
Using Machine Learning Techniques for
Evaluating the Similarity of Enterprise

Architecture Models

Technical Paper

Vasil Borozanov1, Simon Hacks1, and Nuno Silva2

1 Research Group Software Construction, RWTH Aachen University, Germany
borozanov@gmail.com hacks@swc.rwth-aachen.de

2 Department of Computer Science and Engineering, Technical University of Lisbon,
Lisbon, Portugal

nuno.silva@inov.pt

Abstract. Enterprises Architectures (EA) are facilitated to coordinate
enterprise’s business visions and strategies successfully and effectively.
The practitioners of EA (architects) communicate the architecture to
other stakeholders via architecture models. We investigate the scenario
where accepted architecture models are stored in a repository. We iden-
tified the problem of unnecessary repository expansion by adding model
components with similar properties or behavior as already existing repos-
itory components. The proposed solution aims to find those similar com-
ponents and to notify the architect about their existence.
We present two approaches for defining and combining similarities be-
tween EA model components. The similarity measures are calculated
upon the properties of the components and on the context of their us-
age. We further investigate the behavior of similar architecture models
and search for associations in order to obtain components that might be
of interest. At the end, we provide a prototype tool for both generating
requests and obtaining a result.

Keywords: Enterprise Architecture · Model · Graph · Machine Learn-
ing

1 Introduction

Enterprises without centralized management of their strategic plans and busi-
ness processes lack the possibility of providing consistency and direction for their
activities. To avoid this, a mechanism for coordinating the integrated develop-
ment and use of shared information systems and data is required [15]. Enterprise
Architecture (EA) refers to both definition and representation of a high-level
view of the business processes and IT systems within an organization [22]. It
is a well-defined practice that applies architecture principles and practices in a
standardized way to execute their strategies, in order to determine how an orga-
nization can most effectively achieve its current and future objectives. Their goal

The final authenticated version isavailable online at https://doi.org/10.1007/978-3-030-21290-2_35.

2 V. Borozanov et al.

is to optimize across processes into an integrated environment that is responsive
to change and supportive of the delivery of the business strategy [23].

The Enterprise Architecture Management (EAM) is a discipline consisting of
functions related to EA, such as maintenance or providing information gathered
from the EA [24]. EAM is a management practice that sets and maintains a set
of guidelines and architecture principles that guide the design and development
of EA to achieve its vision and the strategy [2].

The practitioners of EA, called enterprise architects, are inter alia responsible
for modeling the EA using architecture models. The fundamental building blocks
of the models are the components and the relations between them. For easier
understanding and communicating of the architecture to the stakeholders, the
architects can develop a set of representations of the overall architecture called
views.

We investigate the scenario of a company that uses a repository of all ac-
cepted models. In time, the repository can grow into one complex structure of
components and relations. Adding a new model can cause unnecessary expansion
in the repository if they are not checked beforehand. Components with similar
attributes, or components used in the same context but with different names
will be treated as newly introduced components and added again in the reposi-
tory. Elaborating on this problem of repository pollution, we state our research
question:

How can machine learning techniques enable enterprise architects to avoid
adding duplicates to the repository?

The pollution of the repository is critical for two reasons. First, the repos-
itory expanses with respect to its total number of contained components. This
leads to a higher complexity of the whole repository and, thus, makes it for the
enterprise architects harder to understand. However, the second reason is much
more critical: all reports on the repository are distorted, probably resulting in
wrong decisions of EA’s stakeholders.

To elaborate on our research question, next we give a concrete example, which
allows the reader to better understand the problem. Afterwards, we describe the
theoretical background, which is needed to answer our research question. In
section 5, we show how we apply these theories on our concrete problem, before
we discuss our implementation. Section 7 outlines our conducted evaluation,
followed by related work and our conclusion.

2 Exemplary Problem

To enable a better understanding of the problem of repository pollution and how
it occurs, we take a simple illustration. The models provided in Fig. 1a and Fig.
1b are developed independently. After the acceptance of both, the two models
form the initial state of the repository, depicted in Fig. 2a.

