requirements are placed on resources.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming
teams, software configuration management

Keywords
Kubernetes, Hadoop, Yarn, Mesos, Data Processing, Batch
Processing

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2019/20 RWTH Aachen University, Germany.

In an increasingly data-driven world, mass parallel pro-
cessing of data on compute clusters becomes more and more
relevant. Because clusters consist of many compute nodes,
assigning programs to compute resources is usually managed
by a central instance, a resource manager. Some examples
for these managers include Kubernetes, Mesos, and Yarn.

Kubernetes is developed mainly by Google and profits
from years of experience that Google developers gained when
using their proprietary solutions Borg and Omega, which
they developed for Google internal resource management[13].
Yarn is the resource manager of the Apache Hadoop ecosys-
tem. Hadoop was first developed for executing MapReduce
jobs on compute clusters, but because of the lack of sup-
port for other workload types, Hadoop 2.0 introduces Yarn
to manage arbitrary workloads. Mesos is also a project of
the Apache Software Foundation. Mesos features powerful
control for clients of deciding which resources their programs
should run on.

Resource allocation that serves the needs for all possible
workloads, like single applications and complex sets of col-
laborating applications, is a non-trivial task, as modifying
the resource allocation architecture to increase support for
some workload types may make resource allocation less flex-
ible regarding other workload types.

Since workloads have various runtime requirements, a so-
lution to this must take many constraints into account. Han-
dling this and yet keeping a small architecture is a challenge,
however, it is beneficial to scalability [24].

The aforementioned frameworks approach this challenge
in different ways. Therefore it is interesting to ask which
of these frameworks to employ, in order to serve applica-
tion needs such as low latency communication, data local-
ity, resilience, and scalability. We answer this question by
comparing Mesos, Kubernetes and Yarn. We chose these
because they are used by big companies [29, 11, 19] and are
open source, showing that they are relevant for many users.
After obtaining an overview of the frameworks architectures
we analyze how good they serve the aforementioned work-
loads’ needs. Because many containerized workloads scale
easily, we finally analyze how they scale in Mesos, Yarn, and
Kubernetes.

Regarding the examined workloads we restrict ourselves to
batch job processing, even though all resource managers also
support other types of jobs, like services. Our definition of
batch job processing is a data processing program, that can
be distributed into program fragments running in parallel,

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Figure 1: Cluster Architecture of Mesos

that we call tasks. Batch jobs do not interact with other
users or systems once started. This also applies to data
needed for the programs: it has to be available on startup.
No interaction with anything also means that no real-time
requirements can be imposed such as responding to external
events. In conclusion, batch jobs just run to completion on
a given data set, if not interrupted.

In section 2 we describe each resource management frame-
work’s architectures and afterwards compare their unique
properties. In section 3 we investigate different requirements
of batch jobs and how the different resource management
frameworks aid in fulfilling these. In section 4 we compare
the clusters in terms of scalability of both workloads and the
underlying infrastructure.

2. FRAMEWORK ARCHITECTURES
In this section the architectures of compute clusters - as

understood by the frameworks and the interaction with them
- are described, taking into account: what parts they consist
of, what to do to deploy jobs on the cluster, what cluster
users can do to assure that their jobs are being scheduled in
a way that matches specific conditions (e.g. on specific types
of nodes) and what additional features they provide that are
useful for batch processing. Additionally we examine how
resilient they are.

2.1 Mesos
Mesos’ approach to resource management is lightweight.

At the core Mesos only bundles information about what
resources in a cluster are available and deploys workloads
on available resources when instructed to do so by cluster
users. It does not make decisions where to schedule these
workloads. This is implemented by frameworks that interact
with Mesos [25].

2.1.1 Scheduling
The low-level layer of Mesos consists of agents and the

Mesos master. The Mesos master manages the resource dis-
tribution by publishing resource-offers to frameworks they
can use to schedule their work on. The agents are daemons
that run on every node to monitor tasks and resource con-
sumption. They regularly pass this information to the mas-
ter, so that it knows what resources are available for new
programs.

The high-level layer of Mesos consists of a set of frame-
work schedulers, which users implement to interact with

the Mesos cluster. They subscribe to the master to obtain
resource-offers, in order to schedule tasks and control their
execution on the cluster. These resource-offers consist of
unused resources of the cluster. The framework schedulers
can then decide by themselves, if they accept them (or parts
of them) to run their jobs on, or decline the offers and wait
for better suiting ones. The philosophy behind this is that
applications can make better decisions on what resources
satisfy their needs than an external scheduler. However, the
master can withhold resources, e.g. to ensure that a single
framework’s workloads do not block the entire cluster.

Which resources are offered to who is controlled by an allo-
cation module in the Mesos master. This allocation module
can be exchanged by custom ones to match organizational
requirements on resource distribution [6]. When implement-
ing a custom allocator module in the Mesos master, it is also
possible for schedulers to send requests to the Mesos mas-
ter that inform him more specifically about what resource
requirements they have. The default allocator will ignore
these messages though [10].

When a framework’s scheduler accepts resource-offers, it
sends tasks to the Mesos master to deploy them. Resources
might also be reserved by them for later use. On the node,
the scheduler chose the agent then starts a container in
which he launches an executor which is provided by the
framework. The executor sets up and manages the execution
environment (including networking stack, storage and set-
ting up environment paths) for the tasks which it launches in
their own containers (nested in the executor) and is in charge
of monitoring the execution of jobs for the framework. That
includes, e.g. checks for malfunctioning containers. The
communication between jobs and frameworks is done over a
communication endpoint provided by the executor. Because
the requirements of different jobs can differ strongly, frame-
works are expected to implement their own executor to take
responsibility appropriately. However, it is also possible to
use a default implementation that simply launches contain-
ers. Mesos offers a mechanism called task groups that can be
used to share resources such as network stacks and storage
among tasks. Task groups can also be used to ensure that a
group of tasks is launched on the same node. The Executor
can launch containers nested inside other containers running
on them. The nested containers then adopt their parents’
resources. When cluster operators want to ensure that spe-
cific containers run on certain nodes, they can launch these
as standalone containers. No frameworks or executors are
needed for that and the Mesos master is bypassed, so oper-
ators do not need to rely on resource-offers.

Mesos allows adding information about nodes to refine
scheduling decisions. Both types, attributes and resources,
are represented as key-value-pairs. Resources describe in-
formation about compute resources that the Mesos master
considers in his resource-offers and partitions when needed.
CPU and RAM information is provided this way, but e.g.
disk space or GPU information might also be considered.
Attributes are information that framework schedulers might
interpret but are ignored by the Mesos master. Examples
might be hardware products used which the schedulers can
consider for optimization. Custom information can be added
in both ways. Mesos supports two container technologies:
While Docker containers [22] are supported, Mesos also pro-
vides its own container technology which provides its own
resource isolators, customized to meet the requirements of

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

Mesos.

