
A Continuous Delivery Pipeline for EA model
Evolution

Simon Hacks1, Andreas Steffens1, Peter Hansen2, and Nikhitha Rajashekar2

1 Research Group Software Construction, RWTH Aachen University, Aachen,
Germany

{hacks,steffens}@swc.rwth-aachen.de
2 RWTH Aachen University, Aachen, Germany

{peter.hansen,nikhita.rajashekar}@rwth-aachen.de

Abstract. The pace of changing structures and complexity within en-
terprise architecture (EA) models is expected to increase. This will chal-
lenge existing maintenance processes of EA models. To tackle this chal-
lenge, we propose to adapt the well-known concept of continuous delivery
(CD) from the agile software development domain. We propose to auto-
mate the necessary steps to ensure EA model quality by applying multi-
ple validation and analysis steps. Therefore, this results shorter feedback
loops and helps to uncover possible conflict as early as possible.

Keywords: EA model Evolution · Continuous Delivery · EA model
Maintenance

1 Introduction

Since it beginnings in the 1980’s [25], Enterprise Architecture (EA) has devel-
oped to an established discipline [32, 34]. The ISO 42010:2011 defines architec-
ture as the fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and
evolution [20]. As this definition implies, the EA model, comprised by the or-
ganizations elements and relationships, is a central artifact of EA. Additionally,
EA has to provide important and up-to-date information of the organization to
its stakeholders.

There are a many different sources for changes of the EA model [9], which
contribute to a continuous evolution of the EA model. As our research assumes
a project-driven environment, we will refer to projects as example for the main
source of changes. However, our approach sticks not solely to projects, which
can also be replaced by teams working in a more agile environment.

EA models are currently mostly modeled manually and changes require no-
table manual efforts. This is especially true when complex organizational struc-
tures need to be covered and the organization is constantly changing. The pace
of changing structures and complexity is expected to increase and this makes it
even more challenging [40]. In recent years, the field of enterprise architecture
management already adopted techniques to reduce model maintenance effort.

The final authenticated version is
available online at https://doi.org/10.1007/978-3-030-20618-5_10.



2 S. Hacks et al.

However, there are still challenges in regards to conflicting changes, different
semantics and responsibilities [8].

In the field of software engineering, changing requirements are also very com-
mon. Software engineering deals with this by becoming as agile as possible and
uses various social and technical techniques to improve towards this direction
[14].

Examples for social techniques are the ongoing adoption of agile process
models like scrum or kanban and even techniques directly related to the devel-
opment itself like pair programming. Technical examples are the rise of contin-
uous integration and delivery. All of these techniques lead to the same shared
goal: Shorten feedback loops [17]. Techniques used for software engineering are
also being adopted for other parts of organizations: With the DevOps move-
ment, which emphasizes on the collaboration of development and operations,
infrastructure is being covered using techniques typically used in the context of
software engineering and processes are also adopted [6].

To overcome the aforementioned problems of EA modeling, we proposed
already an architecture roundtrip process [13]. However, this process is still ab-
stract and needs to be instantiated. To do so, we facilitate the well-known tech-
nique of continuous delivery (CD) and realize the architecture roundtrip process.
Accordingly, we formulate our research question:

Can a continuous delivery help to overcome the challenges of manual EA
model’s maintenance?

So far, existing research on EA model maintenance automatizing has focused
either on collecting information from different external sources (e.g. [4, 18]), try-
ing to bring contradictory information together (e.g. [22, 38]), or proposing an
overall process for maintenance (e.g. [9, 13]). To the best of our knowledge, there
is no research around trying to adapt the technique of CD to the domain of EA
model maintenance. Our results contribute to the existing body of knowledge
by enhancing the proposed processes with the benefits of CD and offering new
possibilities to connect further sources of information to the central EA model.

In the rest of this paper, we will elaborate on this question. First, we will
present work related to automatic maintenance/evolution of EA models. Second,
we sketch our research design, before we give insights into the design and im-
plementation of our pipeline. Next, we demonstrate our pipeline by a fictitious
example and discuss the findings of the experiment. Last, we conclude our work
and give an impression of future research.

2 Related Work

EA is used in large organizations and different departments often own informa-
tion, which is used within the EA. This makes it hard for a central enterprise
architecture team to gather all information and keep them up-to-date. Fischer
et al. proposed a semi-automated federated approach for the maintenance of EA
models [10]. The main idea is that the data is kept within specialized architec-
tures and linked to a central EA repository.



