
<First name last name [et. al.]>(ed.): < book title>,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn <year> 1

Optimizing Enterprise Architecture Considering Different

Budgets

Niklas Dohmen, Kevin Koopmann, and Simon Hacks1

Abstract: Enterprise Architectures (EA) are used to define the structure and operation of an

organization and commonly find usage in the realization and modification of IT business strategies.

We propose a technique to optimize the costs incurred between two layers of the EA, especially,

considering differing departmental budgets. This is achieved through consideration of a flow

problem aiming to optimize a graph consisting of different nodes, allowing budgets to be used by

different departments. Additionally, we implement techniques previously published to allow

operational and transitioning costs to be taken into consideration, in an effort to better reflect the

organizational problems found in reality.

Keywords: Enterprise Architecture, Linear Integer Programming, Optimization, Department

Budgets, Minimum-Cost Flow Problem

1 Introduction

IT-Projects in large companies realize technical requirements, which are requested by

different business departments. To adjust IT-Projects to the overall strategy of the

company, one way is to develop and manage enterprise architectures [AW09]. The most

common definition of the term Architecture is found in the ISO norm ISO/IEC/IEEE

42010:2011. The norm defines architecture as the “fundamental concepts or properties of

a system in its environment embodied in its elements, relationships, and in the principles

of its design and evolution”. Therefore, an EA is a holistic view over all underlying

structures, elements and their relations. It gives large enterprises a centralized framework,

to consolidate their strategic plans and business mission. According to IT, it includes all

IT-relevant components in the business, like information resource management, life cycle

planning, systems or software reengineering. Furthermore, it is considered to be the

backbone for coordination of actual and further development of the business IT systems

and data [Ro94].

As in the revolution of information technology (especially in businesses), IT landscapes

become increasingly larger [VSM10]. Because of that, the complexity of IT-systems is

continuously growing, so that manual maintenance is unfeasible. Nevertheless, to keep

systems preferably facile, it is a common practice trying to reduce the complexity of such

systems, e.g., eliminating elements to reduce the complexity. There are several options on

which parameters a system can be optimized, e.g., minimal quantity of elements or

1 RWTH Aachen University, Research Group Software Construction, Ahornstr. 55, Aachen, 52074,

{niklas.dohmen, kevin.koopmann}@rwth-aachen.de, hacks@swc.rwth-aachen.de

2 Niklas Dohmen, Kevin Koopmann, and Simon Hacks

minimum operating costs. Aspects, which are important for an optimal solution, are

depending on the usage, but often a hybrid solution is necessary. In this paper, we facilitate

the approach from Hacks and Lichter [HL18b], in which they find an optimal solution

considering transition costs for adding and removing applications to be economically

reasonable. In larger businesses, departments commonly have department budgets to get

an easier financial overview for managers. Additionally, different departments often share

budgets or one department is using more than one budget. For example, this will be the

case if two departments benefit from the same application. To achieve a more realistic

optimization model, we integrate such department budgets into the proposed optimization

model of Hacks and Lichter.

As the goal of this paper is to improve modeling of EAs in an optimization sense, we will

not focus on suggestions for management decisions that could be derived from this data.

We will represent EAs in the form of graphs, where elements are detailed as nodes and

relations as edges. Interpretation of what constitutes elements and edges will be specific

to the particular use case.

In section 2 of our paper, we introduce related work according to mathematically described

EAs and their optimization models. Additionally, we present two previous approaches, on

which this paper is based. The formal definition of EAs budgets and our approach to

optimizing considering different budgets is introduced in section 3. To evaluate and prove

our findings, we give an insight on how our approach is scaling in reality according to our

implementation, which we will introduce in section 4. In section 5, we summarize our

results and give a short perspective on further regarding topics.

2 Related Work

Different work has been done to describe and optimize EAs in a mathematical

programming formulation fitted to their field of use.

As mentioned above, the most important related work, on which this paper is mainly based

on, is worked-out from Hacks and Lichter [HL17, HL18b]. The authors optimize relations

between two adjacent layers of EAs considering operational costs and transition costs to

change systems from the as-is state to its optimal state. In this graph, optimization

constraints are interpreted between two layers as triangles. These triangles consist of the

connection between a needed capability of an upper layer element. These capabilities are

realized by certain lower elements. The optimization model is solved using a linear integer

program, which is even appropriable for realistic scenarios. In our approach, we extend

this optimization problem from Hacks and Lichter regarding department budgets, which

also can be not mutually exclusive.

