
A Comparison Infrastructure for Fault
Characterization Algorithms

Torben Friedrichs
RWTH Aachen University
Aachen, NRW, Germany

torben.friedrichs@rwth-aachen.de

Konrad Fögen
Research Group Software Construction

RWTH Aachen University
Aachen, NRW, Germany

foegen@swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction

RWTH Aachen University
Aachen, NRW, Germany

lichter@swc.rwth-aachen.de

Abstract—Fault characterization is an important part of com-
binatorial testing which enables the automatic identification of
failure-inducing combinations. Up until now, many different al-
gorithms are proposed to compute failure-inducing combinations.
However, the only comparisons between different algorithms are
done by the algorithms authors themselves who only evalu-
ate few algorithms at a time which complicates comparisons.
Therefore, we present a concept and a reference implementation
of a comparison infrastructure that allows to evaluate fault
characterization algorithms in a comparable manner. In addition,
we report on the results of a preliminary comparison using the
comparison infrastructure.

Index Terms—Software Testing, Combinatorial Testing, De-
bugging, Fault Localization, Fault Characterization

I. INTRODUCTION

Combinatorial testing (CT) is a black-box approach to reveal

conformance faults between the system under test (SUT) and

its specification. The research focus has traditionally been on

generating test suites of minimal size that satisfy a predefined

coverage criterion [1], [2]. In general, CT can only trigger

failures but it cannot directly reveal faults [3]. Therefore, test

inputs of failing test cases require further analysis to identify

the values and value combinations that cause the failure [4].

A value or value combination that causes a test case to fail is

called failure-inducing combination (FIC) [5]. The activity

of identifying FICs is called fault characterization (FC) [5].

Manual FC would be a tedious and cumbersome task, espe-

cially for SUTs with many parameters and values. Therefore,

a variety of algorithms for FC are proposed [6].

Fault characterization algorithms (FCA) introduce a new ac-

tivity to the CT process where failing test inputs are analyzed

in order to identify FICs. Furthermore, FCAs may affect the

initial generation of test inputs or they may generate additional

test inputs. FCAs can be classified into three categories: static,

adaptive and interleaving. Each class has its own advantages

and disadvantages as further elaborated in Section II.

Unfortunately, it is difficult to choose an appropriate FCA

for a given test since the comparability among FCAs is

limited. Each published FCA is based on different assumptions

under which FICs can be identified and some publications do

not define the assumptions explicitly [7]. Currently, the only

comparisons between different FCAs are done by algorithms

authors themselves who only evaluate very few FCAs at a

time. To make matters worse, implementations of FCAs are not

always available or executable [4]. Different authors also use

different SUTs, fault characteristics and metrics for evaluation,

e.g. different understandings of precision [8], [9].

All of this shows the need for a reliable, i.e. independent,

transparent, and reproducible, comparison of FCAs and raises

two research questions:

1) What are the requirements of a comparison infrastruc-

ture to allow reliable comparisons?

2) How can a comparison infrastructure be structured to

enable reliable comparisons?

Therefore, we present a concept and a reference implemen-

tation of a comparison infrastructure that allows to evaluate

FCAs in a comparable manner. Further, we use the comparison

infrastructure for a preliminary comparison to evaluate if the

presented comparison infrastructure is appropriate.

The paper is structured as follows. Section II introduces

foundations of CT and FC. Section III discusses related work.

In Section IV, the concept of the comparison infrastructure is

presented and a reference implementation is discussed in V.

The results of a preliminary comparison are shown in Section

VI. Afterwards, we conclude with a summary of our work.

II. BACKGROUND

A. Basic Terminology

According to IEEE [10], the concepts of error, fault and

failure are distinguished as follows. An error is ”the differ-

ence between a computed, observed, or measured value or

condition and the true, specified, or theoretically correct value

or condition.“ A fault is the identified or hypothesized cause

of a failure. A failure is an external behavior of the SUT,

i.e. a behavior observable or perceivable by the user, which is

incorrect with regards to the specified or expected behavior.

Combinatorial testing (CT) is a black-box testing approach

based on an input parameter model (IPM) [1]. The IPM

consists of n parameters P = {p1, ..., pn}. Each parameter pi
is represented as a nonempty set Vi of mi discrete values.

A tuple τ is a set of parameter-value pairs for d distinct

parameters. Each parameter-value pair (pi, vj) is an assignment

of value vj ∈ Vi for parameter pi. A tuple that consists of d = n

parameter-value pairs is a test input to stimulate a SUT. A

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

tuple τa covers another tuple τb (denoted as τb ⊆ τa) if every

parameter-value pair of τb also exists in τa.

A combination strategy describes how values of the IPM

are selected such that a coverage criterion is satisfied [1]. A

coverage criterion is a condition which must be satisfied by a

test suite. The t-wise coverage criterion is a common criterion

that is satisfied if each value combination of t parameters

appears in at least one test input [1].

To assist a tester locating faults, test inputs of failing test

cases can be further analysed to identify the values and value

combinations responsible for failure [4].

A value or value combination of a test input that causes

a test case to fail is a failure-inducing combination (FIC).

In related work, this is also referred to as failure-triggering

schema or failure-causing schema (e.g. [2], [5]). The activity

of identifying FICs is called fault characterization (FC) [5].

A FIC can be described as a tuple τF and every test input

τ that covers τF ⊆ τ triggers a failure. Identifying FICs is

usually not sufficient. For instance, the test input τ that fails

is itself a FIC and the repeated identification is of little help.

Instead, minimal FICs should be identified because they better

explain the cause of a failure. A FIC τ is minimal (MFIC)

if and only if for each proper sub-combination τ ′ ⊂ τ there

exists a test input that covers τ ′ and does not fail [2].

MFICs are a good starting point for further debugging and

most FCAs attempt to identify MFICs. Recent work (e.g. [4],

[11]) focuses on identifying MFICs in the presence of multiple

faults. In that context, MFICs can mask each other making it

difficult to locate the faults [11]. Therefore, Arcaini, Gargantini

and Radavelli [4] introduce the notion of isolated MFICs: A

MFIC τF is isolated by a test input τ if and only if τF is the

only MFIC covered by τ [4].

For a failing test input τ , 2n − 1 proper sub-combinations

c ⊂ τ exist and each sub-combination c is a FIC candidate [9].

For a FIC candidate, it must also be checked whether all test

inputs that cover the candidate are indeed failing. Since this

is impractical for SUTs with many parameters, approximate
solutions are accepted to reduce the number of test inputs.

