
Test Input Schema

Irrelevant
Schema

Relevant
Schema

Minimal Invalid
Schema

Strong Invalid
Schema

Invalid
Schema

Valid
Schema

Konrad Anton Fögen

Ko
nr

ad
 A

nt
on

 F
ög

en
C

om
bi

na
to

ria
l R

ob
us

tn
es

s
Te

st
in

g
Ba

nd
 4

7

Combinatorial Robustness Testing
based on Error-Constraints

Aachener Informatik-Berichte,
Software Engineering
Hrsg:	Prof. Dr. rer. nat. Bernhard Rumpe
	 Prof. Dr. rer. nat. Horst Lichter	

Band 47

Combinatorial Robustness Testing based on
Error-Constraints

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Konrad Anton Fögen, M. Sc.

aus Höxter

Berichter: Universitätsprofessor Dr. rer. nat. Horst Lichter

Professor Angelo Gargantini, Ph.D.

Tag der mündlichen Prüfung: 10. Februar 2021

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar.

Shaker Verlag
Düren 2021

Aachener Informatik-Berichte, Software Engineering

herausgegeben von
Prof. Dr. rer. nat. Bernhard Rumpe

Software Engineering
RWTH Aachen University

Band 47

Konrad Anton Fögen
RWTH Aachen University

Combinatorial Robustness Testing
based on Error-Constraints

WICHTIG: D 82 überprüfen !!!

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2021)

Copyright Shaker Verlag 2021
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-7929-6
ISSN 1869-9170

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren
Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9
Internet: www.shaker.de • e-mail: info@shaker.de

Kurzfassung

Robustheit ist eine wichtige Eigenschaft einer Software, welche zusätzlich zur Funktionalität

getestet werden muss. Dies erfordert ungültige Werte und ungültige Wertekombinationen, um

die Reaktion einer Software auf die Eingabe dieser Werte beobachten zu können.

Kombinatorisches Testen (CT) ist eine effektive spezifikationsbasierte Testmethode, die auf

einem Eingabeparametermodell (IPM) basiert, mit dem Eingaben für das Testen ausgewählt wer-

den. Die Effektivität von CT verschlechtert sich jedoch, wenn ungültige Werte oder ungültige

Wertekombinationen vorhanden sind. Dieses Phänomen wird als Maskierungseffekt ungültiger

Eingaben bezeichnet und ist in der Forschung bereits bekannt. Das Phänomen führte zu Er-

weiterungen der CT Testmethode, welche wir als Kombinatorisches Testen für Robustheit (CRT)

bezeichnen. Das Ziel von CRT ist es, das Erkennen von Fehlern zu verbessern, indem der Mask-

ierungseffekt ungültiger Eingaben vermieden wird. Vermieden wird er durch die Trennung von

Tests mit gültigen Werten und gültigen Wertekombinationen und Tests mit ungültigen Werten

und ungültigen Wertekombinationen.

Obwohl CRT eine vielversprechende Erweiterung von CT ist, argumentieren wir, dass sie im-

mer noch unzureichend erforscht ist. Zum Beispiel wird in verwandten Arbeiten das IPM mit

semantischen Informationen erweitert, um Werte als ungültig markieren zu können. Wertekom-

binationen können allerdings nicht direkt als ungültig markiert werden.

In dieser Arbeit entwickeln wir daher die Idee des CRT weiter. Das Ziel ist eine neue CRT

Testmethode mit einem Modellierungsansatz, um ungültige Werte und ungültige Wertkombina-

tionen gleichermaßen gut zu spezifizieren. Dieser Modellierungsansatz soll auch in explizite

Testabdeckungskriterien und Testauswahlstrategien integriert werden. Zudem soll dieser Mod-

ellierungsansatz durch automatisierte Techniken weiter unterstützt werden.

Zunächst führen wir ein kontrolliertes Experiment durch, um zu überprüfen, ob CRT als Er-

weiterung notwendig ist, oder ob CT bereits geeignet ist, um Robustheit von Software zu testen.

Basierend auf den Ergebnissen verfeinern wir das t-Faktor Fehlermodell, sodass Robustheits-

fehler und der inhärente Maskierungseffekt ungültiger Eingaben berücksichtigt werden.

Dann entwickeln wir eine neue Testmethode für CRT und führen das Robustheits-Eingabepa-

rametermodell (RIPM) ein, welches die Struktur der IPMs um das Konzept der Error-Constraints

erweitert. Dabei handelt es sich um einen zusätzlichen Satz logischer Ausdrücke zur Beschrei-

bung der Gültigkeit von Werten und Wertekombinationen.

Mit dem verfeinerten t-Faktor Fehlermodell und der neuen RIPM Struktur werden neue Testab-

deckungskriterien, welche die zusätzlichen semantischen Informationen einbeziehen, und neue

Testauswahlstrategien, welche die Testabdeckungskriterien erfüllen, entwickelt.

Das neue Konzept der Error-Constraints erfordert zusätzlichen Aufwand. Daher entwickeln

wir zwei zusätzliche Techniken, welche die Modellierung der Error-Constraints unterstützen.

Zuerst entwickeln wir eine Technik zur Identifizierung und Reparatur von Inkonsistenz innerhalb

der Error-Constraints. Zudem entwickeln wir eine Technik zur automatischen Generierung von

Error-Constraints, welche auf der Konformität mit einem anderen System basiert.

Zu guter Letzt werden alle oben genannten Konzepte und Techniken operationalisiert und in

ein Framework zu Testautomatisierung integriert, welches einen Prozess, eine Architektur und

eine Java-basierte Referenzimplementierung umfasst.

Abstract

Robustness is an important property of a software, which must be tested in addition to a soft-

ware’s functionality. This requires invalid values and invalid value combinations to be able to

observe a software’s reaction to them.

Combinatorial testing (CT) is an effective specification-based test method that is based on an

input parameter model (IPM) with which test inputs are selected. But its effectiveness deterio-

rates in the presence of invalid values or invalid value combinations. This phenomenon is called

invalid input masking effect and is already acknowledged in some research. The phenomenon

led to extensions of CT that we call combinatorial robustness testing (CRT). The objective of

CRT is to improve the fault detection by avoiding invalid input masking. This is achieved by

separating the testing of valid values and valid value combinations from the testing of invalid

values and invalid value combinations.

While CRT is a promising extension of CT, it is still insufficiently researched. For instance, in

related work, IPMs are extended with additional semantic information to specify invalid values.

However, invalid value combinations cannot be specified directly.

Therefore, the objective of this work is to further expand the idea of CRT. The aim is to

develop a new CRT test method with a modeling approach to specify invalid values and invalid

value combinations equally well. This modeling approach should also be incorporated into

explicit test adequate criteria and test selection strategies. Furthermore, this modeling approach

shall be supported by automated techniques.

First, we conduct a controlled experiment to check if CRT is necessary at all or if CT is already

appropriate to test robustness. Based on the result, we continue and develop a refined t-factor

fault model that incorporates robustness faults and the inherent invalid input masking effect.

Next, we develop a new test method for CRT and introduce a new structure that extends the

structure of IPMs. It is called robustness input parameter model (RIPM) and contains the concept

of error-constraints which is an additional set of logical expressions to describe the validity of

values and value combinations.

With the refined t-factor fault model and the new RIPM structure, new test adequacy criteria

that incorporate the additional semantic information and new test selection strategies that satisfy

the test adequacy criteria are developed.

The new concept of error-constraints requires additional effort in modeling. Therefore, we

develop two techniques to support the modeling of them. First, we develop a technique to

identify and repair inconsistencies among error-constraints. Second, we develop a technique to

automatically generate error-constraints based on the conformance to another system.

Last but not least, all aforementioned concepts and techniques are operationalized and inte-

grated in a test automation framework which includes a process, an architecture, and a Java-

based reference implementation.