A similar approach from Giakoumakis et al. [Gi12] focused on replacing existing services

with new services without disrupting the enterprise. They formalized this problem into a

graph and solved it using the multi-objective optimization problem, which considers

Optimizing EAs Considering Different Budgets 3

departments, existing services, new services and IT-components. To apply changes in the

EA, they link services and modules, department and services and attach transition costs

for changes.

Another optimization approach is made by Franke et al. [Fr10]. They use a binary integer-

programming model to find an optimal mapping between IT systems and processes based

on needed functionalities. These functionalities are connected with processes they use and

with certain fulfilling IT systems. In a next step, connections for the as-is state will be

made through connecting processes and IT systems directly, which has to be optimized by

applying change costs and operation costs.

MacCormack et al [MLB15] present the most complete optimization approach. They use

Design Structure Matrices to capture the coupling between the components of the EA. The

work extends existing research by also considering future states of the EA, considering

layers, and generating measures that can be used to predict performance.

One fundamental different approach concerning transition costs is made from Lagerström

et al. [LJE10] by using a probabilistic relation model with a meta-model based on literature

research and evaluated through interviews and workshops. This is used to supply

transitions costs estimation for large software projects. By providing a prediction and not

optimizing the as-is state this approach differs from our formulation.

Further, Antunes et al. [ACB14] propose to use ontologies to analyze the EA. More

concrete, they facilitate means of description logic to enable an automatic analysis of the

underlying EA model.

Such optimizations need to be guided by processes. Hacks and Lichter [HL18a] propose

a process to keep the central EA model up-to-date. The optimization approaches can be

placed in the quality assurance step to suggest improvements to the architects. Hartmann

[Ha17] illustrates a process for the alignment between software development and EA. He

embeds the EA governance process into the software development process and, though,

enforces the governance.

3 Modeling a Budgeted Enterprise Architecture Optimization

Before presenting our approach, we first give a quick overview of how EAs are modeled

in literature. Later on, we especially take care of the foundations, which are already

acquired by Hacks and Lichter [HL17, HL18b]. Based on these foundations we provide

our optimizing approach.

3.1 Towards an Optimization Model

According to Winter and Fisher [WF06], enterprise architectures are most commonly

composed of hierarchical layers. Each of these layers consists of various architectural

4 Niklas Dohmen, Kevin Koopmann, and Simon Hacks

artifacts, which can be connected through different relations with elements of the same

layer. Additionally, artifacts on a layer can be explicitly influenced by elements on the

superseding layer, reflecting a priority of importance of decisions undertaken on higher

levels of the architecture [MMT00].

For instance, an enterprise architecture could consist of business entities such as Human

Resources, Enterprise Resource Planning and Liquidity Management, each requiring a

certain set of capabilities. Such capabilities could be functions such as Hiring or Stock

Trading. This is modeled by directed edges from the business entities to the capability

nodes. Furthermore, applications selectively implement certain capabilities, represented

through edges from the capabilities to implementing applications. Fig. 1 shows such an

exemplary architecture naming the layers as Cost Centers and Applications.

Fig. 1: Concrete example for two layers in an enterprise architecture (reproduced from Hacks and

Lichter [HL18b]

An example of an application of this concept could be the simplification of an IT business

infrastructure in order to reduce costs. A business resource may require certain capabilities

fulfilled by applications on the application layer. In this case, an optimization model is

suitable to reduce the operational cost of the architecture by selecting a set of applications

that implements all required capabilities at the smallest possible cost to the enterprise.

In order to be able to apply common graph algorithms to the solution of problems related

to the enterprise architecture, we will model these architectures as directed graphs,

Optimizing EAs Considering Different Budgets 5

accordingly to Hacks and Lichter [HL18b]. Vertices will represent an element of the

architecture describing an aggregation hierarchy, and the edges between these vertices

mirror dependencies between elements on different layers of the architecture.

In our subsequent analysis of the optimization problem for enterprise architectures, we

will consider only the interactions between two directly adjacent layers of an overall

architecture. This is permissible because decisions on higher layers of the architecture

reduce the degree of freedom on subsequent layers [MMT00], and greatly simplify

understanding of the optimization process. To perform an analysis of the entire

architecture, simply repeat the analysis in top-down for each interface between two layers.

