
Test Automation Challenges for
Application Landscape Frameworks

Nils Wild
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

wild@swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

lichter@swc.rwth-aachen.de

Peter Kehren
IVU Traffic Technologies AG

Aachen, Germany

pke@ivu.de

Abstract—Test Automation is essential to increase the effec-
tiveness, efficiency and coverage of software testing activities
with reasonable effort which is required to keep up in a
fast-paced industry with a growing demand for high quality
software products. Nevertheless adopting test automation is a
difficult task for development organisations. Automating the
testing process for application landscape frameworks is especially
hard due to the complexity caused by the variety of customer
application landscape configurations, used tools and platforms.
This complexity often is hard or impossible to reduce due to
given domain constraints, e.g. limited resources of embedded
systems and different platforms that have to be supported.
In addition, existing hardware and software systems in the
customer’s application landscape require rather flexible solutions
and configuration options for different customers. In this paper
we present some major challenges adopting test automation
for application landscape frameworks, as research shows that
this is especially difficult for such highly configurable systems.
Furthermore initial ideas on how to cope with these challenges
are outlined.

Index Terms—software testing, test automation, application
landscape frameworks, highly configurable systems, software
quality assurance

I. INTRODUCTION

Software is an integral part of our life and changed how

we deal with everyday tasks. Customers got used to frequent

updates and releases of new features and eventually expect

them [16]. Over the years, development life-cycles had to be

shortened to cope with rapid changing requirements and meet

these expectations and the need for higher quality software

products. Agile development approaches and DevOps practices

are the now dominant practices for organizations to deal with

those challenges [11]. To ensure the quality of the frequently

needed releases, automated testing approaches are mandatory

to limit the time effort spend on each release [6]. Testing

involves planning, designing, implementing, executing and

evaluating test cases. For each of these activities methods

and techniques were developed and evaluated in research.

Nevertheless it’s difficult for companies to adopt these meth-

ods and techniques. In this paper we present some major

challenges adopting test automation for application landscape

frameworks, as research shows that this is especially difficult

for such highly configurable systems [9] [13].

The paper is structured as follows: Section II outlines

important characteristics of application landscape frameworks.

Section III describes the challenges that have to be solved to

establish an automated testing process for such frameworks.

Furthermore, initial ideas on how to deal with these challenges

are presented. Finally, conclusions are given in Section V.

II. APPLICATION LANDSCAPE FRAMEWORKS

Previous studies show that testing strategies are highly

dependent on the kind of developed software, the applied

development processes and the context and culture of a the

development organization [17] [13].

In this paper we focus on application landscape frame-
works. These frameworks provide services for a specific do-

main that are used to develop customer specific application

landscapes. An application landscape is a coherent set of all

important information systems, services, building blocks, ap-

plications, components and interfaces with regards to business

continuity. [12]

As every customer has its own requirements, an appli-

cation landscape framework needs to be configurable. This

variability is often realized by different kinds of configuration

mechanisms. Sometimes an application landscape framework

is implemented as a software product line, sometimes as a suite

of components offering the needed services as a platform.

As the services itself are usually complex and large, they

are typically developed by different and rather independent

teams, to increase development velocity and decrease cou-

pling. But this comes at a price, as additional effort is needed

for coordination between the development teams and when

integrating the single services into a new customer specific

application landscape. This becomes even more tortuous if

different tools and technologies have to be used by the teams

due to development constraints - e.g. hardware resources or

regulations - and thus can not be homogenized. The complex

development setting of an application landscape framework

and its customer specific instantiations is sketched in Fig. 1.

In any case, a framework based application landscape

development leads to a lot of possible configurations and

arrangements and additional complexity for testing the frame-

work itself as well as the created customer specific application

landscapes. Hence, tools and techniques are needed to ensure

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 330-333
DOI 10.1109/ICSTW50294.2020.00059



Customer C

Customer B

Service A

Service B

Service C

Service D

Application Landscape Framework

Service A’

Service B’

Service E

Service F

3rd Party Services

Composition
Configuration

Application Landscape

Service A Service B’ Service C Service E

Customer A

Reuse

Team A

Team B

Team C

Team D

Provider A

Provider B

Provider E

Provider F

Customer Project / Integration

Fig. 1. Framework-based Application Landscapes

the functionality and quality of each of the offered services and

their integration in different customer application landscapes.

As manual testing is not feasible due to shortened release

cycles an automated continuous integration (CI) process is

needed. Unfortunately adopting CI is not trivial as it requires

changes of the organization, tools, architecture and overall

development and testing process [2].