The approximate solutions are based on assumptions. Dif-

ferent fault characterization algorithms (FCA) are proposed

to compute approximate solutions while the assumptions hold.

The main differences between FCAs are (1) the set of

assumptions that is required to hold, (2) the quality of the

results, (3) the number of test inputs required to calculate

the results, and (4) the computational overhead in terms of

time and memory consumption. To support the design of

a comparison infrastructure, the assumptions and FCAs are

further examined in the next two subsections.

B. Assumptions in Fault Characterization

Assumptions are used to limit the space that must be

searched to identify a FIC. The assumptions and possible

options are listed in Table I. The assumptions are not always

explicitly stated when a new FCA is presented. Some As-

sumptions can be implicitly defined by other assumptions and

assumptions can also be a prerequisite to other assumptions.

TABLE I
ASSUMPTIONS REQUIRED BY FCAS

No. Assumptions Options
1 Determinism of the SUT and test oracle Yes, No
2 Distinguishable Failure Information Yes, No
3 Multiple MFICs in the exhaustive test set Yes, No
4 Number of parameters involved in each MFIC = t, ≤ t, ≤ n
5 No additional MFICs during search Yes, No
6 Existence of Safe Values Yes, No
7 Parameters are independent Yes, No
8 Multiple MFICs per failing test input Yes, No
9 No coincidental correctness Yes, No
10 Overlapping MFICS per failing test input Yes, No
11 MFICs can be isolated Yes, No

Assumption 1 defines whether or not the SUT and test oracle

must be deterministic, i.e when executing a test input several

times, the result must always be the same [11]. Most FCAs

rely on a test oracle that labels each test input with either pass

or fail (Assumption 2) [7]. But, some FCAs require more

detailed information in order to distinguish multiple faults [9].

Assumption 3 allows or permits the exhaustive test set to

only contain one MFIC. Assumption 4 defines the number of

parameters that are involved in a MFIC. Assumption 5 defines

whether or not additional MFIcs may or may not be discovered

during the identification process [9], [12]. This is also closely

related to assumption 6 which may or may not require the

existence of safe values [9]. When safe values are required,

a value must exist for each parameter that is not associated

with a MFIC [13]. The assumption can be further tightened

by not only requiring safe values but also by requiring at least

one passing test input. When the parameters are independent,

i.e. no constraints exist, (assumption 7), each tuple of n safe

values denotes a passing test input.

When multiple MFICs may exist in the exhaustive test set,

assumption 8 states whether or not more than one MFIC may

be covered by a failing test input. When multiple MFICs are

allowed in one test input, coincidental correctness can distort

the results [7] (assumption 9). This is an effect where two

or more faults balance out and even though both faults are

activated, the result is correct. In that context, some FCAs

accept or do not accept overlapping MFICs (assumption 10),

i.e. MFICs that share common parameter values within one

test input or within the whole test suite [12]. Assumption 11

determines whether or not MFICs can be isolated [4].

C. Fault Characterization Algorithms

We conducted a literature review and identified 29 publica-

tions that present FCAs. They are listed in Table II. The FCAs

are classified into three categories [14].

1) Static Fault Characterization: Static fault characteriza-

tion algorithms only use the initially generated test suite to

identify FICs. No further test inputs will be generated. The

information of a conventionally generated test suite is often not

sufficient to uniquely identify the FICS. Therefore, static FCAs

either consist of a dedicated combination strategy to encode

required information or they cannot give a precise solution.

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

TABLE II
CLASSIFICATION OF PUBLISHED FCAS

Category FCAs
Static [15], [16], [17], [18], [19], [20], [13], [21], [22]
Adaptive [23], [8], [24], [2], [7], [25], [26], [27], [28], [12],

[29], [30], [31] [11], [32], [33],
Interleaving [34], [35], [9], [4]

2) Adaptive Fault Characterization: Adaptive FCAs can

be used together with conventional combination strategies.

If a test suite does not contain sufficient information to

identify a FIC, additional test inputs are generated by the

adaptive FCA. After the execution of the new test inputs,

the FCA again attempts to identify a FIC. The activities of

FIC identification and test input generation are repeated until

sufficient information is obtained.

3) Interleaving Fault Characterization: In adaptive FCAs,

the activities of FIC identification and test input generation are

separated and executed one after another. Interleaving FCAs

blend both activities. One test input is generated and executed

at a time. If a test input passes, the contained tuples contribute

to the coverage and the next test input is generated. If a test

input fails, dedicated test inputs are generated to identify the

FIC. Again, each dedicated test input that passes contributes

to the coverage. Once a FIC is identified, all tuples that cover

the FIC are excluded from further test input generation.

It can be argued that static FCAs have the advantage

of knowing upfront the number of test inputs to execute

[15]. However, they cannot know which test inputs will

fail. Therefore, the general encoding of information leads to

larger initial test suites. If no test input fails, adaptive FCAs

have no overhead compared to small test suites generated by

conventional combination strategies. However in the presence

of failures, additional test input executions are necessary.

Interleaving FCAs have the advantage of immediate feed-

back. If a test input failed, the FIC can be directly excluded

from further test input generation resulting in potentially

fewer test inputs and better coverage. However, the process of

interleaving FCAs requires combination strategies to generate

one test input at a time which potentially excludes combination

strategies like IPO [36] and its extensions (e.g. [37], [38],

[39]). In addition, it requires a permanent transition between

generation, execution and fault characterization.

Beyond these general argumentation, it is mostly unclear

how the three categories compare against each other. In

addition, it is also unclear how different FCAs within one

category compare against each other.

The results of existing comparisons are not significant be-

cause the used SUTs and implicit assumptions may affect the

accuracy, number of test inputs and computational overhead.

Moreover, authors have different understandings of accu-

racy. For instance, BEN [27] is based on ranking MFIC candi-

dates according to their suspiciousness. For MFICs with less

than t parameters, BEN identifies many t-sized combinations

that all cover the MFIC [14]. In contrast, MixTgTe [4] attempts

to isolate MFICs such that only one MFIC is contained by a

failing test input.

Different authors also use different metrics for evaluation

which complicates comparisons even more. Even though pre-

cision and recall is used in most publications to measure the

accuracy, the definitions can vary(e.g. [8], [9]).

All of this shows the need for an infrastructure that supports

an independent, transparent and reproducible evaluation and

comparison of FCAs.