2.1.2 Storage
Mesos treats storage as a resource and therefore the mas-

ter is responsible for distributing storage included in resource-
offers. When a framework’s scheduler accepts an offer, it
mounts a volume created on that storage directly into the
started container. For that, storage must be on the same
node as the launched task. The agent then enforces the
resource limitations. Frameworks can grow and shrink the
volume at any time if further storage is offered to them.

In addition Mesos supports the Container Storage Inter-
face (CSI) [16]. Thus Mesos can integrate third-party stor-
age solutions by interacting with a plugin written by storage
providers. The storage is then handled as native storage. At
the moment, only local storage is supported. In the future,
external persistent storage will be supported by Mesos us-
ing CSI [7]. Another way is to use Docker containers that
support external storage. This storage can not be controlled
by the Mesos master.

2.1.3 Networking
Mesos supports the Container Networking Interface (CNI)

[15], which provides flexibility when designing a job’s net-
working architecture. Using CNI, it is possible to assign
one IP address (or multiple) to each container. The connec-
tion between containers is managed by the CNI, so tasks do
not need to take this into account. Features include enforc-
ing a network-wide security policy by separating containers
into virtual subnets or inspecting the contents of the pack-
ets, but also determining the fastest routes between hosts,
ensuring low latency and high bandwidth. The CNI can
extend the created virtual network across clusters that are
only connected over the internet. Other features, such as
traffic shaping, to enforce bandwidth limits and guarantees
per application, are also possible. A drawback in the cur-
rent implementation is that Docker containers in user mode
only support one network interface at a time. This is not a
problem with Mesos containers.

Mesos provides a concept of regioning called ”Fault Do-
mains” which allows specifying a region and a zone a node
belongs to (the name is ”Fault Domain” because different
nodes are more likely to fail together when they are nearer
in the network topology, e.g. if their common rack fails).
While it is proposed that the zone specifies the rack the
node is in and the region specifies the cluster, this assign-
ment is not mandatory, because the cluster administrator
determines it. This information can be used for scheduling
decisions.

2.1.4 Resilience
Mesos offers a high-availability mode for the Mesos master

in which there are several masters as a backup for a lead-
ing master. In case of a framework scheduler failing, Mesos
allows the frameworks to run multiple schedulers with only
one interacting actively with the Mesos master [8].

The Mesos master monitors its connection to agents using
ping messages and monitoring the state of the TCP connec-
tion to the agent daemons. If the ping health check fails, the
master considers the agents dead and removes them from the
cluster. Frameworks are notified about this so they can react
to the loss of the tasks that ran on the cluster. If the con-
nection between the master and the agent is reestablished

after that, the master prompts the agent to restart. The
agent then restarts and re-registers at the master. Tasks are
lost, but persistent volumes survive. A TCP connection fail-
ure is handled the same way, except if running frameworks
checkpoint the state of their executors. Then the master
allows the agent to reconnect until a timeout is reached [8].
If a node gets separated from the Master (meaning that it
can no longer be reached), the Mesos master assumes all of
the tasks on it as dead and reports this incident to the ap-
plication frameworks. Mesos also informs schedulers about
crashed executors.

If the agent daemon crashes or exits and is restarted, the
new instance may take over the responsibility of running
executors and tasks, if the agent has checkpointed its state
before. If not, running tasks and executors are expected to
gracefully exit. However natively, agents are not restarted
automatically. For this an external service has to be used.

Mesos delivers a health checking mechanism to monitor if
tasks run as expected. Regarding application health, Mesos
supports checks on tasks performed by local executors so
they do not burden the network. These can check HTTP
endpoints or TCP availability, or be arbitrary shell com-
mands. The results of the checks can be forwarded to the
scheduler if configured conditions hold. Mesos distinguishes
between ”normal” checks and health- checks. While the in-
formation collected using normal checks is just forwarded to
schedulers, only the interpretations
”healthy” or ”unhealthy” are forwarded by health checks. In
addition, executors might kill tasks that consequently fail
health checks.

2.1.5 Cluster-Control API
Frameworks interact with the Mesos master over a REST

API, although there exist libraries for Java and C++, too.
It is also possible for a framework to communicate with its
executors. For that, a REST call is provided in the master’s
REST API, which forwards messages to the framework and
to the executors.

Administrators can manipulate storage volumes, set re-
source reservations, changing maintenance schedules or con-
figure resource providers (that are used in CSI). Moreover,
information about the cluster state and its components can
be retrieved.

It has to be noted, that in general, messages between
framework components are not transmitted reliably. E.g.,
the request to schedule a job on offered resources can be
lost on the way from framework to master. Thus, communi-
cation partners should monitor responses until a timeout, on
which they take appropriate action. An exception is status
updates about tasks or operations that the agents, execu-
tors, and master send. They include important information
about the task state (e.g. failed/pending/finished), their
health and failure, including the reason, or –if requested–
about the state of operations invoked. Thus frameworks
can track job progress and react to critical events, such as
failed tasks. To make the transmission of status updates
reliable, schedulers must send an acknowledgment of these
messages.

2.2 Kubernetes
Kubernetes was developed with a focus on running web

services. Thus a lot of components to support web services,
like load balancers, already exist. However, it is also possible

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

to run batch jobs on Kubernetes. defew A Kubernetes clus-
ter can be configured by setting a desired state of the cluster.
Configurable options are which jobs and how many instances
of them should run, which limits apply to the jobs and more.
Kubernetes always tries to bring the current state of the
cluster to the desired state by applying certain actions, like
replacing malfunctioning containers with new ones. In order
to deploy workloads, the user modifies the desired state as
a goal for Kubernetes to move the cluster towards.

2.2.1 Scheduling
In Kubernetes, the smallest deployable unit is called a

pod. A pod is a group of at least one container. All of
these containers run on the same physical node and share a
network stack. This is useful if there are multiple tasks that
should be run in different containers, but are still tightly
coupled and need high bandwidth inter-communication.

A Kubernetes cluster consists of a control plane, man-
aging the state of the cluster, and nodes, responsible for
executing the tasks in the cluster. The control plane (also
called master) is responsible for changing the current clus-
ter state to the desired state. It consists of several compo-
nents: The API-server handles queries about the clusters
state and requests to change the desired state. For exam-
ple, the command line tool kubectl communicates with the
API-server to manage the cluster and the jobs running on it.
The scheduler then takes action to bring the cluster’s cur-
rent state to the desired state, like assigning unscheduled
jobs to nodes. In Kubernetes the scheduler is exchangeable
with ones that are more appropriate for specific workloads.
Multiple schedulers at the same time are also supported. If
multiple schedulers are running, it is possible to select which
scheduler to delegate the assignment of a pod to. Kube-
scheduler is the default scheduler in Kubernetes, capable of
filtering and ranking nodes for a job. This is usually done us-
ing a labeling mechanism: Lables, which are key-value pairs,
can be attached to nodes to add arbitrary information about
them, for example, that an SSD is used. This information
can then be utilized to specify placement constraints for a
pod, which are used to filter feasible nodes. User-defined
constraints are optional. Default ones – like verifying that
nodes’ resources are sufficient to fit the pod – are always
checked. After filtering, the scheduler scores the remaining
nodes in a similar way where labels can again be used to
set preferences towards nodes with certain properties. The
pod is then assigned to the node with the highest score.
Kubernetes supports all container technologies that imple-
ment the Container Runtime Interface (CRI). Besides that,
Docker and rkt [21] are supported without CRI.