Hacks and Lichter [HL17] present different objectives that could be used to optimize the

model, such as minimal coupling, amount of lower layer elements or operational costs. In

real-world applications, we often find certain business entities, such as departments, to be

restricted to a specific budget. These budgets are important for business managers to

estimate the project and department costs. It is common that various departments are

sharing the same IT infrastructure so that each department has its own scot, which needs

a specific budget. We will extend the model by considering these budget restrictions, while

also incorporating transitional costs for the introduction or decommissioning of currently

active applications in the architecture. This seems to be warranted as moving away from

old applications or implementing new ones often arises substantial costs necessary for

example to educate users, transfer data or resolving other dependencies.

3.2 Foundations

Building on this initial understanding of enterprise architecture modeling and objectives

in its optimization, we will now introduce a more formal representation of these

architectures.

As described by Hacks and Lichter [HL17, HL18b] we want to represent the enterprise

architecture as a quadruple 𝐸𝐴 = (𝔏, ℭ, 𝐸, 𝑅) where 𝔏 is an ordered set of architectural

layers, ℭ describes a set of sets of capabilities, 𝐸 is a set of architectural elements, and 𝑅

represents a set of relations between these elements and capabilities.

We assume each layer L ∈ 𝔏 to consist of architectural elements so that L ⊂ E, and to be

disjoint as prescribed:

For each layer element, 𝑢𝑙𝑖 ∈ 𝐿𝑗, of the upper layer there may be an associated budget,

𝔟𝑖 ∈ ℕ0. For each element on the lower layer, 𝑙𝑙𝑖 ∈ 𝐿𝑗+1, there is an associated operational

cost, 𝑝𝑖 , and a transitional cost, 𝑡𝑝𝑖 .

Furthermore, we place capabilities, 𝑐𝑖 ∈ 𝐶, between two adjacent layers. There exists

between every neighbored layers, 𝐿𝑖 and 𝐿𝑖+1, a set of capabilities, 𝐶 ∈ ℭ. As each

𝐿𝑖 ∩ 𝐿𝑗 = ∅ | ∀ 𝐿𝑖 , 𝐿𝑗 ∈ 𝔏 𝑖 ≠ 𝑗 (1)

6 Niklas Dohmen, Kevin Koopmann, and Simon Hacks

capability is associated with a specific business requirement, we assume all capabilities to

be unique to a set of capabilities between two adjacent architectural layers:

The set of relations consists of tuples of architectural elements and capabilities, which

couple upper layer elements with capabilities and capabilities with lower layer elements:

This object 𝐸𝐴 is the subject of optimization.

3.3 Modeling Cash Flows in Enterprise Architectures

Hacks and Lichter [HL17] present a solution to the optimization problem for enterprise

architectures by introducing intermediate relations between all elements of an adjacent

layer constituting a bipartite graph. In order to be able to incorporate budget constraints

into our model in a meaningful manner and benefit from graph algorithms, we chose a

different approach by modeling cost flows originating from budget nodes.

In order to obtain the desired solution, we apply a modified maximum flow problem based

on the input parameters of the problem. The maximum flow problem is concerned with

obtaining a maximum flow through a single-source single-sink flow network by assigning

a feasible flow, 𝑓𝑒 → ℝ+, to all edges, 𝑒 ∈ 𝔈, such that the total flow ∑ 𝑓𝑖,𝑡 , (𝑖, 𝑡) ∈ 𝔈 into

the sink is maximal. Additionally, the maximum flow problem imposes an constraint by

limiting the flow across an edge to a certain capacity limit, 𝔠. Naturally, in a flow network,

the flow out of a node must be equivalent to the flow entering the node, excepting source

and sink nodes. Instead of considering a maximum flow across the network, we want to

minimize cost flow, and we limit the flow across certain budget-related arcs to a specific

budget value. In linear programming terms, we formulate this objective in Eq. (4), and

formulate these initial constraints in Eq. (5) and (10).

We begin to construct a graph with vertices, 𝔙, consisting of elements from two adjacent

layers, 𝐿𝑖 and 𝐿𝑖+1, as well as the related capabilities, 𝐶𝑖. We also start with a set of edges,

𝔈, equivalent to the set of relations, 𝑅, for these adjacent layers.

We also add a start node, 𝑠, as an entry point for a flow algorithm. Furthermore, for each

budget, 𝔟𝑖, it is necessary to construct a node, 𝑏 ∈ 𝐵, and add relations to all upper layer

elements associated with this budget. For additional relations, we introduce for each

budget between, 𝑠, and the budget node, 𝑏. Next, we apply constraints to these relations

to ensure a maximum cost flow equivalent to the budget.