Contents

I. Foundations 1

1. Introduction 3

1.1. Research Motivation . 3

1.2. Research Context . 5

1.3. Research Objective . 6

1.4. Structure of this Work . 9

1.5. List of Publications . 11

2. Running Example: Ordering Web Service 13

3. Conceptual Foundations 17

3.1. A Taxonomy of Dependable Programs . 17

3.1.1. Dependable Programs . 17

3.1.2. Combinatorial Testing . 25

3.2. An Extended Taxonomy of Robust Programs 38

3.2.1. Robust Programs . 38

3.2.2. Exception Handling . 43

3.2.3. Combinatorial Robustness Testing . 50

4. Related Work 55

4.1. Combinatorial Robustness Testing . 55

4.1.1. General Contributions . 56

4.1.2. CT Test Methods . 58

4.1.3. CRT Test Methods . 60

4.2. Non-Combinatorial Robustness Testing . 69

II. A Combinatorial Robustness Test Method 71

5. A Combinatorial Robustness Fault Model 73

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 74

5.1.1. Motivation . 74

5.1.2. Applying the t-Factor Fault Model . 75

5.1.3. Experiment Design . 81

5.1.4. Results and Discussion . 84

5.1.5. Threats to Validity . 90

5.2. A Classification of Robustness Fault Characteristics 91

5.2.1. Configuration-independent Robustness Faults 91

5.2.2. Configuration-dependent Robustness Faults 94

5.3. A Case Study on Minimal Failure-causing Schemata 97

5.3.1. Motivation . 97

5.3.2. Case Study Design . 98

5.3.3. Results and Discussion . 100

5.3.4. Threats to Validity . 104

5.4. A Refined t-Factor Fault Model for Robustness Faults 105

6. A Combinatorial Robustness Input Parameter Model 111

7. Combinatorial Robustness Test Adequacy Criteria 119

7.1. Existing t-wise Combinatorial Test Adequacy Criteria 119

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 127

8. Combinatorial Robustness Test Selection Strategies 143

8.1. Test Selecting Strategies for Valid Test Inputs 143

8.2. Test Selection Strategies for Strong Invalid Test Inputs 147

III. Supporting Techniques for Combinatorial Robustness Testing 157

9. Detection and Repair of Over-Constrained RIPMs 159

9.1. Detection and Manual Repair of Over-Constrained RIPMs 160

9.1.1. A Process for Detection and Manual Repair 160

9.1.2. Identifying Missing Invalid Schemata 164

9.1.3. Explaining Conflicting Constraints . 166

9.2. Semi-Automatic Repair of Over-Constrained RIPMs 169

9.2.1. Automatic Diagnosis of Over-Constrained RIPMs 170

9.2.2. Automatic Relaxation of Conflicting Constraints 174

9.2.3. Selection and Application of Diagnosis Hitting Sets 177

9.3. Strong Invalid Test Input Selection from Over-Constrained RIPMs 178

9.3.1. General Idea of Soft Constraint Handling Strategies 178

9.3.2. Basic Soft Constraint Handling Strategy 180

9.3.3. Diagnostic Soft Constraint Handling Strategy 182

10.Automatic Generation of Error-Constraints 187

10.1. A Process for Automatic Generating of Error-Constraints 187

10.2. Identifying Non-Conforming Schemata . 191

10.3. Generating New Error-Constraints . 196

11.A Framework for Automated Combinatorial Robustness Testing 199

11.1. Orchestrated Process . 199

11.2. Framework Architecture . 203

11.3. Implementation of coffee4j . 205

IV. Evaluation and Conclusion 209

12.Overview of Evaluation 211

13.Evaluating Combinatorial Robustness Test Selection Strategies 215

13.1. Theoretical Evaluation . 215

13.2. Experimental Evaluation . 219

13.2.1. Motivation . 219

13.2.2. Experiment Design . 219

13.2.3. Experiment Setup . 220

13.2.4. Experiment Scenarios . 221

13.2.5. Results and Discussion . 223

13.2.6. Threats to Validity . 226

13.3. Case Study-based Evaluation . 227

13.3.1. Motivation . 227

13.3.2. Case Study Design . 228

13.3.3. Results and Discussion . 230

13.3.4. Threats to Validity . 242

14.Evaluating Detection and Repair of Over-constrained RIPMs 245

14.1. Evaluating the Detection and Manual Repair of Over-Constrained RIPMs . . . 245

14.1.1. Experiment Design and Setup . 245

14.1.2. Results and Discussion . 246

14.1.3. Threats to Validity . 248

14.2. Evaluating Semi-Automatic Repair of Over-Constrained RIPMs 249

14.2.1. Experiment Design and Setup . 249

14.2.2. Results and Discussion . 249

14.2.3. Threats to Validity . 251

14.3. Evaluating Strong Invalid Test Input Selection from Over-Constrained RIPMs . 253

14.3.1. Experiment Design and Setup . 253

14.3.2. Results and Discussion . 254

14.3.3. Threats to Validity . 258

15.Evaluating Automatic Generation of Error-Constraints 259

15.1. Experiment Design and Setup . 259

15.1.1. Fault Characterization Algorithms . 260

15.1.2. Scenarios . 260

15.1.3. Experiments . 261

15.1.4. Data Collection Procedure . 262

15.2. Results and Discussion . 263

15.2.1. Experiment 1 . 263

15.2.2. Experiment 2 . 264

15.2.3. Experiment 3 . 265

15.2.4. Experiment 4 . 265

15.2.5. Summary . 267

15.3. Threats to Validity . 269

16.Conclusion 271

16.1. Summary . 271

16.2. Future Work . 274

V. Appendix 277

A. Data of FDE in the Presence of Invalid Input Masking 279

B. Data of Evaluating Combinatorial Robustness Test Selection Strategies 335

C. Data of Evaluating Semi-Automatic Repair of Over-Constrained RIPMs 341

D. Data of Evaluating Automatic Generation of Error-Constraints 345

Abbreviations 351

Symbols and Functions 353

Glossary 357

List of Figures 365

List of Listings 367

List of Tables 369

Supervised Bachelor and Master Theses 375

Bibliography 377

Part I.

Foundations

Chapter 1.

Introduction

Contents

1.1. Research Motivation . 3

1.2. Research Context . 5

1.3. Research Objective . 6

1.4. Structure of this Work . 9

1.5. List of Publications . 11

1.1. Research Motivation

Today, software is omnipresent and increasingly important for society and business. The whole

world highly depends on software. As SOMMERVILLE [Som16, p.18] points out, “national

infrastructures and utilities are controlled by computer-based systems, and most electrical prod-

ucts include a computer and controlling software. Industrial manufacturing and distribution is

completely computerized, as is the financial system”. Nowadays, software and its programs are

increasingly integrated and connected. We as people, organizations, and society become more

and more dependent on the behavior of programs. In fact, the daily life of almost anyone is

affected by the dependability of programs [AO16, p.1].

An important characteristic of programs is robustness which can be defined as “the degree to

which [programs] can function correctly in the presence of invalid inputs or stressful environ-

mental conditions” [IEE90b]. Whether an input is valid or invalid is context-dependent: Valid

inputs lie “within the bounds of normal operation” of a program whereas invalid inputs “lie out-

side of the normal operating range” [GOA05]; [AO16]. Examples of syntax-level invalid inputs

are omissions of values, values containing invalid characters, or values provided in an invalid

format. On the semantic-level, inputs can also be logically invalid. For instance, a number that

exceeds a limit or begin and end dates of a period that are flipped. Stressful environmental

conditions are also context-dependent. Other programs might be unavailable or do not respond

within an expected time frame. Invalid inputs and stressful environmental conditions can be

summarized as external faults since their origin is external to the program’s boundary [Avi+04].

External faults can have a severe impact on the program’s robustness because they can in-

fect the program’s state and propagate to robustness failures [Avi+04]. Robustness failures can

lead to unavailable programs because the program or even the entire operating system crashes

[Koo+97]. Robustness failures can also lead to security breaches when an attacker uses invalid

4 Chapter 1. Introduction

inputs to gain privileges by exploiting a buffer overflow [BE11]. Furthermore, robustness fail-

ures can cause a loss of revenue when business rules or legal requirements are violated. For

instance, allowing a customer to reserve a car for the 29th of February in a non-leap year or

accepting customer bookings with flipped begin and end dates results in downstream business

problems when asked to fulfill the service or when asked to create an invoice.

To prevent robustness failures, a program must become tolerant towards external faults such

that external faults are detected and corresponding errors are eliminated from the program’s state

before they can propagate to robustness failures [Avi+04]. To realize fault tolerance, programs

can be developed defensively [BF04]. Defensive programming is a principle that is based on mis-

trusting all influences that are external to the program’s boundary [Mey92]; [BE11]; [MSB11].

External influences that are invalid or even dangerous must be neutralized or rejected [TBL17].

Therefore, external faults must be anticipated and dedicated computer instructions must be exe-

cuted to detect errors in the program’s state that are caused by external faults [BF04]; [Avi+04].

Once an error is detected, further computer instructions must be executed to recover the state

by eliminating the error. If computer instructions for the detection or recovery are incorrect, a

robustness fault is manifested which is an internal fault that enables an external fault to cause a

robustness failure.

To develop defensively and to support the detection and recovery of errors caused by external

faults, exceptions allow representing errors in the program’s state and exception handling (EH) is

used to detect errors in the state and to recover from them [DG94]; [MT97]; [LS98]; [Gar+01].

Often, a significant proportion of a system under test (SUT)’s source code is devoted to EH.

According to CRISTIAN [Cri89], up to two thirds of a SUT’s source code is devoted to EH.

A more recent study conducted by SINHA & HARROLD [SH00] examined Java programs and

identified that between 8.9% and 66.7% of all examined classes detect and propagate exceptions.

WEIMER & NECULA [WN08] analyzed open-source programs also written in Java with 4,000

to 16,000 lines of source code and between 1% to 5% of source code was directly devoted to EH.

Furthermore, between 3% and 46% of source code was indirectly linked to EH, e.g. a method to

clean up resources was invoked as a response to an exception. These numbers further show that

EH is frequently used and an important part of programs.

Even though defensive programming in general and EH in particular are intended to support

the development of robust programs, they are themselves significant sources of robustness faults

and robustness failures. For instance, MARINESCU [Mar11] inspected Java classes to find cor-

relations between the exceptions and faults. The inspection shows that classes with EH are more

likely to contain faults. SAWADPONG et al. [SAW12] investigated six releases of the Eclipse1

integrated development environment (IDE) and compared the exception-related fault density to

the overall fault density. The study shows that source code devoted to EH has a fault density

that is approximately three times higher than the overall fault density of source code that is also

devoted to the standard functions.

The argumentation of MILLER & TRIPATHI [MT97] further shows that the goals of dedicated

language features devoted to EH often conflict with the goals of other language features in

modern object-oriented programming languages which complicates EH even more. In addition,

EH is not limited to isolated modules but is known to be a global issue that affects all modules

1See https://www.eclipse.org (Last access on 1st December 2020).

1.2. Research Context 5

[Fil+09]. Due to the dedicated language feature devoted to EH, an implicit control flow for

exceptions is established which is detached from the standard control flow and complicates the

EH even more [RM00]; [Cac+08]; [WN08]. EH is considered to be one of the least understood

parts of programming languages and source codes. Developers often focus on the standard

behavior and EH is often oversimplified or neglected (cf. [SGH10]; [BGB14]; [BG18]).

A famous example is the case of the Ariane 5 maiden flight which occurred in 1996 where

exceptions caused a robustness failure and a loss of 1.9 billion French francs [Lan97]; [Ben01].

The identified cause was a function within the inertial navigation system which is supposed to

compute the position of the rocket. The function attempted to compute a conversion from a 64-

bit floating point to a 16-bit signed integer without checking if 16 bits were sufficient [Lan97].

The conversion failed and an exception was propagated to the central system. While this function

worked for the previous model Ariane 4, the trajectory of Ariane 5 was much higher than the

trajectory of its predecessor. From the perspective of the function, the trajectory as input was

beyond the standard input domain and the function initiated exception behavior and propagated

an exception. From the perspective of the entire system, the function did not satisfy the standard

specification of the Ariane 5 model. Due to the propagated exception, a report of the exception

rather than an actual position of the rocket was sent to the central system [Ben01]. The central

system did not validate its input and treated the report as valid but extreme input which resulted

in a turn that was too sharp and the rocket started to break.

To conclude, it is not only important to check that a program realizes its standard functions as

intended. It is also important to check the behavior of a program in exceptional situations.

1.2. Research Context

Testing is the primary approach in industry to evaluate and ensure quality of programs [AO16].

It is a dynamic activity where the SUT is stimulated with selected test inputs and the behavior

of the SUT is observed and compared to the expected behavior [Bar+15]; [LO17].

Combinatorial testing (CT) is a specification-based test method. The selection of test inputs

is based on an input parameter model (IPM) [GOA05]; [NL11a]. IPMs are models of the SUT’s

specification that structure the input domain of a SUT via parameters and domains of

A test adequacy criterion defines a predicate that must be satisfied by a test suite [WO80];

[WJ91] and a test selection strategy describes how to select test inputs such that the test adequacy

criterion is satisfied [Gou83]; [ZHM97]; [Hie02]. In CT, test adequacy criteria and test selection

strategies are defined relative to an IPM. A structure of IPMs together with a corresponding fault

model, test adequacy criteria, and test selection strategies denote a CT test method.