2.2.2 Storage
As Mesos, Kubernetes supports the Container Storage In-

terface, which can be used to provide persistent storage to a
container. There are local plugins, which keep the data on
the node, providing high speed access and a high amount of
storage operations per second, compared to the alternative:
remote plugins, which decouple the storage layer from the
compute infrastructure. A CSI in Kubernetes consists of a
node plugin and a controller plugin. The controller plugin
handles general requests like creating or deleting a volume.
The node plugin handles the operations interacting directly
with a volume like reading and writing data.

2.2.3 Networking

Figure 2: Cluster Architecture of Kubernetes

As Mesos, Kubernetes supports the CNI. There is however
a wider variety of CNIs available for Kubernetes. In Kuber-
netes, the CNIs integrate very well with Kubernetes’ annota-
tion system. For example, a limit can be set for ingress and
egress bandwidth for a pod just by applying an annotation
in the pod’s specification.

Kubernetes provides two mechanisms for service discov-
ery: DNS and environment variables. A service, in Kuber-
netes, hides the networking endpoints of specific pods and
provides a single IP address to communicate with if a spe-
cific type of service is desired. To find a service, the pod can
request the IP-addresses of the domain service.namespace.
Using this relatively simple mechanism, different programs
can find each other and communicate.

2.2.4 Resilience
In the control plane, there is a set of controller managers.

They run different controllers including the ones responsi-
ble for maintaining the correct number of pods, the ones
responsible for reacting to failure events and other ones.

Pod failures are detected by health checks and probes,
running on the nodes. If a pod fails them, its state will be-
come failed. The restart policy is an object in Kubernetes
which determines, if and when a pod is restarted or resched-
uled. The scheduler then responds according to the pod’s
restart policy. The latter might be useful if a restart might
cause data loss because of an inconsistent starting state left
behind by the first run [20].

If a node fails, it might be drained by a cluster administra-
tor or controller running in the cluster. Draining it evicts all
pods from the node and makes it unavailable for new pods.
The scheduler then sees that the desired state contains the
pods that are evicted, but the current state does not, so it
reschedules the missing pods [17].

The Kubernetes control plane can be configured to be in
high availability mode. By default, there is only one mas-
ter, whereas in high availability mode there is a set of mas-
ters that all work in parallel. In high availability mode, the
cluster’s state is held in a distributed etcd cluster (a key-
value store). In a high availability cluster, both the mas-
ter applications and the etcd instances holding the control
plane’s state should be distributed across different physical
machines. In the event one master fails, operation should
continue as normal since the state is still available on the
other etcd instances. A cluster operator should make sure

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

to remove failing masters and add new ones if the number
of healthy masters is too low [18]. Without high availability,
the loss of etcd would mean the entire cluster state is lost
and needs to be rebuilt. If only an application master fails,
it can be restarted and no loss of data or state should occur.

2.2.5 Cluster-Control API
Application developers communicate with the cluster us-

ing a REST API. Usually, this is wrapped by the command
line tool kubectl.

If configured, jobs can communicate with the master over
kubectl or the REST API in the same way as other cluster
users. Using this API the desired cluster state can be set,
jobs can be added, updated, or deleted and even nodes can
be edited.

2.3 Yarn
The Hadoop framework is the oldest of the resource man-

agement frameworks we examine in this paper. It natively
supports complex distributing data processing workloads like
MapReduce by employing the Hadoop Distributed File Sys-
tem (HDFS) in order to accelerate data loading before start-
ing computations. The initial version of Hadoop had the
downside that resource management and execution control
of running jobs were tightly coupled into the same compo-
nent (the job tracker), which hindered scaling since these
components could not be scaled independently. Execution
control did not scale with the workloads at all because of
the monolithic structure of the job tracker. Yarn attempts
to fix this by splitting resource management and execution
control into separate daemons [30].

2.3.1 Scheduling
On a Yarn cluster, users manually and frameworks auto-

matically submit jobs to the resource manager. The resource
manager then deploys an application master for the job on
a node in the cluster. The application master is an appli-
cation written by the user to manage the execution of jobs.
For that, the application master negotiates the resources
needed for the job’s execution with the resource manager
which also is the central broker between application masters
and the nodes regarding resource allocation. On each node,
there is a daemon called node manager. Once the applica-
tion master is granted resources, it communicates with the
node managers resources’ nodes in order to deploy the tasks
belonging to the job. The application master then monitors
the execution and watches for failures of the tasks.

Node attributes can be used to specify the properties of
these nodes. They can be used by application masters to
specify constraints on resources they request. The resource
manager will then attempt to fulfill these constraints. An-
other type of constraints are affinity constraints. These can
be used to evaluate which placement is better suited for
tasks compared to others. Anti affinity constraints do the
opposite.

Yarn natively supports Java applications as containers. In
addition, Docker containers are supported.

2.3.2 Storage
Yarn integrates natively with the distributed file system

of Hadoop, HDFS. HDFS spreads the blocks, which the files
consist of, over multiple nodes called data nodes. These are

Figure 3: Cluster Architecture of Yarn

usually the same ones that are used for computations. One
master component, the name node, indexes the locations of
the blocks. When attempting to access a file, a request is
sent to the name node which replies with the locations of
each data block the file consists of. The requester can then
communicate directly with the data nodes which hold these
blocks. In this setup, no data blocks are routed through
the name node, because this would be a bottleneck for the
system and overload the name node. HDFS is built for re-
dundancy and therefore replicates blocks across several data
nodes.

A few other storage providers can also be used, such as
Amazons S3, OpenStack Swift and Azure Blob storage.

2.3.3 Networking
By default, there is no network abstraction layer that can

provide a virtual network between containers. However, the
application master has open communication channels to the
worker containers. This means that all containers on one
node share the same IP address (except when using Docker
containers) and that applications need to take care of the
networking layer themselves. A service discovery mechanism
can be used to resolve DNS records to containers. Using a
service record, the hosts IP and port to the container can
be stored and retrieved by other services later on [4].

2.3.4 Resilience
The state of the Yarn cluster is kept in a Zookeeper clus-

ter. During a fail of the resource manager, cluster fea-
tures such as scheduling are unavailable but while restart-
ing the resource manager the cluster state can be recovered.
Failover resource managers might be deployed, so that down-
time of the cluster’s features is prevented by switching traffic
to a failover resource manager in the event that the main re-
source manager fails. Having multiple active resource man-
agers at the same time is currently not supported.

