
Probabilistic Modeling and Simulation of Vehicular Cyber Attacks: An
Application of the Meta Attack Language

Sotirios Katsikeas1, Pontus Johnson1, Simon Hacks2, and Robert Lagerström1

1Department of Network and Systems Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
2Research Group Software Construction, RWTH Aachen University, Aachen, Germany

{sotkat, pontusj, robertl}@kth.se, hacks@swc.rwth-aachen.de

Keywords: Domain Specific Language, Cyber Security, Threat Modeling, Attack Graphs, Vehicular Security

Abstract: Attack simulations are a feasible means to assess the cyber security of systems. The simulations trace the
steps taken by an attacker to compromise sensitive system assets. Moreover, they allow to estimate the time
conducted by the intruder from the initial step to the compromise of assets of interest. One commonly accepted
approach for such simulations are attack graphs, which model the attack steps and their dependencies in a
formal way.
To reduce the effort of creating new attack graphs for each system of a given type, domain-specific attack
languages may be employed. They codify common attack logics of the considered domain. Consequently,
they ease the reuse of models and, thus, facilitate the modeling of a specific system in the domain. Previously,
MAL (the Meta Attack Language) was proposed, which serves as a framework to develop domain specific
attack languages.
In this article, we present vehicleLang, a Domain Specific Language (DSL) which can be used to model
vehicles with respect to their IT infrastructure and to analyze their weaknesses related to known attacks.
To model domain specifics in our language, we rely on existing literature and verify the language using an
interview with a domain expert from the automotive industry. To evaluate our results, we perform a Systematic
Literature Review (SLR) to identify possible attacks against vehicles. Those attacks serve as a blueprint for
test cases checked against the vehicleLang specification.

1 INTRODUCTION

Vehicles, especially passenger cars, are ubiquitous in
European countries and their amount is still rising.
For example, from January 2009 to January 2018 the
number of registered passenger cars was increased
by nearly 18% in Sweden (Statistiska centralbyrån,
2018) and 12.5% in Germany (Kraftfahrt-Bundesamt,
2018). This means that 62% of Swedes and 56% of
Germans owned a car in average in January 2018. Si-
multaneously, IT-systems pervade vehicles more and
more to increase driving security and user experience.
Contemporaneously, the number of IT related security
issues grows as well (Symantec, 2017). This raises
the need to assess the cyber security of vehicles.

However, assessing the cyber security of comput-
ing systems in general and of vehicles in special is dif-
ficult. In order to identify vulnerabilities, the security-
relevant parts of the system must be understood, and
all potential attacks have to be identified. There are
three challenges related to these needs: Firstly, it is

challenging to identify all relevant security properties
of a system. Secondly, it might be difficult to col-
lect this information. Lastly, the collected informa-
tion needs to be processed to uncover all weaknesses
that can be exploited by an attacker.

Hitherto, we have proposed the use of attack sim-
ulations based on system architecture models (e.g.,
(Ekstedt et al., 2015; Holm et al., 2015)) to support
these challenging tasks. Our approaches facilitate a
model of the system and simulate cyber attacks in or-
der to identify the greatest weaknesses. This can be
imagined as the execution of a great number of paral-
lel virtual penetration tests. Such an attack simulation
tool enables the security assessor to focus on the col-
lection of the information about the system required
for the simulations, since the first and third challenges
are tackled by the simulation.

As the previous approaches rely on a static imple-
mentation, we propose MAL (the Meta Attack Lan-
guage) (Johnson et al., 2018). This domain-specific
language defines which information about a system

This paper has been presented on the ICISSP 2019. http://www.icissp.org



is required and specifies the generic attack logic. As
MAL is a meta language, no certain domain of in-
terest, like vehicle security, is represented. There-
fore, this work aims to create and evaluate a domain-
specific, probabilistic modeling language for simula-
tion of known cyber attacks on modern connected ve-
hicles, so called vehicleLang.

To create vehicleLang, we follow the means of
DSR (Design Science Research) as presented by Pef-
fers et al. (Peffers et al., 2007). Therefore, we conduct
a domain survey to extract a feature matrix contain-
ing all the security assets, the possible attacks and the
corresponding defenses. This feature matrix serves
as input to compile a detailed list of all the possible
attacks following some widely used attack classifica-
tions and taxonomy frameworks. Subsequent, vehi-
cleLang is constructed and evaluated by the results of
a SLR (Systematic Literature Review). A bottom-up
approach is followed and, therefore, the created arti-
fact is limited to modeling the internal networks of the
vehicles (i.e., CAN bus (Controller Area Network),
FlexRay, and LIN bus (Local Interconnect Network)),
the connected components to them (i.e., ECUs (Elec-
tronic Control Units), Gateway ECUs) and the attacks
that are related. However, it is scheduled to extend ve-
hicleLang to other parts of the vehicle as well in the
near future.

