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Abstract—Hybrid clouds enable cost optimizations when han-
dling fluctuating workloads. Assuming that the private cloud is
cheaper than the pay-per-use public cloud when it is constantly
used, a cost-optimal hybrid operation means that the private
cloud handles the base workload and the public cloud the
workload peaks. The tasks that cause the workload have to
be scheduled such that the private cloud’s usage is maximized.
Ideally, the scheduler knows the future tasks and can plan for
maximizing the private cloud’s usage. However, obtaining such
an accurate prediction of the future is not always possible.

We propose an approach called full rescheduling that allows
online schedulers to move already running tasks from the public
to the private cloud in order to save costs. We further present
an assessment method for studying the economic benefit of full
rescheduling and apply it in an industry case study for a data
processing application. The study’s results show an economic
benefit due to an increased usage of the private cloud instead
of the public cloud. The method also provides a cost-optimal
number of nodes for the private cloud.

Index Terms—full rescheduling, hybrid clouds, compute cost
optimization, scheduling simulation, hybrid cloud cost model

I. INTRODUCTION

Hybrid clouds combine local computing infrastructure, i.e. the
private cloud, with computing resources of a public cloud
provider [1]. One of the public cloud’s benefits is that it grants
the flexibility to obtain resources on-demand and pay only
for the time the resources are used. In a hybrid cloud, this
flexibility can be used to handle an over the course of the
time changing workload. Here, the term workload refers to
the amount of work caused by any tasks, such as services
or data processing jobs, executed in the hybrid cloud. For
example, services used by consumers in one geographic region
might exhibit peak workload situations during evening hours
when most consumers have leisure time. When the workload
grows beyond the private cloud’s capacity, the computing
infrastructure can be supplemented by public cloud resources.
Conversely, when the workload decreases, the public cloud
resources can be released, and eventually, the private cloud
might be able to server the workload on its own again.

Running tasks in a hybrid cloud requires deciding whether
to assign them to private or public cloud resources. Assuming
that the private cloud is paid for independent of whether
its resources are used, a cost-optimal hybrid cloud operation

must prefer using the private cloud resources whenever possi-
ble. Unfortunately, accurately estimating the future workload
development is usually not a trivial endeavor. Without this
knowledge about the future, it can happen that tasks are
assigned to the public cloud while the private cloud is at
capacity, only to observe shortly after that the workload
for tasks in the private cloud decreases, thereby releasing
resources, while the resources in the public cloud are still in
use. This is a situation where costs occur that could be avoided
if we either had an accurate estimate of the future and made
an according scheduling decision or if we could freely move
running tasks between public and private cloud.

Generally, having an accurate estimate of the future is
preferable over moving running tasks due to the costs the
later involves. Moving a running software process along with
its state and possibly large amounts of data is not trivial
and comes at a price. For example, the software must either
be paused, if it supports a mechanism to freeze its state,
or stopped; then, the state and data must be moved from a
node in the public to the private cloud, which takes time and
might create traffic costs; finally, the process must be started
again on a node in the private cloud. These costs can be
anything from negligible, e.g. for a stateless micro service,
to infeasible, e.g. for a data processing job that works with
massive amounts of data. However, the alternative of obtaining
an accurate estimation of the future workload that allows an
optimal scheduling in advance is often hard, if not impossible
to obtain. Then, moving tasks might be the best available
option.

In this paper, we investigate the concept of moving tasks
already assigned to compute resources. Since it is a scheduler’s
job to assign tasks to compute resources, we suggest that
schedulers should also be responsible for deciding when to
move already running tasks from the public to the private
cloud. We call schedulers that are able to do so capable of full
rescheduling. As argued before, full rescheduling introduces
overhead, and it is unclear whether the benefit of saving costs
by using the public cloud is larger than the costs caused
by the overhead. Consequently, we investigate in this paper
how to find out whether full rescheduling is an economically
beneficial approach. To this end, we study the following two
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research questions:
1) Will the schedules created by a full rescheduling capable

scheduler yield an economic benefit compared to the
schedules created by a similar scheduler without the full
rescheduling ability?

2) What is the optimal number of compute nodes in the
private cloud of a hybrid cloud such that compute costs
are minimized?