A Continuous Delivery Pipeline for EA model Evolution 3

Other approaches to automatize EA model maintenance are presented e.g.
by Buschle et al. [4], who facilitate an ESB (Enterprise Service Bus) to extract
EA models automatically. In contrast, Holm et al. [18] concentrate more on
technically observable components as they map the output of a network scanner
to ArchiMate. An extension of this work is presented by Johnson et al. [22],
who incorporate uncertainty into the mapping. The work of Välja et al. [38, 37]
focuses on uniting different information from contradictory sources. Hence, they
try to estimate the trustworthiness of the sources.

EA related research did not only elaborate solely on the technical aspects of
EA model maintenance. For example, Kirschner and Roth [24] rely on a human
component to solve arising conflicts from different sources. Further, Khosroshahi
et al. [23] investigated the social factors influencing the success of federated EA
model maintenance. A slightly different point of view is taken by Hauder et al.
[15] as they focused on the challenges of a federated EA model maintenance.

Further related research to our work can be identified in the field of con-
tinuous delivery. Humble and Farley [19] define continuous delivery as a set
of practices, which enables to speed-up, automate and optimize the delivery
of software artifacts to the customer with higher quality and lower risks in a
continuous manner. Continuous delivery uses an automated development infras-
tructure, called deployment pipeline, which automates nearly every step of the
delivery process. Each commit of a developer enters the deployment pipeline and
an automated process is started, which produces a new software increment as a
result artifact.

The deployment pipeline incorporates all activities known from continuous
integration [7] as automatic build, unit testing, and static code analysis. In ad-
dition to these, the pipeline performs testing activities like integration, perfor-
mance, and security testing. All these tasks are executed in a defined order of
stages. After each stage, the test results are evaluated at a quality gate, which
stops the processing if the quality conditions are not met. If all quality gates
are passed, the software artifact is stored and can be accessed and used from
external clients; it is released.

In recent research many challenges of adopting continuous delivery have been
found [26, 5, 28] and coping with software evolution and heterogeneity can be
identified as the major technical obstacles for a continuous delivery system.
To overcome many of these obstacles, we proposed a generalized model and
architecture for a new generation of continuous delivery systems [35].

Lastly, our process relies heavily on the quality of the EA model. Regarding to
ISO/IEC 25010 quality “is the degree to which a product or system can be used
by specific users to meet their needs to achieve specific goals with effectiveness,
efficiency, freedom from risk and satisfaction in specific contexts of use” [21]. In
the context of EA research Ylimäki states that “a high-quality EA conforms to
the agreed and fully understood business requirements, fits for its purpose [...]
and satisfies the key stakeholder groups’ [...] expectations” [42, p. 30]. In general,
research regarding EA quality agrees that it is defined by the ability to meet the
EA users’ requirements [30, 27]. Most of the related work divides quality aspects



4 S. Hacks et al.

of EA into the quality of EA products, its related services, and EA processes
[30, 27].

In the discipline of enterprise modeling there are approaches that discuss
model quality in general, without focusing on a certain modeling structure.
Becker et al. [2] define six principles that have to be considered when assess-
ing an enterprise model’s quality. Sandkuhl et al. [33] apply these principles to
evaluate the quality of their modeling language 4EM and further depict concrete
quality attributes.

3 Research Design

Design science research (DSR) is a widely applied and accepted means for de-
veloping artifacts in information systems (IS) research. It offers a systematic
structure for developing artifacts, such as constructs, models, methods, or in-
stantiations [16]. As our research question indicates the development of means,
the application of a DSR is appropriate. We stick to the approach of Peffers et
al. [31], since it transpired as effective in former research. It is split up into six
single steps and two possible feedback loops:

– Identify Problem & Motivate: As previous research has shown, reasons
to change the EA model are manifold [9] and raise many different challenges
[15]. One of them is to handle different sources and another to design a suit-
able process for EA model maintenance. We believe that the principle of
continuous delivery offer efficient means to support the EA model mainte-
nance process.

– Define Objectives: Based on our research problem stated before, we iden-
tified mainly three sources for objectives: First, Farwick et al. [8] identified
a set of 23 requirements on automated EA model maintenance grouped into
categories like architectural, organizational, or data quality. Those require-
ments should be incorporated into a feasible solution. Second, Fischer et al.
[10] describe an EA model maintenance process comprised by activities that
mainly are related to data collection, quality checks, and delivery of the new
information. Additionally, Fischer et al. define four roles, which are either
related to process coordination (EA Coordinator, EA Repository Manager),
data delivery (Data Owner), or quality checks (EA Coordinator, EA Stake-
holder). Last, we presented a process for a distributed EA model evolution
[13] describing different tasks and their sequence focusing on a continuous
evolution of the EA model.