In the event of a node failure, the resource manager up-
dates its list of available nodes. The application masters im-
plementation determines whether it can recover the job and
the missing tasks or not. The developer has to implement
data recovery and task restarting logic for the application
master. Otherwise, the whole job might fail from a node
outage or maintenance.

If an application master fails, the resource manager de-
tects this and reschedules another instance of the applica-
tion master. Recovering from this failure is left up to the
application master, which means that the developer has to
implement the logic to recover tasks belonging to the appli-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

cation master and recovering into a consistent state [12]. If a
container fails, it simply gets restarted by the node manager
of the node the container was running on.

2.3.5 Cluster-Control API
For interaction with the cluster, a REST API can be used.

Additionally, a command line tool exists for abstraction. It
supports job deployment, querying information about the
cluster, deleting, updating or creating jobs, but also clus-
ter management commands like getting logs and inspecting
states of the nodes.

If the job submitter wants to communicate with the appli-
cation master, he can request information about it (and the
application in general) from the resource manager. Among
other information, the address for remote procedure calls is
included that can be used for communication [3]. A service
discovery mechanism can be used to resolve socket informa-
tion of containers from URLs. If only tracking of application
progress is required, the application master can log informa-
tion about that (or arbitrary other information) to a server
called timeline server from which the information may be
retrieved by job submitters.

2.4 Feature Comparison
The previous description of the cluster architectures shows

a few of key differences between the paradigms which the
frameworks follow.

As mentioned, Kubernetes always has a desired state and
a current state and the controllers try to transform the cur-
rent to the desired state. For example, when scheduling 10
pods, with none prior running, Kubernetes sets the desired
state to 10 running pods. The scheduler sees this and tries
to assign nodes to these pods. Yarn and Mesos, on the other
hand, take actions in response to events. In Yarn, the user
tells the resource manager to launch a master, which then
negotiates resources with the resource manager to launch
the containers on. In Mesos, the user tells the framework to
launch the containers. Kubernetes takes more effort when
it comes to handling unexpected events like malfunctioning
containers, e.g. by replacing them with new ones. This takes
off work of the frameworks but limits them in their reaction
to these events on the other hand. This behavior can be aug-
mented so that frameworks can react appropriately regard-
ing the situation. Using Mesos and Yarn, the frameworks
always have to handle such situations themselves. Another
difference is that Yarn operates on a less abstracted net-
working layer compared to Kubernetes and Mesos. While
Kubernetes and Mesos provide integration for the CNI and
thus can provide IP addresses to each container and can cre-
ate common virtual networks across different clusters, con-
tainers in Yarn share the same address spaces if they run
on the same machine and thus are not decoupled from the
infrastructure (the node’s network stack). One more dif-
ference is resource allocation. Yarn and Kubernetes by de-
fault both decide which resource a Job is assigned to. Mesos
only ever publishes out resource-offers, but the final decision
which of these offered resources to run the job on lies with
the framework. This has massive implications for flexibil-
ity (and scalability). Yarn’s and Kubernetes’ schedulers are
more complex since they need to handle more logic. Mesos’
approach is more lightweight since it only acts as a broker
between advertised resources of the nodes and requests from
frameworks. Additionally, Mesos’ approach is more flexible

since it allows to easily integrate a custom resource man-
ager in Mesos in the form of a Mesos framework. Replacing
the scheduler in Yarn or Kubernetes requires a lot more in-
tegration than simply accepting or refusing offers made by
Mesos.

Finally, there is a big difference in how jobs are run from
a conceptual point of view. Kubernetes does not really rec-
ognize jobs that span over multiple pods. It would be pos-
sible to imitate a Yarn-like application master with a pod
that communicates with the cluster handle the scheduling
of pods. Mesos is similar in this regard, however, the frame-
work might be customized to run specific types of jobs in
a more general way. For example, a framework can run all
MapReduce tasks instead of reimplementing it for specific
MapReduce tasks. Yarn is different in this matter. Yarn
always requires an application master which knows how to
execute, manage and monitor the execution of a more com-
plex job. This is useful when anything interdependent like
a MapReduce job is deployed, which comes with a lot of in-
tercommunicating worker containers. Even for simpler jobs,
like a build pipeline, this might be necessary in order to
ensure the correct order of execution of these steps.

3. HANDLING OF BATCH JOB REQUIRE-
MENTS

Different kinds of jobs benefit in distinct ways from each
resource management framework. In this chapter, we in-
vestigate different relevant properties, and the effect the re-
source management frameworks have on each of these prop-
erties.

3.1 Data Locality
Data locality describes the property that the data needed

for an application is already on the node at application
launch (and does not need to be loaded from another source),
or at least should be close like in the same rack [23], since
bandwidth between nodes is higher. Thus it is sometimes
more efficient to move application code to the machine that
stores the data needed by it and run it there than vice versa.
That is e.g. the case for MapReduce Jobs, where many tiny
instances of an application have to run on large data sets
where transferring parts of the data through the network
would slow down the execution flow, as the bandwidth is
the bottleneck. An example application for this job would
be doing statistics over user data, like computing the av-
erage age of all users. The opposite case, where there is
a lot of computation in a workload on a relatively (to the
amount of computation) small dataset, does not benefit as
much from data locality, as the nodes cannot keep up with
the hard drive speed, or even the network speed. An exam-
ple of this kind of application is machine learning, where a
lot of computation is being done. Jobs requiring data local-
ity benefit from HDFS which comes with Yarn included in
Hadoop. By communicating with the name node the jobs
application master can locate the machines and racks where
their data is stored on and request the tasks to run on these
machines (or at least on the same racks as the machines).
Since this eliminates most of the network bottlenecks present
when compared to a separated file system layer, Yarn has
an advantage — in workloads benefiting from data locality
— as long as the application developer implements interac-
tion with HDFS properly. Mesos and Kubernetes do not

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

include a distributed file system like HDFS natively, how-
ever, it is possible to mount local volumes on the nodes. To
achieve similar support of data local applications, it is con-
ceivable to implement a scheduler on Mesos, which imitates
the features of HDFS. Data nodes could be implemented
by using standalone containers to ensure that one instance
runs on each node. In Kubernetes, one approach would be
first deploying an application (similar to Yarn’s application
master) which communicates with a name node and then
sets the filters/ranking of nodes based on this. However,
this is a considerable effort. Both approaches amount to
re-implementing an HDFS like file system.

To summarize, data locality is natively supported by Yarn.
In Mesos and Kubernetes it is also possible but requires more
effort for the application developer while not contributing
any benefits compared to Yarn. If data locality is an im-
portant property, Yarn is the simplest and most effective
solution.

