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Abstract: Enterprise Architectures (EA) are used to define the structure and operation of an 

organization and commonly find usage in the realization and modification of IT business strategies. 

We propose a technique to optimize the costs incurred between two layers of the EA, especially, 

considering differing departmental budgets. This is achieved through consideration of a flow 

problem aiming to optimize a graph consisting of different nodes, allowing budgets to be used by 

different departments. Additionally, we implement techniques previously published to allow 

operational and transitioning costs to be taken into consideration, in an effort to better reflect the 

organizational problems found in reality. 
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1 Introduction 

IT-Projects in large companies realize technical requirements, which are requested by 

different business departments. To adjust IT-Projects to the overall strategy of the 

company, one way is to develop and manage enterprise architectures [AW09]. The most 

common definition of the term Architecture is found in the ISO norm ISO/IEC/IEEE 

42010:2011. The norm defines architecture as the “fundamental concepts or properties of 

a system in its environment embodied in its elements, relationships, and in the principles 

of its design and evolution”. Therefore, an EA is a holistic view over all underlying 

structures, elements and their relations. It gives large enterprises a centralized framework, 

to consolidate their strategic plans and business mission. According to IT, it includes all 

IT-relevant components in the business, like information resource management, life cycle 

planning, systems or software reengineering. Furthermore, it is considered to be the 

backbone for coordination of actual and further development of the business IT systems 

and data [Ro94]. 

As in the revolution of information technology (especially in businesses), IT landscapes 

become increasingly larger [VSM10]. Because of that, the complexity of IT-systems is 

continuously growing, so that manual maintenance is unfeasible. Nevertheless, to keep 

systems preferably facile, it is a common practice trying to reduce the complexity of such 

systems, e.g., eliminating elements to reduce the complexity. There are several options on 

which parameters a system can be optimized, e.g., minimal quantity of elements or 
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minimum operating costs. Aspects, which are important for an optimal solution, are 

depending on the usage, but often a hybrid solution is necessary. In this paper, we facilitate 

the approach from Hacks and Lichter [HL18b], in which they find an optimal solution 

considering transition costs for adding and removing applications to be economically 

reasonable. In larger businesses, departments commonly have department budgets to get 

an easier financial overview for managers. Additionally, different departments often share 

budgets or one department is using more than one budget. For example, this will be the 

case if two departments benefit from the same application. To achieve a more realistic 

optimization model, we integrate such department budgets into the proposed optimization 

model of Hacks and Lichter. 

As the goal of this paper is to improve modeling of EAs in an optimization sense, we will 

not focus on suggestions for management decisions that could be derived from this data. 

We will represent EAs in the form of graphs, where elements are detailed as nodes and 

relations as edges. Interpretation of what constitutes elements and edges will be specific 

to the particular use case.  

In section 2 of our paper, we introduce related work according to mathematically described 

EAs and their optimization models. Additionally, we present two previous approaches, on 

which this paper is based. The formal definition of EAs budgets and our approach to 

optimizing considering different budgets is introduced in section 3. To evaluate and prove 

our findings, we give an insight on how our approach is scaling in reality according to our 

implementation, which we will introduce in section 4. In section 5, we summarize our 

results and give a short perspective on further regarding topics. 

2 Related Work 

Different work has been done to describe and optimize EAs in a mathematical 

programming formulation fitted to their field of use.  

As mentioned above, the most important related work, on which this paper is mainly based 

on, is worked-out from Hacks and Lichter [HL17, HL18b]. The authors optimize relations 

between two adjacent layers of EAs considering operational costs and transition costs to 

change systems from the as-is state to its optimal state. In this graph, optimization 

constraints are interpreted between two layers as triangles. These triangles consist of the 

connection between a needed capability of an upper layer element. These capabilities are 

realized by certain lower elements. The optimization model is solved using a linear integer 

program, which is even appropriable for realistic scenarios. In our approach, we extend 

this optimization problem from Hacks and Lichter regarding department budgets, which 

also can be not mutually exclusive.  