In this paper, we first discuss related literature in section II
and provide a more detailed description of full rescheduling
in section III. In order to answer our research questions, we
designed an assessment method that we present in section IV.
The method uses a scheduling simulation in combination
with a cost model. The simulation allows us to compare the
schedules of a scheduler with and without the full rescheduling
ability. The cost model is then used to evaluate the usage
costs of the schedules produced by both schedulers. We further
apply this method in an industry case study that we present
in section IV. On the one hand, this case study illustrates our
assessment method and, on the other hand, shows for one case
whether full rescheduling yields an economic benefit. Finally,
we conclude our paper in section VI.

II. RELATED WORK

A number of research publications addressed cost-constrained
scheduling when using a public cloud. Further, there is also
previous research that considered rescheduling. Since both of
these topics are related to our topic we present the respective
pieces of literature here.

A. Cost-aware Schedulers

Followed by the introduction of cloud computing, execution
costs are widely considered in scheduling problems since users
are charged on a pay-per-use basis. To solve this scheduling
problem in cloud environments, a self-adaptive global search-
based optimization technique, Particle Swarm Optimization
(PSO), is adopted by Pandey et al. to schedule workflow
applications to cloud resources so that the execution costs are
considered [2].

In a hybrid cloud environment, this problem becomes even
more complicated as schedulers have to split the tasks among
resources on both private and public cloud effectively. Bitten-
court and Madeira proposed the Hybrid Cloud Optimized Cost
(HCOC) scheduling algorithm with the goal of reducing the
workflow makespan in order to meet the desired deadline while
minimizing the costs [3]. Note that makespan refers to the
timespan between the first tasks’ start and the completion of
all tasks. In the beginning, this algorithm generates a schedule
where the tasks are assigned to the private cloud only. After
that, a task is selected to be rescheduled to a resource from
the public cloud if the workflow makespan does not meet the
deadline. This is repeated until the makespan complies with
the deadline.

To solve the cost and makespan optimized scheduling, Zhou
et al. proposed two different approaches [4]. One is a single-
objective workflow scheduling optimization technique, called

Deadline-Constrained Cost Optimization for Hybrid Clouds
(DCOH). Both approaches are based on genetic algorithms,
and they are studied with the assumption that the execution
time of tasks in the workflow is fixed.

B. Rescheduling

Cost-aware schedulers require an accurate prediction of execu-
tion information, such as a task’s execution time, to determine
the execution cost. However, in many cases, it is not possible
to obtain accurate predictions due to changes of the execution
environment. In order to deal with this uncertainty, reschedul-
ing techniques have been proposed and employed as a part of
some scheduling algorithms.

Sakellariou and Zhao proposed a selective rescheduling
technique to perform the scheduling again on unexecuted tasks
when there is any exceeding pre-limited delay between the
actual and expected start time of a task [5]. The objective
of their technique is to ensure the makespan of the workflow
is optimized and the frequency of rescheduling attempts is
minimized.

Rescheduling is also used directly as an essential step
of some scheduling algorithms. In the previously mentioned
HCOC scheduling algorithm [3], to optimize execution and
maintain deadline, it repeats the step to reschedule the task,
which is mapped to private cloud to a resource in the public
cloud until the deadline is met (or the limited number of
iteration is reached). Similarly, the Particle Critical Paths
(PCP) algorithm [6] can reschedule the workflow execution
without any further modification by reinvoking the planning
procedure. With this rescheduling ability, the PCP is resilient
to unexpected events, e.g. a task of a workflow does not finish
in time, or computation is terminated because of a failing node.
When such events happen, PCP can take corrective actions like
rescheduling the subsequent tasks of the failed task to nodes
with higher performance in order to speed up the remaining
workflow and minimize the risk of missing the deadline.

III. FULL RESCHEDULING

Since the methods described in the related work are not
suitable when the task arrival time and execution time cannot
be predicted accurately, we propose an alternative approach.

A full rescheduling strategy is an online scheduling strategy
that considers already running tasks as well as queued tasks.
The strategy’s scheduler should be called repeatedly on every
change of the environment in order to allow the scheduler to
react to those changes and yield a new schedule.

With a full rescheduling strategy, not only the tasks in the
queue but also the currently running tasks are considered in
scheduling decisions. Thereby, the scheduler is able to revise
its previous scheduling decisions. The reason for this is to
cope with unexpected events and react to changes in the
information used in past scheduling decisions. However, the
revised schedule may require to suspend those running tasks
so they can be reallocated to different resources and continue
the execution. Rescheduling tasks introduces an extra delay
for data processing tasks that may lead to a longer overall
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makespan. In case that business value is generated by tasks
finishing as early as possible or before a deadline, rescheduling
a task may also cause additional costs.