III. RELATED WORK

To the best of our knowledge, there is only one survey by

Jayaram and Krishnan [6] that qualitatively compares FCAs.

All other comparisons are conducted by algorithm authors as

listed in Table II. Of particular note is a case study conducted

by Chandrasekaran et al. [40] where the BEN FCA [30] is

applied to different software. Although, BEN is not compared

to other FCAs in this work.

Two publications [41], [42] calculate the fault-detection

probability of t-wise coverage based on identified MFICs.

Their work is independent of any specific FCA.

In the context of test input generation, there are some

evaluations that compare the effectiveness and efficiency of

combination strategies that satisfy t-wise coverage with ran-

dom testing and adaptive random testing (e.g. [43], [44]).

These evaluations, while helpful when choosing combination

strategies, do not include any notion of FC.

There also exist repositories like SIR1 [45] providing an

infrastructure for controlled experimentation and software with

known faults.

One of the main problems in CT is the availability and

comparability of implementations. Therefore, CITLAB [46],

[47] is designed as a laboratory that provides a common syntax

to specify IPMs. It is extensible such that new algorithms can

be easily integrated and compared using the same IPMs. In

recent work, CITLAB is also extended and migrated to a web-

based implementation called CTWEDGE [48]. However, it only

focuses on test input generation and does not include FC.

The framework coffee4j2 supports the complete CT

process including test input generation, execution and fault

characterization. The framework provides extension points to

integrate algorithms for test input generation as well as for

static, adaptive and interleaving FC.

IV. COMPARISON INFRASTRUCTURE

In the following, we introduce the main concepts that the

comparison infrastructure is based on. Then, we discuss the

requirements that the infrastructure has to satisfy and map

them to a sequence of steps that makeup the comparison

process. Finally, we present a component-based architecture

for the comparison infrastructure.

1Software Infrastructure Repository (SIR): https://sir.csc.ncsu.edu/
2coffee4j: https://coffee4j.github.io

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

A. Concepts

The comparison infrastructure is based on three main

concepts: FCA (already defined in Section II), metric, and

evaluation scenario. . A metric is “a measure in terms of an

attribute” and an attribute is a “[...] characteristic of an entity

that can be distinguished[...]” [49].

The execution of FCAs requires an IPM that defines the

input space and coverage criterion, a SUT which is stimulated

by test inputs and a test oracle that labels test inputs with either

pass or fail. To make informed statements, the faults of the

SUT must also be known upfront. Therefore, an evaluation
scenario consists of an IPM, a SUT and a test oracle.

A comparison is the process of applying a set of FCAs to a

set of evaluation scenarios and comparing their characteristics

by computing a set of metrics.

B. Requirements

Overall, the comparison infrastructure shall facilitate reli-

able comparisons between FCAs. This goal can be broken

down into the following major requirements:

Scenario Modeling: The infrastructure shall allow to specify

evaluation scenarios.

FCA Execution: The infrastructure shall execute FCAs on

evaluation scenarios. New FCAs shall be used without

making assumptions about the implementation language.

Reliable Comparison: The infrastructure shall provide the

means for reliable, i.e. reproducible, independent and

transparent, FCA comparisons. This means that the re-

sults must not be influenced by the execution order or

other external factors.

Scenario Analysis: The infrastructure shall analyze the diffi-

culty of evaluation scenarios based on values like number

of parameters, number of MFICs or satisfied or violated

FCA assumptions in order to rate FCAs accordingly.

FCA Analysis: The infrastructure shall analyze and classify

information gathered during the FCA execution according

to predefined evaluation metrics. These metrics shall

define a standard to measure the performance of an FCA

regarding run-time and quality of the returned MFICs.

Visualization: The infrastructure shall visualize the analysis

results to provide insights to further refine the compar-

isons or to make informed decisions about FCA applica-

tion.

C. Comparison Process

Based on the requirements, we propose the following pro-

cess, depicted in Fig. 1, to compare FCAs.

At first, all evaluation scenarios are defined. Then, the

infrastructure selects an FCA and an evaluation scenario. It

executes the FCA on the evaluation scenario to create a trace.

A trace stores the execution time, all test inputs, and the

indicated MFICs. This means that all non-interleaved FCAs

need to include a CT algorithm as well.

After the execution, the infrastructure analyzes the eval-

uation scenario and trace by computing predefined metrics.

Execute
Algorithm

Analyze
Scenario

Analyze Trace

Trace present?

Start End

Define
Scenarios

Visualize
Results

Problem
Analysis
present?

Trace
Analysis
present?

Algorithms or
Scenarios left?

Choose
Scenario and

Algorithm
No

Yes
No

Yes

No

Yes

No

Yes

Fig. 1. Overview of the Comparison Process

PersistencePersistence

FCA ExecutorFCA Executor

VisualizationVisualization

Comparison
 Process Engine

Comparison
 Process Engine Analysis ExporterAnalysis Exporter

User InterfaceUser Interface

ImporterImporter

Analysis ToolsAnalysis Tools

API

Comm.
Protocol

DB
Adapter

Analysis

Analysis
Exporter

Fig. 2. Top-Level Architecture of the Comparison Infrastructure

This process is repeated until no combination of FCA and

evaluation scenario remains. Finally, the results are visualized.

Additionally, each step checks whether a result already

exists. If it does, the corresponding step is skipped which

allows interruption and continuation of the process.

D. Component-based Architecture

To realize the proposed comparison process, we designed a

component-based software architecture shown in Fig. 2.

The FCA Executor component provides the interface to ex-

ecute FCAs. As all communication between the infrastructure

and an FCA is done over a standard communication protocol,

the infrastructure is strongly decoupled from the used FCAs.

The Importer component deals with the transformation of

evaluation scenarios into an internal representation. Further-

more, it provides means to add new input formats to integrate

already existing scenario descriptions.

The Persistence component stores and retrieves of all

information produced by the infrastructure.

The Analysis Tools component provides all metrics used

in the FCA analysis as well as all assumption checks used

in the evaluation scenario analysis. Any assumption or metric

not already implemented can be easily added.

The Analysis Exporter component allows to export all

produced analysis results to further explore the data with other

tools or provide their own custom visualizations.

The Visualization component provides a default visual-

ization of the comparison results. It is independent of the

infrastructure itself and obtains the necessary data using the

analysis exporter.