The general idea of CT is based on combinatorics which allows testing with relatively small

test suites as opposed to exhaustive testing with large unfeasible test suites [KKL13]. CT is

relying on the t-factor fault model which assumes that a fault is caused by the interaction of t
parameters [DM98]. The t-wise coverage test adequacy criterion is only satisfied if each t-sized

combination of values of an IPM appears in at least one test input [KKL13]. Consequently, a test

suite that satisfies t1-coverage contains at least one t1-sized combination of values that activates

a t2-factor fault as long as t1 ≥ t2. Typically, t takes on a value of one to six which is much

lower than the number of all parameters [KKL13].

6 Chapter 1. Introduction

Various studies demonstrate that CT is an effective test method [Gri+06]. But the effectiveness

depends on the quality of the IPM that must model all important parameters and values [Bor+13];

[GO07]; [Kuh+20]. Combinations of values that are, for instance, irrelevant and uninteresting

to test or not executable, must also be identified and excluded from the test suite [Gri+06];

[GOM07]; [Pet15] [Wu+19b]; [Wu+19a]. Otherwise, those irrelevant value combinations can

prevent test inputs from being tested [Yil+14a]. Values and value combinations that only appear

in a test input that also covers irrelevant value combinations remain untested and faults may

remain undetected. They are masked by some irrelevant value combinations. This phenomenon

is denoted as the input masking effect [Yil+14a]; [Wu+19b]. Therefore, the irrelevant value

combinations must be identified and excluded from the final test suite. Early approaches that

deal with irrelevant value combinations are based on manual remodeling of IPMs such that

the modified IPMs do not model any irrelevant value combinations [Wu+19a]. The final test

suite is the result of several iterations of remodeling and test selection. However, this approach

is not competitive because of the larger test suite size caused by multiple iterations and the

manual effort to remodel IPMs. Nowadays, irrelevant value combinations are most commonly

described with additional semantic information in IPMs and test selection strategies are able to

automatically exclude them from the final test suite by avoiding their selection [Wu+19a].

When testing exceptional situations, test inputs with an invalid value or an invalid value com-

bination are required to consciously trigger EH. Due to the nature of EH, an alternative control

flow path for recovery is taken through the SUT once the occurrence of an exception is detected.

Then, other values and value combinations of the same test input do not exercise the SUT as

expected. These values and value combinations may remain untested and faults may remain

undetected when they only appear in a test input that triggers EH. This is another instance of

the input masking effect – the invalid input masking effect – which requires a different solu-

tion. Avoidance of invalid values and invalid value combinations is not an option because it is

necessary to check the behavior in exceptional situations.

This difficulty is already acknowledged in some research (cf. [She94]; [Coh+94]; [Coh+97];

[GOA05]; [Cze06]). It led to extensions of CT that we call combinatorial robustness testing

(CRT): CRT denotes extensions of CT where the IPM is enriched with additional semantic infor-

mation and test adequacy criteria as well as test selection strategies are extended to incorporate

the additional semantic information. The main idea of CRT is to improve the fault detection by

avoiding the invalid input masking effect. Therefore, valid and invalid test inputs are separated

such that all values and value combinations are tested as expected. Only valid values as well

as valid value combinations are used in valid test inputs to test the standard behavior and in-

valid values as well as invalid value combinations are only used in invalid test inputs to test the

exceptional behavior.

1.3. Research Objective

Even though some test methods for CRT exist, CRT is still insufficiently researched2. First, it

is not clear if CRT test methods are necessary or if CT test methods are already appropriate

2Please refer to Chapter 4 for an in-depth discussion of related work.

1.3. Research Objective 7

because only qualitative argumentation and examples but no quantitative assessment exists yet.

Second, CT relies on a generic fault model – the t-factor fault model – from which test ad-

equacy criteria like t-wise coverage are derived. The existing CRT test methods have no ex-

plicated fault model that describes the faults they are targeting and the test adequacy criteria of

different CRT test methods target different faults.

Third, the test selection strategies of CRT test methods are insufficiently automated. Early

approaches again rely on manual efforts to remodel the IPMs. Although remodeling is a univer-

sal approach that allows influencing test selection in many different ways, it results in larger test

suites and requires additional manual effort. Current approaches rely on semantic information

that is used to annotate invalid values of IPMs. Then, test selection strategies exclude the invalid

values when selecting valid test inputs and select some invalid test inputs that contain exactly one

invalid value for each annotated invalid value. The current approaches do not directly support

invalid value combinations. Although, workarounds exist to integrate invalid value combina-

tions. The workarounds allow modeling invalid value combinations such that they do not appear

in valid test inputs and such that invalid test inputs that cover them are selected.

However as we will point out in Chapter 4, the workaround increases the complexity of IPMs

and makes mistakes in IPMs more likely. Further on, the test selection strategies treat invalid

value combinations similar as invalid values. Even though invalid value combinations consist of

values for two or more parameters, no combinatorics between them can be utilized because the

test adequacy criteria and test selection strategies are unaware of invalid value combinations. In

that sense, the CRT test methods are incomplete.

Finally, CRT test methods require more semantic information than CT test methods since

invalid values and potentially invalid value combinations must be annotated. Therefore, sup-

portive techniques to check the consistency of existing annotations and supportive techniques to

support the activity of annotating values and value combinations are desirable. Until now, no

supportive techniques for CRT test methods exist. Due to the lack of direct support for invalid

value combinations, the development of supportive techniques for existing CRT test methods is

further complicated.

Therefore, the overall goal of this work is to develop a CRT test method that consists of

(1) a refined t-factor fault model that incorporates robustness faults and input masking, (2) an

extended structure of IPMs that allows annotating values and value combinations as invalid,

(3) a set of test adequacy criteria that takes the refined fault model into account, and (4) a

set of test selection strategies that describes how to select small test suites such that the test

adequacy criteria are satisfied. Furthermore, the goal is to provide supportive techniques (5) to

automatically check IPMs for consistency and to repair inconsistencies among the annotations of

invalid values and invalid value combinations and (6) to automatically infer and annotate values

and value combinations as invalid.

The first research objective of this work is to assess the necessity of CRT test methods. Since

the annotation of invalid values and invalid value combinations means additional effort and

additional sources of mistakes, shortcomings of CT test methods must be recognizable.

Research Question 1 How effective is CT and what are its shortcomings in detecting faults

when invalid input masking is present?

8 Chapter 1. Introduction

To answer this research question, we conduct a controlled experiment in which we inject faults

in test scenarios with input masking and evaluate the fault detection effectiveness of test suites

selected by a CT test method.

The controlled experiment indicates shortcomings and possible improvements arise.

As a first step towards an improved CT test method that mitigates the identified shortcomings,

a refined fault model that incorporates the input masking effect is necessary. Therefore, the

second research objective of this work is to refine the t-factor fault model accordingly.

Research Question 2 How can the t-factor fault model be refined such that it explicitly de-

scribes robustness faults and the inherent invalid input masking effect?

To answer this research question, we first identify issues related to EH and derive a classifica-

tion of robustness fault characteristics. Afterwards, the t-factor fault model is refined to integrate

the findings of our classification.

Given the refined t-factor fault model and its additional information, a specific CRT test

method can be designed. Therefore, the third research objective of this work is to develop a

CRT test method.

Research Question 3 How can a CRT test method capture and utilize the additional infor-

mation for annotating invalid values and invalid value combinations to select test suites

that activate faults in the presence of invalid input masking?

This research question is based on the refined t-factor fault model and affects the structure of

IPMs, test adequacy criteria and test selection strategies. Therefore, the research question can

be further broken down.

Research Question 3.1 How can the structure of IPMs be extended such that IPMs capture

semantic information that annotate invalid values and invalid value combinations?

Research Question 3.2 How can test adequacy criteria be defined such that their satisfaction

ensures the activation of faults as described by the refined t-factor fault model?

Research Question 3.3 How can test selection strategies be defined such that they select

small test suites that satisfy the test adequacy criteria?

To answer these three research questions, a constructive approach is taken where we introduce

an extended IPM structure that captures additional semantic information, formally define the t-
wise coverage test adequacy criterion and systematically extend it to match the refined t-factor

fault model, and extend a well-researched test selection strategy. To answer research question 3,

the constructed CRT test method is compared to a CT test method.

Testing with the newly designed CRT test method is possible in general. However as discussed

before, the annotation of invalid values and invalid value combinations requires additional effort

and introduces additional sources of mistakes. To mitigate these disadvantages of the CRT test

methods, we propose supporting techniques to check the consistency of existing annotations and

to identify and repair inconsistent annotations if present.

1.4. Structure of this Work 9

Research Question 4 How can inconsistent annotations of invalid values and invalid value

combinations be detected, identified, and resolved?

To answer this research question, we utilize ideas from the research on constraint satisfaction

problems (CSPs) to detect the existence of inconsistencies, to identify annotations that cause

inconsistencies, and to provide strategies to resolve the inconsistencies.

Further on, we propose supporting techniques to reduce the extra effort that is required by

CRT test methods, i.e. to initially annotate values and value combinations as invalid.

Research Question 5 How can values and value combinations that trigger EH of a SUT be

identified during testing and annotated as invalid?

To answer this research question, we utilize ideas of fault characterization (FC) to search

for test inputs that trigger EH of a SUT when testing them and to identify the values or value

combinations that are responsible for the trigger.

The answers to the previous research questions are theoretical concepts and algorithms that

describe how to select test inputs, how to analyze models, and how to search for invalid test

inputs that induce EH. The answers are abstract and not directly applicable to practical tasks.

To operationalize the concepts and algorithms, a test automation framework that integrates the

concepts and algorithms and that allows an implementation to realize the algorithms is desirable.

Therefore, we design a software architecture and develop a prototype coffee4j that realizes

the test automation framework including all the concepts and algorithms.

1.4. Structure of this Work

This work is structured as follows. In Part I, a running example is introduced that is used

throughout this work. Afterwards in Chapter 3, the basic taxonomy of systems, programs, and

dependability as well as the fundamental concepts of CT are presented. In addition, the basic

taxonomy is extended to precisely describe correctness and robustness. Moreover, we transfer

the concepts to the testing domain to describe the issues related to CT and the extensions of the

CRT test method. Afterwards, existing CRT test methods and other related works are introduced

and contrasted with our work (Chapter 4).

In Part II, an assessment to evaluate the effectiveness of CT when testing for robustness faults

is conducted and a combinatorial robustness fault model is developed in Chapter 5. The structure

of an extended IPM is defined in Chapter 6 and test adequacy criteria that are based on the fault

model and the extended IPM are presented in Chapter 7. Afterwards, test selection strategies are

introduced in Chapter 8.

Part III presents techniques that support the use of the CRT test method. First, a technique to

check and repair the consistency of existing annotations is presented in Chapter 9. Afterwards,

Chapter 10 introduces a technique to initially annotate values and value combinations as in-

valid. Finally, Chapter 11 covers a test automation framework that operationalizes all previously

discussed concepts.