3.2 Inter Container Communication
Communication intensive applications, such as those which

use message-passing interfaces, might require a network in-
frastructure with high bandwidth and low latency in be-
tween the compute nodes. At first, this sounds similar to
data– locality. However, it tries to achieve higher data-
processing rates by keeping related applications close to the
data they require. However, in this section, we do not con-
sider data that is stored ahead of time (like in the data local-
ity section), but instead, we consider the live communication
between processes. For example, a distributed physics sim-
ulation benefits from low latency communication since there
are many interdependent data relations that need to be con-
sidered. If this simulation is detailed enough (and thus is
exchanged information) it will also require high bandwidth
since in such a simulation, each time step depends on the
results of the previous one. Thus the tasks the simulation
consists of benefit from being scheduled near to each other
regarding the network topology.

Since Mesos’ scheduler gets offers it can decide whether
the constellation of allocated resources fit its requirements
(in terms of inter resource communication) and then decide
to accept the offer. This is very flexible since the region the
tasks are scheduled into is dynamically determined. Region
information might also be given addressing nodes with at-
tributes that indicate their place in the network topology.
This is a more refined approach than using fault domains
because fault domains only offer a two-level hierarchy. In
Kubernetes, this is handled through Kubernetes’ labeling
system. A region and zone can be specified. Similar to
Mesos, these get attached as labels to the node. A job could
be specified to run specifically in a region to improve the
communication between the tasks. This, however, is less
flexible than Mesos since the region needs to be specified by
the cluster’s user when deploying the job, instead of being
dynamically determined by the scheduler, as there is no offer
system. As Yarn is natively rack-aware, the scheduler can
be configured to schedule several tasks into the same rack
for improved communication. In order for this to work, the
Yarn cluster operator has to configure the datacenter’s net-
working architecture into the cluster. The cluster user can
specify a delay the scheduler can wait before loosening up
its locality requirements. According to Tom White [31], in
a typical Yarn cluster, waiting only a few of seconds signif-

icantly increases the chances to get scheduled on the same
node as another job. If lots of data transfer is involved,
the time savings in the data transfers already significantly
outweigh this slight delay [2].

In Yarn and Kubernetes a common region to schedule jobs
on can only be specified by explicitly naming a specific one
for scheduling. The disadvantage is that requesting frame-
works can not know what capacity is still free in that region,
so the request could lead to a resource allocation that is not
optimal: The instances requesting the resources would have
to try all possible regions after each other to find a fitting
one until the tasks can be assigned. Mesos, on the other
hand, allows a more flexible approach. Because frameworks
can decide by themselves what resources to use, they can
decide on the best set of resources matching their regional
constraints that the Mesos master offers them (or wait for
an even better fitting one).

3.3 Resilience
With increasing cluster size the likelihood of a machine

failing increases. If an application runs a long time (e.g.
over weeks) and its assigned node fails, the effort to run
the application has been of no use if no measures have been
taken to recover from such a solution [2].

In this section, we are going to investigate three types of
failures: application failure, node failure and master failure.

The first type of failure to consider is application failure.
When a bug in the application causes a task to fail, it has
to be detected and restarted. Mesos and Kubernetes offer
built-in mechanisms to provide this service in the form of
health checks. The cluster user can define health probes
that check status provided by the tasks, for example over
an HTTP endpoint which reports whether or not the task is
healthy. Yarn has no such integration. In Kubernetes, once
a task and its pod stop, its restart policy determines if it is
automatically restarted by the scheduler or not. By default,
the scheduler will automatically restart the pod. However,
if it is required that these events are handled manually, han-
dles can be attached to these events in order to restart tasks
using custom procedures. Mesos will notify the framework
of the task failure. It is the framework’s job to decide if
and how to reschedule. This allows more flexible recovery
mechanisms. For example, if the cluster notices that failures
often occur in one region due to disk faults, the framework
can decide to reschedule in a different region since the pre-
vious region’s storage infrastructure is down. In Yarn, the
application master has to check the health of its tasks and
has to deal with the restart logic itself.

To summarize Kubernetes provides the simplest tools for
dealing with task failure. All tools provide an option to do
smart rescheduling by attaching custom logic to the failures.
The application state recovery has to be implemented by the
developers and is not handled by the clusters in all cases.

The next type of failure to consider is node outage. Some-
times the worker node is down for one of several reasons.
Some of these reasons are hardware failure, maintenance
downtime, software crash (in the operating system), net-
work failure, or other failures. In a big cluster, over a long-
running job, this is likely to happen. Therefore it would be
useful if the cluster automatically detects such a failure of a
node and restarts the tasks that are now missing from the
cluster. In Kubernetes, a failed node needs to be drained
(logically from the cluster’s point of view, does not neces-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

sarily involve communication with the node) which evicts all
the pods from it. As long as the restart policy permits it,
the scheduler will automatically reschedule all the pods that
were lost. If local storage is used, it is lost. Yarn handles
this like a container failure of all containers on the node and
notifies the application master. If the node of the applica-
tion master is affected, the application master is restarted by
Yarn (if this is configured). If its state should be recovered,
the application master has to implement the logic for this it-
self. In Mesos, similar to Yarn, a node outage is broadcasted
to the affected frameworks if the Mesos master discovers it.
The frameworks have to handle rescheduling of all the tasks
which have been lost due to the node failure themselves.
However, if the frameworks implement checkpointing mech-
anisms for their tasks, they might just be restarted and their
state recovered. It follows that for node failure, Kubernetes
follows a very simple concept while Mesos and Yarn by de-
fault enable complex logic to handle failures. This is similar
to the difference between the frameworks in terms of han-
dling application failures.

The final type of failure to consider is a master outage.
Kubernetes has several masters active at a time and keeps
the state in a shared store (etcd). The failure of one mas-
ter does not pose a significant problem since there are more
masters running. If only one master is running in the clus-
ter, it should still be able to recover from failure as long as
the cluster state (the etcd cluster) is replicated onto other
machines. Yarn keeps the cluster’s data in a shared dis-
tributed store which means in single Master mode it works
the same way as Kubernetes. It follows that there can be
small outages while the new Master is being set up (by the
cluster operator) however no data should be lost. Avail-
ability is possible due to the option to add failover resource
managers. Similarly, Mesos can have multiple failover mas-
ters with one only being active at a time. It also employs
a distributed state store just like Kubernetes and Yarn, in
order to ensure that it does not lose the cluster’s state.

To summarize, Kubernetes, Yarn, and Mesos all provide
master availability and do not lose state due to distributed
state stores, provided that they are deployed in high- avail-
ability mode. They differ slightly in the implementation
of failover mechanisms, but in our opinion not enough to
matter for a lot of real-world applications. Outages are pos-
sible if the frameworks do not have enough master nodes to
failover to, however, it should be possible to recover from
this since all three frameworks keep the cluster data in a
distributed data store.