– Design & Development: To realize an artifact in accordance to the be-
forehand identified objectives, first, we align the input of the three objec-
tives’ sources. Then, we design an abstract process model using Business
Process Model and Notation (BPMN) [39] and implement it using JARVIS
[35]. Our derived integrated EA maintenance process consists of activities,
which will be implemented as microservices following JARVIS’s architectural
framework. In addition to the activities defined in our objectives, we include



A Continuous Delivery Pipeline for EA model Evolution 5

additional steps inspired by principles found in the continuous delivery do-
main.

– Demonstration: The demonstration is put into practice by applying the
proposed means to a single fictitious case study. Single case studies gain a
first, in-depth reflection on means in real life scenarios [41]. Moreover, single
case studies are a feasible instrument to show applicability. Our case study
is based on an EA model illustrating an airport. Within this case study,
we show that a CD pipeline can reduce the manual effort in EA model
maintenance.

– Evaluation: We identified 54 equivalence classes of possible actions, which
should be considered in our pipeline. Therefore, we created for each class an
exemplary test case as a representative for this class [3, p. 623].

– Communication: The communication is done with this paper itself and its
presentation on a conference.

4 A Pipeline for EA model Evolution

Following, we will sketch our pipeline for an EA model maintenance. Fischer et
al. [10] contribute two main findings to our pipeline. First, they propose an EA
model maintenance process, which we unite with our work from [13]. Second,
they offer a fine-grained role concept, which we incorporate in the pipeline as
well.

To implement our deployment pipeline for EA model maintenance, we opt
for our prototype JARVIS [35]. It allows integrating the proposed processes into
a deployment pipeline and we create a BPMN version of the process as JARVIS
is equipped to use BPMN as a modeling language. From this model, we derive
the necessary activities, which needs to be implemented as microservices. During
this, we transform the process model to reflect better the principles of JARVIS
and continuous delivery in general. Figure 1 shows the resulting model for EA
model maintenance.

The first process steps from Fischer et al. and Hacks et al. of initializing and
collecting the necessary data of the EA model evolution can be omitted. We
assume, that in an environment following the principles of continuous delivery
from Humble et al. [19] all artifacts like the global and the special EA models
are under version control and stored in an appropriate system like subversion or
git. Each change to one of these models by the responsibles within in projects
needs to be committed to the repository. A change is resulting in a new version
of the model. Whenever a change is committed to the repository for the special
architecture our deployment pipeline is triggered automatically.

The technical infrastructure of the SCM and the deployment pipeline ensure
the automatic processing of the first process steps of both proposed maintenance
processes. Necessary notifications can be sent by the system if we need to be
compliant to the overall process, but effectively we want the stakeholders only
to be involved if really necessary.

The pipeline starts by first checking out the new models versions from the
repository and provide both to the first transformation activity. This activity is



6 S. Hacks et al.

P
re
pa
re
 M
od
el
 D
at
a 
(C
he
ck
O
ut
 &
 C
om

pi
le
)

C
he
ck
O
ut

P
ro
je
ct
 E
A
 

M
od
el

C
he
ck
O
ut

E
A
 M
od
el

Q
ua
lit
y 
G
at
e

C
om

pu
te

C
ha
ng
eS

et
A
lig
n

M
od
el
 D
at
a

A
pp
ro
va
l o
f S

ta
ke
ho
ld
er
s 
(U
se
r A

cc
ep
ta
nc
e 
Te
st
 w
ith
 M
an
ua
l A
pp
ro
va
l)

C
ol
le
ct
 

R
es
po
ns
es
 &
 

A
pp
ro
va
l

N
ot
ify

S
ta
ke
ho
ld
er
s

P
re
pa
re
 U
pd
at
e 

R
ep
or
t

Q
ua
lit
y 
G
at
e

U
pd
at
e 
gl
ob
al
 E
A
 M
od
el
 (D

ep
lo
ym

en
t)

U
pl
oa
d 
E
A
 

M
od
el
 T
o 

R
ep
os
ito
ry

M
od
el
 E
vo
lu
tio
n 
(In
te
gr
at
io
n 
an
d 
In
te
gr
at
io
n 
Te
st
in
g)