In Part IV, the evaluation of all previously discussed techniques is reported. First, an overview

of the evaluations is given in Chapter 12. In Chapter 13, the test selection strategies are assessed.

10 Chapter 1. Introduction

Then, the supportive techniques are evaluated in Chapter 14 and in Chapter 15. Afterwards, we

conclude this work in Chapter 16 with a summary and an outlook.

Running Example Throughout the dissertation text, we use boxes to highlight when

we reference and apply the running example for further illustration.

List of Symbols To provide an overview of mathematical symbols, we use boxes to

summarize newly introduced symbols at the end of sections.

1.5. List of Publications 11

1.5. List of Publications

Parts of this work have already been published. In the following, these publications and my

contributions are listed.

[FL18b] Konrad Fögen and Horst Lichter. “Combinatorial Testing with Constraints for

Negative Test Cases”. In: Proceedings of the 2018 IEEE International Confer-
ence on Software Testing, Verification and Validation Workshops, ICST Workshops,
Västerås, Sweden, April 9-13, 2018. Apr. 2018, pp. 328–331

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapters 6, 8, and 9.

[FL18a] Konrad Fögen and Horst Lichter. “A Case Study on Robustness Fault Character-

istics for Combinatorial Testing - Results and Challenges”. In: Proceedings of the
6th International Workshop on Quantitative Approaches to Software Quality co-
located with 25th Asia-Pacific Software Engineering Conference (APSEC 2018),
Nara, Japan, December 4, 2018. Dec. 2018, pp. 22–29

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapter 5.

[BFL19] Joshua Bonn, Konrad Fögen, and Horst Lichter. “A Framework for Automated

Combinatorial Test Generation, Execution, and Fault Characterization”. In: Pro-
ceedings of the 2019 IEEE International Conference on Software Testing, Verifica-
tion and Validation Workshops, ICST Workshops 2019, Xi’an, China, April 22-23,
2019. Apr. 2019, pp. 224–233

Level of contribution: Medium – investigator, supervisor of a Bachelor thesis, led

the paper writing.

The content is mainly incorporated into Chapter 11.

[FL19b] Konrad Fögen and Horst Lichter. “Combinatorial Robustness Testing with Nega-

tive Test Cases”. In: Proceedings of the 19th IEEE International Conference on
Software Quality, Reliability and Security, QRS 2019, Sofia, Bulgaria, July 22-26,
2019. July 2019, pp. 34–45

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapters 6, 7, 8, and 13.

[FL19c] Konrad Fögen and Horst Lichter. “Repairing Over-Constrained Models for Com-

binatorial Robustness Testing”. In: Proceedings of the 19th IEEE International
Conference on Software Quality, Reliability and Security Companion, QRS Com-
panion 2019, Sofia, Bulgaria, July 22-26, 2019. July 2019, pp. 177–184

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapters 9 and 14.

12 Chapter 1. Introduction

[FL19d] Konrad Fögen and Horst Lichter. “Semi-Automatic Repair of Over-Constrained

Models for Combinatorial Robustness Testing”. In: Proceedings of the 26th Asia-
Pacific Software Engineering Conference, APSEC 2019, Putrajaya, Malaysia, De-
cember 2-5, 2019. Dec. 2019, pp. 110–117

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapters 9 and 14.

[FL19a] Konrad Fögen and Horst Lichter. “An Experiment to Compare Combinatorial

Testing in the Presence of Invalid Values”. In: Proceedings of the 7th Inter-
national Workshop on Quantitative Approaches to Software Quality co-located
with 26th Asia-Pacific Software Engineering Conference (APSEC 2019), Putra-
jaya, Malaysia, December 2, 2019. Dec. 2019, pp. 27–36

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapter 5.

[FL20b] Konrad Fögen and Horst Lichter. “Generation of Invalid Test Inputs from Over-

Constrained Test Models for Combinatorial Robustness Testing”. In: Proceed-
ings of the 2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICST Workshops 2020, Porto, Portugal, October 24-28,
2020. IEEE, Oct. 2020, pp. 171–180

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapters 9 and 14.

[FFL20] Torben Friedrichs, Konrad Fögen, and Horst Lichter. “A Comparison Infrastruc-

ture for Fault Characterization Algorithms”. In: Proceedings of the 2020 IEEE
International Conference on Software Testing, Verification and Validation Work-
shops, ICST Workshops 2020, Porto, Portugal, October 24-28, 2020. IEEE, Oct.

2020, pp. 201–210

Level of contribution: Medium – investigator, supervisor of a Master thesis, led the

paper writing.

The content is mainly incorporated into Chapter 15.

[FL20a] Konrad Fögen and Horst Lichter. “An Industrial Case Study on Fault Detection

Effectiveness of Combinatorial Robustness Testing”. In: Proceedings of the 8th In-
ternational Workshop on Quantitative Approaches to Software Quality co-located
with 27th Asia-Pacific Software Engineering Conference (APSEC 2020), Singa-
pore, December 1, 2020. Dec. 2020, pp. 29–36

Level of contribution: High – main investigator, led the work and paper writing.

The content is mainly incorporated into Chapter 13.

Chapter 2.

Running Example: Ordering Web Service

Throughout the dissertation text, we will be using an ordering web service as a running example.

Therefore, let’s suppose a newly established coffee roaster that is located in London, UK plans to

sell coffee beans worldwide via an e-commerce system. The most crucial part of the e-commerce

system is the ordering web service which is, therefore, our SUT.

To place an order, customers must select the number of coffee packages. They must also

provide an address for billing and shipping as well as a shipping method which is either Standard
for delivery via a local parcel services or Express for fast and direct delivery via a globally

operating parcel service. In particular, the SUT asks for the following input fields: packages,

address, phone, shipping.

The input to the ordering web service has to be validated to ensure entered values actu-

ally match the intended semantics of the input fields and to avoid invalid orders and corrupt

databases. Only valid inputs are further processed. Invalid inputs are answered with an error

message asking the user to correct the inputs. Therefore, the following business rules should be

validated by the web service:

� All input fields are non-optional and must not be empty.

� For the Packages input field, only odd numbers of packages should be accepted because

an even number of packages cannot be wrapped into one box.

� For the Country input field, only valid country codes such as UK or USA are accepted.

� For the Phone input field, inputs should follow the common format of numeric country

code, area code and local number.

� To avoid contact problems, the parcel services require that the numeric country code of

the Phone and the symbolic country code of the Country must not belong to different

regions.

A Java implementation of the ordering web service is depicted in Listing 2.1. Different ap-

proaches to implement the EH exist. A simple approach is the so-called return code pattern1

where different return values either indicate valid results of an operation or code that represent

exception occurrences. For the sake of simplicity, we use the return code pattern in our exam-

ples.

1See Subsection 3.2.2 for more information.

14 Chapter 2. Running Example: Ordering Web Service

1 enum ShippingType { Standard, Express };
2
3 String processOrder(int packages, String country,
4 String phone, ShippingType shipping){
5 if(isInvalidNumberOfPackages(packages)) return "INV_PACKAGES";
6 if(isInvalidCountry(country)) return "INV_COUNTRY";
7 if(isInvalidPhoneNumber(phone)) return "INV_PHONE";
8 if(isInvalidCountryCode(country, phone)) return "INV_CODE";
9
10 if(isDomesticCountry(country)) {
11 if(isStandardShipping(shipping)) {
12 processDomesticStandardOrder(packages, phone);
13 } else {
14 processDomesticExpressOrder(packages, phone);
15 }
16 } else {
17 if(isStandardShipping(shipping)) {
18 processForeignStandardOrder(packages, country, phone);
19 } else {
20 processForeignExpressOrder(packages, country, phone);
21 }
22 }
23
24 return "SUCCESS";
25 }

Listing 2.1: Implementation of the Ordering Web Service Example

Parameters:

p1 : Packages: 1, 3, 123
p2 : Country: UK, USA, 123
p3 : Phone: +44, +1, 123
p4 : Shipping: Standard, Express

Constraints:

c1 : Packages �= 123
c2 : Country �= 123
c3 : Phone �= 123
c4 : ¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = USA ∧ Phone = +44)

Figure 2.1.: IPM for the Ordering Web Service Example

15

To test the web service, Figure 2.1 depicts the corresponding IPM which consists of param-

eter values that should be tested and constraints that describe relations among those parameter

values. In Section 3.1.2, the concept is explained in more detail. By convention, we use 123
to commonly indicate an invalid value that is, for instance, malformed or empty. For the sake

of simplicity, the identified parameter values are considered to be exhaustive and testing beyond

those values is not necessary. UK is selected to represent the domestic country and USA to rep-

resent another foreign country. Further on, +1 represents a phone number that is located in the

USA and +44 represents a phone number that is located in the UK.

Constraints are expressed in propositional logic and describe the business rules in terms of

relations between parameter values. For instance, c1 describes that Packages other than 1 or

3 are not valid. As another example, c4 describes that UK as a country of destination requires a

phone number with the country code +44. Each order that satisfies all conditions is expected to

pass the validation and to be processed. If at least one condition is not satisfied, an error message

is expected to be returned from the web service. Constraints like these are later used to either

exclude certain value combinations from testing or to separate them into different test suites.

Chapter 3.

Conceptual Foundations

Contents

3.1. A Taxonomy of Dependable Programs 17

3.1.1. Dependable Programs . 17

3.1.2. Combinatorial Testing . 25

3.2. An Extended Taxonomy of Robust Programs 38

3.2.1. Robust Programs . 38

3.2.2. Exception Handling . 43

3.2.3. Combinatorial Robustness Testing 50

In this chapter, we first describe the basic taxonomy of dependable programs that is used

throughout this work. Since this work is about improving the CT test method in the context of EH

and input masking, a precise description and clear distinction of robustness and related concepts

is important. Therefore, we extend the initial taxonomy to describe robust programs and to

distinguish robust programs from correct programs. At the end of both sections, summaries of

key concepts are given.

3.1. A Taxonomy of Dependable Programs

First, the basic concepts of systems, programs, and dependability are introduced. The concepts

are mainly derived from the taxonomy of dependable and secure computing by AVIŽIENIS et al.

[Avi+04] and the IEEE standard glossary of software engineering terminology [IEE90b]. Af-

terwards, the foundations of testing and the foundations of combinatorial testing are discussed.

3.1.1. Dependable Programs

System

The generic theory of systems allows to uniformly describe hardware, software, programs, hu-

mans, and also the physical world including its natural phenomena [Avi+04].

Definition 1 (System) A system is an entity that interacts with other entities, i.e. other systems
[IEE90b]; [Avi+04].