Whether or not full rescheduling yields a benefit also de-
pends on the workflows that may be affected by reallocations.
For example, if reallocations involve a costly transfer of huge
amounts of data from the public to the private cloud or if
the workflow cannot be resumed and must be restarted from
the beginning, there may not be a benefit at all. Thus, there
is a need for a method that helps to evaluate whether full
rescheduling is beneficial for a specific scenario.

IV. ASSESSMENT METHOD FOR FULL RESCHEDULING

Simulation Cost	Estimation

Historical	
task dataset

Compute	cluster	&	simulation	
configuration

Task	execution	
& 

resource	usage

Scheduling	simulator Cost	model Cost
analysis

Cost	model	configuration

Fig. 1: Overview of the assessment method’s process

To answer both our research questions, we designed an as-
sessment method that allows us to compare full rescheduling
enhanced strategies with existing scheduling strategies. This
assessment method consists of two steps, as illustrated in
figure 1. The first step of the assessment method is to simulate
scheduling decisions based on a dataset of recorded tasks.
This allows us to compare the generated schedules; then, we
compare the costs that would occur if the schedules obtained
during the simulation would be implemented, which allows us
to answer both research questions.

We assume that any task can be reallocated by pausing
it, moving its state to another node, and then continuing its
execution there. Note that this means that data processing
applications that achieve a progress over time must be able to
save its state at any time or at least implement a checkpointing
mechanism, i.e. saving it frequently. Otherwise, rescheduling
such a data processing task would lead to an expensive restart
which we think is unlikely to yield a cost-benefit in the end.

We published the source code for the scheduling simulation,
the spreadsheet implementing the cost model computations,
and the complete case study results on GitHub1.

A. Simulation

We propose a scheduling simulation to compare the behavior
and resource usage of one scheduling strategy with and
one without the full rescheduling ability. For this, we feed
the simulation with a dataset describing a history of tasks
that contains each task’s enqueue time and duration and a
configuration of the hybrid cloud that should be simulated.

1https://github.com/swc-rwth/full-rescheduling-paper, git commit: 3465990

The simulation is run for each of the schedulers separately.
In the simulation, the time of t = 0 corresponds to the time of
the first task being enqueued. The scheduler is asked to assign
it to a compute node in the hybrid cloud. With passing time,
this is repeated for every task in the dataset, and each task
requires the recorded time to complete its execution. Whenever
a task is enqueued, the full rescheduling strategy can decide
to reschedule tasks from the public to the private cloud. The
simulation ends when all tasks finished.

As a result of the simulations for both schedulers, we get
the generated schedules, i.e. the assignment of the tasks to the
compute nodes over time. Thereby we can study the effects
of applying full rescheduling for a historical task dataset and
hybrid cloud setup. We can further repeat the simulation for
different hybrid cloud setups.

We implemented such a simulation based on the scheduling
simulator ALEA [7]. Note that our implementation is limited
to setups with homogeneous nodes in the private and public
cloud and exclusive usage of a compute node by a task.

B. Cost model

The schedules generated by the simulation can be used as
input to a cost model to assess the resource usage costs that
occur with and without full rescheduling. For this, we used
the cost model proposed by Kashef and Altmann for hybrid
cloud environments [8].

This cost model considers 20 cost factors divided into
the six groups electricity, hardware, software, labor, business
premises, and service. Some of the cost factors describe
variable costs that depend upon the resource usage provided
by the simulation. For example, costs for electricity and public
cloud resources depend on how much we use the private and
public cloud, respectively. Other factors describe fixed costs
independent of resource usage. Note that assigning values to
the cost factors is not trivial. Possible sources are experiences
gained by monitoring past resource usage and its costs, as
well as researching current market price developments for
hardware, software, and labor. With values for the cost factors
and the simulation results, the cost model allows us to calculate
the costs for the compute resource usage for the timespan
described by the task dataset.

V. CASE STUDY

We applied the assessment method for a task dataset of a
real-world data processing application. This data was extracted
from log files and initially described 7,883 tasks over a period
of the 29 days of February 2020. Of these tasks, 33 tasks were
removed due to missing information. The remaining 7,850
tasks amount for total execution time of about 468 days and 23
hours. As schedulers, we used the First Come First Serve with
Cloud Awareness (FCFS) and a full rescheduling enhanced
version of the same (FCFS-FR). Since the FCFS is cloud-
aware, it can prioritize the usage of the private cloud over
the public cloud. We assumed that the task’s processes are
capable of resuming their work and that each task reallocation
will take 5 minutes, which is an estimate including the time
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for transferring necessary data as well as starting the task’s
process. The simulation was repeated for multiple hybrid cloud
setups with the number of private cloud nodes ranging from
10 to 45 nodes.