A similar approach from Giakoumakis et al. [Gi12] focused on replacing existing services 

with new services without disrupting the enterprise. They formalized this problem into a 

graph and solved it using the multi-objective optimization problem, which considers 
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departments, existing services, new services and IT-components. To apply changes in the 

EA, they link services and modules, department and services and attach transition costs 

for changes. 

Another optimization approach is made by Franke et al. [Fr10]. They use a binary integer-

programming model to find an optimal mapping between IT systems and processes based 

on needed functionalities. These functionalities are connected with processes they use and 

with certain fulfilling IT systems. In a next step, connections for the as-is state will be 

made through connecting processes and IT systems directly, which has to be optimized by 

applying change costs and operation costs. 

MacCormack et al [MLB15] present the most complete optimization approach. They use 

Design Structure Matrices to capture the coupling between the components of the EA. The 

work extends existing research by also considering future states of the EA, considering 

layers, and generating measures that can be used to predict performance. 

One fundamental different approach concerning transition costs is made from Lagerström 

et al. [LJE10] by using a probabilistic relation model with a meta-model based on literature 

research and evaluated through interviews and workshops. This is used to supply 

transitions costs estimation for large software projects. By providing a prediction and not 

optimizing the as-is state this approach differs from our formulation. 

Further, Antunes et al. [ACB14] propose to use ontologies to analyze the EA. More 

concrete, they facilitate means of description logic to enable an automatic analysis of the 

underlying EA model.  

Such optimizations need to be guided by processes. Hacks and Lichter [HL18a] propose 

a process to keep the central EA model up-to-date. The optimization approaches can be 

placed in the quality assurance step to suggest improvements to the architects. Hartmann 

[Ha17] illustrates a process for the alignment between software development and EA. He 

embeds the EA governance process into the software development process and, though, 

enforces the governance. 

3 Modeling a Budgeted Enterprise Architecture Optimization 

Before presenting our approach, we first give a quick overview of how EAs are modeled 

in literature. Later on, we especially take care of the foundations, which are already 

acquired by Hacks and Lichter [HL17, HL18b]. Based on these foundations we provide 

our optimizing approach. 

3.1 Towards an Optimization Model 

According to Winter and Fisher [WF06], enterprise architectures are most commonly 

composed of hierarchical layers. Each of these layers consists of various architectural 
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artifacts, which can be connected through different relations with elements of the same 

layer. Additionally, artifacts on a layer can be explicitly influenced by elements on the 

superseding layer, reflecting a priority of importance of decisions undertaken on higher 

levels of the architecture [MMT00]. 

For instance, an enterprise architecture could consist of business entities such as Human 

Resources, Enterprise Resource Planning and Liquidity Management, each requiring a 

certain set of capabilities. Such capabilities could be functions such as Hiring or Stock 

Trading. This is modeled by directed edges from the business entities to the capability 

nodes. Furthermore, applications selectively implement certain capabilities, represented 

through edges from the capabilities to implementing applications. Fig. 1 shows such an 

exemplary architecture naming the layers as Cost Centers and Applications.  

 

Fig. 1: Concrete example for two layers in an enterprise architecture (reproduced from Hacks and 

Lichter [HL18b] 

An example of an application of this concept could be the simplification of an IT business 

infrastructure in order to reduce costs. A business resource may require certain capabilities 

fulfilled by applications on the application layer. In this case, an optimization model is 

suitable to reduce the operational cost of the architecture by selecting a set of applications 

that implements all required capabilities at the smallest possible cost to the enterprise.  

In order to be able to apply common graph algorithms to the solution of problems related 

to the enterprise architecture, we will model these architectures as directed graphs, 
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accordingly to Hacks and Lichter [HL18b]. Vertices will represent an element of the 

architecture describing an aggregation hierarchy, and the edges between these vertices 

mirror dependencies between elements on different layers of the architecture. 