In general, any identifiable mechanism can be considered as a system if it shares one or more

interfaces with its environment at which the system interacts with its environment [AL85]. To

18 Chapter 3. Conceptual Foundations

interact means to share information between systems in order to stimulate the behavior of other

systems and to receive responses from other systems.

A system is hierarchically structured [AL85]. It is either atomic where the internal structure

is not examined any further or it consists of components interacting with each other where each

component is itself a system [Avi+04]. Every system can be viewed as a component of another

system. The containing system is the super-system and the contained system is the sub-system

[Teu99, p.10].

The concepts of interface and environment require a system to have a boundary to distinguish

and separate it from other systems. For a given system, its components are internal systems

within the boundary. All other systems are external to its boundary.

Definition 2 (Environment) For a given system, the other external systems constitute the envi-
ronment [Avi+04].

A system interacts with other systems of its environment via interfaces. Interfaces are shared

boundaries that connect two or more systems to pass information from one system to the others

[IEE90b]. When passing information, one system can be user of other systems and provider for

other systems.

Definition 3 (User) A user is a system that receives services from providing systems [Avi+04].

Definition 4 (Provider) A provider is a system that delivers a service to its users [Avi+04].

Definition 5 (Interface) An interface is a place of a provider’s system boundary where service
is requested by users and service is delivered to users [Avi+04].

Where the boundary between a system and its environment is drawn and how a system is or-

ganized internally depends on the intensity of interactions between sub-systems and the intended

functions of the system that it is expected to realize [IEE90b], [Teu99, p.10].

Definition 6 (Function) A function of a system is what a system is intended to do [Avi+04].

Definition 7 (Behavior) The behavior of a system is what a system does to realize its functions
[Avi+04].

A system can also be described in terms of its state which consists of computation, commu-

nication, stored information, interconnection, and physical condition [Avi+04].

Definition 8 (State) The state of a system is the set of “[...] values assumed at a given instant
by the variables that define the characteristics of a system [...]” [IEE90b].

In order to realize its functions, a system performs a sequence of state transitions [Avi+04];

[AL85]. Therefore, the behavior of a system can be described as the sequence of states that a

system passes through.

A system – as it is viewed here – engages in a stimulus-response behavior such that it provides

a response to each stimulus [AL85], [Wie03, p.23].

3.1. A Taxonomy of Dependable Programs 19

Definition 9 (Stimulus) A stimulus of a system is a specific event at the interface of the system
that is caused by the environment [Wie03, p.26].

Definition 10 (Response) A response is a specific event at the interface of a system that is
caused by the system [Wie03, p.31].

A system is stimulated from the environment in order to receive a response from the system.

When stimulated, the system passes through a sequence of state transitions and responds to the

stimulus.

Program

Programs are the central subjects that are under investigation in this work. Since they are part of

software and executed on hardware, these concepts are introduced first.

Software is abstract and intangible [Som16, p.18]. To define software, it can be opposed to

hardware which encompasses everything tangible [LL13]. Following the IEEE standard glossary

of software engineering [IEE90b], we use the subsequent definitions of hardware and software.

Hardware is the “physical equipment used to process, store, or transmit computer programs

or data” [IEE90b]. Hardware not only encompasses computers and internals of computers, e.g.

CPU, RAM, or graphic board, but also encompasses peripheral devices for input, e.g. keyboards,

microphones, or sensors, and output, e.g. displays, speakers, or printers [IEE90b], that allow

interacting with humans and other hardware [Teu99, p.23]. Further on, hardware encompasses

infrastructure to physically connect different hardware, e.g. network cable, router, or repeater, is

also included [IEE90b], [Teu99, p.23].

Software is a set of “programs, procedures, and possibly associated documentation and data

pertaining to the operation of a computer system” [IEE90b] and a computer system is a super-

system that consists of “[...] one or more computers and associated software” [IEE90b]. The

definitions of hardware and software are based on the further concepts which are also defined

by the IEEE standard glossary of software engineering [IEE90b]. The possibly associated doc-
umentation of software is neglected in this work since we focus on the behavior and functions

of software and in particular on the behavior and functions of programs.

Definition 11 (Program) A program is “a combination of computer instructions and data defi-
nitions that enables [...] hardware to perform computational or control functions” [IEE90b].

A computer instruction is an expression written in a programming language that can be ex-

ecuted by hardware [IEE90b]. Data definitions are descriptions of format, structure and other

properties of data that is processed by the computer program [IEE90a]. For the sake of sim-

plicity, we consider data definitions as special types of computer instructions. Also, we do not

distinguish between computer instructions that are readable by humans and machine instructions

that can be interpreted and executed by hardware [IEE90b].

A procedure is “a portion of a program that is named and that performs a specific action”

[IEE90b]. It is considered as means to structure computer instructions within a program.

From a structural point of view, a program can be decomposed into sub-systems of which

each sub-system is a program as well. Computer instructions are the most basic and atomic

20 Chapter 3. Conceptual Foundations

sub-systems of a program. Depending on the programming language and its language features,

different types of blocks, e.g. components, modules, packages, classes, methods, subroutines, or

paragraphs, are used to structure atomic sub-systems and to compose procedures and programs

[Ran75].

From a behavioral point of view, the execution of a program can be described by its state and

a sequence of state transitions [PY08, p.58]. In contrast to the generic definition of a system’s

state (See Definition 8, Page 18), AMMANN & OFFUTT [AO16] define the state of a program

more specifically “during execution [...] as the current value of all live variables and the current

location, as given by the program counter”.

A program engages in stimulus-response behavior and interacts with other systems of its

environment. The interactions encompass hardware, other programs, and humans that stimulate

or provide responses to the program [Som16, p.144].

Other programs with which a program may interact belong to the category of system and

support programs such as the operating system, hardware drivers, databases, or middleware

systems [Bal09, p.5], [Teu99, p.23]. This is the environment in which programs are executed

[Som16, p. 57]. Application system is another type of software that consists programs with

which a program may interact. The intention of application systems is to support or realize

operational tasks of its users [IEE90b]; [Bal09, p.5]; [Teu99, p.23]. Examples of application

systems are enterprise resource planning systems and workflow management systems [Wie03,

p.3]. An enterprise resource planning system provides an integrated view on the production

process of an enterprise. Its functionality can range from recommending production schedules

to ordering of spare parts from suppliers. Workflow management systems can be used to semi-

automate business processes, to monitor tasks and allocate manual tasks to employees.

Programs are not only part of a computer system where they interact with hardware and other

programs. They are also embedded in a more extensive and broader socio-technical system

where they interact with humans. A socio-technical system is a super-system of programs that

involves technical elements, i.e. computer systems, but it also involves non-technical elements

such as people, processes, and regulations [Som16, p.291]. It follows human, social, or organi-

zational purposes that generate or constrain the functions that a program is intended to realize.

The lifecycle of a program has two different phases, i.e. development and usage, which also

determine how other programs and humans interact with the program [Avi+04]. During the

development phase, humans develop programs by writing computer instructions and by com-

posing them into paragraphs, components, programs, etc. in order to realize the intended func-

tions. Therefore, humans use hardware and other programs to write, organize and store com-

puter instructions. During the usage phase, humans administrate and use programs [Avi+04].

To administrate is to prepare, deploy, and maintain a program such that it is ready for use in

its environment [IEE90b]. To use is to interact with a program that is executed on hardware

following the patterns of stimulus and response.

Since a program is intangible, it is not limited by properties of material, physical laws, or

manufacturing processes [Som16, p.18]. Each copy of a program is identical to the original

and reuse of a program can be highly advantageous [LL13]. In order to reuse a program, it can

be made configurable so that it can be adapted to the needs of different computer systems and

socio-technical systems [Som16, p.453]. Examples of configurable programs are software fam-

3.1. A Taxonomy of Dependable Programs 21

ilies [Par76], highly-configurable systems [CDS07] or software product lines [PBL05]. Then, a

program is developed generically to cover, for instance, a particular business activity or business

type [Som16, p.454]. The structure of a program can be divided into a common part which is

always relevant and a variable part that is only relevant for the usage in certain computer systems

and socio-technical systems [AG01]. The variable part is parameterized and configuration mech-

anisms are built into the program to enable or disable features and to choose between different

implementations of the same feature [Cza99, p.8]; [Som16, p.453].

Different implementation techniques exist to realize configuration mechanisms at compile-

time or run-time [AG01]. Examples are conditional compilation where source code regions

are enabled or disabled at compile-time, dynamic class loading where classes are chosen and

loaded at run-time, polymorphism and design patterns where implementations are exchanged at

run-time, or aspect-orientation where meta-programming is used to modify and inject additional

instructions at run-time.

In this investigation on programs, the state of a program, its configuration and also other

aspects can be important. Therefore, we use input and output as an abstraction over the stimulus,

response, configuration, and state spaces of a program.

Definition 12 (Input Domain) The input domain I denotes the set of all possible inputs.

Definition 13 (Input) An input τ ∈ I may encompass anything explicable that can actually
stimulate or affect the behavior of a program and anything explicable that can be expected to
stimulate or affect the behavior of a program.

For instance, BINDER [Bin94] considers configuration, state of a program, and also responses

of external systems as input. BARR et al. [Bar+15] consider “configuration and platform set-

tings, database table contents, device states, resource constraints, preconditions, typed values at

an input device, inputs on a channel from another system, sensor inputs, and so on” as input.

Definition 14 (Output Domain) The output domain O denotes the set of all possible outputs.

Definition 15 (Output) An output o ∈ O encompasses anything explicable that can be actually
observed after a program has been stimulated and anything explicable that can be expected to
be observed after a program has been stimulated.

Output may not only include response of a program but also include the state of the program

as well as stimuli to other systems and their states. For instance, Barr et al. [Bar+15] consider

“anything that can be discerned and ascribed a meaning significant to the purpose of testing

– including values that appear on an output device, database state, temporal properties of the

execution, heat dissipated during execution, power consumed, or any other measurable attributes

of its execution”.

Formally, a program can be modeled and viewed as a system P and represented as a math-

ematical function P : I → O that maps inputs τ ∈ I to outputs o ∈ O. P (τ) denotes the

execution of a program P with input τ ∈ I producing an output o ∈ O. This view on systems

is referred to as a transformational view because it emphasizes the input-output relationship of

22 Chapter 3. Conceptual Foundations

the functions that are realized by the system [HP85]. However, this view is not limited to sys-

tems that receive one stimulus and produce one response. While the system passes through a

sequence of state transitions, it may interact with other systems to stimulate them and to request

responses that are required to fulfill the system’s functions.

The transformational view is often contrasted with a reactive view on systems that emphasizes

a system’s continuous interaction and maintenance of relationships with its environment [HP85],

[Wie03, p.5]. The reactive view on systems covers more aspects of the actual system but is also

more complex. Here, the transformational view is chosen because it is simpler and sufficient.