In the repository, Transaction Administration aggregates both Accounting
and Billing components from different models, while retaining only one instance
of Transaction Administration. An architect decides to implement the similar

ML Techniques for Evaluating the Similarity of EA Models 3

Accounting
Component

Transaction
Administration

Administrate
Transactions

(a)

Administrate
Transactions

Transaction
Administration

Biling
Component

(b)

Fig. 1: Different EA models example

Biling
Component

Accounting
Component

Transaction
Administration

Administrate
Transactions

(a) Simplified scenario of the state of the
repository

Accounting
Component

Transactions
Administration

Billing

Manage
Transactions

(b) Model containing redundant compo-
nents

Fig. 2

financial scenario in a different model (Fig. 2b). The system proceeds to integrate
this model in the repository, which results in several replicated components (see
Fig. 3):

– Billing : The architect supplied a shorter name for the component Billing
Component.

– Transactions Administration: Providing behavior for administrating several
transactions can possibly be replaced by the already existing Transaction
Administration.

– Manage Transactions: Although the name differs from the Administrate
Transactions, they provide same functionality.

Currently, there is no mechanism for redundancy check. Components with
similar attributes and purpose can be stored multiple times, which in turn in-
troduces management issues due to the increased complexity of the repository
data. This also makes it difficult for architects to reuse certain components.

3 Research Method

To formalize our research method, we use the Design Science Research Method-
ology (DSRM) [14]. According to DSRM, there are several steps to apply this
process successfully. Having defined and formulated the problem, we proceed
with the following:

Objectives and solution: The objective was to develop a solution that
will identify all new components, evaluate the model against the repository, and

4 V. Borozanov et al.

Accounting
Component

Billing
Component

Billing

Transaction
Administration

Transactions
Administration

Administrate
Transactions

Manage
Transactions

Fig. 3: Simplified scenario of the state of the repository formed by adding the
model in Fig. 2b to the repository in the state as in Fig. 2a

return a list of components already stored in the repository that can be reused
in the given project. The final decision whether the suggested components will
be incorporated or not is left to the architect. This ensures that the architecture
model retains its correctness.

Design and development: The solution we proposed was a machine learn-
ing model. The data on our disposal was unlabeled - we did not have any infor-
mation on what the correct substitution for the specific component should be.
Therefore, we focused on the unsupervised approaches, combining them into one
suitable model.

Demonstration and Evaluation: We tested our solution with a simulated
repository and architecture models where we knew in advance the correct sub-
stitutions for every newly introduced component. This allowed us to evaluate
the correctness of the recommended components on labeled data.

Communication: The solution was distributed to the architects as a soft-
ware service. It consisted of two parts: a server-side module where we performed
the evaluation, and a client-side module which allowed the architects to select
the architecture model that they wanted to evaluate.

4 Theoretical Background

This section describes the theory behind our approach. First, we define similarity
and distance in the scope of our research. Then, we present the fundamental
aspects of graph theory used in our proposed solution. Finally, we formalize
association rules and a set of parameters used for association analysis.

ML Techniques for Evaluating the Similarity of EA Models 5

4.1 Similarity and Distance

With the use of complex objects, we identify the need of fundamental operation
for similarity assessment between two objects. If we consider the following spaces:
F, which denotes the feature space of an object and RF, the space of all feature
representations, then such function maps the feature space to a score s : RF ×
RF → R.

Similarity function is the measure which determines how closely related
two objects are based on their representation, following the given properties [17]:

– Symmetry: ∀x, y ∈ RF : s(x, y) = s(y, x) - the order of the objects in the
input should not affect the output score

– Maximum self-similarity: ∀x, y ∈ RF : s(x, x) ≥ s(x, y) - nothing can be
more similar than the object itself

If two objects are similar, then the similarity function will have a high positive
score.