For the cost model factors, we conducted market research in
June 2020. We considered the private cloud to be operated in a
data center in Germany. We chose the Amazon Web Services
(AWS) as the public cloud provider and retrieved the costs for
the public cloud resources from AWS for Frankfurt region,
Germany.

A. Results
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Fig. 2: Schedule diagrams showing the allocation of tasks
(colored rectangles) to nodes (rows) for the scenario with 20
compute nodes in the private cloud

The schedule diagram in figure 2a is the result of task
execution from scheduling simulation by using FCFS in the
scenario of 20 compute resources available in the private
cloud. As indicated by the annotations in the figure, there are
some long-running tasks scheduled to run in the public cloud,
which has a higher usage cost than the private cloud. On the

other hand, the schedule diagram 2b is the result of the task
execution using FCFS-FR in the same scenario. Compared
to the result from FCFS, the public cloud usage is lower.
Without full rescheduling, we can observe some long-running
tasks in the public cloud. This is no longer the case with
full rescheduling since any long-running task is rescheduled to
the private cloud as soon as there are private cloud resources
available.
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Fig. 3: Compute resource usages for the scenario with 20
nodes available in the private cloud

Figure 3 illustrates the compute resource usage in the same
scenario of 20 compute resources available in the private
cloud. In the case of using FCFS, the number of allocated
nodes in the private cloud fluctuates all the time – even
during load peak periods. In contrast, when using FCFS-FR,
all compute nodes in the private cloud are continuously fully
utilized during peak periods.

The line graph in figure 4 illustrates the usage time of
compute resources in the public cloud in different scenarios
that there are the numbers of available compute resources
ranging from 10 to 45 nodes in the private cloud. Overall,
the usage time of compute resources in the public cloud from
both the FCFS and the FCFS-FR declines gradually when the
number of available compute resources in the private cloud
increases. Also, the compute resources in the public cloud are
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Fig. 4: Estimated usage of public cloud nodes for FCFS and
FCFS-FR for all scenarios over a time period of 29 days

not used at all in the case of 45 nodes of compute resources
available in the private cloud. If we compare the usage time
of compute resources in the public cloud in case of using the
FCFS-FR to the FCFS, there is a reduction of that usage time
in all scenarios.

Private
cloud nodes

Rescheduled
tasks

Extra time due to
rescheduling

Extra time relative
to total runtime

10 2,903 10 days 03:13:51 2.16%
15 3,246 11 days 13:53:32 2.47%
20 2,856 9 days 22:54:43 2.12%
25 1,802 6 days 06:40:27 1.34%
30 524 1 days 23:20:21 0.42%
35 110 13:07:49 0.12%
40 20 01:39:53 0.01%
45 0 00:00:00 0.00%

TABLE I: Number of rescheduled tasks and extra time caused
by the rescheduling for eight of the evaluation scenarios

As shown in table I, the number of rescheduled tasks is
around 3,000 when there are 10 to 20 nodes in the private
cloud. This number declines rapidly as the number of available
nodes in the private cloud increases. The maximum of the
extra time introduced to the total execution time due to the
task reallocation is just over 11 days and a half in case there
are 15 nodes available in the private cloud. However, this extra
time is amounted to only 2.47% compared to all tasks’ total
execution time from the data source. Also, only around 2% of
total execution time increases in half of all evaluation scenarios
among all the simulation environment setups. In contrast, the
increased rate of total execution time is less than 0.5% in the
other half.

Figure 5 shows the estimated resource usage cost by using
FCFS and FCFS-FR in varying simulation environment setups
in which there are available nodes from 10 to 45 in the
private cloud. Using the FCFS-FR, the estimated total resource
usage cost shows a similar trend as the case of using the
FCFS. However, compared with the case of using FCFS, for
setups with 10 to 25 nodes in the private cloud, the total
cost is lowered by around 1,200 euros in the studied time
interval of February 2020. This difference in resource usage
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Fig. 5: Estimated compute costs for FCFS and FCFS-FR for
all scenarios over a time period of 29 days

cost decreases and zero when there are 45 nodes available
in the private cloud. Based on these results, the scenario that
produces the minimum cost is 25 and 21, respectively, when
using FCFS and FCFS-FR.