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

Comparison Process EngineComparison Process Engine

ScenarioScenario

ExecutorExecutor

AnalyzerAnalyzer

Command InterfaceCommand Interface

Command
 API

DB
Adapter

Analysis
Exporter

Importer

Comm.
Adapter

Analysis

Fig. 3. Architecture of the Comparison Process Engine

The User Interface component allows users to specify

which algorithms and scenarios to compare, to configure

different execution parameters, and to generally control the

comparison process.

The Comparison Process Engine component implements

and orchestrates the defined comparison process. It contains

four sub-components, depicted in Fig. 3. The Scenario com-

ponent stores the internal representations of the evaluation

scenarios and validates their correctness. The Executor com-

ponent initializes the FCAs with the correct data, executes

them and records their traces. The Analyzer applies the

predefined metrics to the given evaluations scenarios or traces.

The Comparison Process Engine is controlled via a Com-
mand Interface component, which delegates given commands

to components and retrieves the necessary data.

V. CAFFEINE – A REFERENCE IMPLEMENTATION

In the following, we present a reference implementa-

tion of the comparison infrastructure called CAFFEINE, the

Comparison Infrastructure for Fault Characterization. It im-

plements the comparison process and realizes the component-

based architecture. CAFFEINE offers a command line interface

that allows to specify evaluation scenarios, provide FCA

implementations, and control the comparison process. The

source code is publicly available3.

A. Input Format

The default format to specify evaluation scenarios is based

on the input language of CTWEDGE. Because it is designed only

for CT modeling, we extended the language to also support

the modeling of named constraints and evaluation scenarios.

Listing 1 shows an example.

Each evaluation scenario has a unique identifier (Printer
in the example) in order that the comparison results can be

matched back later.

First, the IPM is defined. Each parameter has an identifier

and a domain. Domains for a parameter P can be defined as

Boolean (P: Boolean), sets (P: {a, b, c}), or ranges (P =

[1...2]).

3https://github.com/coffee4j/caffeine

Model Printer

Parameters:
Side: {Single Double}
Color: {Colored Gray B&W}
Format: {A2 A4}
Scale: {50% 100% 200%}

Constraints:
C1: # Scale=200% => Color!=Colored #
C2: # Side=Single || Scale!=50% #
C3: # !(Format=A2 && Side=Double) #

Evaluation Scenarios:
S1: # 2 (C3) (C1 C2) #
S2: # 3 (C2 C3) (C1) #

Listing 1. Extended CTWEDGE Model

Next, so called named constraints (analogous to named

parameters) are specified. They are delimited by # tokens

and can be defined in predicate logic with relations between

parameters and their values. A complete definition of the

constraint language can be found in [48]. Any potential MFICs

must also be modeled here.

Finally, evaluation scenarios are defined. Each scenario

has a unique identifier and is surrounded by # tokens. It

contains three parts: (1) the testing strength t, (2) a list of all

constraints that model faults, (3) a list of constraints that model

dependencies between parameters. Because each constraint

can potentially describe a large number of combinations, the

number of MFIC entries in this list can be much smaller than

the actual number of MFICs present in a scenario.

B. FCA Execution

The way FCAs are executed and measured is of vital

importance to the comparison infrastructure. Because the

infrastructure can run algorithms written in any language

and framework, each FCA is executed in a separate process

communicating with the infrastructure over a communication

protocol. All FCAs selected for a comparison are specified

in a configuration file by means of key-value pairs that map

FCA names to executable commands. An example selecting

two FCAs is shown in Listing 2.

{
"Aifl": "java -jar c4j.jar -g Ipog -a Aifl",
"Ofot": "python ofot-adapter.py"

}

Listing 2. Algorithm Configuration File

Each FCA Executor implements a communication protocol

to exchange messages during the comparison process. The

communication has two phases: Initialization and Execution.

For initialization, the infrastructure at first transmits the

testing strength and the IPM. Then it sends any known for-

bidden combinations prefixed by FORBIDDEN. Unset parameter

values are substituted by -1. The end of this phase is signalled

by sending the token START. An example for the evaluation

scenario S1 of Listing 1 is given in Listing 3.

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

2
2 3 2 3
FORBIDDEN -1 0 -1 2
FORBIDDEN 1 -1 -1 0
START

Listing 3. Example Messages during Initialization Phase

During the execution, control is turned over to the FCA.

There are three different message types that the algorithm can

send: (1) generated test inputs prefixed by a ?, (2) found

MFICs prefixed by !, and (3) assumptions prefixed by #

followed by the assumption identifier and either the keywords

SATISFIED or VIOLATED.

Upon receiving a test input, the infrastructure immediately

checks the test input against the scenario and answers with

either SUCCESS or FAIL. Additionally, the name of the con-

straint or MFIC that caused a failure is added if applicable.

All messages are saved by the infrastructure in a respective

trace which can later be analyzed.

? 0 0 0 0 | SUCCESS
? 0 0 0 2 | FAIL C1
? 0 1 0 2 | FAIL C3
A1 VIOLATED |
? 0 0 0 1 | SUCCESS
! -1 -1 0 2 |

Listing 4. Example Messages during Execution Phase

An example with four test inputs is shown in Listing 4.

In two cases, the tests fail, due to the constraints C1 and

C3. During the execution, the FCA additionally reported that

the assumption A1 has been violated. Finally, the algorithm

returns the MFIC (-1, -1, 0, 2) where the values of the

first two parameters do not matter.

C. Analysis

The Analzer implements two main functions: (1) The

evaluation scenario analysis determines the difficulty of the

evaluation scenario to evaluate FCAs according to their in-

tended application. If, for example, a SUT is simple, then it

makes no sense to use an algorithm that trades performance

in easy cases for better performance on harder cases. (2) The

FCA analysis evaluates the performance of FCAs.

In CAFFEINE, both analysis functions are realized using the

same mechanism. Therefore, the Analysis Tools component

provides three interfaces to provide analysis metrics: (1) IPM
Analysis for metrics that only require data stored in the IPM,

e.g. basic metrics like the number of parameters, (2) Scenario
Analysis for metrics needing evaluation scenario information,

e.g. metrics like number of valid combinations or number and

size of the contained faults, and (3) Trace Analysis for metrics

relying on the FCA performance and any assumptions reported

during the execution.

Given implementations of these interfaces can be registered

to an Analyzer which calls them when applicable. The in-

frastructure only needs to compute each IPM Analysis and

Scenario Analysis once because the results stay valid for all

algorithms while Trace Analysis has to be run multiple times.