In contrast to similarity, the dissimilarity is a measure defined by a distance
function that quantifies how different two objects are. For function d : RF×RF →
R to qualify as distance, in needs to fulfill the following constraints [6]:

– Non-negativity: ∀x, y ∈ RF : d(x, y) ≥ 0
– Reflexivity: ∀x ∈ RF : d(x, x) = 0
– Symmetry: ∀x, y ∈ RF : d(x, y) = d(y, x)

Both dissimilarity and similarity models express the closeness between ob-
jects. The conversion from the first to latter is essentially converting from dis-
tance to similarity function. Since they are negatively correlated, any monoton-
ically decreasing transformation can be applied to convert similarity measures
into dissimilarity. Consequently, any monotonically increasing transformation
can be applied to convert the similarity to distance. If the similarity values are
normalized in the range from 0 to 1, then the corresponding dissimilarity (dis-
tance) can be expressed as:

d(x, y) = 1− s(x, y) (1)

4.2 Graph Theory

In order to search for similarities between the EA models, a proper representation
is needed. We find that representing the models as labeled graphs is the most
acceptable solution [5].

A labeled graph is defined by a the tuple G = (V,E, rV , rE) such that:

– V is a finite set of vertices,
– E is a finite set of edges between the vertices,
– rV ⊆ V × LV is the function that assigns labels to vertices,
– rE ⊆ V × V × LE is the function that assigns labels to edges.

6 V. Borozanov et al.

In this manner, we can represent the EA components as vertices and the con-
nections between them as graph edges.

To calculate the similarity between vertices in a graph, both the labels of the
vertices and the edges in the graph need to be considered. The SimRank [10]
algorithm takes this into consideration. It accepts a labeled graph G as input
and compares each vertex of the graph with the rest. Two vertices are considered
similar if they are referenced by other similar vertices in the graph, or formally
expressed with by Eq. 2:

sSR(p, q) =
C

|I(p)||I(q)|

|I(p)|∑
i=1

|I(q)|∑
j=1

sSR(Ii(p), Ij(q)) (2)

The constant C ∈ R is a user given value from 0 to 1 called the decay factor,
I(p) and I(q) are the set of all predecessor vertices of p and q (other nodes who
point to p and q) with the total count of |I(p)| and |I(q)| accordingly, and Ii(p)
and Ij(q) are the i-th and j-th predecessor of the nodes p and q. Dividing by
the total number of predecessors pairs allows us to obtain normalized value: a
range between 0 (maximum dissimilarity) to 1. For any vertex v that has no
predecessors (I(v) = ∅), the similarity is set to zero. Alternatively this can be
expressed using the set of successors O(p) and O(q) of the nodes p and q (vertices
pointed by p and q), or (as shown later in our approach) both I(p) and O(p)
combined.

SimRank is calculated recursively: two score between two vertices is depen-
dent of the pre-calculated similarity of their neighbours. The initial similarity
score is calculated using the binary similarity:

sSR
0 (p, q) =

{
1 if p = q

0 else
(3)

4.3 Association Analysis

Association rule mining [9] searches for recurring relationships in a given data
set. More specific, it discovers the associations and correlations between two set
of items (item set).

An association rule is indicated as {A1, A2, ..., Am} ⇒ {B1, B2, ..., Bn}, where
∀i, j | i ≤ m, j ≤ n, Ai and Bj are non-empty item sets. In order to select only
the rules that are interesting for evaluation, we use the support and confidence
parameters. Support supp for the rule A⇒ B indicates the fraction of transac-
tions that contain both A and B :

supp(A⇒ B) = P (A ∪B) (4)

Support filters out rules that occurred by chance. Confidence conf for the rule
A⇒ B indicates the fraction of items contained in B that are also contained in
A. It measures the reliability made by a rule:

conf(A⇒ B) = P (B|A) (5)

ML Techniques for Evaluating the Similarity of EA Models 7

Rules with supp ≥ minsup and conf ≥ minconf are called strong rules.
For generating rules that satisfy the minimal support and confidence, we use
the Apriori algorithm [1]. This approach considers only the frequent items as
basis for generating candidates and extends them to larger item sets with other
frequent items.