In our subsequent analysis of the optimization problem for enterprise architectures, we 

will consider only the interactions between two directly adjacent layers of an overall 

architecture. This is permissible because decisions on higher layers of the architecture 

reduce the degree of freedom on subsequent layers [MMT00], and greatly simplify 

understanding of the optimization process. To perform an analysis of the entire 

architecture, simply repeat the analysis in top-down for each interface between two layers. 

Hacks and Lichter [HL17] present different objectives that could be used to optimize the 

model, such as minimal coupling, amount of lower layer elements or operational costs. In 

real-world applications, we often find certain business entities, such as departments, to be 

restricted to a specific budget. These budgets are important for business managers to 

estimate the project and department costs. It is common that various departments are 

sharing the same IT infrastructure so that each department has its own scot, which needs 

a specific budget. We will extend the model by considering these budget restrictions, while 

also incorporating transitional costs for the introduction or decommissioning of currently 

active applications in the architecture. This seems to be warranted as moving away from 

old applications or implementing new ones often arises substantial costs necessary for 

example to educate users, transfer data or resolving other dependencies.  

3.2 Foundations 

Building on this initial understanding of enterprise architecture modeling and objectives 

in its optimization, we will now introduce a more formal representation of these 

architectures. 

As described by Hacks and Lichter [HL17, HL18b] we want to represent the enterprise 

architecture as a quadruple 𝐸𝐴 =  ( 𝔏, ℭ, 𝐸, 𝑅 ) where 𝔏 is an ordered set of architectural 

layers, ℭ describes a set of sets of capabilities, 𝐸 is a set of architectural elements, and 𝑅 

represents a set of relations between these elements and capabilities. 

We assume each layer L ∈  𝔏  to consist of architectural elements so that L ⊂ E, and to be 

disjoint as prescribed: 

For each layer element, 𝑢𝑙𝑖 ∈ 𝐿𝑗, of the upper layer there may be an associated budget, 

𝔟𝑖  ∈ ℕ0. For each element on the lower layer, 𝑙𝑙𝑖 ∈ 𝐿𝑗+1, there is an associated operational 

cost, 𝑝𝑖 , and a transitional cost, 𝑡𝑝𝑖 .  

Furthermore, we place capabilities, 𝑐𝑖 ∈ 𝐶, between two adjacent layers. There exists 

between every neighbored layers, 𝐿𝑖  and 𝐿𝑖+1, a set of capabilities, 𝐶 ∈ ℭ. As each 

𝐿𝑖 ∩ 𝐿𝑗  =  ∅  |  ∀ 𝐿𝑖 , 𝐿𝑗  ∈  𝔏   𝑖 ≠ 𝑗 (1) 
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capability is associated with a specific business requirement, we assume all capabilities to 

be unique to a set of capabilities between two adjacent architectural layers: 

The set of relations consists of tuples of architectural elements and capabilities, which 

couple upper layer elements with capabilities and capabilities with lower layer elements: 

This object 𝐸𝐴 is the subject of optimization. 

3.3 Modeling Cash Flows in Enterprise Architectures 

Hacks and Lichter [HL17] present a solution to the optimization problem for enterprise 

architectures by introducing intermediate relations between all elements of an adjacent 

layer constituting a bipartite graph. In order to be able to incorporate budget constraints 

into our model in a meaningful manner and benefit from graph algorithms, we chose a 

different approach by modeling cost flows originating from budget nodes.  