The remainder of the paper is structured as fol-
lows. Section 2 considers related work. In Section
3 we present the MAL and its syntax to provide the
framework for vehicleLang, which is presented with
the core language in Section 4. The language itself is
evaluated by a number of test cases depicted in Sec-
tion 5. Finally, the paper is concluded in Section 6.

2 RELATED WORK

Our work relates to three domains of previous work:
model-driven security engineering, attack/defense
graphs, and vehicle security. First, there are domain-
specific languages for security analysis of software
and system models defined in the domain of model-
driven security engineering as vehicleLang is one.
Second, attack/defense graphs are applied as formal-
ism for its analysis. Last, besides the fact that vehicle-
Lang is in the domain of vehicle security, the results
of existing vehicle security research are utilized for
evaluation.

Model-driven security engineering induced a large
number of domain-specific languages (Jürjens, 2005;
Basin et al., 2011; Alam et al., 2007; Paja et al.,
2015). These languages facilitate the capability to
model a system’s design according to components

and their interaction. Furthermore, they also enable
to model security properties such as constraints, re-
quirements, or threats. They are built upon different
formalisms and logics like the Unified Modeling Lan-
guage and the Object Constraint Language. Model
checking and searches for constraint violations are ap-
plied to conduct security analysis in these languages.

The concept of attack trees is commonly based
on the work of Bruce Schneier (Schneier, 1999;
Schneier, 2000). They were formalized by Mauw &
Oostdijk (Mauw and Oostdijk, 2005) and extended to
include defenses by Kordy et al. (Kordy et al., 2010).
As summarized in (Kordy et al., 2014), there are sev-
eral approaches elaborating on attack graphs, e.g. (In-
gols et al., 2009; Williams et al., 2008). Elaborat-
ing on the theoretical achievements of the beforehand
presented papers, different tools using attack graphs
were developed. These tools mostly build up on col-
lecting information about existing system or infras-
tructure and automatically create attack graphs based
on this information. For example, the TVA tool (Noel
et al., 2009) models security conditions in networks
and uses a database of exploits as transitions between
these security conditions.

The approaches of attack graphs and system
modeling are united in our previous works: e.g.,
P2CySeMoL (Holm et al., 2015), and securi-
CAD (Ekstedt et al., 2015). The central idea of these
works is to automatically generate probabilistic attack
graphs from a given system specification. The attack
graph serves as inference engine that produces predic-
tive security analysis results from the system model.

To the best of our knowledge, there exists no re-
search in the direction of probabilistic attack graph
modeling within the domain of vehicle security.
Therefore, we relate following to work elaborating on
vehicle hacking. A first impression on the domain of
vehicle hacking can be received by the work of Wolf
(Wolf, 2009) and Smith (Smith, 2016). On the one
hand, the authors give insights into vehicles’ IT archi-
tectures. We use these insights as input for the general
construction of our instance of MAL. On the other
hand, they depict different ways to compromise vari-
ous components of the vehicle under investigation.

More detailed attack scenarios are given by dif-
ferent authors e.g. Wolf et al. (Wolf et al., 2004),
Takahashi et al. (Takahashi et al., 2017), or Cho and
Shin (Cho and Shin, 2016). The first two work con-
centrate on attacking the bus of the vehicle. In (Wolf
et al., 2004) the authors attack different vehicular bus
networks and show their weaknesses as well as the
weaknesses of future bus networks. To strengthen ve-
hicle’s security, they also propose a secured commu-
nication along the various buses. In contrast to Wolf



et al., Takahashi et al. (Takahashi et al., 2017) focuses
on LIN bus. They show possible attacks on this ele-
mentary vehicle communication system through dif-
ferent case studies. Furthermore, they contribute by
proposing different countermeasures to raise vehicle’s
security. The last work by Cho and Shin (Cho and
Shin, 2016) demonstrates attacks on ECUs using DoS
(Denial-of-Service). For this purpose, they facilitate
the error-handling scheme of the in-vehicle network
to shut down or disconnect the ECU. Additionally,
they suggest and evaluate approaches to detect and
prevent their attacks.