5 Research Proposal

In this section we give an overview how the similarity models were applied to
suit our needs.

5.1 Prerequisites

For a given EA project model, we make the following assumptions:

– The architecture model is complete: the response we are calculating is based
on the assumption that all the necessary components and relations are there.

– The project architecture is correct: the types of the components are correct,
and the relations between the components are all present and correct.

– The views in the architecture projects are clearly defined: this allows suc-
cessful application of the association mining. Since there is no explicit notion
for a transaction, we rely on the views - every component that is a part of
the view belongs in the same transaction.

To categorize a component from the model as a newly introduced, we check
if a component with the exact name and type does not exist in the repository.
We ignore the description attribute since it is not a required field.

5.2 Feature Extraction and Similarity Models

The underlying representation of the given EA model and the repository is a
labeled directed graph. Each node of the graph presents a component with the
features: name (or title), type and description, whereas the relations between
them are modeled as edges. The same model applies to the repository data.
For two labeled directed graphs, we combine attribute based and structure
based similarities.

Attribute-based similarities calculate the similarity score between two fea-
tures while ignoring the graph structure. For evaluating the similarity between
the names of the components, we apply the String Edit Distance(dEDIT) [12].
The edit distance is very robust when it comes to comparing single words, but
results in large distance score if the strings contain words in different order.
To overcome this, we apply the distance measure on pairs of words [11]. We
introduce word tokenization, remove any digit characters from the words and
discard the words that do not contribute to semantic meaning, such as personal
pronouns and definite or indefinite articles.

8 V. Borozanov et al.

Let p and q be two components and p words and q words be the tokenized
and processed titles of the first and second component respectively. For each
word from p words, we apply the String Edit distance to measure the difference
with every word from q words, convert it to a similarity score and record only
the highest wordwise similarity that occurred for that given word. In the case of
difference in the number of words, we compare each word from the input string
that has more words to avoid any loss of information. To achieve normalization
between 0 and 1, we divide the similarity value by the larger the number of
words for the given titles. This is shown in Alg. 1.

Algorithm 1 Name-based similarity

1: procedure sNAME(p,q)
2: p words = tokenize(p)
3: q words = tokenize(q)
4: less words = min(p words, q words)
5: more words = max(p words, q words)
6: total similarity ← 0
7: for each m in more words:
8: word similarity ← 0
9: for each l in less words do:

10: current similarity = 1− dEDIT (m,l) / max(size(m),size(l))
11: if current similarity > word similarity then
12: word similarity = current similarity

13: total similarity = total similarity + word similarity
14: return total similarity / size(more words)

For evaluating the similarity between the types of components, we apply the
binary similarity. This is a very restrictive similarity that suits the assumption
that the EA models are correct and the components have the right type. For
two given components p and q with their respective types tp and tq, the type
similarity is:

sTY PE(p, q) =

{
1 if tp = tq

0 else
(6)

For calculating the similarity based on the description of components, we rely
on the semantic meaning of the text. The description of the text is converted
to a Term Frequency - Inverse Document Frequency (TF-IDF) vector [13]. This
metric was motivated by the length of the text: the String Edit Distance will not
be able to perform well since it relies on the syntactic matching of the words.
TF-IDF emphasizes the importance of a word based on how frequent it appears
for the given component’s description (term frequency) and how rarely it appears
throughout other component’s description (document frequency).

Let t be a word from the description d, N the total number of documents
and D the number of documents where t appears. The TF-IDF score for t is

ML Techniques for Evaluating the Similarity of EA Models 9

calculated as:

tf idf(t, d,D) = word count(t, d) log
N

1 + D
, (7)

where word count(t,d) returns the number how many times the word t has ap-
peared in the document d.