TABLE III
DEDICATED EVALUATION SCENARIOS

Name Parameters Forbidden Combinations
DES-1 2542 5
DES-2 2642 5
DES-3 512442 4
DES-4 2242 4
DES-5 2944 6
DES-6 2641101 5
DES-7 220 4
DES-8 44 7
DES-9 213241 5
DES-10 223142 8

D. Visualization

The Visualization component provides means for quick and

interactive data exploration. A screenshot of the main interface

is displayed in Fig. 4.

It is divided into three parts. In the top-left a table shows

the number of completed, timed-out, and invalid iterations for

each algorithm. Below are various sliders that allow users to

filter the data. The main part shows a bar chart where analysis

metrics can be displayed next to each other. This is achieved

by selecting one or more metrics from a multi-select drop-

down. This area also allows the user to switch to a line chart

where two metrics can be plotted against each other.

Because the exported data may include a variety of different

metrics, the visualization can be configured accordingly.

VI. PRELIMINARY COMPARISON OF FAULT

CHARACTERIZATION ALGORITHMS

As a proof-of-concept to show the applicability of the

proposed comparison infrastructure and its reference imple-

mentation CAFFEINE, we present the results of a preliminary

FCA comparison.

A. Evaluation Scenarios

One important decision to be taken when evaluating soft-

ware testing techniques is the choice of SUTs.

Therefore, we created two sets of SUTs to define the eval-

uation scenarios used in the comparison: one set of dedicated

SUTs (created by us) and another set of SUTs taken from the

CITLAB repository4 which is commonly used in CT research.

Dedicated SUTs offer the chance to create evaluation sce-

narios that have similar characteristics as real SUTs, while

being small enough for a reasonably quick comparison time.

One notable property of most evaluation scenarios is that

the majority of input parameters are of type Boolean to

model typical real-life configurations options that are either-

or choices. An overview of the used dedicated evaluation

scenarios is given in Table III.

In addition, 10 evaluation scenarios with constraints are

taken from the CITLAB repository. They are shown in Ta-

ble IV. In general, these evaluation scenarios are much larger

4CITLAB Repository: https://sourceforge.net/p/citlab/wiki/Benchmarks/

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

Fig. 4. Dashboard Visualizing Comparison Results

TABLE IV
CITLAB EVALUATION SCENARIOS

Name Parameters Forbidden Combinations
Banking1 3441 111
Banking2 21441 3
bugzilla 2483142 5
CommProtocol 21071 127
Concurrency 25 7
gcc 2188310 40
Healthcare1 26325161 21
Healthcare2 253641 24
HeartBleed 21164 65535
SmartHome 237 158

and more heavily constrained. Because these evaluation sce-

narios are meant for the evaluation of CT, they do not contain

any fault information.

For both sets, two faults of strength 2, two faults of strength

3 and two faults of strength 4 are randomly distributed over

all parameters. These faults are then combined into evaluation

scenarios with up to three of them being active at a time. The

testing strength for each evaluation scenario is set to match

the highest strength of any contained fault. Moreover, the

randomly generated faults are checked for validity to avoid

faults that are excluded by constraints and at the same time

are completely covered by another fault. In total, six evaluation

scenarios per comparison are used. The comparison is run

once with all constraints deactivated, and once more with

all constraints activated. This allows to compare how the

performance of FCAs is influenced by constraints.

All comparisons are run on a single computer running

Fedora 30 with an Intel i5-3570k@4x3.80 GHz processor.

Each FCA was assigned eight GB of memory and run for three

iterations per evaluation scenario with a timeout of 15 minutes

per iteration. All FCAs are implemented in coffee4j.

B. Applied Evaluation Metrics

We use four metrics to assess and compare FCAs.

1) Test Inputs: The number of test inputs is the primary

metric to evaluate the efficiency of a FCA. Each algorithm

makes a trade-off between the number of test inputs and the

quality of the results.

2) Execution Time: The execution time delivers a direct

approximation for the effort spent by the FCA. However, this

metric may be unreliable. For instance, because execution

times can fluctuate depending on additional activities on the

host system. This can be counteracted by running multiple

iterations, but cannot be completely eliminated.

Nonetheless, the execution time is still a very useful metric

to evaluate the effort spent by an FCA because this is a main

limiting factor for applying FCAs in practice.

3) Naı̈ve FCA Quality (N-FCA-Q): The easiest way to

determine the quality of FCAs is to compare the found FICs

with the FICs specified in the evaluation scenario.

This metric computes three values: Precision, Recall, and F-

Score. Precision describes the percentage of FICs found by the

FCA that are real FICs of the evaluation scenario. It is a notion

of correctness because the precision value is lowered by every

found FIC that is not specified in the evaluation scenario. It

is calculated as precision =
|found∩real|

|found| .

Technically, Precision is undefined when no FIC is found,

i.e. |found| = 0. This is an edge case to which we assign a

precision of 1 because no incorrect FIC is found.

Recall describes the percentage of real FICs that are found

by a FCA. In that sense, it is a notion of completeness which

is calculated as recall =
|found∩real|

|real| . Technically, Recall is not

defined when an evaluation scenario does not contain FICs, i.e.

|real| = 0. This is an edge case that can be ignored because

FC is not needed without FICs.

Precision and Recall should not be interpreted in isolation

because both values can be easily optimized. Bad FCAs that

never find any FICs would achieve a precision of 1. Although,

the corresponding recall would be 0. Also, bad FCAs could

simply return all possible value combinations of an evaluation

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

scenario to achieve a recall of 1. However, the corresponding

precision would be very low.

Instead, good FCAs should have high precision and high

recall at the same time. Therefore, F-Score describes the

harmonic mean between Precision and Recall. It is calculated

as F-Score =2 · precision·recall
precision+recall

.

However, this naı̈ve approach to evaluate the quality of FCA

results has a disadvantage, because very often FCAs are not

able to find the exact FICs, but they rather find approximations,

i.e. larger FICs that cover the actual FICs. This metric would

evaluate all of these FCAs the same, no matter how good the

approximations might be.

4) Classification-based FCA Quality (C-FCA-Q): This

metric considers the quality of FCAs as a classification prob-

lem to overcome the disadvantage of the naı̈ve approach. The

quality of a FCA and its found FICs is determined on the level

of test inputs. Therefore, the exhaustive set of test inputs as

defined by the evaluation scenario is analyzed.