In the following we present challenges, that we identified

at a company developing and maintaining an application

landscape framework for the domain of public transporta-

tion. The provided services span most of the daily tasks of

public transportation companies from schedule planning and

dispatching to in-vehicle ticket selling and communication

between drivers and control centers as well as real-time

customer information. Each of the offered services consists

of multiple software and possibly hardware components. This

diverse environment leads to a huge variety of used tools,

languages and platforms throughout the development process

and across different teams.

III. TEST AUTOMATION CHALLENGES

Application landscape frameworks provide development or-

ganizations with different challenges regarding quality as-

surance in general an test automation in particular. Five

challenges based on experiences gained with the public trans-

portation application landscape framework will be discussed

in further detail.

C1: How to manage and maintain the configurations used for
customer specific application landscapes?

Usually, application landscapes are developed in a dedicated

customer project using the services of the framework (see

Fig. 1). To fulfil the customer’s requirements, offered services

need to be appropriately composed and configured. Moreover,

sometimes offered services are not needed at all or similar

services have to be reused from other providers that the

customer is operating in its current application landscape.

In addition, support for different platforms like Windows,

Android or Linux is needed, depending on the hard- and

software that is used by the customer.

In order to derive effective test selection criteria the informa-

tion on what system configurations exist has to be preserved.

Acquiring and maintaining that knowledge is hard and requires

a lot of effort. Thus the knowledge degrades over time and

a complete configuration model is usually nonexistent. To be

able to maintain that knowledge with little effort an abstraction

layer to set these parameters within the different sources to

configure the services could help to provision the customer

application landscape and provide a centralized source for all

configurations.

Orchestration and infrastructure as code tools provide de-

velopers with tools to do so but do not help to reconstruct

these configuration models. Furthermore, as certain services

within the customer’s application landscape can be replaced

by third party services, different service landscapes have to

be considered and integrated into the configuration model.

Graphical user interfaces to model these landscapes and their

configuration models could improve their acceptance and

usage by customer project engineers.

C2: How to improve variation coverage based on the managed
configurations?

Testing such highly configurable application landscapes

requires additional effort as executing the same test case under

different configurations will lead to different results [14].

To address this problem, methods and tools for software

product line testing can be considered, but they rely on

central product line and parameterization models [3] [8]. As

excessive testing of all possible configurations is not viable a

central model of created configurations could be used to test

these configurations or derive parameter subsets by applying

combinatorial testing methods to efficiently increase variation

coverage [10] [8] [3].

Furthermore tools and techniques are needed to test the

integration between services of the application landscape

framework and ones provides by third parties. Although mocks

and service virtualization can help in testing such interactions,

most tools to create these still rely on capture and replay

mechanisms or explicit definition of the mocks’ behavior [15].

Former is not ideal for testing purposes and usually has to be

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 330-333
DOI 10.1109/ICSTW50294.2020.00059



tailored which adds some disadvantages of the later. On the

other hand, manual test data is hard to create as it requires a

lot of expert knowledge, which might not be available due to

incomplete or even ambiguous documentation, especially for

third party services.

C3: How to create appropriate mocks with little or incomplete
knowledge about the mocked services?

Two types of information are needed in order to mock a

service. What message format is returned by the service and

how is the output related to the input? In case of stateless

services it is sufficient to model the relationship between

input and output data as the input data contains all the

information needed to determine the output [4]. On the other

hand stateful services rely on their current state. Requests to

these services can change their state and thus the output of

following requests. This makes it even harder to model these

services as experts with that knowledge might not be available,

especially for third-party integrations. Recent research tries to

solve these problems and mitigate the disadvantages of capture

and replay mechanisms as well as manual test data input by

learning message formats, relations of input and output as well

as behavior specifications instead of fixed values [18] [7] [4].

C4: How to constraint teams in order to reduce the effort
to distribute necessary test information across teams while
preserving their independence?

Even though the development activities of each team are

independent - to decrease coupling and increase development

velocity - some coordination for inter-service communication

and testing activities is needed. To ensure transparency across

teams, the used tools and cultures have to be integrated. One

of the main issues experienced to integrate different services

developed by different teams is the lack of information about

the quality and current status for specific services and corre-

sponding features. To keep the effort for integrating that in-

formation low, company wide requirements for organizational

and technical aspects can be defined. One possible solution

would be to require each team to use specific tools and/or

provide their changes at a specific point in time. This solution

is not ideal as it limits the freedom of the teams to choose the

right tools for their needs, introduces organizational coupling

and slows down the overall development process and might

not be possible in case of aforementioned domain constraints.