In order to be able to reason about programs, two properties of programs that this work relies

on are observability and controllability. Observability describes the ability of observing the

behavior of a program in terms of its output [Bin94]. If the output cannot be observed, no

statements about a program’s behavior can be made [Bin94]. Controllability describes the ability

to which the input of a program can be controlled [Bin94]. If the input cannot be controlled, it

is unclear what has caused the output [Bin94]. In other words, if an input is used to stimulate

a program several times, the output should be the same every time [Fre91]. If the output is not

the same, not all parts of input are correctly identified. It is described as the so-called input
inconsistency effect where the output is not only functionally-related to the identified input but

also to some other parts which are not yet identified [Fre91].

Dependability

Since programs are deeply embedded in our lives, it is important that programs are trustworthy

[Som16, pp.283-286]. Programs should operate as intended without undesirable side effects.

Dependability is an established concept to describe “the ability of a system to deliver [an output]

that can be justifiably trusted” [Avi+04]. It is an integrating concept that consists of several

attributes such as availability, reliability, safety, and others [Avi+04].

In different contexts, different characteristics of dependability are appropriate [PY08, p.10].

In this work, we first focus on dependability in general and later introduce correctness and

robustness as the main attributes of dependability.

Definition 16 (Specification) A specification describes the functions that a program must real-
ize and constraints its development and execution [IEE90b], [Som16, p.53].

Definition 17 (Dependable Program) A program is dependable if and only if its behavior is
consistent with its specification [PY08]; [Avi+04, p.43].

A specification is typically used to decide whether the behavior of a program is dependable or

not. In practice, however, specifications may be incomplete, imprecise, and ambiguous which

leaves room for interpretation and makes it impractical to come to a decision [AL85]. Neverthe-

less, an authority must exist that ultimately decides whether or not the behavior of a program is

consistent with its specification. Therefore, we consider the specification as an authority which

cannot be challenged and functions as the ground truth.

To describe a specification S, we adapt the notation of CRISTIAN [Cri82]; [Cri84]; [Cri89]

and partition the input domain I into anticipated and unanticipated input domains to describe

3.1. A Taxonomy of Dependable Programs 23

Figure 3.1.: Input Domain Structure Diagram

the intended behavior. See Figure 3.1 (Page 23) for a structure diagram of the input domain that

is based on the notation of UML 2.5.2 [Coo+17]. Since the input domain I is broadly defined, it

covers all inputs that can be processed by the program that is under investigation and all inputs

for which the specification defines an intended behavior. The anticipated input domain AI ⊆ I
is the main subset of all inputs in I for which the specification defines intended behavior. The

unanticipated input domain UI ⊂ I is the possibly remaining subset of inputs in I that a program

can technically process but for which no intended behavior is defined by the specification.

Formally, a specification S is a relation S ⊆ I × O between the input domain I and output

domain O. The functions of a program are described via pairs (τ, o) ∈ S and each pair describes

an intended behavior in the form of expected output o ∈ O for an input τ ∈ I . The notation

also allows modeling non-determinism via several pairs that consist of the same input but map

to different outputs.

Please note, the following concepts are used to structure the input domain as described by the

specification. Later on, a test-specific model presents a view on the specification which is used

to ultimately guide the selection of inputs for testing. Since a test-specific model is the result of a

creation process, it may contain faults that cause a deviation from the authoritative specification.

Whenever necessary, we use truly as a prefix to distinguish the ground truth concepts that are

based on the authoritative specification from similar concepts that are based on a test-specific

model which may deviate from the authoritative specification.

Definition 18 (Anticipated Input Domain) The anticipated input domain AI ⊆ I is a subset
of the input domain for which some expected output is defined by the specification S, i.e. ∀τ ∈
AI, ∃o ∈ O such that (τ, o) ∈ S.

Definition 19 (Unanticipated Input Domain) The unanticipated input domain UI ⊂ I is a
proper subset of the input domain for which no expected output is defined by the specification S,
i.e. ∀τ ∈ UI, ∀o ∈ O, (τ, o) /∈ S.

The anticipated and unanticipated input domains are complete and disjoint subsets of the input

domain, i.e. I = AI ∪ UI and AI ∩ UI = ∅. Further on, truly-relevant and truly-irrelevant

inputs can be distinguished according to whether they belong to the anticipated or unanticipated

input domain.

Definition 20 (Truly-Relevant Input) An input τ is truly-relevant if and only if it is anticipated
by the specification S, i.e. τ ∈ AI .

24 Chapter 3. Conceptual Foundations

Definition 21 (Truly-Irrelevant Input) An input τ is truly-irrelevant if and only if it is not
anticipated by the specification S, i.e. τ ∈ UI .

A program P is dependable if and only if its behavior realizes the functions and if the pro-

gram’s outputs match the expected outputs of specification S for the entire anticipated input

domain AI , i.e. ∀τ ∈ AI, (τ, P (τ)) ∈ S. A program P is not dependable if at least one truly-

relevant input exists that is failure-causing and for which the output of the program does not

match the expected output of the specification S, i.e. ∃τ ∈ AI, (τ, P (τ)) /∈ S.

Definition 22 (Failure-Causing Input) A truly-relevant input τ ∈ AI is a failure-causing in-
put if and only if the output of the program P (τ) does not match the expected output of the
specification, i.e. (τ, P (τ)) /∈ S.

When a program is not dependable, the concepts of failure, error, and fault describe the in-

consistencies in more detail.

Definition 23 (Failure) A failure is an event that occurs if the output of a program deviates from
the expected output as described by its specification [Avi+04].

Definition 24 (Error) During the execution of a program, an error is the difference between
the state of the program and the hypothetically correct state [Avi+04].

Since the state of a program is defined by the value of all variables [AO16], an error can

also be described as the “the difference between a computed, observed, or measured value or

condition and the true, specified, or theoretically correct value or condition” [IEE90b].

An error in a program’s state can lead to errors in subsequent states during execution [Avi+04].

When an error infects the output of a program, it causes a failure. However, many errors do not

infect the output and may even remain unnoticed.

Definition 25 (Fault) A fault is the identified or hypothesized cause of an error [Avi+04]. It is
a static defect that manifests as an incorrect computer instruction [IEE90b]; [AO16]; [LO17].

Faults can often be considered as human-made either caused by the absence of actions or

caused by the performance of wrong actions when administrating, developing or using the pro-

gram [Avi+04]. Malicious and non-malicious human-made faults can be distinguished [Avi+04].

Non-malicious human-made faults can be introduced by mistakes that the human is not aware

of and by bad decisions that the human could not foresee, or simply by incompetence. The im-

portant distinction is that the faults are introduced accidentally without malicious objectives. In

contrast, malicious human-made faults are introduced with malicious objectives like disrupting

or stopping a service or accessing confidential information.

Symbols

P : I → O program

I input domain

3.1. A Taxonomy of Dependable Programs 25

τ ∈ I input

O output domain

o ∈ O output

P (τ) execution of program P

AI ⊆ I anticipated input domain

τ ∈ AI truly-relevant input

UI ⊂ I unanticipated input domain

τ ∈ UI truly-irrelevant input

S ⊆ I ×O specification

(τ, o) ∈ S specified output o ∈ O for truly-relevant input τ ∈ AI

3.1.2. Combinatorial Testing

Foundations of Testing

Testing is a primary approach to evaluate and ensure dependable programs [AO16]. In this

context, programs and sub-systems of programs are also called SUT when they are the subject

under investigation. The purpose of testing is to evaluate the conformance of a SUT to its

specification and to determine if a SUT contains any faults [GG75]; [Bou85].

Testing can be understood as an activity that follows a test method. In general, a method

is a goal-oriented and systematic approach to solve a theoretical or practical task [Mit13]. To

achieve its goals, a method encompasses a process model that describes the necessary activities

and the order in which they have to be performed [Bra+05]. Techniques are another impor-

tant part of methods which are detailed instructions on how to perform the necessary activities

[Bra+05]. In addition, tools support a test method by automating and assisting the performances

of techniques. Following this terminology, a test method can be defined as follows.

Definition 26 (Test Method) A test method is a particular method with the objective of evalu-
ating the conformance of a SUT to its specification.

A test method consists of a testing process, testing techniques and testing tools. The testing

process defines necessary activities of preparation, execution, and post-processing and the order

in which these activities should be performed. Testing techniques provide detailed guidelines

and describe how to perform necessary activities. Testing tools automate or assist the execution

of testing techniques.

Testing is a dynamic activity where the evaluation of a SUT is based on actual executions

[IEE90b]. Therefore, a SUT is ultimately stimulated with inputs and the outputs of the SUT are

evaluated.

26 Chapter 3. Conceptual Foundations

Definition 27 (Test Input) An input τ that is used for testing is a test input.

Definition 28 (Test Suite) A test suite T is a set of test inputs from the input domain T ⊆ I that
is used for testing.

Definition 29 (Test Execution) Test execution is the activity of stimulating a SUT with test in-
puts τ ∈ T , observing its outputs o ∈ O and checking if the outputs conform to the specification
[IEE90b]; [LO17].

Whether testing detects failures depends on two key factors which are test oracles and the

selected test inputs [LO17]. Checking if the output conforms to the specification is the task of a

test oracle. A test oracle assigns a label to each test input which is either pass or fail.

Definition 30 (Test Oracle) A test oracle is a mechanism that checks the observed outputs of a
test and decides whether the outputs match the expected outputs of the specification [Wey82];
[LO17].

We use the predicate OK(τ, P (τ)) to indicate a pass of test input τ because the test oracle

determined that the observed output P (τ) conforms to the specification [GG75]. A test input τ
for which the test oracle determines that the output of program P (τ) does not conform to the

specification is a failure-causing test input which exposes a fault [WWH91]. A failure-causing

test input is indicated by ¬OK(τ, P (τ)).

Testing requires the existence of test oracles since no conclusions can be drawn otherwise

[AL85]. The oracle assumption captures the belief that correct test oracles which reveal all

failures of a SUT exist or can be constructed with reasonable effort [Wey82]; [AL85]; [LO17].

However, the oracle assumption does not necessarily hold in practice. But, even when the oracle

assumption does not hold, the concepts of testing are still applicable with limited informative

value and less exploratory power. In fact, construction of test oracles is another dedicated branch

within the area of research on testing. For more information, please refer to related work (cf.

[Wey82]; [Bar+15]; [LO17]; [PH18]).

Further on, testing involves several executions of the SUT with various test inputs and implies

that each execution terminates within a reasonable amount of time [Gou83]; [Mor90]. If it does

not terminate, it is assumed that the test oracle labels the test input as failed after time constraints

as defined by the specification are exceeded.