3.4 Job Deployment
A simple job like a one-off batch job, for example convert-

ing a set of video files, can be deployed by just one command
with Kubernetes. All a developer has to do is to package the
application in a container, upload it to a registry the clus-
ter has access to and then tell the cluster to start the job.
In Yarn, the developer needs to write at least the applica-
tion master which the resource manager deploys onto the
node to manage the job’s execution. This application mas-
ter needs to implement the communication logic with the
resource manager necessary for deploying the task onto the
cluster. In Mesos, a default executor can be used to deploy
one-off jobs. However, a framework has to be written that
handles at least resource negotiation with the Mesos mas-
ter. For jobs with more complex requirements, Yarn offers

tools to achieve good data locality, while no native tools are
available in Mesos and Kubernetes. Regarding complex con-
straints on resources, which jobs might have, Mesos has the
most flexible approach to take this requirement into consid-
eration. Due to their network abstraction layers, Kubernetes
and Mesos make deployment of networked jobs easier, since
this decouples the underlying infrastructure from the appli-
cation code. It follows that Kubernetes has the least setup
overhead for simple applications. Yarn and Mesos need a
complex setup even for trivial tasks which makes them less
usable for budget or time-constrained projects but provide
features to support more complex job requirements.

3.5 Specific Resource Requirements
When running a job, certain resources or hardware fea-

tures might be needed to complete the job more efficiently,
or even to complete the job at all. Examples include A GPU,
special-purpose hardware or certain hardware features like
specific hardware-accelerated CPU instructions. For exam-
ple, machine learning tasks benefit heavily from graphics
processing units or even tensor processing units. There-
fore it is useful to schedule certain jobs specifically only on
nodes with this special hardware, in case not all nodes share
the same hardware. Using Kubernetes’ labeling system, the
cluster operator can advertise these features for nodes by
labeling them with the appropriate properties. The cluster
user can then specify this label as a filter on the scheduling
request and the scheduler will ensure the task has the neces-
sary resources. For GPUs, a device plugin for the GPU kind
(currently Nvidia or AMD) has to be installed in the clus-
ter. The user can then specify the amount of GPUs the job
requires, and the job will get exclusive access to the GPU.
Kubernetes does not support sharing a single GPU over mul-
tiple jobs at the moment. Mesos provides a similar labeling
system. Depending on label type (attribute or resource)
Mesos ignores this information, so they are only interpreted
by schedulers or distributes them within its resource-offers
[9]. This means that the framework schedulers need to sup-
port filtering the job requirements, in order to take advan-
tage of them. The cluster user can then limit themself to
only accepting offers that match their specific requirements.
For GPUs, the cluster user specifies this as a special re-
source to schedule the job. At the moment, Mesos only
supports Nvidia GPUs which might pose a problem if the
cluster operator already possesses hardware from a different
manufacturer. Mesos supports sharing the graphics memory
of GPUs which means that when changing between jobs the
data set does not need to be re-uploaded. There is, however,
no way to enforce these limits at the moment, they require
the jobs to implement the limits. Yarn can handle specific
resources over a similar labeling system, however, this needs
to be specifically enabled in the resource manager. With this
enabled in the cluster, a node-label expression can be spec-
ified, and the job will only be placed on nodes that match
this expression. For GPUs, this is not necessary as they are
supported by default. However, the same restriction as with
Mesos, supporting only Nvidia GPUs, does apply. Yarn does
not support sharing GPUs at the moment, but it is planned
for the future.

To summarize, all frameworks support scheduling to spe-
cial hardware through a labeling system. GPU support dif-
fers a bit between frameworks however. Kubernetes has a
wider support of GPU suppliers. Mesos on the other hand

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

allows to distribute GPUs and other special resources on the
same node across different frameworks by considering it in
its resource-offers.

4. APPLICATION AND INFRASTRUCTURE
SCALING

Scaling is an important challenge when it comes to the
evolution of an application. This is also true for batch jobs:
Be it a physics simulation that becomes more complex, or
more user data that has to be processed, e.g. for statistics.
In the context of container technologies, this often means
deploying more containers because of the anatomy of mass
parallel processes that run in compute clusters. Thus, it is
interesting, how the three frameworks handle the increase of
work to schedule, both in terms of scaling up the number of
jobs running on the cluster and of adding infrastructure to
the cluster.

4.1 Workload Scaling
Kubernetes’ main bottleneck when scaling workloads to

tens of thousands of pods is the scheduler. It is the single
point that all scheduling passes through. If a job is to be
scheduled, it gets added to the scheduler’s queue and waits
to be scheduled. This means that when scheduling a lot
of pods, the queue needs to be big enough to contain all
pods, and the scheduler needs to be fast enough to handle
the jobs sequentially. At the moment, at most 150,000 pods
are supported and 30,000 pods can already take 2 hours to
schedule [26]. An improvement on this is a custom scheduler
or deploying multiple schedulers to schedule pods in parallel.

Yarn has a similar issue, as here the resource manager is
the single bottleneck. Every application master has to talk
to the resource manager in order to get resources allocated
for tasks it wants to run. In addition, a lot of lookups on the
name node can become an issue for scaling the underlying
HDFS. A strategy deployed by Uber for mitigation of this
problem is splitting the writing and reading of the name
node, so that there is one name node that handles writing,
and multiple name nodes that handle read requests [1].

In a Mesos cluster, frameworks have to handle job coor-
dination but also scheduling. The framework receives offers
from the master and can choose to accept or reject these.
Thus, this overhead is distributed across all different frame-
works, so scheduling bottlenecks are eliminated in general.

To summarize, Kubernetes scheduling system is mono-
lithic and therefore might pose problems for deployments
with several tens of thousands of jobs. Yarn has a similar
bottleneck because it has a monolithic resource manager.
However, since the application masters handle job coordina-
tion run on the cluster nodes, it is expected to scale better.
Mesos is even more flexible in this scenario since it dele-
gates not only the job coordination to the framework but
also most of the scheduling by only making offers to it.

4.2 Resource Scaling
With an ongoing increase of work to schedule, the clus-

ter’s compute capacity will eventually be used completely.
At this point the cluster has to be enlarged to handle in-
creased resource demands. Thus it is important to which
point the frameworks scale without noticeable limitations
and what are the bottlenecks when doing so. One approach
is to increase the power of the individual nodes. This is

called vertical scaling. The problem with this approach is
that this does not scale indefinitely. Also, the cost per com-
pute power increases exponentially, so it is more feasible to
add more compute nodes. Thus, the size of the cluster is
theoretically unlimited [27]. Kubernetes provides the least
amount of scalability when it comes to the physical layer.
At the time of writing, only 5,000 nodes are supported [14].
This means that large data processing jobs might have to be
split across multiple clusters to handle the workload. There
is no way to logically treat this set of clusters as one big
cluster, so the application developer has to find a solution
himself. Traditionally, Yarn can only scale up to a few of
thousand nodes, due to the monolithic resource manager.
However, it is possible to combine several federated clusters
into a larger super-cluster, containing several tens of thou-
sands of nodes. This means that scaling beyond a few thou-
sand nodes is easier in Yarn since the application developer
can treat this super-cluster as one giant cluster [5]. Due to
Mesos’ non-monolithic nature and lean resource broker, it
scales very well with some clusters (running a modified ver-
sion of Mesos) reportedly spanning over 80,000 nodes [28].
While there is no federated cluster support like in Yarn, the
limit is still in the same range as Yarn. However, this ap-
proach is less complex and thus less effort.