E
vo
lv
e 
E
A

M
od
el

S
yn
ta
x

C
he
ck

C
on
si
st
en
cy

C
he
ck

C
he
ck
 

D
is
co
nn
ec
te
d 

C
om

po
ne
nt
s

E
A
M
 K
P
I 

M
et
ric
s

Q
ua
lit
y 
G
at
e

C
he
ck
 M
od
el
 Q
ua
lit
y 
(U
ni
t T
es
tin
g 
&
 In
sp
ec
tio
n)

Q
ua
lit
y 
G
at
e

E
A
M
 K
P
I

M
et
ric
s

S
yn
ta
x

C
he
ck

C
on
si
st
en
cy

C
he
ck
s

Fig. 1. EA Maintenance Deployment Pipeline as BPMN



A Continuous Delivery Pipeline for EA model Evolution 7

called ”Compute Change Set” and uses the provided input models to compute
the existing deviations between both and provide these as a new artifact called
”Change Set”.

All existing artifact are now processed in the next transformation activ-
ity ”Align Model Data”. Hacks and Lichter [13] argue that a specific project
may contain more detailed information than the more general global EA model.
Therefore, the model provided by the project has to be aligned in order to be
effectively compare- and merge-able to the central model. This includes a nec-
essary meta-model transformation as well as an adaption of the provided model
to the same level of detail presented in the central model. The following quality
gates check the successful execution of the proceeded activities and the existence
of the three artifacts. Afterwards, the first stage of our deployment pipeline is
finished. This stage corresponds to the checkout and compile stages in classic
software delivery pipelines.

Fischer et al. and Hacks and Lichter both incorporate steps to check the
model quality like consistency or correctness of syntax. In our pipeline, we model
these as assessments, which are performed on the model singular artifacts of the
proceeding stage and which produce a report for each assessment. This stage
corresponds to static analysis for software source code. Paul Duval et al. [7]
incorporate an inspection phase into his continuous integration model in which
relevant metrics for software quality are measured and evaluated. We adopt this
by applying well-known EAM KPIs [29] to models inside the pipeline.

In the next stage, the artifacts are integrated to produce a new and updated
candidate for the EA model by reproducing the changes made by the project on
the central EA model. This candidate is then examined by the same assessments
as before. The modular architecture allows us to integrate even more sophisti-
cated assessments, which can be performed on EA models. We integrated a check
for disconnected components, which checks if parts of the resulting EA model
candidate has components, which are not connected to the rest of the model.
Based on the assessment reports the quality gate decide if the pipeline should
continue to the next stage where the candidate is presented to the stakeholders
of the overall process.

Up to this point the pipeline is performing its tasks completely autonomous,
so the stakeholder are only involved if the model candidate has reached a certain
degree of quality due to the assessments performed before. The manual approval
of the stakeholders corresponds to the User Acceptance Test (UAT) stage in
classic pipelines. Bass et al. [1] define the UAT stage as the last one before going
to production and are meant to ensure these aspects of the delivery process
which cannot be automated.

If this stage is successfully executed, the EA model candidate is promoted to
the final stage where it is deployed to the EA model repository. The next run of
the pipeline will use this new version of the EA model and so the roundtrip is
completed.



8 S. Hacks et al.

Fig. 2. Excerpt of the boarding and departure process

5 Demonstration

5.1 Exemplary EA model

To demonstrate and evaluate our artifact, we conduct a fictitious case study.
Therefore, we facilitate the example of an airport departure system. This ex-
ample was originally developed to illustrate the realistic use of ML and graph
analytic methods in the context of analyzing EA models. Following, we illus-
trate a scenario of airport departure system, which depicts the functionality of
the passengers before boarding to an aircraft.

This example is modelled as an EA model based on ArchiMate 3.0.1 [36].
The model incorporates all the ArchiMate layers beginning with business, ap-
plication, and technology architectures. It consists of 171 different elements and
250 relations. We will further discuss in detail the core layers of the system. An
excerpt of the model is presented in Figure 2.



A Continuous Delivery Pipeline for EA model Evolution 9

The business layer depicts the business services offered to the customers,
which is mainly used to build business architecture [12]. In this example, the
active entities of the business layer are airline employees, passengers, and security
guards. Four functions are provided by boarding and departure process. The
function boarding to airplane is internally divided into three sub-processes.

The application layer includes for example the airline administration sup-
port, which is responsible for handling check-in process, and the boarding con-
trol, which handles boarding process. Furthermore, two application components
collaborate in boarding and departure control system, i.e., the airline adminis-
tration component and the boarding control to provide application level services
like identifying boarding pass, security and navigation control support.