In order to obtain the desired solution, we apply a modified maximum flow problem based 

on the input parameters of the problem. The maximum flow problem is concerned with 

obtaining a maximum flow through a single-source single-sink flow network by assigning 

a feasible flow, 𝑓𝑒 → ℝ+, to all edges, 𝑒 ∈ 𝔈, such that the total flow ∑ 𝑓𝑖,𝑡 , (𝑖, 𝑡) ∈ 𝔈 into 

the sink is maximal. Additionally, the maximum flow problem imposes an constraint by 

limiting the flow across an edge to a certain capacity limit, 𝔠. Naturally, in a flow network, 

the flow out of a node must be equivalent to the flow entering the node, excepting source 

and sink nodes. Instead of considering a maximum flow across the network, we want to 

minimize cost flow, and we limit the flow across certain budget-related arcs to a specific 

budget value. In linear programming terms, we formulate this objective in Eq. (4), and 

formulate these initial constraints in Eq. (5) and (10). 

We begin to construct a graph with vertices, 𝔙, consisting of elements from two adjacent 

layers, 𝐿𝑖 and 𝐿𝑖+1, as well as the related capabilities, 𝐶𝑖. We also start with a set of edges, 

𝔈, equivalent to the set of relations, 𝑅, for these adjacent layers.  

We also add a start node, 𝑠, as an entry point for a flow algorithm. Furthermore, for each 

budget, 𝔟𝑖, it is necessary to construct a node, 𝑏 ∈ 𝐵, and add relations to all upper layer 

elements associated with this budget. For additional relations, we introduce for each 

budget between, 𝑠, and the budget node, 𝑏. Next, we apply constraints to these relations 

to ensure a maximum cost flow equivalent to the budget. 

From each of the lower layer elements, we construct additional relations to the sink node, 

𝑡. The activation of a lower layer element bears operational costs and may additionally 

𝐶𝑖 ∩ 𝐶𝑗 = ∅  |  ∀ 𝐶𝑖 , 𝐶𝑗 ∈ ℭ 𝑖 ≠ 𝑗 (2) 

𝑅 ⊂ {(𝑒, 𝑐): 𝑒 ∈ 𝐿𝑖 , 𝑐 ∈ 𝐶𝑖} ∪ {(𝑐, 𝑒): 𝑐 ∈ 𝐶𝑖 , 𝑒 ∈ 𝐿𝑖+1} (3) 
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arise transitional costs. The deactivation of a lower layer application may also arise 

transitional costs, but no operational costs. To incorporate this requirement into our cash 

flow model, we must also enforce an additional constraint to force the flow on these edges 

to be equivalent to exactly the cost raised by (de-)activation of the element.  

This model represents the flow of monetary resources originating from operational 

budgets through the architecture. To optimize towards minimal costs, we can now simply 

attempt to minimize the flow of cash through the network. 

3.4 Final Modeling 

To summarize our findings, we will now combine the previous results to formulate the 

following selection problem for two adjacent layers of the architecture: 

 All upper layer elements, 𝑢𝑙𝑖, are to be implemented. We also refer to these elements 

as cost centers.  

 The implementation of a distinct upper layer element 𝑢𝑙𝑖 requires fulfilling a known 

subset of capabilities, 𝑐𝑖 ⊂  𝐶𝑗. We refer to those subsets indicating the necessary 

capabilities for the operation of a cost center as the cost center's capability set. 

 Fulfilling a certain capability, 𝑐𝑗, requires the activation of at least one element of a 

known subset, 𝑆𝑗, of lower layer elements, 𝑙𝑙𝑘. We refer to these lower layer 

elements as applications. Furthermore, we refer to the subset, 𝑆𝑖, which indicates 

the applications suitable for implementing a capability as the capability's 

implementing set. These implementing sets are not mutually exclusive. If an 

application belongs to multiple implementing sets, then selecting the application for 

the solution would simultaneously satisfy all implementing sets it is contained in, 

and, thereby, all corresponding capabilities. 

 An application, which has been activated, arises an operational cost, 𝑝𝑘. 

 Implementing an application, which has previously been inactive, arises an 

additional transitioning cost, 𝑡𝑝𝑘, and vice versa. 