3 THE META ATTACK
LANGUAGE

As already presented, this domain specific language
relies on the MAL (the Meta Attack Language) (John-
son et al., 2018). Due to reasons of brevity, we re-
fer the reader to the the original paper regarding the
core parts of the grammar (syntax), the formalism and
more details behind the MAL language.

We would just like to mention that MAL mainly
consists of classes (e.g., Car), that can be in-
stantiated (i.e., myCar), attack steps on classes
(e.g., Car.hijack), and defenses on classes (e.g.,
Car.immobilizer). Furthermore, the entities of
MAL can be related to each other. Classes, and re-
spectively their instances, can be linked to each other
(e.g., Garage.parked = {Car}). Attack steps are
also connected to each other, thus, the successful
compromise of one step leads to the second step (e.g.,
e = (Garage.open,Garage.parked.accessible)).
Additionally, attack steps can be either of the type
OR or AND, signifying that either one of its
parental steps is needed to elaborate on this step
(OR) or all steps are needed (AND). Lastly, de-
fenses are parenting attack steps which they hin-
der to be performed if they are TRUE (e.g.,
(Car.immobilizer,Car.drive) ∈ E).

Some attack steps may be accomplished without
effort. However, sometimes attack steps require a cer-
tain amount of effort, expressed in time. Those attack
steps can be associated with a probability distribution
describing the expected time to perform this step, the
so called local time to compromise. Simulating differ-
ent attackers behaviour on the modeled MAL attack
graph allows to calculate the global time to compro-
mise. This value provides a measure of how secure
various points of the modeled system are in respect to
attack resilience. Further, it facilitates a quantitative
way of comparing different system designs.

4 THE VEHICULAR CYBER
ATTACK LANGUAGE

Beforehand, we briefly presented the foundations un-
derlying the MAL. Following, we will present, first, a
core language containing common IT entities already
included in the presentation of MAL (Johnson et al.,
2018), and, second, vehicleLang covering all the ba-
sic assets that comprise the internal vehicle’s network,
from ECUs and vehicle’s networks, up to applications
and services running on top of them. The core (light
blue) and the extensions made by vehicleLang (dark
blue) are depicted in Figure 1. The elements in teal
color are also part of the core language, but have been
slightly modified within vehicleLang.

4.1 Core Language

The core language consists mainly of entities repre-
senting Machine, Vulnerability, Account, Data,
Dataflow, and Network. There are still more enti-
ties, but in the following, we will only focus on the
previously mentioned. A Machine represents attack-
able entities (i.e., hardware or software related) of a
system under investigation and, thus, are exposed by a
Vulnerability. A Vulnerability can be exploited
by a user represented by an Account. An Account
can also be capable to read, write, and delete Data
which are stored on a Machine. Two Machines can
exchange Data via a Dataflow on a Network.

Following we will explore those entities with
more detail and depict how they and their interrela-
tions are modeled. If one connects to a Machine,
one can then try to authenticate to get access to the
Machine. Another way to get access to a Machine is
to bypassAccessControl. If an attacker achieved ac-
cess to a Machine, she can: connect to all executees
(i.e., executed Software on this Machine), reques-
tAccess to all stored Data, start denialOfService at-
tacks, which can be executed against the executees or
to denyAccess of certain Data. Without being authen-
ticated the attacker is, first, able to compromise all
privileges related to the connection and, second, ex-
ploit the vulnerability related to an account in order to
gain its privileges. As far as the attacker attained the
Vulnerability, she can try to exploit it. A success-
ful exploited Vulnerability leads to compromised
privileges of all related Accounts.

An Account can be compromised by either ex-
ploiting a Vulnerability or authenticating (e.g.,
stealing the Credentials). A compromised Account
allows to overtake other Accounts (e.g., a super user
can authenticate as each other account on a machine)
and use their privileges. Moreover, an attacker can