A test input is a true positive (tp) if it covers a FIC found

by the FCA and if it also covers a real FIC specified by the

evaluation scenario.

A test input is a true negative (tn) if it does not cover any

FIC found by the FCA and if it also does not cover any real

FIC.

A test input is false positive (fp) if it covers a FIC found

by the FCA but if it does not cover a real FIC.

A test input is a false negative (fn) if it does not cover any

FIC found by the FCA but if it covers a real FIC.

Similarly to the N-FCA-Q metric Precision, Recall and F-

Score can be calculated by precision = tp
tp+fp , recall = tp

tp+fn ,

and F-Score =2 · precision·recall
precision+recall

.

C. Compared Algorithms

Our preliminary comparison comprises the following FCAs:

Aifl [23], IterAifl [8], BEN [27], IDD [25], CSP [20], FIC

[7], FIC_BS [7], and ICT [9]. By that selection, all three FCA

categories are covered as well as FCAs that support and ignore

constraints. In addition, IPOG [37] is considered as a very basic

static FCA and is used as a baseline for comparisons.

D. Results & Discussion

An observation we made was that not all FCAs successfully

completed all iterations. Notable are the FCAs Aifl and

IterAifl which run out of memory in 4 of the dedicated and

9 of the CITLAB evaluation scenarios. To obtain comparable

results, only evaluation scenarios that are completed by all

FCAs are analyzed.

Table V shows the average precision, recall and F-Score

values of the N-FCA-Q and C-FCA-Q metrics for each FCA.

Most notably, the FCA quality decreases when introducing

constraints, especially when using the N-FCA-Q metric. The

difference to the C-FCA-Q metric is partially caused by the

fact that the C-FCA-Q metric is only calculated for dedicated

evaluation scenarios due to time constraints.

Overall, ICT is clearly the best FCA concerning the N-FCA-

Q metric, while IterAifl is the best algorithm regarding

TABLE V
AVERAGE OF N-FCA-Q AND C-FCA-Q VALUES IN %

(UNCONSTRAINED|CONSTRAINED)

N-FCA-Q C-FCA-Q
FCA pre. rec. f-s. pre. rec. f-s.
Aifl 7|7 100|88 10|6 92|73 100|94 95|76
Ben 41|25 100|62 43|24 78|69 100|91 85|71
Csp 52|49 46|39 48|42 74|73 87|81 77|74
FIC 73|29 88|43 78|29 76|46 100|96 84|54
FIC BS 70|26 86|40 75|26 67|42 100|96 76|50
IDD 79|47 75|38 76|40 90|69 99|91 93|72
Ict 97|78 83|50 85|53 100|90 90|77 90|72
IterAifl 7|7 100|88 10|6 100|83 100|94 100|83
Ipog 3|4 6|0 3|0 100|100 25|17 32|24

TABLE VI
OVERHEAD RELATING TO IPOG IN % (UNCONSTRAINED|CONSTRAINED)

FCA Overhead Test Inputs Overhead Execution Time
Aifl 304 | 292 129 | 114
Ben 150 | 153 156 | 119
Csp 100 | 100 308 | 180
FIC 341 | 359 105 | 103
FIC BS 248 | 216 104 | 103
IDD 120 | 117 103 | 101
Ict 151 | 130 888 | 441
IterAifl 3009 | 5556 379 | 252
Ipog 100 | 100 100 | 100

C-FCA-Q. Nonetheless, all algorithms show a remarkable

improvement compared to IPOG.

Table VI shows the overhead of each FCA in regard to the

number of test inputs and execution time. As can be seen,

the execution times can be divided into three categories: (1)

FCAs with almost no overhead like IDD or FIC, (2) FCAs

with a medium overhead taking about twice as long as CT

only like CSP or IterAifl, and (3) the FCA ICT which needs

almost nine times as much time. This is partially caused by

the algorithm itself due to the feedback checking mechanism,

but mostly influenced by the need for a different, less efficient

CT algorithm.

This extraordinary long execution time, however, is put into

context when looking at the number of additional test inputs.

Here ICT places third behind CSP, a static FCA, and IDD.

The outlier in this category is IterAifl needing between 30

and 50 times as many test inputs as CT. Another interesting

observation can be made when looking at the relationship

between the number of test inputs and the number of MFICs

in the evaluation scenario, depicted in Fig. 5.

It shows that ICT has an overhead smaller than one for

three MFICs. This is caused by evaluation scenarios where the

FCA finds an MFIC with a strength smaller than the testing

strength. This allows ICT to quickly eliminate larger portions

of the search space. Overall, this means that in some cases the

application of an interleaved FCA is more efficient concerning

the number of test inputs than CT alone.

E. Threats to Validity

While the obtained results of this initial FCA compari-

son paint a pretty clear picture, there are threats that can

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

0

1

2

3

4

5

1 2 3

O
ve

rh
ea

d
Te

st
 In

pu
ts

Number of MFICs

Aifl

Ben

Csp

FIC

FIC_BS

IDD

Ict

Fig. 5. Relationship between Number of MFICs and Test Input Overhead

lead to misleading interpretation. First, the choice of SUTs

and evaluations scenarios. While both the dedicated and the

CITLAB evaluation scenarios provide abstractions from real-

life systems, they are not representative for all software. This

is especially true for the contained faults which are randomly

distributed in the SUTs.

Second, FCAs are often only published without an access

to a respective implementation of the algorithms that could

be used for a comparison. This requires a re-implementation

of algorithms which can result in a slower or incorrect im-

plementation compared to the original one. This is especially

risky because sometime not all the details of an algorithm are

described in the publication.

Third, there are many different approaches and metrics to

measure the quality of FCAs. For the performed comparison an

initial set of metrics is used. Other metrics should be defined

and compared to the ones proposed by us.

Fourth, this comparison does not include all published

FCAs. Therefore, the obtained results cannot be generalized.

To overcome this threats, the comparison infrastructure

is designed to be extensible such that different evaluation

scenarios, other FCA implementations as well as different

metrics can be integrated. To allow and support the reliability

of the experiment, the comparison infrastructure itself, the

FCA implementations as well as the used evaluation scenarios

and metrics are publicly available3.

VII. CONCLUSION

CT can only trigger failures but cannot directly reveal faults.

To locate a fault, further debugging activities are required. Test

inputs of failing test cases can be analysed to identify values

and value combinations that induce failures. Unfortunately,

exact solutions are often impractical for SUTs with many

parameters. For a failing test case τ , 2n − 1 proper sub-

combinations c ⊂ τ exist and each proper sub-combination

can be failure-inducing. Therefore, approximate solutions are

accepted where the search space is reduced by requiring that

certain assumptions hold.