 All cost centers are subject to budget constraints. These budgets are distributed 

among multiple cost centers and are not mutually exclusive. That is, a cost center 

can receive funds from multiple designated budgets, and a budget can be designated 

for multiple upper layer elements. 

The problem we consider is to determine which applications should be implemented in 

order to minimize operational and transitional costs, as well as how the budgets are 

consumed by the cost centers in order to realize all capabilities. 

In order to accomplish this, we derive a network flow minimization problem from the 

selection problem and formulate the following integer program. We first construct a graph 

from our problem description. Let 𝔙 denote the set of vertices, and 𝔈 the set of edges. 
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Let 𝑠 be a source, and 𝑡 be a sink node, and let 𝔙− be the set of vertices 𝔙 excluding these 

nodes 𝑠 and 𝑡. Construct a node, 𝑏𝑖, for each budget, 𝔟𝑖, and edges, (𝑏𝑖 , 𝑢𝑙𝑗), for each cost 

center, 𝑢𝑙𝑗, assigned to this budget. Construct one edge, (𝑠, 𝑏𝑖), for each budget node, 𝑏𝑖.  

Construct a capability node, 𝑐𝑖, for each capability, 𝑐𝑖 ∈ 𝐶𝑘, and let (𝑢𝑙𝑗 , 𝑐𝑖) be the edges 

from each cost center, 𝑢𝑙𝑗 , to the capabilities it requires. Then let (𝑐𝑖 , 𝑙𝑙𝑘) be the edges 

from the capability, 𝑐𝑖, to all applications, 𝑙𝑙𝑚. Finally, construct one edge, (𝑙𝑙𝑚 , 𝑡), for 

each application, 𝑙𝑙𝑚. Fig. 2 shows an example architecture modeled accordingly. 

 

Fig. 2: Abstract example for two layers in an enterprise architecture 

Let ℨ be the set of applications already implemented (as to be considered for transitional 

analysis), and 𝑧𝑖 ∈ ℨ be the implementation state of the application, 𝑙𝑙𝑖. 𝑓(𝑖,𝑡) designates 

the flow between two nodes, (𝑖, 𝑡), and 𝑖𝑖 is a boolean determining whether an application, 

𝑙𝑙𝑖, is to be implemented. Let 𝑡𝑖 be a boolean variable indicating whether a transition is 

necessary for an application, 𝑙𝑙𝑖. These are the variables of the integer program. 

The integer program describing the problem we have specified can now be defined as 

follows: 

min ∑ 𝑓𝑒

𝑒∈𝔈

 
(4) 
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Eq. (4) describes the objective function. As we are attempting to minimize accruing costs, 

our objective is the minimization of flow across all incoming arcs at the sink node, 𝑡. 

Eq. (5) enforces budget limits on the edges connecting the source, 𝑠, to the budget nodes. 

Eq. (6) ensures that at least one of the applications connected to a capability is activated. 

Eq. (7) and (8) set the variable, 𝔱𝑖, that indicates whether a transition of an application, 𝑖𝑖, 

is necessary to the correct value.  

Eq. (9) enforces a valid flow on the edges connecting the applications to the sink, 𝑡; that 

is, the flow is either 0 if the application is disabled, or exactly the sum of operational and 

transitional costs. This is accomplished by adding up the product of the boolean variable, 

𝑖𝑖, defining whether the application is to be activated and the corresponding cost, 𝑝𝑖 , and 

the transitional cost function, 𝑡𝑝𝑖 . 

Eq. (10) is a constraint common to all flow problems and forces the amount of flow 

entering a node to be equal to the amount of flow leaving it. 

Thereby, we have implemented all requirements originally specified in the definition of 

the selection problem for budgeted enterprise architecture optimization. 

The variables, 𝑖𝑖, will contain the implementation state for an application, 𝑙𝑙𝑖 , in the 

optimal solution, and 𝑓(𝑖,𝑗) will describe the amount of cash flow between the two entities 

belonging to 𝑖 and 𝑗.  