MachineMachine

ECUECU GatewayECUGatewayECU

SoftwareSoftware
0-1 *

Execution
0-1 *

Execution

AccountAccount

1-*

*

Assignment

1-*

*

Assignment

AccessPrivileges, 
ConnectionPrivileges

AccessPrivileges, 
ConnectionPrivileges

UserUser

UserAccountUserAccount

AuthenticationAuthentication

CredentialsCredentialsCredentialsCredentials

DataDataRead, Write, DeleteRead, Write, Delete

ContainmentContainment

InformationInformation*

0-1
Representation*

0-1
Representation

StorageStorage

NetworkNetwork

DataflowDataflowCommunicationCommunication

0-1

0-1

DataTransfer

0-1

0-1

DataTransfer

IDPSIDPS

VulnerabilityVulnerability

0-1

*

ConnectionVulnerability,
AccessVulnerability

0-1

*

ConnectionVulnerability,
AccessVulnerability

* 1-*
Privileges

* 1-*
Privileges

VehicleNetworkVehicleNetwork

FirmwareFirmware

1

0-1
Firmware Execution

1

0-1
Firmware Execution

ConnectionConnection

0-1

1

IDPSProtection

0-1

1

IDPSProtection

ClientClient ServiceService

NetworkClientNetworkClient NetworkServiceNetworkService

RequestRequest

CANNetworkCANNetwork FlexRayNetworkFlexRayNetwork LINNetworkLINNetwork

Legend:
 Core language assets
 Modified core language assets
 New assets introduced by vehicleLang

Legend:
 Core language assets
 Modified core language assets
 New assets introduced by vehicleLang

ResponseResponse

EthernetNetworkEthernetNetwork

Figure 1: Model of vehicleLang

authenticate at other Machines, which use the same
Account. Last, an attacker is capable of reading,
writing, and deleting Data on a Machine.

Data is a recursive entity as it can store other Data
inside itself. Considering the basic attack steps of
Data, there are three: read, write, and delete. To get
to these attack steps, the attacker needs to requestAc-
cess and the used Account must have granted the cor-
responding privileges (e.g., anyAccountRead). The
attack steps read, and delete behave intuitively. In
contrast, write allows also to delete Data and to tam-
per Data on the Dataflow. The attack step denyAc-
cess is the result of a denialOfService and prevents the
accessibility of the data.

A Dataflow is a logical communication between
two Software applications. It allows several different
attack steps. First, an attacker can eavesdrop on the
Dataflow and, therefore, she can read the contained
data. Second, an attacker can try to carry out a man-
in-the-middle attack on the data flow. This leads to
the control of the contained Data. In both cases, that
Data may be encrypted and authenticated, thus pre-
venting a breach of confidentiality and integrity. Be-
sides reading, writing, and deleting, a manInTheMid-

dle allows also maliciousRequests and maliciousRe-
sponds.

A Network is a physical connection between
Machines like Ethernet LANs, the Internet, and Wi-
Fi networks. Basically, it provides access to its
Dataflows and enables the attacker to perform de-
nialOfService, manInTheMiddle, and eavesdrop at-
tacks.

4.2 vehicleLang

vehicleLang extends the core language by adding the
Firmware, ECU, and VehicleNetwork assets. The
Firmware, which is some kind of Software, runs
on the ECU, which is derived from a Machine. Be-
sides the “simple” ECU, there is also a GatewayECU
which acts as gateway to the Network. Moreover, a
GatewayECU offers the possibility to activate a fire-
wall and an IDPS (Intrusion Detection and Prevention
System) to prevent certain attack steps. The ECUs are
connected via the VehicleNetwork to exchange data
with each other.

An ECU specifies any ECU, or embedded con-
troller in a vehicle. An ECU is an embedded system in



a vehicle controlling one or more electrical system or
subsystems like the anti-lock braking system (ABS).
Modern vehicles can contain up to 80 ECUs (Ebert
and Jones, 2009). We model it as an extension of the
existing concept of a Machine, since an ECU offers
many attacks that are not related to the abstract type
of a Machine. If an attacker is connected to an ECU
she can try to get access to the ECU, attemptChange-
OperationMode, or to modify the Firmware. Af-
ter compromising ECU’s Firmware, bypassingAccess-
Control, or properly authenticating, the intruder has
access to the ECU. The access to an ECU can be uti-
lized to changeOperationMode, gainLINAccessFrom-
CAN (Takahashi et al., 2017), modify the Firmware,
or execute a serviceMessageInjection on the related
Services running on this ECU.

A changeOperationMode puts the ECU into diag-
nostics, which is usually used for service mechanics
to seek for failures of the system, or into update mode,
which is e.g. utilized to install a new Firmware. An
ECU in these modes will no longer send messages and
an attacker can imitate it, if she is careful, thus, ex-
ecuting a bypassMessageConfliction. Furthermore,
the changeOperationMode can be protected by the
defense operationModeProtection. This defense can
be implemented in the real world by either prevent-
ing diagnostics mode after vehicle starts moving or
allowing diagnostics mode only after some physical
change is done on the vehicle (e.g., a physical switch
is pressed).

bypassMessageConfliction enables the attacker to
inject forged service messages that could notify about
vehicle’s fault or report fake status like speed or op-
eration mode. This can lead to an unresponsive ECU
(denialOfService) or allows to inject messages for the
services running on this ECU (serviceMessageInjec-
tion). A possible defense against serviceMessageIn-
jection is by using message confliction mechanisms,
which act like a host-based IDPS (Kleberger et al.,
2011). A host-based IDPS monitors and analyzes the
internals of a computing system as well as the net-
work packets on its network interfaces. Therefore, it
observes the inbound and outbound packets from the
device and alerts if suspicious activities are detected
(Newman, 2009).