The technology layer offers several components to the application layer. E.g.,
there is a barcode system offering the needed means to validate the barcodes of
the boarding tickets and a GPS navigation system guiding the bus drivers to the
right plane on the airfield.

5.2 Facilitated Metrics

To simulate the “Check Model Quality” step of the pipeline, we check the EA
model against KPIs from the EAM KPI Catalog [29]. As we do not want to
implement all KPIs of the catalog, we randomly chose three of them as repre-
sentatives for all KPIs. Those KPIs are only exemplary and can be replaced by
any other calculable metrics. Nonetheless, we have to keep in mind that it can
be quite challenging to assess the necessary input parameters (e.g., if interviews
have to be conducted).

PM guideline adherence checks if IT projects adhere to the stated PM guide-
line [29, p. 28]. As the information model of the KPI catalog is not directly
reflected in ArchiMate, we identify work package as an IT project and business
object with a property PMguideline as PM guideline. To compute this KPI, the
project managers, first, answer the degree the project adheres to every guide-
line. Second, we compute the average for every project along all guideliness. The
catalog defines three categories of adherence. If a project adheres to 100% to
the guideline it is full adherence. Between 100% and 75% it is a minor deviation
which will cause a warning in our pipeline. With less than 75% it is a major
deviation causing a fail of the pipeline.

Application continuity plan availability [29, p. 19] measures the degree how
completely IT continuity plans for business critical applications have been drawn
and tested for the IT’s application portfolio. To reflect the information model
in ArchiMate, we map the application to application component and continuity
plan to business object with the property ContinuityPlan. The responsible for
the operation of the applications answer if there exists a continuity plan for a
certain application and if it is tested. The KPI is then computed by the number
of critical applications where a tested continuity plan is available divided by the
total number of critical applications. The value is good above 80%. Normally, the
value will between 60% and 80% resuming in a warning to related stakeholders.
If the value drops beyond 60% the value is problematic and the pipeline fails.



10 S. Hacks et al.

IT process standard adherence [29, p. 33] checks if a certain application (ap-
plication component in ArchiMate) adheres to the IT standard processes (appli-
cation process in ArchiMate). This is answered by the process responsible and
then calculated by the number of applications, which adhere to an IT standard
process, divided by the total number of applications. The value is good at 100%.
Normally, the value will between 80% and 100% resuming in a warning to related
stakeholders. If the value drops beyond 80% the value is bad and the pipeline
fails.

Besides the EAM KPI Catalog, we check also the connectivity of the graph
representing the EA model, where the elements of the EA model represent nodes
within the graph and their connections represent edges. A graph is connected
if there is a path between every pair of nodes. We assume that the model of
an EA should be always connected. If the model contains isolated elements or
sub-graphs, there are parts in the organization, which are not related to the
other parts. So to say, there are parts in the EA pursuing different goals and,
therefore, different organizations within the organization. Nevertheless, for two
organizations there would be two EAs. Consequently, we expect the model of
the EA to be connected. Otherwise, the pipeline should fail.

5.3 Implementation of the Pipeline

Our designed pipeline for EA model maintenance was implemented for the con-
tinuous software delivery system JARVIS [35] and each activity in the pipeline
model was implemented as an independent microservice following the architec-
tural framework of JARVIS. From JARVIS, we reused the complete infrastruc-
ture and general activities like the git checkout activity and the quality gate
activity.

6 Evaluation

To evaluate our pipeline, we conduct an equivalence class test [3, p. 623] where
the values of the metrics serve as input parameters (three respectively two classes
per KPI) and the behavior of the pipeline (i.e., successful, warning, and fail)
represents the output. To test the pipeline, we combine each possible input class
and determine the expected output for each combination resulting in 54 test
cases. We choose always the worst expected output (fail<warning<successful) if
different outputs would be possible. An extract of four exemplary test cases is
presented in Table 1.

For the execution, the presented example model from section 5.1 was stored
in a git repository and used as the global EA model. A variant of the model
was stored in a second repository and was used as the repository for a simulated
specific project model. This variant was altered for each test case to represent
the different test cases and resulting behavior of the pipeline is checked against
its expected behavior.