To summarize, when it comes to scaling raw compute
power, Mesos’ scheduler provides the biggest flexibility since
it is fairly lean and does not need to handle a lot of logic.
Yarn requires some setup and maintenance but can scale up
to similar sizes as Mesos. Kubernetes in its current form
does not scale as much which means that it is necessary to
scale vertically once the node limit is reached.

5. CONCLUSION
To conclude, there is no single perfect resource manage-

ment framework that solves all problems in an optimal way.
Mesos is very customizable but requires a lot of tailoring by
the application developer, like writing a custom scheduler
and executor, in order to reap the benefits of it. This is use-
ful when deploying workloads with complex resource require-
ments. Kubernetes makes it easy to deploy non-complex
jobs. Yet it is flexible when setting up more complex logic,
but lacks proper tooling when it comes to data processing.
However a complex job with intra-job dependencies requires
a custom scheduler just like Mesos and Yarn. Yarn supports
jobs with a need for data locality well, but requires similar
involvement of the developer compared to Mesos.

6. REFERENCES
[1] Ang Zhang, Wei Yan. Scaling uber’s apache hadoop

distributed file system for growth.
https://eng.uber.com/scaling-HDFS/. Accessed:
2019-11-21.

[2] Apache Software Foundation. Apache placement
constraints.
https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-

site/PlacementConstraints.html. Accessed:
2019-11-21; Version 3.2.1.

[3] Apache Software Foundation. Apache resource
manager api.
https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/ResourceManagerRest.html.
Accessed: 2019-12-13; Version 3.2.1.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://eng.uber.com/scaling-HDFS/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/PlacementConstraints.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/PlacementConstraints.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/PlacementConstraints.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html

[4] Apache Software Foundation. Apache service
discovery.
https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/yarn-

service/ServiceDiscovery.html. Accessed:
2019-11-21; Version 3.2.1.

[5] Apache Software Foundation. Apache yarn federation.
https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/Federation.html. Accessed:
2019-11-21; Version 3.2.1.

[6] Apache Software Foundation. Mesos allocation
modules. http://mesos.apache.org/documentation/
latest/allocation-module/. Accessed: 2019-11-21;
Version: 1.9.0.

[7] Apache Software Foundation. Mesos container storage
interface (csi) support. https:
//mesos.apache.org/documentation/latest/csi/.
Accessed: 2019-11-21; Version: 1.9.0.

[8] Apache Software Foundation. Mesos designing highly
available mesos frameworks.
https://mesos.apache.org/documentation/latest/

high-availability-framework-guide/. Accessed:
2019-11-21; Version: 1.9.0.

[9] Apache Software Foundation. Mesos framework
development guide.
https://mesos.apache.org/documentation/latest/

app-framework-development-guide/. Accessed:
2019-11-21; Version: 1.9.0.

[10] Apache Software Foundation. Mesos scheduler http
api. http://mesos.apache.org/documentation/
latest/scheduler-http-api/. Accessed: 2019-11-21;
Version: 1.9.0.

[11] Apache Software Foundation. Platforms powered by
mesos. http://mesos.apache.org/documentation/
latest/powered-by-mesos/. Accessed: 2019-11-21.

[12] Arinto Murdopo. Towards high availability in yarn:
Motivation and proposed solution.
http://www.otnira.com/2013/01/19/ha-in-Yarn-

motivation-and-proposed-solution/. Accessed:
2019-11-21.

[13] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes. Borg, omega, and kubernetes. ACM Queue,
14:70–93, 2016.

[14] Cloud Native Computing Foundation. Building large
clusters - kubernetes.
https://kubernetes.io/docs/setup/best-

practices/cluster-large/. Accessed: 2019-11-21;
Version: 1.16.

[15] Cloud Native Computing Foundation. Cni - the
container network interface.
https://github.com/containernetworking/cni.
Accessed: 2019-11-21.

[16] Cloud Native Computing Foundation. Container
storage interface (csi) specification. https:
//github.com/container-storage-interface/spec.
Accessed: 2019-11-21.

[17] Cloud Native Computing Foundation. Disruptions -
kubernetes. https://Kubernetes.io/docs/concepts/
workloads/pods/disruptions/. Accessed: 2019-11-21;
Version: 1.16.

[18] Cloud Native Computing Foundation. Handling
master replica failures - kubernetes.

https://kubernetes.io/docs/tasks/administer-

cluster/highly-available-master/#handling-

master-replica-failures. Accessed: 2019-11-21;
Version: 1.16.

[19] Cloud Native Computing Foundation. Kubernetes user
case studies. https://kubernetes.io/case-studies/.
Accessed: 2019-11-21.

[20] Cloud Native Computing Foundation. Pod lifecycle -
kubernetes. https://kubernetes.io/docs/concepts/
workloads/pods/pod-lifecycle/. Accessed:
2019-11-21; Version: 1.16.

[21] CoreOS, Inc. rkt. https://coreos.com/rkt/.
Accessed: 2020-01-17.

[22] Docker, Inc. Docker. https://www.docker.com/.
Accessed: 2020-01-17.

[23] Z. Guo, G. Fox, and M. Zhou. Investigation of data
locality in mapreduce. In Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (Ccgrid 2012), CCGRID
’12, pages 419–426, Washington, DC, USA, 2012.
IEEE Computer Society.

[24] W. Hasselbring. Microservices for scalability. In
Proceedings of the 7th ACM/SPEC on International
Conference on Performance Engineering - ICPE 16.
ACM Press, 2016.

[25] B. Hindman and K. E. al. Mesos: A platform for
fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’11, pages 295–308, Berkeley, CA, USA, 2011.
USENIX Association.

[26] Hongchao Deng. Improving kubernetes scheduler
performance. https://coreos.com/blog/improving-
kubernetes-scheduler-performance.html. Accessed:
2019-11-21.

[27] Shekhar Gulati. Best practices for horizontal
application scaling - archived.
https://blog.openshift.com/best-practices-for-

horizontal-application-scaling/. Accessed:
2019-12-09.

[28] Timothy Prickett Morgan. Mesos clusters growing to
monster sizes.
https://www.nextplatform.com/2016/03/24/Mesos-

clusters-growing-monster-sizes/. Accessed:
2019-11-21.

[29] Uber. Uber engineering blog.
https://eng.uber.com/tag/hadoop/. Accessed:
2019-11-21.

[30] V. K. Vavilapalli and E. a. Murthy. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings
of the 4th annual Symposium on Cloud Computing,
page 5. ACM, 2013.