The VehicleNetwork extends the Network of the
core language and serves as an abstract layer con-
taining the common attack steps and relations of its
specializations: CANNetwork, FlexRayNetwork, and
LINNetwork. E.g., accessNetworkLayer implies the
possibility to transmit messages over the network.
But, it does not imply the possibility to listen to oth-
ers’ traffic on the network, because the attacker has no
access on the GatewayECU but is capable to commu-

nicate into the network. Therefore, she is able to con-
nect to all related ECU, perform a networkSpecificAt-
tack, or execute a messageInjection. Additionally, the
eavesdrop attack is still inherited from the Network.

A maliciousRequest/maliciousRespond on the
Network allows to connect to the Machine on top
of which the Service or Client is running, respec-
tively. For the purpose of protection, an IDPS can be
deployed which enforces the attacker in some cases to
bypass it. As this takes time, we use an exponential
distribution with a rate parameter of 6.13 to estimate
the time consumption (Holm et al., 2012; Sommestad
et al., 2012).

A CANNetwork represents the CAN bus network
which is a soft real-time control network used for e.g.
anti-lock breaking or engine control (Wolf, 2009). It
is subject to two CAN related attacks: exploitArbi-
tration, and busOffAttack. A exploitArbitration for
message prioritization in CANNetwork can lead to in-
validation of legitimate messages and allows tamper-
ing with the Dataflow. exploitArbitration is different
from the messageInjection attack, because it allows
direct malicious respond and request.

A busOffAttack exploits the error-handling
scheme of in-vehicle networks to disconnect or shut-
down not compromised ECUs (Cho and Shin, 2016).
The busOffAttack is easy to mount if the attacker
has access to a CANNetwork or specializations of it,
because the attacker only needs to discover messages
which are sent periodically. Consequently, this
removes the need for a costly reverse-engineering
procedure for the messages or the network. Addi-
tionally, an IDPS cannot distinguish between injected
and error messages. As a result, an attacker who
has access to a CANNetwork can directly apply a
busOffAttack and a denialOfService to all connected
ECU, no matter if there is an IDPS in place or not.

Cho and Shin (Cho and Shin, 2016) propose a pro-
tection against the busOffAttack attack, which is mod-
eled with the busOffProtection defense. In this case,
the busOffAttack cannot be performed against the ECU.
In reality, this defense is two-fold. First, the presence
of more than 16 consecutive error frames indicates
a busOffAttack. However, some errors can also pro-
duce so many consecutive error frames. Therefore,
second, the protected ECU should send a message to
the CANNetwork and observe if there will be another
message with the same ID, something that is by de-
sign not allowed on a CANNetwork. Consequently, if
those two criteria are fulfilled there must be a busOf-
fAttack and the ECUs can be designed in a way that
they do not get shut down.

The FlexRayNetwork is a hard real-time con-
trol network used for X-by-wire applications e.g.



break-by-wire or emergency braking systems. It al-
lows three special kinds of attacks: commonTime-
BaseAttack, exploitBusGuardian, and sleepFrameAt-
tack. The attacker sends for a commonTimeBaseAt-
tack more than defined messages within one cer-
tain timeframe to make the whole network inoperable
(Wolf, 2009, p. 103). Consequently, this leads to a
denialOfService of the FlexRayNetwork.

The Bus Guardian is usually a part of a
FlexRayNetwork connected ECUs and regulates the
access to the bus for sending messages to certain,
defined time periods (Sung et al., 2008). This Bus
Guardian is utilized in the exploitBusGuardian at-
tack for sending well-directed faked error messages
to deactivate ECUs (Wolf, 2009). Therefore, on all
FlexRayNetwork connected ECUs a shutdown can be
performed. However, the Bus Guardian mechanism
is hardened and, therefore, an attacker may need to
spend much effort on this attack (Mundhenk et al.,
2015).