After obtaining the TF-IDF vector for each word in the description descp
and descq of the components p and q, the description similarity is calculated
using the cosine distance:

sDESC(p, q) = 1− dCOS(tf idf(descp, D), tf idf(descq, D)) (8)

where tf idf(descp, D) returns a TF-IDF vector for every word from descp.
To combine all the different similarities into one, we use a weighted average

function from the similarity models:

sATTR(p, q) =
w1s

NAME(p, q) + w2s
TY PE(p, q) + w3s

DESC(p, q)

w1 + w2 + w3
(9)

The context-based similarity is calculated based on the graph structure of
the EA models. For this, we change the input to accept two graphs: sSR(p, q).
For the initial cases sSR

0 (p, q), we assign maximal similarity if the titles are a
complete match and the components have the same type.

To come up with combined context– and attribute–based similarity, we
integrate the attribute similarity in the SimRank approach. We call this model
Extended SimRank (Eq. 10). To achieve this, we relax the initial similarity sESR

0

by assigning a score calculated from the attribute similarity model, if the score is
above a given threshold t (Eq. 11). We also check both the predecessors and the
successors of any node v for the context-based similarity: D(v) = I(v) ∪O(v).

sESR(p, q) =
C

|D(p)||D(q)|

|D(p)|∑
i=1

|D(q)|∑
j=1

sESR(Di(p), Dj(q)) (10)

sESR
0 (p, q) =

{
sATTR(p, q) if sATTR(p, q) > t

0 else
(11)

Inspecting every pair of vertices between graphs with n and m nodes leads
into generating n ∗m candidates. To speed up the process of evaluation, we skip
the nodes which do not have any incoming and outgoing edges, since such nodes
cannot contribute to the structural similarity when using sESR. For such nodes,
we rely only on the sATTR.

6 Implementation

The implementation of our solution is dependent on several technologies. The
server side is built using the Java technology. The acceptance of the EA models
is realized with POST requests with the following parameters:

10 V. Borozanov et al.

– file: mandatory field which contains the ArchiMate (XML) file that needs to
be evaluated.

– k: a number of maximum returned components for a single query component
(optional).

The ArchiMate files and the repository are read and converted to directed
labeled graphs using the JGraphT library [20] and its DirectedGraph class. For
the repository we are interested in the content of the Architecture section and
the Types section. Each XML node represents either an ArchiMate component,
if located under the “Components” section, or an ArchiMate relation, if located
under the “Relations” section.

To get a better understanding of the structure of the repository as a graph,
we use Gephi - a tool for analytics and detailed visualization of graphs [4]. The
total size of the graph is 3922 nodes with 9657 edges. Out of those, 1147 are
isolated nodes (no incoming and outgoing edges). The diameter is 7, and the
average path length is 4.79. The average degree per node (both incoming and
outgoing considered) is 4.93. Given graph size, we consider the repository graph
as a weakly connected. This is also confirmed by the low value of 0.001 for the
density.

Before calculating any similarity, we filter out any unnecessary replicated
information which might affect the prediction outcome at the end. The repository
is cleaned up by discarding all the replicated components, i.e. components with
the same name and type (the description feature is not mandatory, therefore
not considered a factor). This results in a reduction of 28 components.

The description of every component is converted into a TF-IDF vector. For
this, a corpus needs to be built where each description of a component is con-
sidered as a document. Every word (term) gets evaluated using Eq. 7. For tok-
enization of the title of the components, we use the WordTokenizer class from
the WEKA library3 for Java. For the association mining we use the statistical
programming language R and the package arules4. The chosen value for minimal
support was 0.17 was the largest value where rules were still generated. Com-
bined with the minimum confidence value of 0.75, the algorithm resulted in the
generation of 77 rules.

The client side was realized as a plug-in for the Archi tool5, which is an
Eclipse-based IDE. The plugin provides a button on the toolbar of the IDE that
allows the architect to select the desired ArchiMate model file. Afterwards, the
file is uploaded to our server and the module waits for a response back. The
response contains a JSON list of components that are not part of the repository
and their most similar components from the repository. The result is presented
as a dialog with a tabular view inside Archi.