A Continuous Delivery Pipeline for EA model Evolution 11

Table 1. Exemplary test cases

Test case ID
Input Expected

outputPM guideline
adherence

Application
continuity
plan avail-
ability

IT process
standard
adherence

Connected

1 100% 100% 100% TRUE fail
6 100% 70% 100% TRUE warning
7 100% 70% 90% TRUE warning
8 100% 50% 100% TRUE success

The execution of the test cases by triggering the pipeline with different inputs
showed that our approach is feasible. The expected behavior of our pipeline could
be observed. In case of a failing pipeline the execution always stopped at the
first KPI assessment in the Model Quality stage. The reason for this is, that we
already test the KPIs on each model in this stage, so the assessment of the project
model results in a fail. By deactivating this assessment, the pipeline performs
the Model Execution stage and fails at this point. Both behaviors are correct.
Due to this phenomenon we recognize, that our pipeline is already performing
a simpler inspection process for the project mode, it is embedded in the global
EA model maintenance process.

7 Discussion

Before, we presented our pipeline and its application on a fictitious example.
Our results show that the existing approaches are missing certain steps, which
we incorporated into our pipeline. For example, our roundtrip process lacks a step
for an evaluation of EA KPIs, which are represented in the Model Quality stage
and in the Model Evolution stage of our pipeline. As the KPIs can be easily
computed and automatically evaluated, we can naturally apply it inside in a
continuous delivery pipeline. Besides, it has to be mentioned that the calculation
of a KPI is only easy as long as the basic measures are provided, which can be
quite challenging.

Furthermore, the pipeline incorporates a simple inspection process of the
project model, which is presented by its own independent pipeline and is exe-
cuted during the project solution development. This leads to a similar result as
with Continuous Integration and Continuous Delivery. Continuous Delivery can
be seen as an extension of Continuous Integration as Fowler argued [11]. The
project pipeline would only consider the single project model as our maintenance
process also considers the global EA model and an EA model candidate, which
integrates changes from the project model into the EA model.

In addition, the roundtrip approach lacks the incremental and iterative na-
ture of an agile development process. The project solution delivers its model only
one time to the maintenance process. With incorporating continuous delivery,



12 S. Hacks et al.

the project can deliver the changed model every time to the overall maintenance
process. Therefore, the project will get feedback on the compatibility with the
global EA model earlier and can adopt to this feedback more easily. The devia-
tions between global and specific model are therefore minimized.

On the other hand, changes to the EA model are much earlier distributed
to other projects in the organization, as there maintenance process will use the
adapted EA model also for other active projects. So the deviations between the
various projects are minimized. In result, the automation of the maintenance
process may lead to more relevant EA model, which represents the current state
of the organization and its enterprise architecture in a much more accurate way.
Furthermore, the whole process is completely transparent and most important
traceable, which supports further requirements regarding compliance and secu-
rity.

The process of Fischer et al. [10] lacks the roundtrip approach. As we count
on short feedback cycles as typical for agile development, we overcome this short-
coming. In addition, our proposed means reduces the involvement of stakehold-
ers and the necessary manual work to a minimum. Stakeholders only assess EA
model candidates, which has achieved a certain degree of quality.

Lastly, we introduced a new metric to measure the connectivity of the EA
model represented by a graph. For our case study, we assume that the complete
graph needs to be connected. However, depending on the needs of the organi-
zation under observation multiple connected components are desired. Another
organization’s need could be for a metric to assess the certain degree of connec-
tivity for the whole EA or its sub-graphs. As our case study is only fictitious, it
does not offer further insights into these aspects and need to be investigated in
future research.

8 Conclusion

EA models are currently mostly modeled manually and changes require huge
manual efforts. This is especially true when complex organizational structures
need to be covered and the organization is constantly changing. The pace of
changing structures and complexity is expected to increase and this makes it
even more challenging [40]. In recent years, the field of enterprise architecture
management already adopted techniques to reduce model maintenance effort. We
contribute to this field of research by adapting the means of continuous delivery
to shorten feedback cycles and providing a higher degree of automatizing.

To do so, we facilitated existing EA model maintenance processes and imple-
mented them within our tool JARVIS. Our first evaluation shows that existing
maintenance processes benefit from the ideas of the agile domain leading from
a model maintenance to a model evolution perspective. Additionally, we could
show that the interaction between stakeholder and enterprise architects can be
further reduced. Consequently, both can concentrate more on the essential parts
of EA than on technically related issues.



A Continuous Delivery Pipeline for EA model Evolution 13

However, our research includes still some limitations. First, we were not able
to test our approach in a natural environment. Such a field evaluation may
raise additional issues, especially related to the influence of our approach on
the sociological environment. So far, we focused only on technical aspects, but
internal resistance might hinder our approach.