A LINNetwork is a low-level non-real-time sub-
net which is used for e.g. door locking or light
sensors. The attacker can easily gainLINAccess-
FromCAN from the ECU (Koscher et al., 2010; Rip-
pel, 2008) on the LINNetwork and, consequently,
perform the attack step accessNetworkLayer. An-
other possible attack on the LINNetwork is injectBo-
gusSyncBytes. To perform this attack, the attacker
sends frames with bogus synchronization bytes within
a SYNCH field. This makes the local LIN network
inoperative or causes at least serious malfunctions
(Wolf, 2009). This leads in our model to a denialOf-
Service of the LINNetwork.

A specific attack on the LINNetwork which ex-
ploits the error handling mechanism is the inject-
HeaderOrTimedResponse. If the attack is success-
ful, it allows to tamper the Dataflow (Takahashi
et al., 2017). To overcome this shortcoming of the
LINNetwork Takahashi et al. (Takahashi et al., 2017)
proposes a protection against this attack, which is
modeled as the headerOrTimedResponseProtection
defense in our model. Additionally, to exploit this
attack significant effort is needed (Takahashi et al.,
2017).

vehicleLang is an open source project and there-
fore the code behind the language is publicly available
on the internet.

5 EVALUATION

According to Hevner et al. (Hevner et al., 2004),
five methods are possible to evaluate the output of
DSR: observations, analysis, experiments, tests, and

descriptions. Since developing vehicleLang is similar
to developing source code, we opt for testing as the
evaluation method. We ground our decision on the
fact that testing is widely spread in application devel-
opment and commonly accepted as means to ensure
that an application behaves as intended.

More concretely, we apply two different kinds of
testing. First, we implement unit tests to ensure that
vehicleLang behaves like we expect it to. To ensure
our results, we apply, additionally, cross checking by
another developer, who works also on a realization
of MAL. This cross checking includes a revision of
vehicleLang as well as the implementation of further
unit tests to uncover unintended behavior. Second, we
implement integration tests. Those integration tests
rely on a compiled attack list created by a SLR.

Our SLR follows the methodology of Webster and
Watson (Webster and Watson, 2002). The scope of
the SLR is in line with the objectives of this pa-
per, in other words, identifying attacks on the inter-
nal networks of vehicles. Therefore, we searched
for the terms “vehicle security”, “in-vehicle pro-
tocol security”, “CAN bus attacks”, “LIN bus at-
tacks”, “FlexRay attacks”, “connected cars security”,
and “automotive communication security” in title and
abstract of articles in the Google Scholar1, IEEE
Xplore2, and Springer Books3 databases from 2006 to
present. We scanned the abstracts of about 100 found
results, filtered them with respect to their relevance
to our research objective, and ended up with fourteen
conference papers, three long papers, five scientific
books, and one ENISA (European Network and In-
formation Security Agency) report relevant to our ob-
jective. We completed the SLR by conducting a back-
and forward search, which resulted in no more addi-
tional papers.

We scanned the identified literature and found 22
possible attacks on seven different classes. We relate
to each class its possible attacks and give a short de-
scription of the attack steps. Furthermore, we refer to
defenses which could be put in place to prevent the
attack. We also kept track of the literature in which
each attack is mentioned, and linked it to the test cases
which models the related behavior.

The following provides a sample test case as de-
picted in Figure 2. It is based on a scenario where
an attacker aims to perform a maliciousResponse on
the OtherDataflow by using as entry point the phys-
icalAccess on VehicleNetwork vNet1. It simulates
two VehicleNetworks with two ECUs, each one of
those running a Service. Each ECU is placed in its

1https://scholar.google.com
2http://ieeexplore.ieee.org/Xplore/home.jsp
3http://www.springer.com/gp/products/books



own Network and the Networks are connected to
each other via a GatewayECU. On this GatewayECU
the firewall and the IDPS are unfortunately disabled
or not present at all. The attacker initially has access
to the network layer of the Network where the ECU#1
running the Service is connected. Consequently, she
can also compromise the Dataflows in this Network.
However, she only reaches (is able to connect to) the
Service and the respective ECU, but is not able to
compromise them. Same holds for the other Network,
since the attacker can compromise the Network, be-
cause the firewall and IDPS are disabled, but she is not
able to compromise the ECU#2 and the corresponding
Service#2 connected to the other Dataflow.

Figure 2: Sample Attack on Vehicle’s Network

In total, we conducted more than 50 tests to verify
vehicleLang. Those tests confirmed that vehicleLang
acts like expected and that the attacks and the possible
countermeasures successfully modeled.