Failure-causing inputs and failure-causing test inputs could be further distinguished because

a failure-causing input is defined in terms of the authoritative specification, i.e. (τ, P (τ)) /∈ S,

while a failure-causing test input is defined in terms of the test oracle, i.e. ¬OK(τ, P (τ)).

But for the sake of simplicity, we do not consider discrepancies. We assume the existence

of correct test oracles and consider OK(τ, P (τ)) to be equivalent to (τ, P (τ)) ∈ S. The main

difference between a failure-causing input and a failure-causing test input is that the latter is

selected for testing. Furthermore, a failure-causing input is always a truly-relevant input because

no expected output is specified for truly-irrelevant inputs. However, test-specific models define

a classification of relevant and irrelevant test inputs subsequently. The classification may deviate

from the classification as imposed by the authoritative specification and not all failure-causing

3.1. A Taxonomy of Dependable Programs 27

test input may be classified as relevant. Then, test inputs can be failure-causing even if they are

incorrectly classified as irrelevant.

Assuming that test oracles reveal all propagated failures, the important factor in testing is the

selection of test inputs such that faults are triggered and propagate to failures. Testing with all

inputs, i.e. T = I , is said to be exhaustive [GG75]. But it is almost always infeasible due to a

too large input domain. Therefore, a proper subset T ⊂ I is typically used as a test suite.

While using a non-exhaustive test suite makes testing feasible, it also reduces the informa-

tive value and exploratory power of testing. When at least one test input fails, i.e. ∃τ ∈
T,¬OK(τ, P (τ)), it can be concluded that the program contains faults. However, when all

test inputs pass, i.e. ∀τ ∈ T,OK(τ, P (τ)), it cannot be concluded that the program does

not contain any fault. This would be an infinite conclusion from finite knowledge, i.e. ∀τ ∈
T,OK(τ, P (τ)) ⇒ ∀τ ∈ I,OK(τ, P (τ)) [GG75]; [How76]; [WO80]; [Gou83]; [Bou85].

GOODENOUGH & GERHART [GG75] introduced and formalized the concept of ideal testing

with ideal test suites that allow drawing that infinite conclusion. However, HOWDEN [How76]

showed that ideal testing is not practical since no general approach exists to construct ideal test

suites for arbitrary programs and specifications. In addition, WEYUKER & OSTRAND [WO80]

discussed additional flaws and showed that only the exhaustive test suite fulfills the properties of

an ideal test suite. Hence, the question how to decide that a program has been tested thoroughly

enough such that its conformance to its specification can be judged with reasonable confidence

remains an open problem in research on testing [Wey86].

The common approach to deal with this problem is to systematize the selection of test inputs

via fault models, test adequacy criteria and test selection strategies which are explained subse-

quently. Test adequacy criteria allow guiding the systematic selection of test inputs and to assess

the quality of test suites. Based on test adequacy criteria, conclusions whether a program is

tested sufficiently can be made by assessing whether test suite T satisfies a test adequacy crite-

rion and by comparing a test adequacy criterion to other test adequacy criteria [Gou83]; [Wei89];

[Wei90]; [WWH91]; [FW93b]; [FW93a]; [Zhu96]; [ZHM97]; [Hie02]; [Wey02].

Definition 31 (Test Adequacy Criterion) A test adequacy criterion is a predicate that specifies
conditions that must be satisfied by a test suite T [WO80]; [WJ91].

Test adequacy criteria are usually defined relative to a SUT, its specification, or both [Wey86];

[ZHM97]. A test adequacy criterion is a black-box test adequacy criterion when it is defined

independently from the SUT and only relative to the specification [ZHM97].

Test adequacy criteria define “what properties of a [SUT] must be exercised to constitute a

thorough test” [GG75]. The properties are usually based on hypothesized characteristics and

faults which are believed to be contained by the program [Bin00]; [Hie02].

Definition 32 (Fault Model) A fault model is a description of hypothesized characteristics and
faults that the SUT is believed to contain [Bin00].

The test adequacy criterion is typically defined such that its satisfaction by test suite T implies

– or at least improves the likelihood – that testing with test suite T activates the hypothesized

faults if they are present in the program [Bou85]; [Bin00, p.65] [Pre+13].

28 Chapter 3. Conceptual Foundations

A test selection strategy is a particular technique that provides detailed instructions on how to

choose test inputs from the anticipated input domain and when to stop.

Definition 33 (Test Selection Strategy) A test selection strategy is a technique that describes
how to systematically select a subset of test inputs from the input domain T ⊆ I such that one
or more test adequacy criteria are satisfied [Gou83]; [ZHM97]; [Hie02].

Just as with test adequacy criteria, a test selection strategy can be defined relative to a SUT,

its specification, or both. A test selection strategy is a black-box test selection strategy when it

is defined independently from the SUT and only relative to the specification.

When using a test selection strategy, the test adequacy criterion functions as a stopping rule

that determines when enough test inputs are selected [Wey86]; [ZHM97]. Typically, a test ade-

quacy criterion describes a lower boundary of test inputs that must be selected. Once the lower

boundary of test inputs is reached, no additional test inputs are needed [ZHM97]. Therefore,

test selection strategies usually aim to select a minimum number of test inputs such that the

corresponding test adequacy criteria are satisfied.

Fault model, test adequacy criterion and test selection strategy form a functional unit [Gou83];

[ZHM97]. Following the instructions of the test selection strategy, test suites are generated that

satisfy the corresponding test adequacy criterion. These test suites exhibit characteristics such

that they can expose faults that are hypothesized by the fault model.

Foundations of Combinatorial Testing

CT is a test method with particular black-box test adequacy criteria and particular black-box

test selection strategies that depend on a model of the SUT’s input domain which is called IPM

[GOA05]. Figure 3.2 depicts the idealized CT test process which we adopted from GRINDAL

& OFFUTT [GO07]. As a first activity, the tester has to choose one or more test selection

strategies. Then, the tester has to model an IPM. In activity three, the test selection strategies are

applied to select test inputs based on the IPM. Afterwards, the test suite can be evaluated. If it

is considered inadequate, the IPM and test selection strategies can be adjusted. Otherwise, the

test suite is used in the test execution activity. Afterwards, the results of the test execution are

evaluated and conclusions are drawn.

An IPM can be understood as a model of the specification that describes a subset of the input

domain with the intention of selecting test inputs from it. Formally, an IPM is a 3-tuple IPM =
〈P̃ , V, Cex〉 [GOA05]; [NL11a]. It consists of a set of n input parameters P = {p1, ..., pn}
and a set of n value domains V = {V1, ..., Vn} that structure a subset of the input domain I
of the SUT. Each parameter pi ∈ P̃ represents an explicable unit of the input domain and is

associated with a domain of values, i.e. a nonempty set Vi of mi discrete values. Cex is a set of

exclusion-constraints which is further explained in subsequent paragraphs.

Definition 34 (Input Parameter Model) An IPM is a specification-based model of the input
domain that is used by the test selection strategy to select test inputs [GOA05]. It structures the
input domain via parameters, associated value domains, and exclusion-constraints.

Following the structure of the input domain via parameters and values, test inputs can be

described as sets of parameter-value pairs such that exactly one value for each parameter is

3.1. A Taxonomy of Dependable Programs 29

Figure 3.2.: Idealized CT Test Process

contained. Let π = (pi, vj) be a parameter-value pair that denotes an assignment of value vj ∈
Vi for parameter pi. A test input is a set of parameter-value pairs for n distinct parameters:

τ = {π1, , .., πn} = {(pi1 , vj1), ..., (pin , vjn)}.

The IPM as a model of a specification describes an input domain from which test inputs

are selected by combinatorial test selections strategies. We denote this input domain as the

exhaustive test suite E which is a discrete subset of the SUT input domain E ⊆ I and a superset

T ⊆ E of each test suite T .

Definition 35 (Exhaustive Test Suite) The exhaustive test suite E contains all test inputs that
are modeled by the IPM, i.e. E = V1 × ...× Vn.

The concept of schemata generalizes this formalism and allows to represent test inputs and

also partial test inputs that do not contain parameter-value pairs for all parameters. A test input

is a schema with degree d = n, a value is a schema with degree d = 1, and a value combination

is a schema with degree d > 1 ≤ n. We use τ as a symbol to describe schemata and test inputs

in general. When the distinction between schemata and test inputs is important, s is used as

another symbol to describe schemata.

Definition 36 (Schema) A schema τ is a set of parameter-value pairs for d (1 ≤ d ≤ n) distinct
parameters τ = {(pi1 , vj1), ..., (pid , vjd)} [NL11b]; [Yil+14a].

Definition 37 (Degree of Schema) The number of parameter-value pairs that a schema covers
denotes the degree of a schema, i.e. d = |τ |.

An important relation between two schemata is the coverage relation where one schema covers

another schema. Please note, the relation is reflexive such that each schema τ covers itself.

Definition 38 (Coverage) Coverage denotes a relation between two schemata τa and τb where
schema τa covers schema τb (denoted as τb ⊆ τa) if and only if for every parameter-value pair
(pi, vj) of τb the same parameter-value pair exists in τa, i.e. ∀(pib , vjb) ∈ τb, ∃(pia , vja) ∈ τa
such that ia = ib ∧ ja = jb.

30 Chapter 3. Conceptual Foundations

Test modeling is an important activity as it defines the input domain for testing [NL11a]. If a

failure-causing test input is not considered by the IPM, it cannot be selected by the test selection

strategy and cannot fail during test execution. As a consequence, the fault that is linked to the

failure-causing test input may not be detected. Therefore, all important1 values should be mod-

eled. Different test modeling techniques can be used to identify parameters and values for each

parameter [GOM07]. For parameters with value domains that are continuous or potentially infi-

nite, a discrete subset of values must be selected, for instance, by using equivalence partitioning

or boundary value analysis [GOA05].

To further analyze causes of failures, the concept of failure-causing (test) inputs is extended

to failure-causing schemata.

Definition 39 (Failure-causing Schema) A truly-relevant schema s is a failure-causing schema
if and only if each truly-relevant input τ ∈ AI that covers s ⊆ τ is a failure-causing input, i.e.
s ⊆ τ ⇒ (τ, P (τ)) /∈ S and s ⊆ τ ⇒ ¬OK(τ, P (τ)).

Further on, the concept of minimality allows to narrow down the parameter values that are

held responsible for causing the failure [NL11b].

Definition 40 (Minimal Failure-causing Schema) A failure-causing schema s is a minimal
failure-causing schema (MFCS) if and only if no proper subset schema s′ ⊂ s exists that is
itself a failure-causing schema. Then, for each proper subset schema s′ ⊂ s, a relevant in-
put ∃τ ∈ AI exists that covers s′ ⊂ τ and is not failure-causing, i.e. (τ, P (τ)) ∈ S and
OK(τ, P (τ)).