Second, we just took a single project as data provider for our pipeline into
account. A plenty of distributed data provider might cause issues, we did not
consider thus far. In particular, we encourage short feedback cycles, which might
cause problems as well if the mindset of the involved employees is missing.

Third, today most EA models are maintained in a central EA model tool,
which apply version control mainly internally. To apply our approach to those
environments, the tools need to provide an interface providing model information
for interaction with our pipeline. However, this needs a change of thinking at
EA tool providers from a single, closed tool to an integrated tool, which is part
of a bigger environment.

Fourth, we took a very technical view on the problem. For instance, we
assumed for simplicity reasons that the needed input for the KPIs we facilitate
for our quality gate can be computed easily. However, the assessing of certain
inputs for the KPIs can be quite challenging, which needs to be further evaluated
in future research. Additionally, there might be not only one perception of a
KPI as multiple stakeholders with a diverse background and possibly different
expertise and expectations contribute to its assessment and interpretation, which
has to be taken into account.

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, 1st edn. (2015)

2. Becker, J., Probandt, W., Vering, O.: Grundsätze ordnungsmäßiger Modellierung:
Konzeption und Praxisbeispiel für ein effizientes Prozessmanagement. BPM kom-
petent, Springer Berlin Heidelberg, Berlin Heidelberg (2012)

3. Burnstein, I.: Practical software testing: a process-oriented approach. Springer Sci-
ence & Business Media (2006)

4. Buschle, M., Ekstedt, M., Grunow, S., Hauder, M., Matthes, F., Roth, S.: Au-
tomating enterprise architecture documentation using an enterprise service bus.
18th Americas Conference on Information Systems (2012)

5. Chen, L.: Continuous Delivery: Overcoming adoption challenges. Journal of Sys-
tems and Software 128, 72–86 (jun 2017)

6. Debois, P.: Agile Infrastructure and Operations: How Infra-gile are You? Agile
2008 Conference pp. 202–207 (2008)

7. Duvall, P., Matyas, S.M., Glover, A.: Continuous Integration: Improving Soft-
ware Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-
Wesley Professional (2007)

8. Farwick, M., Agreiter, B., Breu, R., Ryll, S., Voges, K., Hanschke, I.: Require-
ments for Automated Enterprise Architecture Model Maintenance - A Require-
ments Analysis based on a Literature Review and an Exploratory Survey. In: ICEIS
(2011)



14 S. Hacks et al.

9. Farwick, M., Schweda, C.M., Breu, R., Voges, K., Hanschke, I.: On Enterprise
Architecture Change Events. In: Aier, S., Ekstedt, M., Matthes, F., Proper, E.,
Sanz, J.L. (eds.) Trends in Enterprise Architecture Research and Practice. pp.
129–145. Springer, Berlin, Heidelberg (2012)

10. Fischer, R., Aier, S., Winter, R.: A Federated Approach to Enterprise Architecture
Model Maintenance. In: EMISA (2007)

11. Fowler, M.: Continous integration (2006), http://martinfowler.com/articles/
continuousIntegration.html

12. Guild, B.A.: A Guide to the Business Architecture Body of Knowledge (BIZBOK
Guide), vol. V04 (2014)

13. Hacks, S., Lichter, H.: Towards an Enterprise Architecture Model Evolution. In:
Czarnecki, C., Sultanow, E., Brockmann, C. (eds.) Workshops der Informatik 2018.
Lecture Notes in Informatics, Gesellschaft für Informatik e.V, Bonn (2018)

14. Hanssen, G.K., Smite, D., Moe, N.B.: Signs of agile trends in global software engi-
neering research: A tertiary study. In: 2011 IEEE Sixth International Conference
on Global Software Engineering Workshop. pp. 17–23 (Aug 2011)

15. Hauder, M., Matthes, F., Roth, S.: Challenges for Automated Enterprise Architec-
ture Documentation. In: TEAR/PRET (2012)

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS quarterly 28(1), 75–105 (2004)

17. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Inno-
vation. IEEE Computer 34, 120–122 (2001)

18. Holm, H., Buschle, M., Lagerström, R., Ekstedt, M.: Automatic data collection
for enterprise architecture models. Software & Systems Modeling 13(2), 825–841
(2014)

19. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edn.
(2010)

20. ISO, IEC, IEEE: Systems and software engineering – Architecture description
(01122011)

21. ISO/IEC 25010: Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models,
ISO/IEC, vol. 25010. ISO, Geneva (2011)

22. Johnson, P., Ekstedt, M., Lagerström, R.: Automatic Probabilistic Enterprise IT
Architecture Modeling: A Dynamic Bayesian Networks Approach. In: Franke, U.,
Lapalme, J., Johnson, P. (eds.) 20th International Enterprise Distributed Object
Computing Workshop (EDOCW). pp. 123–129 (2016)