When it comes to performance and scalability
evaluation, the following notes must be done. Ve-
hicular infrastructure is by many factors smaller com-
pared to an IT infrastructure, therefore, work towards
better scalability for vehicleLang was minimal. In
more detail, only in two occasions scalability wise
decisions were taken. First, the way the dataflows
are modeled in vehicleLang, namely, the decision to
model a dataflow as a many-to-many or one-to-many
connection between the network service and clients.
The advantage of this approach is that it significantly
decreases the number of needed dataflows in a com-
plete model. Second, another scalability related ques-
tion was how the firewall allowed dataflows should be
modeled. The approach followed was that any fire-
wall allowed dataflow should be connected to all the
permitted networks. This decision was taken in favor
of easier implementation and higher user friendliness

6 CONCLUSIONS AND FUTURE
WORK

Assessing the cyber security of modern vehicles is
becoming of paramount importance as more IT and
cyber-physical systems pervade them and, simulta-

neously, the number of IT security issues increases.
Within this paper, we presented vehicleLang, a DSL
based on the MAL. vehicleLang will foster security
analysts in the automotive domain to model vehicles
and focus on analyzing possible design weaknesses.

Of course, further work remains. First, we only
modeled the internal vehicle networks and the con-
nected components to them but we did not model fur-
ther components, like the infotainment system, the
telematics unit, the connectivity with the internet, etc.

Second, our studies have shown that the expected
time consumption of attackers is only researched for
one of the included attacks. Consequently, future
research should elaborate on uncovering the needed
time consumption to create more realistic models.
As already mentioned, evaluating an artifact via test
cases is feasible, but, third, a complete real world
evaluation of vehicleLang is still underway and will
be presented in further extensions of this work.

Finally, one more limitation of vehicleLang is that
it does not allow to identify zero-day attacks as it re-
lies on known cyber attacks. On the contrary, it al-
lows to uncover unknown combinations of known cy-
ber attacks and, therefore, offers a better foundation
for analysis of possible weaknesses.

ACKNOWLEDGEMENTS

This work has received funding from the Swedish
Governmental Agency for Innovation Systems (Vin-
nova).

REFERENCES

Alam, M., Breu, R., and Hafner, M. (2007). Model-driven
security engineering for trust management in sectet.
JSW, 2(1):47–59.

Basin, D., Clavel, M., and Egea, M. (2011). A decade
of model-driven security. In Proceedings of the 16th
ACM symposium on Access control models and tech-
nologies, pages 1–10. ACM.

Cho, K.-T. and Shin, K. G. (2016). Error handling of in-
vehicle networks makes them vulnerable. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, pages
1044–1055, New York, NY, USA. ACM.

Ebert, C. and Jones, C. (2009). Embedded software: Facts,
figures, and future. Computer, 42(4):42–52.

Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D.,
Nydrén, J., and Shahzad, K. (2015). securiCAD by
foreseeti: A CAD tool for enterprise cyber security
management. In Enterprise Distributed Object Com-
puting Workshop (EDOCW), 2015 IEEE 19th Interna-
tional, pages 152–155. IEEE.



Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design science in information systems research. MIS
quarterly, 28(1):75–105.

Holm, H., Shahzad, K., Buschle, M., and Ekstedt, M.
(2015). P2CySeMoL: Predictive, probabilistic cyber
security modeling language. IEEE Transactions on
Dependable and Secure Computing, 12(6):626–639.

Holm, H., Sommestad, T., Franke, U., and Ekstedt, M.
(2012). Success rate of remote code execution attacks
- expert assessments and observations. Journal of Uni-
versal Computer Science, 18(6):732–749.

Ingols, K., Chu, M., Lippmann, R., Webster, S., and Boyer,
S. (2009). Modeling modern network attacks and
countermeasures using attack graphs. In Computer
Security Applications Conference, 2009. ACSAC’09.
Annual, pages 117–126. IEEE.

Johnson, P., Lagerström, R., and Ekstedt, M. (2018). A
meta language for threat modeling and attack sim-
ulations. In Proceedings of the 13th International
Conference on Availability, Reliability and Security,
page 38. ACM.

Jürjens, J. (2005). Secure systems development with UML.
Springer Science & Business Media.

Kleberger, P., Olovsson, T., and Jonsson, E. (2011). Se-
curity aspects of the in-vehicle network in the con-
nected car. In 2011 IEEE Intelligent Vehicles Sympo-
sium (IV), pages 528–533.