Up until now, a variety of different FCAs that compute

approximate solutions are published. They differ in terms of

the set of assumptions that is required to hold, the quality of

the results as well as the number of required test inputs and the

computational overhead. Unfortunately, it is difficult to choose

an appropriate FCA for a given test because a comprehensive

comparison is lacking.

As a first step towards a comprehensive comparison of

FCAs, we present the concept of a comparison infrastruc-

ture that allows an independent, reproducible and extensible

comparison of FCAs. Therefore, requirements concerning the

infrastructure are defined first and a comparison process is

proposed. In addition, key components are identified and a

top-level architecture is designed.

Furthermore, we present CAFFEINE, a reference implemen-

tation of the comparison infrastructure . All functionality is

provided through a command line interface with three top-

level commands: model, trace, and analysis.

To demonstrate the applicability of the reference implemen-

tation, a preliminary comparison of FCAs is also conducted.

The results show that all FCAs provide much better iden-

tification of MFICs while having a manageable overhead. A

special case is presented by which the interleaving approach, in

some situations, is even more efficient concerning the number

of test inputs than CT alone.

As future work, we will extend the preliminary comparison

to cover all major FCAs and we will systematically design

test scenarios according to the assumptions of the FCAs.

REFERENCES

[1] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
a survey,” Softw. Test., Verif. Reliab., vol. 15, no. 3, pp. 167–199, 2005.

[2] C. Nie and H. Leung, “The minimal failure-causing schema of combi-
natorial testing,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, pp.
15:1–15:38, Sep. 2011.

[3] A. Arcuri and L. Briand, “Formal analysis of the probability of in-
teraction fault detection using random testing,” IEEE Transactions on
Software Engineering, vol. 38, no. 5, pp. 1088–1099, Sep. 2012.

[4] P. Arcaini, A. Gargantini, and M. Radavelli, “Efficient and guaranteed
detection of t-way failure-inducing combinations,” in 2019 IEEE In-
ternational Conference on Software Testing, Verification and Validation
Workshops (ICSTW), April 2019, pp. 200–209.

[5] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput.
Surv., vol. 43, no. 2, pp. 11:1–11:29, 2011.

[6] R. Jayaram and R. Krishnan, “Approaches to fault localization in
combinatorial testing: A survey,” in Smart Computing and Informatics,
S. C. Satapathy, V. Bhateja, and S. Das, Eds. Singapore: Springer
Singapore, 2018, pp. 533–540.

[7] Z. Zhang and J. Zhang, “Characterizing failure-causing parameter inter-
actions by adaptive testing,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: ACM, 2011, pp. 331–341.

[8] Z. Wang, B. Xu, L. Chen, and L. Xu, “Adaptive interaction fault location
based on combinatorial testing,” in 2010 10th International Conference
on Quality Software, July 2010, pp. 495–502.

[9] X. Niu, N. Changhai, H. K. N. Leung, Y. Lei, X. Wang, J. Xu, and
Y. Wang, “An interleaving approach to combinatorial testing and failure-
inducing interaction identification,” IEEE Transactions on Software
Engineering, pp. 1–1, 2018.

[10] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,”
IEEE Std, vol. 610.12-1990, Dec 1990.

[11] X. Niu, N. Changhai, Y. Lei, H. K. N. Leung, and X. Wang, “Identi-
fying failure-causing schemas in the presence of multiple faults,” IEEE
Transactions on Software Engineering, pp. 1–1, 2018.

[12] X. Niu, C. Nie, Y. Lei, and A. T. S. Chan, “Identifying failure-inducing
combinations using tuple relationship,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops,
March 2013, pp. 271–280.

[13] W. Zheng, X. Wu, D. Hu, and Q. Zhu, “Locating minimal fault
interaction in combinatorial testing,” Adv. Software Engineering, vol.
2016, pp. 2 409 521:1–2 409 521:10, 2016.

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

[14] J. Bonn, K. Fögen, and H. Lichter, “A framework for automated
combinatorial test generation, execution, and fault characterization,” in
2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICST Workshops 2019, Xi’an, China, April
22-23, 2019, 2019, pp. 224–233.

[15] C. Yilmaz, M. B. Cohen, and A. A. Porter, “Covering arrays for
efficient fault characterization in complex configuration spaces,” IEEE
Transactions on Software Engineering, vol. 32, no. 1, pp. 20–34, Jan
2006.

[16] C. J. Colbourn and D. W. McClary, “Locating and detecting arrays for
interaction faults,” J. Comb. Optim., vol. 15, no. 1, pp. 17–48, 2008.

[17] C. Martı́nez, L. Moura, D. Panario, and B. Stevens, “Algorithms to locate
errors using covering arrays,” in LATIN 2008: Theoretical Informatics,
8th Latin American Symposium, Búzios, Brazil, April 7-11, 2008, Pro-
ceedings, 2008, pp. 504–519.

[18] ——, “Locating errors using elas, covering arrays, and adaptive testing
algorithms,” SIAM J. Discrete Math., vol. 23, no. 4, pp. 1776–1799,
2009.

[19] S. Fouché, M. B. Cohen, and A. A. Porter, “Incremental covering array
failure characterization in large configuration spaces,” in Proceedings
of the Eighteenth International Symposium on Software Testing and
Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009, 2009, pp.
177–188.

[20] J. Zhang, F. Ma, and Z. Zhang, “Faulty interaction identification via
constraint solving and optimization,” in Theory and Applications of
Satisfiability Testing - SAT 2012 - 15th International Conference, Trento,
Italy, June 17-20, 2012. Proceedings, 2012, pp. 186–199.

[21] K. Nishiura, E. Choi, and O. Mizuno, “Improving faulty interaction
localization using logistic regression,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security, QRS 2017,
Prague, Czech Republic, July 25-29, 2017, 2017, pp. 138–149.

[22] T. Konishi, H. Kojima, H. Nakagawa, and T. Tsuchiya, “Finding mini-
mum locating arrays using a SAT solver,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops,
ICST Workshops 2017, Tokyo, Japan, March 13-17, 2017, 2017, pp.
276–277.