From each of the lower layer elements, we construct additional relations to the sink node,

𝑡. The activation of a lower layer element bears operational costs and may additionally

𝐶𝑖 ∩ 𝐶𝑗 = ∅ | ∀ 𝐶𝑖 , 𝐶𝑗 ∈ ℭ 𝑖 ≠ 𝑗 (2)

𝑅 ⊂ {(𝑒, 𝑐): 𝑒 ∈ 𝐿𝑖 , 𝑐 ∈ 𝐶𝑖} ∪ {(𝑐, 𝑒): 𝑐 ∈ 𝐶𝑖 , 𝑒 ∈ 𝐿𝑖+1} (3)

Optimizing EAs Considering Different Budgets 7

arise transitional costs. The deactivation of a lower layer application may also arise

transitional costs, but no operational costs. To incorporate this requirement into our cash

flow model, we must also enforce an additional constraint to force the flow on these edges

to be equivalent to exactly the cost raised by (de-)activation of the element.

This model represents the flow of monetary resources originating from operational

budgets through the architecture. To optimize towards minimal costs, we can now simply

attempt to minimize the flow of cash through the network.

3.4 Final Modeling

To summarize our findings, we will now combine the previous results to formulate the

following selection problem for two adjacent layers of the architecture:

 All upper layer elements, 𝑢𝑙𝑖, are to be implemented. We also refer to these elements

as cost centers.

 The implementation of a distinct upper layer element 𝑢𝑙𝑖 requires fulfilling a known

subset of capabilities, 𝑐𝑖 ⊂ 𝐶𝑗. We refer to those subsets indicating the necessary

capabilities for the operation of a cost center as the cost center's capability set.

 Fulfilling a certain capability, 𝑐𝑗, requires the activation of at least one element of a

known subset, 𝑆𝑗, of lower layer elements, 𝑙𝑙𝑘. We refer to these lower layer

elements as applications. Furthermore, we refer to the subset, 𝑆𝑖, which indicates

the applications suitable for implementing a capability as the capability's

implementing set. These implementing sets are not mutually exclusive. If an

application belongs to multiple implementing sets, then selecting the application for

the solution would simultaneously satisfy all implementing sets it is contained in,

and, thereby, all corresponding capabilities.

 An application, which has been activated, arises an operational cost, 𝑝𝑘.

 Implementing an application, which has previously been inactive, arises an

additional transitioning cost, 𝑡𝑝𝑘, and vice versa.

 All cost centers are subject to budget constraints. These budgets are distributed

among multiple cost centers and are not mutually exclusive. That is, a cost center

can receive funds from multiple designated budgets, and a budget can be designated

for multiple upper layer elements.

The problem we consider is to determine which applications should be implemented in

order to minimize operational and transitional costs, as well as how the budgets are

consumed by the cost centers in order to realize all capabilities.

In order to accomplish this, we derive a network flow minimization problem from the

selection problem and formulate the following integer program. We first construct a graph

from our problem description. Let 𝔙 denote the set of vertices, and 𝔈 the set of edges.

8 Niklas Dohmen, Kevin Koopmann, and Simon Hacks

Let 𝑠 be a source, and 𝑡 be a sink node, and let 𝔙− be the set of vertices 𝔙 excluding these

nodes 𝑠 and 𝑡. Construct a node, 𝑏𝑖, for each budget, 𝔟𝑖, and edges, (𝑏𝑖 , 𝑢𝑙𝑗), for each cost

center, 𝑢𝑙𝑗, assigned to this budget. Construct one edge, (𝑠, 𝑏𝑖), for each budget node, 𝑏𝑖.

Construct a capability node, 𝑐𝑖, for each capability, 𝑐𝑖 ∈ 𝐶𝑘, and let (𝑢𝑙𝑗 , 𝑐𝑖) be the edges

from each cost center, 𝑢𝑙𝑗 , to the capabilities it requires. Then let (𝑐𝑖 , 𝑙𝑙𝑘) be the edges

from the capability, 𝑐𝑖, to all applications, 𝑙𝑙𝑚. Finally, construct one edge, (𝑙𝑙𝑚 , 𝑡), for

each application, 𝑙𝑙𝑚. Fig. 2 shows an example architecture modeled accordingly.