3 https://www.cs.waikato.ac.nz/ml/weka
4 https://cran.r-project.org/web/packages/arules/index.html
5 https://www.archimatetool.com

ML Techniques for Evaluating the Similarity of EA Models 11

7 Evaluation

The similarity models we applied are unsupervised, meaning we do not have
the true output available. To successfully evaluate them, we manually created a
simulation and architecture model. The repository data consisted of 327 nodes
and 275 edges and the model of 35 nodes and 23 edges. The model components
were provided from two sources chosen pseudo-randomly from the repository
and inserted without any relations to the repository.

A subset of 16 model components were subject to manual change of the at-
tributes, so that different scenarios for similarity can be tested based on a title,
description, type, structural similarity and combination of all. Only the nodes
that did not appear in the repository were tested. There were 20 unidentified
nodes in total, out of which four did not have any substitution. For every eval-
uation test, the k value was set to the lowest value of 1, which evaluates the
shortest result list.

We also set up a simulation of an ArchiMate model for creating transactions.
The simulation transaction file consisted of the same number of components and
edges as the previous simulation model file, distributed in the same number of
views. We replaced each unidentified component with its counterpart from the
repository if such existed. Using the approach of creating transaction per view
level, we created a set of five transactions with 18 items. Finally, we discarded
newly introduced components without substitution as well as the components
that did not belong to any view.

For evaluating the correctness of the similarity models, we compared three
different metrics: accuracy, precision, and recall [19]. For the association rule
mining, we focused only on the accuracy, since the results were returned in the
form of “if the components on the leftside of the rule exist, then the components
on the rightside of the rule might be of interest”. Therefore we could not make
the connection which result components belong to which query components. All
metrics range from 0 (the lowest value) to 1 (highest value).

We evaluated the similarity models each one separately, as well as the com-
bination between them. The overview is given in Fig. 4. The first evaluation was
performed on each feature similarity model separately. We set the number of
returned components to one (k=1). The title and type similarity showed poor
performance in every metric. The description similarity model showed maximum
precision value and better values for accuracy and recall. However, since the de-
scription is optional for the components, it cannot be taken as a single metric.
The usage of a single feature similarity model is not recommended as they do
not provide an effective recommendation service.

Next, for the evaluation of the weighted similarity combination sATTR we
configured the similarity using the values 0.5, 0.1 and 0.4 for the weights w1,
w2, and w3 respectively. The weights were provided from a domain expert and
reflected the importance of each feature. To avoid results with components with
low similarity score, we introduced a threshold t = 0.5. The weighted combina-
tion performed better than any separate feature similarity model if the number

12 V. Borozanov et al.

of suggested components is taken into account as well, which was 17 for the given
threshold.

Next, we evaluated the SimRank approach, using the combined in- and out-
degree. We noticed the improvement in the score compared to the weighted
combination, so we incorporated the two methods together as the SimRank Ex-
tended sESR with a threshold of 0.5. The SimRank Extended showed the higher
accuracy, recall, and the highest F1 score. Increasing the number of returned
components k to higher number did not affect the score in our simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Title Sim.

Description Sim.

Type Sim.

Weighted Attr. Comb.

SimRank (in+out deg.)

SimRankExt

SimRankExtKComps

F1-score Recall Precision Accuracy

Fig. 4: Comparison of all similarity models

We performed the association mining with the following input: minimal sup-
port of 0.2 (the highest support value that still returns results), and confidence
of 1 (the maximal possible value). This generated a set of 293 rules. Out of those,
for the model that we evaluated, 13 components were returned. We identified a
total of 7 correctly suggested components that were a suitable replacement, with
an accuracy of 0.54. The rules had a low support value, which means that the
component sets did not often appear in transactions. However, confidence had
the highest value, thus giving a high level of certainty concerning the truth of
the association rules. This method is highly dependent on the data set provided
by the architects.