[23] L. Shi, C. Nie, and B. Xu, “A software debugging method based on
pairwise testing,” in Computational Science - ICCS 2005, 5th Interna-
tional Conference, Atlanta, GA, USA, May 22-25, 2005, Proceedings,
Part III, 2005, pp. 1088–1091.

[24] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. A. Porter, “Feedback driven
adaptive combinatorial testing,” in Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON,
Canada, July 17-21, 2011, 2011, pp. 243–253.

[25] J. Li, C. Nie, and Y. Lei, “Improved delta debugging based on com-
binatorial testing,” in 2012 12th International Conference on Quality
Software, Aug 2012, pp. 102–105.

[26] K. Shakya, T. Xie, N. Li, Y. Lei, R. Kacker, and D. R. Kuhn, “Isolating
failure-inducing combinations in combinatorial testing using test aug-
mentation and classification,” in Fifth IEEE International Conference
on Software Testing, Verification and Validation, ICST 2012, Montreal,
QC, Canada, April 17-21, 2012, 2012, pp. 620–623.

[27] L. S. G. Ghandehari, Y. Lei, T. Xie, D. R. Kuhn, and R. Kacker,
“Identifying failure-inducing combinations in a combinatorial test set,”
in Fifth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012,
2012, pp. 370–379.

[28] L. S. G. Ghandehari, Y. Lei, D. C. Kung, R. Kacker, and D. R. Kuhn,
“Fault localization based on failure-inducing combinations,” in IEEE
24th International Symposium on Software Reliability Engineering,
ISSRE 2013, Pasadena, CA, USA, November 4-7, 2013, 2013, pp. 168–
177.

[29] T. Nagamoto, H. Kojima, H. Nakagawa, and T. Tsuchiya, “Locating a
faulty interaction in pair-wise testing,” in 20th IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing, PRDC 2014, Singapore,
November 18-21, 2014, 2014, pp. 155–156.

[30] L. S. G. Ghandehari, J. Chandrasekaran, Y. Lei, R. Kacker, and D. R.
Kuhn, “BEN: A combinatorial testing-based fault localization tool,” in
Eighth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015,
2015, pp. 1–4.

[31] Y. Qi, Q. Wang, C. Xu, T. He, and Z. Wang, “An efficient algorithm to
identify minimal failure-causing schemas from exhaustive test suite,”
in The 28th International Conference on Software Engineering and

Knowledge Engineering, SEKE 2016, Redwood City, San Francisco Bay,
USA, July 1-3, 2016., 2016, pp. 655–656.

[32] L. S. Ghandehari, Y. Lei, R. Kacker, D. R. R. Kuhn, D. Kung, and
T. Xie, “A combinatorial testing-based approach to fault localization,”
IEEE Transactions on Software Engineering, pp. 1–1, 2018.

[33] D. Blue, A. Hicks, R. Rawlins, and R. Tzoref-Brill, “Practical fault
localization with combinatorial test design,” in 2019 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), April 2019, pp. 268–271.

[34] C. Nie, H. Leung, and K. Cai, “Adaptive combinatorial testing,” in 2013
13th International Conference on Quality Software, Najing, China, July
29-30, 2013, 2013, pp. 284–287.

[35] C. Yilmaz, E. Dumlu, M. B. Cohen, and A. A. Porter, “Reducing
masking effects in combinatorialinteraction testing: A feedback drive-
nadaptive approach,” IEEE Trans. Software Eng., vol. 40, no. 1, pp.
43–66, 2014.

[36] Y. Lei and K. Tai, “In-parameter-order: A test generation strategy
for pairwise testing,” in 3rd IEEE International Symposium on High-
Assurance Systems Engineering (HASE ’98), 13-14 November 1998,
Washington, D.C, USA, Proceedings, 1998, pp. 254–261.

[37] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG:
A general strategy for t-way software testing,” in 14th Annual IEEE
International Conference and Workshop on Engineering of Computer
Based Systems (ECBS 2007), 26-29 March 2007, Tucson, Arizona, USA,
2007, pp. 549–556.

[38] K. Kleine and D. E. Simos, “An efficient design and implementation of
the in-parameter-order algorithm,” Mathematics in Computer Science,
vol. 12, no. 1, pp. 51–67, 2018.

[39] K. Fögen and H. Lichter, “Combinatorial robustness testing with
negative test cases,” in Proceedings of the 19th IEEE International
Conference on Software Quality, Reliability and Security, QRS 2019,
Sofia, Bulgaria, July 22-26, 2019, 2019, pp. 34–45.

[40] J. Chandrasekaran, L. S. Ghandehari, Y. Lei, R. Kacker, and D. R.
Kuhn, “Evaluating the effectiveness of ben in localizing different types
of software fault,” in 2016 IEEE Ninth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), April
2016, pp. 26–34.

[41] Z. Wang and Y. Qi, “Why combinatorial testing works: Analyzing
minimal failure-causing schemas in logic expressions,” in Eighth IEEE
International Conference on Software Testing, Verification and Valida-
tion, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, 2015, pp.
1–5.

[42] C. Xu, Y. Qi, Z. Wang, and W. Zhang, “Analyzing minimal failure-
causing schemas in siemens suite,” in Ninth IEEE International Confer-
ence on Software Testing, Verification and Validation Workshops, ICST
Workshops 2016, Chicago, IL, USA, April 11-15, 2016, 2016, pp. 35–38.

[43] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault
detection,” IEEE Trans. Software Eng., vol. 41, no. 9, pp. 901–924,
2015.

[44] H. Wu, n. changhai, J. Petke, Y. Jia, and M. Harman, “An empirical com-
parison of combinatorial testing, random testing and adaptive random
testing,” IEEE Transactions on Software Engineering, pp. 1–1, 2018.

[45] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[46] A. Gargantini and P. Vavassori, “CITLAB: A laboratory for combina-
torial interaction testing,” in Fifth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2012, Montreal, QC,
Canada, April 17-21, 2012, 2012, pp. 559–568.

[47] A. Calvagna, A. Gargantini, and P. Vavassori, “Combinatorial interaction
testing with CITLAB,” in Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013, 2013, pp. 376–382.

[48] A. Gargantini and M. Radavelli, “Migrating combinatorial interaction
test modeling and generation to the web,” in 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops,
ICST Workshops, Västerås, Sweden, April 9-13, 2018, 2018, pp. 308–
317.

[49] ISO/IEC 15939:2007, “Software Engineering - Software Measurement
Process,” 2007.

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 201-210
DOI 10.1109/ICSTW50294.2020.00042