Fig. 2: Abstract example for two layers in an enterprise architecture

Let ℨ be the set of applications already implemented (as to be considered for transitional

analysis), and 𝑧𝑖 ∈ ℨ be the implementation state of the application, 𝑙𝑙𝑖. 𝑓(𝑖,𝑡) designates

the flow between two nodes, (𝑖, 𝑡), and 𝑖𝑖 is a boolean determining whether an application,

𝑙𝑙𝑖, is to be implemented. Let 𝑡𝑖 be a boolean variable indicating whether a transition is

necessary for an application, 𝑙𝑙𝑖. These are the variables of the integer program.

The integer program describing the problem we have specified can now be defined as

follows:

min ∑ 𝑓𝑒

𝑒∈𝔈

(4)

Optimizing EAs Considering Different Budgets 9

Eq. (4) describes the objective function. As we are attempting to minimize accruing costs,

our objective is the minimization of flow across all incoming arcs at the sink node, 𝑡.

Eq. (5) enforces budget limits on the edges connecting the source, 𝑠, to the budget nodes.

Eq. (6) ensures that at least one of the applications connected to a capability is activated.

Eq. (7) and (8) set the variable, 𝔱𝑖, that indicates whether a transition of an application, 𝑖𝑖,

is necessary to the correct value.

Eq. (9) enforces a valid flow on the edges connecting the applications to the sink, 𝑡; that

is, the flow is either 0 if the application is disabled, or exactly the sum of operational and

transitional costs. This is accomplished by adding up the product of the boolean variable,

𝑖𝑖, defining whether the application is to be activated and the corresponding cost, 𝑝𝑖 , and

the transitional cost function, 𝑡𝑝𝑖 .

Eq. (10) is a constraint common to all flow problems and forces the amount of flow

entering a node to be equal to the amount of flow leaving it.

Thereby, we have implemented all requirements originally specified in the definition of

the selection problem for budgeted enterprise architecture optimization.

The variables, 𝑖𝑖, will contain the implementation state for an application, 𝑙𝑙𝑖 , in the

optimal solution, and 𝑓(𝑖,𝑗) will describe the amount of cash flow between the two entities

belonging to 𝑖 and 𝑗.

3.5 Applying the Optimization Model

To apply the optimization model to an example graph, the budget constraints have to be

implemented as nodes between the cost centers and the start node as described in

s.t. 𝑓(𝑖,𝑗) ≤ 𝑏𝑗 | ∀ (𝑖, 𝑗) ∈ 𝔈 , 𝑗 ∈ 𝐵 (5)

 ∑ 𝑖𝑖 ≥ 1 | ∀ 𝑖 ∈ ℭ

(𝑖,𝑗)∈𝔈

(6)

 𝔱𝑖 ≥ 𝑖𝑖 − 𝑧𝑖 | ∀(𝑖, 𝑡) ∈ 𝔈 (7)

 𝔱𝑖 ≥ 𝑧𝑖 − 𝑖𝑖 | ∀(𝑖, 𝑡) ∈ 𝔈 (8)

 𝑓(𝑖,𝑡) = (𝑖𝑖 ∗ 𝑝𝑖) + [𝑡𝑝𝑖(𝑧𝑖 − 𝑖𝑖)
2] | ∀ (𝑖, 𝑡) ∈ 𝔈 (9)

 ∑ 𝑓(𝑖,𝑗)

(𝑖,𝑗)∈𝔈

= ∑ 𝑓(𝑗,𝑖)

(𝑖,𝑗)∈𝔈

(10)

10 Niklas Dohmen, Kevin Koopmann, and Simon Hacks

subsection 3.4. The edges between the start and the budget nodes function as the budget

constraints according to Eq. (5). Cost centers are provided by different budgets, which are

represented as the connecting edges between those nodes. Fig. 3 shows an example of such

a graph where the cost centers Human Resources and Liquidity Management are each

sharing their budgets with ERP.

Here Application 1 and Application 2 are not yet used in the model and can be activated

by applying the denoted transition costs. To calculate an optimal solution, we apply our

above-described approach to such a graph with the given costs. Fig. 3 sketches the optimal

solution calculated by our model regarding a minimum cost-flow. This optimal solution

suggests to include Application 1 and Application 2 with a total cost of 70 for each

consisting of transition and operating costs. The total costs for this solution amounts to

165 and is reflected to the minimum cost-flow in the network.

Fig. 3: Solution for concrete example with cash flow

We have provided a copy of the source code of our implementation in a git repository2.