The threats of validity are mainly situated in our prerequisites. First, we as-
sume that the basic model is complete. If we relax this assumption, our approach
might propose components which are wrong or even no components. Nonethe-
less, our approach proposes only components and the final decision is taken by
a human. Therefore, the consequences of relaxing this prerequisite are manage-
able. The same argumentation holds for our second prerequisite that the project
architectures are correct. Last, we assume that views represent the changes made

ML Techniques for Evaluating the Similarity of EA Models 13

by the projects. However, this prerequisite is based only on the technical issue
that we need to know what has been changed and, consequently, does not threat
our results.

8 Related Work

Previous research [8, 16, 21, 18] was motivated by analyzing EA models as a net-
work graph and applying different ML concepts on EA models by providing
decision support for enterprise architects. The work of [8] focuses on represent-
ing the complexity of information systems architecture in social network terms
and then capturing insights from the graph representation, where components
of the architecture are interpreted as nodes, and the dependencies between the
components as links.

Different similarity approaches, as well as metrics, have been proposed in
the literature to identify the similarity and the differences between models to be
matched. The work of Dijkman et al. [7] presents three similarity metrics in order
to investigate matching of similar business process models in a given repository
namely (i) structural similarity that compares element labels by considering
topology structure of business process models; (ii) behavioural similarity that
compares element labels by considering behavioural semantics of process models;
and (iii) label matching similarity that compares elements based on words in the
labels of business process model elements (string edit distance).

Compared to Dijkman et al. [7], our work elaborates on structural similarity
(i) and label matching similarity (iii). Dijkman et. al. use Graph Edit Distance as
an underlying method for (i). We find that this approach fails when comparing
graphs of significantly different sizes (e.g. a model and a repository), as the
returned score will always be of high value. We also expand the knowledge in
(iii) as we not only consider the labels of the elements but also their attributes.
To research behavioural similarity (ii) did not make sense in our case, because
our model did not contain elements with behavioural semantics. Nonetheless,
e.g. ArchiMate contains elements to model processes and, consequently, future
research can take behavioural similarity for EA models also into account.

The work of Aier and Schönherr [3] presents a clustering approach in deter-
mining the structure of Service Oriented Architectures (SOA). The paper shows
the application of clustering algorithms in supporting the design of a SOA. How-
ever, their approach does not present evaluation criteria in comparing different
clustering methods. We try to apply different community detection algorithms
on EA models which can group similar kinds of connected components.

9 Conclusions

Modeling an EA can result in a complex graph-like structure with many compo-
nents (vertices) and relations between them (edges) in a repository. We recog-
nized the problem that adding a model to the repository which contains compo-
nents with similar attributes and behavior as some other repository components,

14 V. Borozanov et al.

but with different name, leads to repository pollution. To solve this, we inspected
two approaches. The first approach relied on finding patterns between two en-
terprise architecture models. The second approach adopted a collaborative way
of recommending components that might be of interest.

For evaluating the architecture models, similarity and collaborative approach
were used. The result was formatted to give a list of k closest components for
each component that cannot be found in the repository. The evaluation showed
that the similarity models have high precision and low recall characteristics. The
generated association rules have low support and high confidence value, which
means that the item sets of the rules appear rarely, but we are confident that
the generated rule will be true.

Our research was realized in two parts: as a a server solution able to perform
the evaluations and as a plug-in for the Archi tool able to generate requests and
notify the architects for the results. Although our implementation is targeted for
EA, the solution we propose is generic and can be applied to any domain that
can be modeled as a graph with nodes and edges.

As we rely on a graph-like presentation of the EA model, our approach can be
generalized and applied also to other models which can be presented as graphs.
We assume that, for instance, our approach might also work for UML models as
ArchiMate and UML class diagrams are quite similar.