[31] T. White. Hadoop: The Definitive Guide, 4th Edition.
O’Reilly Media, Inc., 2015.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2020 for this paper by its authors

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn-service/ServiceDiscovery.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn-service/ServiceDiscovery.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn-service/ServiceDiscovery.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Federation.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Federation.html
http://mesos.apache.org/documentation/latest/allocation-module/
http://mesos.apache.org/documentation/latest/allocation-module/
https://mesos.apache.org/documentation/latest/csi/
https://mesos.apache.org/documentation/latest/csi/
https://mesos.apache.org/documentation/latest/high-availability-framework-guide/
https://mesos.apache.org/documentation/latest/high-availability-framework-guide/
https://mesos.apache.org/documentation/latest/app-framework-development-guide/
https://mesos.apache.org/documentation/latest/app-framework-development-guide/
http://mesos.apache.org/documentation/latest/scheduler-http-api/
http://mesos.apache.org/documentation/latest/scheduler-http-api/
http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://www.otnira.com/2013/01/19/ha-in-Yarn-motivation-and-proposed-solution/
http://www.otnira.com/2013/01/19/ha-in-Yarn-motivation-and-proposed-solution/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://github.com/containernetworking/cni
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://Kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://Kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/#handling-master-replica-failures
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/#handling-master-replica-failures
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/#handling-master-replica-failures
https://kubernetes.io/case-studies/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://coreos.com/rkt/
https://www.docker.com/
https://coreos.com/blog/improving-kubernetes-scheduler-performance.html
https://coreos.com/blog/improving-kubernetes-scheduler-performance.html
https://blog.openshift.com/best-practices-for-horizontal-application-scaling/
https://blog.openshift.com/best-practices-for-horizontal-application-scaling/
https://www.nextplatform.com/2016/03/24/Mesos-clusters-growing-monster-sizes/
https://www.nextplatform.com/2016/03/24/Mesos-clusters-growing-monster-sizes/
https://eng.uber.com/tag/hadoop/

	Proceedings
	Table of Contents
	Applicability of Test Oracles in Agile Development
	Introduction
	Background
	Agile Development
	Test oracles
	Definitions
	Categories of test oracles

	Related Work

	agile criteria
	Evaluation
	Metamorphic Testing
	 How feasible is the construction of the oracle to unknown requirements?
	How adaptable is the test oracle to fast-changing requirements?
	How much documentation does the oracle need?
	How time-consuming is the creation of the test oracle?

	Foundations
	Model-Based Testing
	How feasible is the construction of the oracle to unknown requirements?
	To what degree is the test oracle adaptable to fast-changing requirements?
	How much documentation does the oracle need?
	How time-consuming is the creation of the test oracle?

	Fuzzing
	How feasible is the construction of the oracle to unknown requirements?
	How adaptable is the test oracle to fast-changing requirements?
	How much documentation does the oracle need?
	How time-consuming is the creation of the test oracle?

	Discussion
	Conclusion
	References

	Current State of Equivalent Mutant Reduction Methods in
Mutation Testing
	Introduction
	Background
	Fundamental Hypotheses
	Mutation Testing Optimizations
	The Equivalent Mutant Problem (EMP)
	Equivalent Mutants Reduction Methods
	Weak Mutation Testing
	Higher Order Mutants (HOMs)
	Compiler Optimization
	Control-Flow Analysis

	Related Work
	Comparison of Approaches
	Weak Mutation Testing Effectiveness
	Higher Order Mutation Testing Effectiveness
	Compiler Optimization Effectiveness
	Control-Flow Analysis Effectiveness
	Comparison

	Current Implementation State
	Actively Developed Mutation Testing Tools
	Implementations of Reduction Methods

	Conclusion
	Future Work
	References

	On Factors Contributing to the Qualitative Measurement of
Test Suite Effectiveness
	Introduction
	Background
	Overview of findings
	Measuring Effectiveness of Test Cases
	Measuring Effectiveness of Test Suites
	Techniques to Improve Test Effectiveness

	Discussion and Conclusion
	Future Work
	References

	Automated Testing of Microservice-based Systems
	Introduction
	Related Work
	Microservice Architecture for Distributed System
	Characteristics of a Microservice Architecture
	Advantages of Microservices
	Disadvantages of Microservices

	Automated Testing of Microservices
	Testing Pyramid
	Test types
	Functional Testing
	Fault-Tolerance Testing
	Performance Testing

	Discussion
	Conclusions
	References

	Determining Metric Thresholds for Code Smell Detection:
A Systematic Mapping Study
	Introduction
	Related Work
	Research Questions
	Mapping Study Methods
	Study Search
	Search Scope
	Search Strategy

	Study Selection
	Selection Criteria
	Selection process

	Snowballing
	Data Extraction
	Data Synthesis

	Study Results
	Search Results
	Demographic Results
	Approaches Used to Determine Metric Thresholds
	Targeted domains
	Referenced Tools
	Targeted Code Smells

	Discussion
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusion and Future Work
	References
	Selected Studies

	Towards a Catalog of Refactoring Solutions for Enterprise
Architecture Smells
	Introduction
	Key Concepts and Related Work
	Code Smells
	Code refactoring solutions
	EA
	EA Smells

	Method
	EA Refactoring Solutions
	Refactoring Selection Process
	Transformation to EA
	Transformation Process
	Transforming Code Refactoring Solutions to EA Refactoring Solutions

	Categorization of EA Refactoring Solutions
	Representation of EA Refactoring Solutions
	Validation of transformed EA Refactoring Solutions

	Results
	Catalog of EA Refactoring Solutions
	Transformation

	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion and Future Work

	Data Processing Frameworks: What is the right tool for my
task?
	Introduction
	Characteristics
	Processing Mode
	Batch processing
	Stream processing
	Micro-batching
	Comparing Processing Modes

	Architecture and Scaling
	Clusters
	Scheduling and Resource Management
	Processing Guarantees

	Interfaces and Languages

	Systems
	Hadoop MapReduce
	Processing: The MapReduce Algorithm
	The Hadoop Distributed File System
	APIs and Ecosystem

	Spark
	Architecture
	Spark Streaming

	Apache Storm
	Architecture
	Processing Guarantees
	APIs and Ecosystem

	Heron
	Architecture
	Processing Mode

	Flink
	Processing Modes
	Architecture
	APIs and programming languages

	Commercial Solutions
	Special Systems
	Node-RED
	Nifi

	Comparison
	Processing Mode
	Resource Management
	Language Support
	Use Cases and Recommendations

	Conclusions

	How Resource Management of Kubernetes, Yarn and
Mesos Affects Different Batch Job Workloads
	Introduction
	Framework Architectures
	Mesos
	Scheduling
	Storage
	Networking
	Resilience
	Cluster-Control API

	Kubernetes
	Scheduling
	Storage
	Networking
	Resilience
	Cluster-Control API

	Yarn
	Scheduling
	Storage
	Networking
	Resilience
	Cluster-Control API

	Feature Comparison

	Handling of Batch Job Requirements
	Data Locality
	Inter Container Communication
	Resilience
	Job Deployment
	Specific Resource Requirements

	Application and Infrastructure Scaling
	Workload Scaling
	Resource Scaling

	Conclusion
	References