Instead of requiring the teams to use one specific tool one

could think about less constrained requirements. Such loosely

constrained requirement could be, that each team has to choose

tools that support widely adopted formats like xUnit1 for

test execution results. Such constraint largely preserve the

independence of teams to choose the right tools, as there

are still a bunch of tools to choose from, while reducing

the effort for a transparent and standardized test reporting

across the company on the other hand. We think a board of

team representatives to coordinate these efforts helps to ensure

1https://xunit.net/docs/format-xml-v2

that such constraints do not hinder teams to develop their

services and are widely accepted. Criteria and best practices to

define appropriate constraints by means of flexibility on the

one hand and effort reduction on the other hand is needed,

to help companies to find the right balance between these

contradicting properties.

C5: What data about automated test cases should be gathered
and how can it be used to improve the overall quality as-
surance process? How can we gather that data with as little
additional effort as possible?

To answer these questions we need to think about inter-

nal processes within the overall quality assurance process,

that have a potential to be improved. An example for such

improvement potential is the organization and the effort that

is invested into fixing detected defects or faulty test cases.

As mentioned before multiple framework services have to

be configured appropriately to provide the functionality a

customer is requesting. It follows that each functionality of

a customer’s application landscape is usually dependent on

functionalities of one or multiple services. If at least one

functionality of one of these services contains a defect the

functionality of the customer’s application landscape contains

that defect as well. This wouldn’t be the case for perfectly

isolated test cases for these functionalities. As the integration

of services can be tested independently of the functionality

of the integrating services, the results of the integration test

would be independent of those testing the service functionality.

Unfortunately, test cases usually are not perfectly isolated

and free of dependencies. Having the knowledge about these

dependencies could help in improving the ability of handling

failed tests or scheduling their execution.

Given the following possible four test result combinations

of test cases on the integration and service level, certain

treatment instructions to handle failed test cases can be derived

to save unnecessary effort to debug and identify defects at the

integration level that are just results of defects at the service

level.

a) At least one service level test case failed, all related
integration test cases succeeded. If this is the case customer’s

application landscape functionalities related to the service

functionality have to be considered faulty even if the integra-

tion level tests succeeded. The according service functionality

has to be fixed.

b) At least one service level test case failed, at least one
related integration test case failed. In this case the correspond-

ing customer’s application landscape functionalities have to be

considered as faulty as well. In case of perfectly isolated test

cases, both the service functionality as well as their integration

has to be fixed, as the test results are independent of each other.

In case of a dependency the failed integration test case will

get a lower prioritization as the integration between services

might be fine but there is a chance that the fault is just a result

of the faulty service functionality.

c) All service level test cases succeed, at least one related
integration test case failed. Even in this case all depending

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 330-333
DOI 10.1109/ICSTW50294.2020.00059



functionalities have to be considered as faulty. But in this

case the resources can be focused on fixing the integration

of the involved services as the chances are high that it is an

integration issue. Nevertheless we have to keep in mind that

this might still be a faulty service functionality that is not

covered by a service level test case.

d) All service level tests succeed, all related integration test
cases are successful. This is the ideal case. Given the test suite

is sufficient to ensure the quality of the customer’s application

landscape the tested functionalities can be considered as

complete and correct.

Yet again, the knowledge about such relations of test cases

degrades over time and it is impractical to invest the effort

to regain that knowledge in a big bang approach, when the

knowledge was already lost. Instead it has to be acquired

automatically and incrementally within the quality assurance

process, with little overhead. Coverage and tracing techniques

might be utilized to gain that knowledge. To further automate

the testing process such knowledge can be used to create

backlog items with appropriate priorities. This would improve

transparency of test results and trigger explicit actions to fix

defects and faulty test cases. As too many of such backlog

items would lead to more effort or will not be accepted by

the developers, such method has to be as precise as possible

with regards to required manual activities. Besides creating

these backlog item, encouraging developers to annotate these

items with a defect taxonomy could have additional benefits,

as research shows that such a taxonomy ”provides systematic

backup for the design of tests, supports decisions for the

allocation of testing resources and is a suitable basis for

measuring the product and test quality” [5]. This could also

be used to flag flaky tests that could be detected automatically

by tools like deflaker [1]. The information gained through

annotating these issues could then be used to further improve

he precision of the backlog item creation and prioritization.