The current limitations are the constraints we impose before evaluating the
EA models. The EA models have to be complete and correct, which means that
the tool cannot be used as a recommendation system (suggesting components
as the model is in the process of creation). This limitation may be solved in fu-
ture by incorporating techniques from the model recommendation domain. Also
the approaches are not optimized: as the size of the repository increases, recom-
mending a list of components takes more time. Consequently, we will elaborate
on this point in future. Lastly, our approach cannot be fully automatized since
we rely on a human expert to confirm that the recommended components are the
right substitution. We do not see any possibilities to overcome with this issue.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large Data
Bases. pp. 487–499. VLDB ’94, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1994)

2. Ahlemann, F., Stettiner, E., Messerschmidt, M., Legner, C.: Strategic enterprise
architecture management: challenges, best practices, and future developments.
Springer Science & Business Media (2012)

3. Aier, S., Schoenherr, M.: Integrating an enterprise architecture using domain clus-
tering. In: Lankhorst, M.M., Johnson, P. (eds.) Proceedings of the Second Work-
shop on Trends in Enterprise Architecture Research. pp. 23–30 (Juni 2007)

4. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for ex-
ploring and manipulating networks. In: ICWSM (2009)

ML Techniques for Evaluating the Similarity of EA Models 15

5. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: Proceed-
ings of the 5th International Conference on Case-based Reasoning: Research and
Development. pp. 80–95. ICCBR’03, Springer-Verlag, Berlin, Heidelberg (2003)

6. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

7. Dijkman, R., Dumas, M., Van Dongen, B., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Information Systems 36(2),
498–516 (2011)

8. Dreyfus, D., Iyer, B.: Enterprise architecture: A social network perspective. In: Pro-
ceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06). vol. 8 (2006)

9. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (2005)

10. Jeh, G., Widom, J.: SimRank: A Measure of Structural-context Similarity. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 538–543. ACM, New York, NY, USA (2002)

11. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging:
An approach to business process consolidation. ACM Trans. Softw. Eng. Methodol.
22(2), 11:1–11:42 (2013)

12. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

13. Neto, J.L., Santos, A.D., Kaestner, C.A., Alexandre, N., Santos, D., A, C.A., Alex,
K., Freitas, A.A., Parana, C.: Document clustering and text summarization (2000)

14. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science re-
search methodology for information systems research. J. Manage. Inf. Syst. 24(3),
45–77 (2007)

15. Rood, M.A.: Enterprise architecture: definition, content, and utility. In: Proceed-
ings of 3rd IEEE Workshop on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises. pp. 106–111 (1994)

16. Santana, A., Souza, A., Simon, D., Fischbach, K., De Moura, H.: Network science
applied to enterprise architecture analysis: Towards the foundational concepts. In:
2017 IEEE 21st International Enterprise Distributed Object Computing Confer-
ence (EDOC). pp. 10–19. IEEE (2017)

17. Santini, S., Jain, R.: Similarity measures. IEEE Trans. Pattern Anal. Mach. Intell.
21(9), 871–883 (1999)

18. Schoonjans, A.: Social Network Analysis techniques in Enterprise Architecture
Management. Ph.D. thesis, Ghent University (2016)

19. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Recom-
mender systems handbook, pp. 257–297. Springer (2011)

20. Sichi, J., Kinable, J., Michail, D., Naveh, B., Contributors: Jgrapht - Graph Algo-
rithms and Data Structures in Java (Version 1.1.0). http://www.jgrapht.org (2017)

21. Simon, D., Fischbach, K.: It landscape management using network analysis. In:
Enterprise Information Systems of the Future, pp. 18–34. Springer (2013)

22. Tamm, T., Seddon, P., Shanks, G., Reynolds, P.: How does enterprise architecture
add value to organisations? Communications of the Association for Information
Systems 28, 141–168 (2011)

23. The Open Group: TOGAF Version 9.1. Van Haren Publishing, Zaltbommel (2011)
24. van der Raadt, B., van Vliet, H.: Designing the Enterprise Architecture Function.

In: Becker, S., Plasil, F., Reussner, R. (eds.) Quality of Software Architectures.
Models and Architectures, Lecture Notes in Computer Science, vol. 5281, pp. 103–
118. Springer (2008)