B. Discussion

By comparing the task execution from the scheduling simula-
tion when using the FCFS and FCFS-FR illustrated in figure 2,
there are some apparent differences in the task execution
schedules. Also, the compute resource usage graphs in figure 3
shows that the compute resources in the private cloud are
hardly fully utilized most of the time when using the FCFS,
even during the peak workload periods. However, when using
the FCFS-FR, the compute resources in the public cloud are
used only when there are no available compute resources in
the private cloud.

The most noticeable drawback of full rescheduling is the
extra task execution time caused by the reallocation of running
tasks. This extra time was in no scenario more than 2.47% of
the total execution time of all tasks; this maximum occurs for
the scenario with 15 nodes as shown in table I.

In our case study, the extra task execution time caused by
the rescheduling does not lead to an increase of the makespan
for all the 7,850 tasks in the dataset for February 2020.
We think that the reason for this is the seasonal workload
distribution of our case study’s data processing application.
Every day there are short peak workload periods during which
running tasks are rescheduled. While the rescheduling may
cause an accumulation of delays in this period, the delays
are compensated later when the tasks can be processed on
otherwise idle private cloud resources. We argue that effects
like the impact on the makespan should be studied before con-
sidering implementing full rescheduling in order to make an
informed decision whether the drawback of full rescheduling
is acceptable. This can be studied using the assessment method
we proposed.

In order to answer the first research question, i.e. whether
full rescheduling yields an economic benefit, we obtained
the estimated compute costs when applying FCFS as well
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as FCFS-FR for the number of private cloud nodes ranging
from 10 to 45. As shown in figure 5, in half of the scenarios
the resource usage cost would have been lowered by around
1,200 euros for the time period of February 2020 if we
had applied full rescheduling. Although the cost-saving effect
declines when the number of private cloud nodes rises, it is still
positive. The only case where there is no cost-saving effect,
i.e. the compute costs are the same for FCFS and FCFS-
FR, is for the scenario with 45 nodes in the private cloud;
in this case there is no cost-saving potential as no public
cloud resources are used. Thus, our case study shows that
full rescheduling can yield an economic benefit. Note that this
analysis does not consider the one-time costs for implementing
full rescheduling, i.e. being able to reallocate running tasks.

As for the second research question, i.e. what the optimal
number of compute nodes in the private cloud is, the proposed
assessment method can be used to find a hybrid cloud setup
with minimal compute costs. This is done by comparing the
costs for a series of scenarios with different numbers of nodes
in the private cloud. When planning a cost-optimized private
cloud setup, the number of nodes have to chosen based on
the scenario where the costs are minimal. Note that this only
works as long as the workload behavior can be expected to
be similar to what the used dataset described. Assuming that
this is the case for our case study, then the best hybrid cloud
setup would be a private cloud with 21 nodes supplemented
by the on-demand compute resources in the public cloud.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the concept of full rescheduling
for online scheduling strategies in hybrid clouds. We described
an assessment method that allows to evaluate the cost-saving
potential of full rescheduling without needing to implement it.
We applied the method in a case study for a data processing
application and showed that full rescheduling can yield an
economic benefit. Further, we described how the assessment
method can be used to find a number of nodes for the private
cloud that minimizes the hybrid cloud’s compute cost.

Further research is required to explore the practical value of
full rescheduling. First, the assessment should be extended to
support more kinds of scenarios. The currently limiting factors
are the assumptions of having homogeneous compute nodes
in the hybrid cloud, the exclusive usage of one compute node
by a task, and that the simulation only supports setting one
rescheduling delay for all tasks.

Second, the technical challenges of reallocating running
tasks from one compute node to another need to be studied.
This reallocation requires that the tasks are designed in a
way that they can be paused, their state can be saved, and
that they then can be continued. Further, a design for the
management of the reallocation is required, i.e. notifying a
task to pause, transferring its state, and triggering its start
using its transferred state. This research could result in design
recommendations or even a software framework that lowers
the initial one-time effort for implementing full rescheduling.

Finally, it would be interesting to repeat the study presented
in this paper for other cases and for other scheduling strategies
than the first come first serve with cloud awareness strategy
in order to learn more about when full rescheduling can yield
an economic benefit.
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