Building on our implementation, we will provide both a reasoning for our expectations

pertaining to the algorithm's runtime, as well as an experimental evaluation of this runtime.

This will allow us to predict the practical value of the solution we have presented.

2 https://git.rwth-aachen.de/kevin.koopmann/swcseminar

Optimizing EAs Considering Different Budgets 11

4 Evaluation

In order to evaluate the performance of the modeling approach we have presented and to

apply it to exemplary inputs, we felt it be warranted to implement rudimentary software

capable of generating and processing appropriate enterprise architecture representations.

To accomplish the desired goals we have reformulated the objectives and constraints from

the previous section using the Pyomo3 optimization modeling DSL and utilized the

Gurobi4 solver to derive an optimal solution.

4.1 Scalability

Runtime Expectations As is evident from Eq. (4), the objective function of our model is

a linear expression and dependent upon the flow on edges between applications and the

sink node, 𝑡. The number of linear objective terms in the model is therefore equivalent to

the number of applications.

We expect an increase in the number of edges, for instance, due to a positive variation of

the amount of budget, cost center and capability nodes, to lead to linear increases in

runtime due to the additional linear constraint terms.

Experimental Runtime Evaluation For experimental evaluation, we have generated

random architecture representations to be processed by our software with different values

for the number of budgets, cost centers, capabilities and applications. For the first part of

the evaluation, all density values were set to 0.1, and for each of these value sets the

average runtime and variable count over 20 runs was determined on a system with 102

GFlops of floating-point performance and 8 GB of RAM. At this density we expect the

variable count to be closely related to the number of edges.

Fig. 4 shows the resulting runtimes for varying numbers of budgets, cost centers,

capabilities and applications with fixed ratios at a connectivity density of 0.1. We have

decided on these values, as they represent a common balance between the various entities,

even though the connection density is higher than in most real-world architectures

[LJE10]. However, this reduces the impact of time spent in pre-solving and optimization

phases on overall measurement results, and is still representative of actual use cases, as

we will show the relationship between density and runtime to be inversely proportional.

Time measured includes time spent on problem generation by Pyomo and time in the

Gurobi solver, including preprocessing and pre-solving time. Fig. 4 shows the runtime of

the solver compared to the number of variables corresponding to edge and vertex counts.

3 http://www.pyomo.org/
4 https://www.gurobi.com/

<First name last name [et. al.]>(ed.): < book title>,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn <year> 12

Fig. 4: Time spent in solver and linearly

fitted corresponding model

Fig. 5: Seconds per edge depending on

graph connectivity

This shows that with increasing architectural complexity measured in terms of

connectivity between different entities in the organization graph, in accordance with our

expectations, the runtime of our algorithm increases linearly. We have found that this

relationship holds in most cases for architectures with equivalent connection densities.

By varying connection densities in a second test run, we confirm that execution time is

not solely dependent on the edge count, but on connectivity as well. Comparison of

varying density values against the average time spent in the solver for each edge in the

architecture yields Fig. 5. This is to show that connection density is inversely linearly

related to execution time.

We assume that the reduction in runtime in very highly connected architectures compared

to architectures with lower edge counts is related to particular details regarding the

implementation of the relaxation or SOCP algorithms of the solver we have used, or in the

simplification of certain problem parameters in highly connected graphs. However, a

detailed analysis of this effect is beyond the scope of this article.

In the following section, we will analyze the consequences this entails for the application

of this algorithm on real-world optimization problems.

4.2 Value for Real-World Applications

As is evident from our runtime analysis, the execution time of the Integer Program we

have described is dependent upon a multitude of factors, including the number of entities

on different architectural layers and the connectivity between such entities. There was a

tendency towards a linear correlation between variable or edge count and runtime for all

evaluated architectures.

Optimizing EAs Considering Different Budgets 13

Even at linear runtimes, this may still present challenges for scalability towards optimizing

extremely large-scale enterprise architectures. Even though, such optimizations will not

be performed frequently in most cases, and can often be executed on large-scale systems,

it is conceivable that on certain architectures execution time might prove to be prohibitive.

However, most architectures encountered in real-world applications seem to be of a rather

limited size in comparison to the scenarios of our evaluation model that required high

execution times. Lagerström et al. [LJE10], for instance, considered an architecture

consisting of 407 nodes and 1157 edges, translating to a density of just 0.00698 in our

notation. Evaluating a similar architecture on our test system consistently yielded a

runtime of less than one second.