3.5 Applying the Optimization Model 

To apply the optimization model to an example graph, the budget constraints have to be 

implemented as nodes between the cost centers and the start node as described in 

s.t. 𝑓(𝑖,𝑗) ≤ 𝑏𝑗   |  ∀ (𝑖, 𝑗) ∈  𝔈 , 𝑗 ∈ 𝐵 (5) 

 ∑ 𝑖𝑖 ≥ 1  |  ∀ 𝑖 ∈  ℭ

(𝑖,𝑗)∈𝔈

 
(6) 

 𝔱𝑖 ≥ 𝑖𝑖 − 𝑧𝑖   |  ∀(𝑖, 𝑡) ∈ 𝔈 (7) 

 𝔱𝑖 ≥ 𝑧𝑖 − 𝑖𝑖   |  ∀(𝑖, 𝑡) ∈ 𝔈 (8) 

 𝑓(𝑖,𝑡) = (𝑖𝑖 ∗ 𝑝𝑖) + [𝑡𝑝𝑖(𝑧𝑖 − 𝑖𝑖)
2]  |  ∀ (𝑖, 𝑡) ∈  𝔈 (9) 

 ∑ 𝑓(𝑖,𝑗)

(𝑖,𝑗)∈𝔈

= ∑ 𝑓(𝑗,𝑖)

(𝑖,𝑗)∈𝔈

 
(10) 
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subsection 3.4. The edges between the start and the budget nodes function as the budget 

constraints according to Eq. (5). Cost centers are provided by different budgets, which are 

represented as the connecting edges between those nodes. Fig. 3 shows an example of such 

a graph where the cost centers Human Resources and Liquidity Management are each 

sharing their budgets with ERP. 

Here Application 1 and Application 2 are not yet used in the model and can be activated 

by applying the denoted transition costs. To calculate an optimal solution, we apply our 

above-described approach to such a graph with the given costs. Fig. 3 sketches the optimal 

solution calculated by our model regarding a minimum cost-flow. This optimal solution 

suggests to include Application 1 and Application 2 with a total cost of 70 for each 

consisting of transition and operating costs. The total costs for this solution amounts to 

165 and is reflected to the minimum cost-flow in the network. 

 

Fig. 3: Solution for concrete example with cash flow 

We have provided a copy of the source code of our implementation in a git repository2. 

Building on our implementation, we will provide both a reasoning for our expectations 

pertaining to the algorithm's runtime, as well as an experimental evaluation of this runtime. 

This will allow us to predict the practical value of the solution we have presented.  

                                                           
2 https://git.rwth-aachen.de/kevin.koopmann/swcseminar 
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4 Evaluation 

In order to evaluate the performance of the modeling approach we have presented and to 

apply it to exemplary inputs, we felt it be warranted to implement rudimentary software 

capable of generating and processing appropriate enterprise architecture representations.  

To accomplish the desired goals we have reformulated the objectives and constraints from 

the previous section using the Pyomo3 optimization modeling DSL and utilized the 

Gurobi4 solver to derive an optimal solution.  

4.1 Scalability 

Runtime Expectations As is evident from Eq. (4), the objective function of our model is 

a linear expression and dependent upon the flow on edges between applications and the 

sink node, 𝑡. The number of linear objective terms in the model is therefore equivalent to 

the number of applications.  

We expect an increase in the number of edges, for instance, due to a positive variation of 

the amount of budget, cost center and capability nodes, to lead to linear increases in 

runtime due to the additional linear constraint terms.  

Experimental Runtime Evaluation For experimental evaluation, we have generated 

random architecture representations to be processed by our software with different values 

for the number of budgets, cost centers, capabilities and applications. For the first part of 

the evaluation, all density values were set to 0.1, and for each of these value sets the 

average runtime and variable count over 20 runs was determined on a system with 102 

GFlops of floating-point performance and 8 GB of RAM. At this density we expect the 

variable count to be closely related to the number of edges. 