Kordy, B., Mauw, S., Radomirović, S., and Schweitzer, P.
(2010). Foundations of attack–defense trees. In Inter-
national Workshop on Formal Aspects in Security and
Trust, pages 80–95. Springer.

Kordy, B., Piètre-Cambacédès, L., and Schweitzer, P.
(2014). Dag-based attack and defense modeling:
Don’t miss the forest for the attack trees. Computer
science review, 13:1–38.

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T.,
Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,
Shacham, H., and Savage, S. (2010). Experimental
security analysis of a modern automobile. In 2010
IEEE Symposium on Security and Privacy, pages 447–
462.

Kraftfahrt-Bundesamt (2018). Bestand in den
jahren 1960 bis 2018 nach fahrzeugklassen.
https://www.kba.de/DE/Statistik/Fahrzeuge/
Bestand/FahrzeugklassenAufbauarten/b_fzkl_
zeitreihe.html. [Online; accessed 28-March-
2018].

Mauw, S. and Oostdijk, M. (2005). Foundations of attack
trees. In International Conference on Information Se-
curity and Cryptology, pages 186–198. Springer.

Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Fahmy,
S. A., and Chakraborty, S. (2015). Security analysis
of automotive architectures using probabilistic model
checking. In Proceedings of the 52Nd Annual Design
Automation Conference, DAC ’15, pages 38:1–38:6,
New York, NY, USA. ACM.

Newman, R. C. (2009). Computer security: Protecting dig-
ital resources. Jones & Bartlett Publishers.

Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., and
Prole, K. (2009). Advances in topological vulnerabil-

ity analysis. In Conference For Homeland Security,
2009. CATCH ’09. Cybersecurity Applications Tech-
nology, pages 124–129.

Paja, E., Dalpiaz, F., and Giorgini, P. (2015). Modelling
and reasoning about security requirements in socio-
technical systems. Data & Knowledge Engineering,
98:123–143.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A Design Science Research Method-
ology for Information Systems Research. Journal of
Management Information Systems, 24(3):45–77.

Rippel, E. (2008). Embedded security challenges in auto-
motive designs. In Proc. Workshop on Embedded Se-
curity in Cars (escar 2008).

Schneier, B. (1999). Attack trees. Dr. Dobb’s journal,
24(12):21–29.

Schneier, S. (2000). Lies: digital security in a networked
world. New York, John Wiley & Sons, 21:318–333.

Smith, C. (2016). The Car Hacker’s Handbook: A Guide
for the Penetration Tester. No Starch Press.

Sommestad, T., Holm, H., and Ekstedt, M. (2012). Esti-
mates of success rates of remote arbitrary code exe-
cution attacks. Information Management & Computer
Security, 20(2):107–122.

Statistiska centralbyrån (2018). Fordonsstatistik jan-
uari 2006–februari 2018. http://www.scb.se/
hitta-statistik/statistik-efter-amne/
transporter-och-kommunikationer/
vagtrafik/fordonsstatistik/pong/
tabell-och-diagram/fordonsstatistik/.
[Online; accessed 28-March-2018].

Sung, G.-N., Juan, C.-Y., and Wang, C.-C. (2008). Bus
guardian design for automobile networking ecu nodes
compliant with flexray standards. In 2008 IEEE Inter-
national Symposium on Consumer Electronics, pages
1–4.

Symantec (2017). Internet security threat report.
https://www.symantec.com/content/dam/
symantec/docs/reports/istr-22-2017-en.pdf.
[Online; accessed 28-March-2018].

Takahashi, J., Aragane, Y., Miyazawa, T., Fuji, H., Ya-
mashita, H., Hayakawa, K., Ukai, S., and Hayakawa,
H. (2017). Automotive attacks and countermea-
sures on lin-bus. Journal of Information Processing,
25:220–228.

Webster, J. and Watson, R. T. (2002). Analyzing the past
to prepare for the future: Writing a literature review.
MIS Quarterly, 26(2):xiii–xxiii.

Williams, L., Lippmann, R., and Ingols, K. (2008). GAR-
NET: A graphical attack graph and reachability net-
work evaluation tool. Springer.

Wolf, M. (2009). Security engineering for vehicular IT sys-
tems—improving trustworthiness and dependability of
automotive IT applications. Vieweg + Teubner.

Wolf, M., Weimerskirch, A., and Paar, C. (2004). Secu-
rity in automotive bus systems. In Proceedings of the
Workshop on Embedded Security in Cars.