In our opinion making these and other properties of test cases

visible can substantially improve the automated testing and

quality assurance process.

IV. CONCLUSIONS

Test automation is not just about tools and techniques but

also has to consider processes and organizational challenges.

Successful companies usually don’t have one single product

but add new services and eventually develop a domain specific

application landscape framework. The growing number of

services comes with a growing number of teams and probably

tools and thus organizational challenges. Even though the

development of different services should be decoupled as

much as possible to increase development speed, a certain

level of transparency across teams is needed when the quality

of dedicated customer specific application landscapes has

to be ensured, because multiple services work together to

provide the required functionality. Many of the benefits of

test automation comes from the analysis of the system under

test and planning of testing activities. The question is what

data should be preserved for analysis in order to improve the

testing process.

In this paper we presented five major challenges for test

automation of application landscape frameworks and proposed

initial ideas to cope with them. All in all the challenges in

adopting test automation aren’t just about obtaining the needed

skills but also about applying these methods and techniques

as well as gathering and analyzing the right data about the

systems that have to be tested. Based on these findings and

insights we will move on in our future research to propose

solutions for these challenges step by step.

REFERENCES

[1] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov.
Deflaker: Automatically detecting flaky tests. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 433–
444, May 2018.

[2] A. Debbiche, M. Dienér, and R. Berntsson Svensson. Challenges
when adopting continuous integration: A case study. In A. Jedlitschka,
P. Kuvaja, M. Kuhrmann, T. Männistö, J. Münch, and M. Raatikainen,
editors, Product-Focused Software Process Improvement, pages 17–32,
Cham, 2014. Springer International Publishing.

[3] E. Engström and P. Runeson. Software product line testing – a systematic
mapping study. Information and Software Technology, 53(1):2 – 13,
2011.

[4] H. F. Enişer and A. Sen. Virtualization of stateful services via machine
learning. Software Quality Journal, Oct 2019.

[5] M. Felderer and A. Beer. Using defect taxonomies to improve the
maturity of the system test process: Results from an industrial case
study. In D. Winkler, S. Biffl, and J. Bergsmann, editors, Software
Quality. Increasing Value in Software and Systems Development, pages
125–146, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[6] V. Garousi and T. Varma. A replicated survey of software testing prac-
tices in the canadian province of alberta: What has changed from 2004
to 2009? Journal of Systems and Software, 83(11):2251 – 2262, 2010.
Interplay between Usability Evaluation and Software Development.

[7] M. A. Hossain, S. Versteeg, J. Han, M. A. Kabir, J. Jiang, and
J. Schneider. Mining accurate message formats for service apis. In 2018
IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 266–276, March 2018.

[8] H. Lackner and B.-H. Schlingloff. Chapter four - advances in testing
software product lines. volume 107 of Advances in Computers, pages
157 – 217. Elsevier, 2017.

[9] B. Lima and J. Faria. A survey on testing distributed and heterogeneous
systems: The state of the practice. pages 88–107, 07 2017.

[10] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed. A
first systematic mapping study on combinatorial interaction testing for
software product lines. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 1–10, April 2015.

[11] A. Mann, A. Brown, M. Stahnke, and N. Kersten. State of devops report.
Technical report, Puppet, Circle CI, Splunk, 2019.

[12] M. Paauwe. Application landscape definition - dragon1. [online] Avail-
able at: https://www.dragon1.com/terms/application-landscape-definition
[Accessed 10 Jan. 2020].

[13] D. Parsons, T. Susnjak, and M. Lange. Influences on regression testing
strategies in agile software development environments. Software Quality
Journal, 22(4):717–739, Dec 2014.

[14] X. Qu. Testing of configurable systems. Advances in Computers,
89:141–162, 12 2013.

[15] R. G. Renu Rajani. Service virtualization as an enabler for devops.
Technical report.

[16] S. Research. State of the connected customer 3rd edition. Technical
report, Salesforce, 2019.

[17] J. Rooksby, M. Rouncefield, and I. Sommerville. Testing in the wild: The
social and organisational dimensions of real world practice. Computer
Supported Cooperative Work (CSCW), 18(5):559, Sep 2009.

[18] S. Versteeg, M. Du, J. Schneider, J. C. Grundy, J. Han, and M. Goyal.
Opaque service virtualisation: A practical tool for emulating endpoint
systems. CoRR, abs/1605.06670, 2016.

© IEEE

2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, pp 330-333
DOI 10.1109/ICSTW50294.2020.00059