Fig. 4 shows the resulting runtimes for varying numbers of budgets, cost centers, 

capabilities and applications with fixed ratios at a connectivity density of 0.1. We have 

decided on these values, as they represent a common balance between the various entities, 

even though the connection density is higher than in most real-world architectures 

[LJE10]. However, this reduces the impact of time spent in pre-solving and optimization 

phases on overall measurement results, and is still representative of actual use cases, as 

we will show the relationship between density and runtime to be inversely proportional.  

Time measured includes time spent on problem generation by Pyomo and time in the 

Gurobi solver, including preprocessing and pre-solving time. Fig. 4 shows the runtime of 

the solver compared to the number of variables corresponding to edge and vertex counts. 

                                                           
3 http://www.pyomo.org/ 
4 https://www.gurobi.com/ 
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Fig. 4: Time spent in solver and linearly 

fitted corresponding model 

 

Fig. 5: Seconds per edge depending on 

graph connectivity 

 

This shows that with increasing architectural complexity measured in terms of 

connectivity between different entities in the organization graph, in accordance with our 

expectations, the runtime of our algorithm increases linearly. We have found that this 

relationship holds in most cases for architectures with equivalent connection densities. 

By varying connection densities in a second test run, we confirm that execution time is 

not solely dependent on the edge count, but on connectivity as well. Comparison of 

varying density values against the average time spent in the solver for each edge in the 

architecture yields Fig. 5. This is to show that connection density is inversely linearly 

related to execution time. 

We assume that the reduction in runtime in very highly connected architectures compared 

to architectures with lower edge counts is related to particular details regarding the 

implementation of the relaxation or SOCP algorithms of the solver we have used, or in the 

simplification of certain problem parameters in highly connected graphs. However, a 

detailed analysis of this effect is beyond the scope of this article. 

In the following section, we will analyze the consequences this entails for the application 

of this algorithm on real-world optimization problems.  

4.2 Value for Real-World Applications 

As is evident from our runtime analysis, the execution time of the Integer Program we 

have described is dependent upon a multitude of factors, including the number of entities 

on different architectural layers and the connectivity between such entities. There was a 

tendency towards a linear correlation between variable or edge count and runtime for all 

evaluated architectures.  
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Even at linear runtimes, this may still present challenges for scalability towards optimizing 

extremely large-scale enterprise architectures. Even though, such optimizations will not 

be performed frequently in most cases, and can often be executed on large-scale systems, 

it is conceivable that on certain architectures execution time might prove to be prohibitive.  

However, most architectures encountered in real-world applications seem to be of a rather 

limited size in comparison to the scenarios of our evaluation model that required high 

execution times. Lagerström et al. [LJE10], for instance, considered an architecture 

consisting of 407 nodes and 1157 edges, translating to a density of just 0.00698 in our 

notation. Evaluating a similar architecture on our test system consistently yielded a 

runtime of less than one second. 

5 Conclusion 

Information Technology projects within enterprises demand novel solutions of the 

organization problem, devised with awareness of business requirements such as 

departmental budgets and transition costs. With the ever-increasing relevance of IT 

systems in business cases, we predict a correlating rise in demand for consolidation of 

such systems.  

We have shown how this consolidation can currently be performed using optimization 

models and presented a different, novel model taking the business need of budgeting for 

varying cost centers into account, and incorporated the transition cost model introduced 

by Hacks and Lichter [HL17, HL18b].  

Furthermore, we have demonstrated through our runtime evaluation that our approach 

performs adequately for most real world use cases, which we showed for both synthetic 

test cases and instances from literature.  

Currently, the approach considers budgets and transitional as well as operational costs 

only at a single point in time. In reality, certain costs and budgets may constantly change; 

an extension of the approach to determine the ideal point of investment in time could 

address this challenge. 
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