5 Conclusion

Information Technology projects within enterprises demand novel solutions of the

organization problem, devised with awareness of business requirements such as

departmental budgets and transition costs. With the ever-increasing relevance of IT

systems in business cases, we predict a correlating rise in demand for consolidation of

such systems.

We have shown how this consolidation can currently be performed using optimization

models and presented a different, novel model taking the business need of budgeting for

varying cost centers into account, and incorporated the transition cost model introduced

by Hacks and Lichter [HL17, HL18b].

Furthermore, we have demonstrated through our runtime evaluation that our approach

performs adequately for most real world use cases, which we showed for both synthetic

test cases and instances from literature.

Currently, the approach considers budgets and transitional as well as operational costs

only at a single point in time. In reality, certain costs and budgets may constantly change;

an extension of the approach to determine the ideal point of investment in time could

address this challenge.

Bibliography

[ACB14] Antunes, C.; Caetano, A.; Borbinha, J.: Enterprise Architecture Model Analysis

Using Description Logics: 2014 IEEE 18th International Enterprise Distributed

Object Computing Conference Workshops and Demonstrations, 2014; pp. 237–

244.

[AW09] Aier, S.; Winter, R.: Virtual Decoupling for IT/Business Alignment – Conceptual

Foundations, Architecture Design and Implementation Example. In Business &

Information Systems Engineering, 2009, 1; pp. 150–163.

14 Niklas Dohmen, Kevin Koopmann, and Simon Hacks

[Fr10] Franke, U. et al.: IT Consolidation: An Optimization Approach: 14th IEEE

International Enterprise Distributed Object Computing Conference Workshops,

2010.

[Gi12] Giakoumakis, V. et al.: Technological architecture evolutions of information

systems: Trade-off and optimization. In Concurrent Engineering, 2012, 20; pp.

127–147.

[Ha17] Hartmann, A.: Enterprise Architecture als Katalysator zwischen Qualität, Effizienz

und Governance. In (Eibl, M.; Gaedke, M. Eds.): INFORMATIK 2017.

Gesellschaft für Informatik, Bonn, 2017; pp. 2121–2126.

[HL17] Hacks, S.; Lichter, H.: Optimizing Enterprise Architectures Using Linear Integer

Programming Techniques. In (Eibl, M.; Gaedke, M. Eds.): INFORMATIK 2017.

Gesellschaft für Informatik e.V., Bonn, 2017; pp. 623–636.

[HL18a] Hacks, S.; Lichter, H.: Towards an Enterprise Architecture Model Evolution. In

(Czarnecki, C.; Sultanow, E.; Brockmann, C. Eds.): Workshops der Informatik

2018. Gesellschaft für Informatik e.V, Bonn, 2018.

[HL18b] Hacks, S.; Lichter, H.: Optimierung von Unternehmensarchitekturen unter

Berücksichtigung von Transitionskosten. In HMD Praxis der

Wirtschaftsinformatik, 2018, 55; pp. 928–941.

[LJE10] Lagerström, R.; Johnson, P.; Ekstedt, M.: Architecture analysis of enterprise

systems modifiability. A metamodel for software change cost estimation. In

Software Quality Journal, 2010, 18; pp. 437–468.

[MLB15] MacCormack, A.; Lagerstrom, R.; Baldwin, C. Y.: A Methodology for

Operationalizing Enterprise Architecture and Evaluating Enterprise IT Flexibility.

In Harvard Business School Working Paper, 2015.

[MMT00] Mesarovic, M. D.; Macko, D.; Takahara, Y.: Theory of hierarchical, multilevel,

systems. Elsevier, 2000.

[Ro94] Rood, M. A.: Enterprise Architecture: Definition, Content, and

Utility: Proceedings of the Third Workshop on Enabling Technologies.

Infrastructure for Collaborative Enterprises. IEEE, New York, NY, USA, 1994; pp.

106–111.

[VSM10] Vodanovich, S.; Sundaram, D.; Myers, M.: Research Commentary—Digital

Natives and Ubiquitous Information Systems. In Information Systems Research,

2010, 21; pp. 711–723.

[WF06] Winter, R.; Fischer, R.: Essential Layers, Artifacts, and Dependencies of

Enterprise Architecture: 10th IEEE International Enterprise Distributed Object

Computing Conference Workshops. IEEE, New York, NY, USA, 2006; pp. 30–38.