23. Khosroshahi, P.A., Aier, S., Hauder, M., Roth, S., Matthes, F., Winter, R.: Success
Factors for Federated Enterprise Architecture Model Management. In: Persson,
A., Stirna, J. (eds.) Advanced Information Systems Engineering Workshops, pp.
413–425. Lecture Notes in Business Information Processing, Springer International
Publishing (2015)

24. Kirschner, B., Roth, S.: Federated Enterprise Architecture Model Management:
Collaborative Model Merging for Repositories with Loosely Coupled Schema and
Data. In: Multikonferenz Wirtschaftsinformatik 2014 (2014)

25. Kotusev, S.: The History of Enterprise Architecture: An Evidence-Based Review.
Journal of Enterprise Architecture 12(1), 31–37 (2016)

26. Laukkanen, E., Itkonen, J., Lassenius, C.: Problems, causes and solutions when
adopting continuous deliveryA systematic literature review. Information and Soft-
ware Technology 82, 55–79 (feb 2017)



A Continuous Delivery Pipeline for EA model Evolution 15

27. Lim, N., Lee, T.g., Park, S.g.: A Comparative Analysis of Enterprise Architec-
ture Frameworks Based on EA Quality Attributes. 2009 10th ACIS International
Conference on Software Engineering, Artificial Intelligences, Networking and Par-
allel/Distributed Computing pp. 283–288 (2009)

28. Maŕın, P.R., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T.,
Eskeli, J., Karvonen, T., Kuvaja, P., Verner, J.M., Oivo, M.: Continuous deploy-
ment of software intensive products and services: A systematic mapping study.
Journal of Systems and Software 123, 263–291 (2017)

29. Matthes, F., Monahov, I., Schneider, A.W., Schulz, C.: EAM KPI Catalog v1.0.
Garching (2011)

30. Niemi, E., Pekkola, S.: Enterprise Architecture Quality Attributes: A Case Study.
In: 2013 46th Hawaii International Conference on System Sciences. pp. 3878–3887.
IEEE (2013)

31. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science
Research Methodology for Information Systems Research. Journal of Management
Information Systems 24(3), 45–77 (2007)

32. Saint-Louis, P., Lapalme, J.: Investigation of the lack of common understanding in
the discipline of enterprise architecture: A systematic mapping study. In: Franke,
U., Lapalme, J., Johnson, P. (eds.) 20th International Enterprise Distributed Ob-
ject Computing Workshop (EDOCW) (2016)

33. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise modeling. Tackling
Business Challenges with the 4EM Method. Springer 309 (2014)

34. Simon, D., Fischbach, K., Schoder, D.: An Exploration of Enterprise Architecture
Research. Communications of the Association for Information Systems 32(1), 1–72
(2013)

35. Steffens, A., Lichter, H., Doring, J.S.: Designing a next-generation continuous soft-
ware delivery system: Concepts and architecture. In: 2018 IEEE/ACM 4th Inter-
national Workshop on Rapid Continuous Software Engineering (RCoSE). pp. 1–7
(May 2018)

36. The Open Group: ArchiMate 3.0.1 Specification (2017)
37. Välja, M., Korman, M., Lagerström, R., Franke, U., Ekstedt, M.: Automated ar-

chitecture modeling for enterprise technology manageme using principles from data
fusion: A security analysis case. In: Portland International Conference on Manage-
ment of Engineering and Technology (PICMET) (2016)

38. Välja, M., Lagerström, R., Ekstedt, M., Korman, M.: A Requirements Based Ap-
proach for Automating Enterprise IT Architecture Modeling Using Multiple Data
Sources. In: 19th International Enterprise Distributed Object Computing Work-
shop (2015)

39. White, S.A.: BPMN modeling and reference guide: understanding and using
BPMN. Future Strategies Inc. (2008)

40. Winter, K., Buckl, S., Matthes, F., Schweda, C.M.: Investigating the state-of-the-
art in enterprise architecture management method in literature and practice. In:
5th Mediterranean Conference on Information Systems. AIS (2010)

41. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thou-
sand Oaks and London and New Delhi, 5 edn. (2013)

42. Ylimäki, T.: Potential Critical Success Factors for Enterprise Architecture. Journal
of Enterprise Architecture 2(4), 29–40 (2006)