A combinatorial test adequacy criterion commonly used in CT is t-wise coverage where t is

a positive integer that denotes the testing strength [KKL13].

Definition 41 (t-wise Coverage) t-wise coverage is a test adequacy criterion that is satisfied
by a test suite if all schemata of an IPM with degree d = t are covered by at least one test input
of the test suite [GOA05].

t-wise coverage can be understood as a generalization of the each-choice (t = 1), pair-wise

(t = 2), and N -wise (t = n) test adequacy criteria [GOA05]. Each-choice is a simple test

adequacy criterion that requires each value that is modeled by the IPM to appear in at least

one test input. Pair-wise is a test adequacy criterion that considers the interaction of parameter

values. It requires that each pair of parameter values appears in at least one test input. t-wise

coverage is simply an extension of pair-wise that provides a generalization from pairs to tuples of

size t. The N -wise coverage test adequacy criterion denotes the upper limit of t-wise coverage

since each tuple encompasses values of all parameters. Testing with N -wise coverage can be

considered as exhaustive testing with respect to the IPM which is usually infeasible [Gri+06].

The corresponding t-factor fault model hypothesizes that faults are caused by the interaction

of t parameters and can be reached by combinations of t parameter values (MFCSs with degree

1The term ‘important’ is inspired by GRINDAL et al. [GOA05] who use the term ‘interesting’ to refer to any value

that the tester decides to use. Here, ‘important’ refers to any value that may reveal important findings when used

to test the SUT.

3.1. A Taxonomy of Dependable Programs 31

d = t) [DM98]. The t-factor fault model is substantiated by empirical research that analyzed bug

reports for different types of programs [KKL16]. The empirical research indicates that (1) most

faults are reached by MFCSs with degree d = 1 and d = 2, (2) progressively fewer faults require

MFCSs with degree d ≤ 3, and (3) no discovered fault involved requires more than 6 parameters

[KKL16]. But, it is important to note that these findings do not imply that MFCSs with degree

d > 6 may not exist [KKL13]. The conclusion that can be drawn from these findings is that most
failures are likely reached by MFCSs with degrees lower than 6. Consequently, testing should

focus on MFCSs with degrees between 1 ≤ k ≤ 6.

When testing a SUT with a test suite that satisfies t-wise coverage, i.e. a test suite that includes

all parameter value combinations of size t, at least one test input covers a MFCS with degree

d ≤ t and the SUT is expected to fail. Therefore, CT is considered an effective testing method

[KKL13]. Sometimes, CT is even called pseudo-exhaustive testing (cf. [KO06]) because all

t-way combinations are tested.

Another important aspect is the avoidance of the so-called input masking effect since it can

prevent the identification of failure-causing test inputs. We adapt the concept from YILMAZ et

al. [Yil+14a]:

Definition 42 (Input Masking Effect) “The input masking effect is an effect that prevents a test
[input] from testing all combinations of input values, which the test [input] is normally expected
to test” [Yil+14a].

Different types of input masking can be identified. Irrelevant test inputs are one cause of

the irrelevant input masking effect. The test selection should be guided to only select test in-

puts of the anticipated input domain. Otherwise, test inputs could be selected that are irrelevant

which means, for instance, that their expected behavior is not defined, they are not executable or

they are unimportant and just not of any interest. Therefore, truly-relevant and truly-irrelevant

schemata should be distinguished. These concepts are refinements of Definition 20 (Truly-Rel-

evant Input) and Definition 21 (Truly-Irrelevant Input) that incorporate the structure of parame-

ters and values. A truly-relevant input is also a truly-relevant schema and a truly-irrelevant input

is also a truly-irrelevant schema.

Again, the prefix truly is used to highlight the ground truth classification of the authoritative

specification. Another classification that is based on the IPM is provided afterwards.

Definition 43 (Truly-Irrelevant Schema) A schema s is truly-irrelevant if and only if �τ ∈ AI
such that s ⊆ τ .

Definition 44 (Truly-Relevant Schema) A schema s is truly-relevant if and only if ∃τ ∈ AI
such that s ⊆ τ .

While it is easy to exclude values that are truly-irrelevant by simply omitting them from the

IPM, it is more complicated for truly-irrelevant value combinations because they are the result

of combining relevant values that cannot be omitted individually. In fact, most IPMs contain

combinations of parameter values that should not be combined [GO07].

32 Chapter 3. Conceptual Foundations

Running Example Let’s suppose the ordering web-service contains a fault where is-
DomesticCountry(country) fails for foreign countries. It is a known fault and

restriction of the current implementation which has implications for the testing as well.

Since the ordering web-service fails for orders with foreign countries as its destination,

testing with foreign countries has negative consequences. It can even cause irrelevant

input masking and should, therefore, be excluded.

A test input like [Packages: 1, Country: USA, Phone: +1,
Shipping: Standard] fails because of [Country: USA]. If it is the

only test input that covers [Shipping: Standard], the functions is-
StandardShipping(shipping) as well as processDomesticStanta-
rdOrder(packages, phone) are not sufficiently tested.

Any test input that covers a truly-irrelevant schema should not be tested because the truly-

irrelevant schema falsifies the result of the test. For instance, because the test input cannot be

executed or the intended behavior for the truly-irrelevant schema is not defined. As a conse-

quence, all the other values and value combinations of a test input that covers a truly-irrelevant

schema remain untested as long as there is no other test input that contains them. The truly-ir-

relevant schema masks all other values and value combinations of the same test input. Because

truly-irrelevant schemata cause the input masking effect, a tester should identify and exclude

truly-irrelevant schemata from test suites.

An IPM with parameters and values is a purely syntactic structure of the input domain without

any semantic information [GOA05]. To exclude truly-irrelevant schemata automatically, addi-

tional semantic information must be added to the IPM. Since the authoritative specification does

not exist in a machine-interpretable form, the aforementioned set of exclusion-constraints Cex is

used to add the semantic information to the IPM. It allows to distinguish relevant from irrelevant

schemata.

Definition 45 (Exclusion-Constraints) The set of exclusion-constraints Cex is a set of con-
straints to distinguish relevant from irrelevant schemata.

In general, constraints describe characteristics that may be true or false for a given schema. A

schema for which a set constraints evaluates to true is said to satisfy the constraints. Formally,

SAT : C∗ × A → Bool denotes the satisfiability function to check whether a schema s ∈ A
satisfies a set of constraints C ⊆ C∗. In analogy to the exhaustive test suite E, we introduce A as

a set that covers all schemata that are modeled by the IPM. It encompasses all test inputs τ ∈ E
with d = n, and all schemata that are subsets of the test inputs, i.e. A = {s|τ ∈ E ∧ s ⊆ τ}. In

addition, C∗ is a set that contains all possible sets of constraints as modeled by the IPM.

Different ways to specify constraints and to realize the satisfiability function exist (cf. [Yu+13a];

[Yu+15]). A constraint can be represented as a logical expression in propositional logic or as a

set of predefined schemata. Although, it is important to note that both representations of con-

straints, are equally powerful and both can be transformed into the other.

Both representations allow for different ways of realizing the satisfiability function. When

using the representation of logical expressions, the constraints C and the schema under evalua-

tion s are transformed into a CSP and a CSP solver searches if a test input τ exists that satisfies

3.1. A Taxonomy of Dependable Programs 33

all constraints and covers s ⊆ τ [RN10]; [Yu+13a]. When using the representation via sets of

predefined schemata, it is checked if the schema under evaluation s does not cover any prede-

fined schemata and if a test input τ exists that covers s ⊆ τ while not covering any predefined

schemata [Yu+15]. Optimizations of this approach involve the computation of minimal schemata

to reduce the number of coverage checks [Yu+15].

In this work, we rely on logical expressions to model constraints without restricting the real-

ization of the satisfiability function. In the case of exclusion-constraints, schemata that satisfy

the set of exclusion-constraint are relevant. Otherwise, they are irrelevant.

Definition 46 (Irrelevant Schema) A schema τ is an irrelevant schema if and only if at least
one exclusion-constraint c ∈ Cex is not satisfied, i.e. SAT(Cex, τ) = false.

Definition 47 (Relevant Schema) A schema τ is a relevant schema if and only if it satisfies all
exclusion-constraints, i.e. SAT(Cex, τ) = true.

The classification of irrelevant and relevant schemata is defined with respect to the IPM and

its exclusion-constraints. It is not necessarily equivalent to the classification that is imposed

by the authoritative specification. As a consequence, exclusion-constraints that are too strict or

loose may classify schemata incorrectly.

Running Example The conditions c1, ..., c4 of the example can be used as exclusion-

constraints. Consequently, the corresponding schemata would be classified as irrelevant

and excluded. This is an undesirable outcome because we want to test the EH as well.

The partition of valid and invalid schemata follows later on.

Let’s suppose the development of the ordering web-service is not finished yet. In

fact, the connection between the ordering web-service and other web-services of the

local parcel service is still incomplete. As a consequence, the ordering web-service is

failing when it processes orders from foreign countries that select the standard shipping

method. It is a known fault and restriction of the current implementation which has

implications for the testing as well. Since the ordering web-service fails for orders that

include standard shipping to foreign countries, testing that particular schema is of no

interest. The schema might even cause irrelevant input masking and should, therefore,

not be excluded.

The logical expression Shipping = Standard ⇒ Country �= USA can be

used as an exclusion-constraint to exclude the known fault. Alternatively, the equiva-

lent formulae ¬(Shipping = Standard ∧ Country = USA) or (Shipping =
Standard ∧ Country = UK) ∨ (Shipping = Standard ∧ Country = 123)
can be used as well. The first alternative formula highlights the irrelevant schemata. The

second alternative formula highlights [Country:123] as a relevant value.

Specifying exclusion-constraints and realizing the satisfiability function is not sufficient. Test

selection strategies must exclude irrelevant schemata while still preserving the test adequacy

criteria [GOM07].

34 Chapter 3. Conceptual Foundations

Definition 48 (Relevant t-wise Coverage) Relevant t-wise coverage is a test adequacy crite-
rion that is satisfied by a test suite if all relevant schemata with degree d = t are covered by at
least one relevant test input of the test suite [GOA05].

Different ways to exclude irrelevant schemata exist. GRINDAL & OFFUTT [GOM07] discuss

them as conflict handling strategies. Two strategies (abstract parameter, sub-models) involve re-

modeling of new IPMs that do not model any irrelevant schemata. The replace strategy proposes

to clone and replace irrelevant schemata of existing test suites. The advantage of all three strate-

gies is that the test selection strategies may remain simpler as they do not have to deal directly

with irrelevant schemata. But, the test suites may become unnecessarily big. A fourth strat-

egy is to already avoid irrelevant schemata during test selection by embedding the satisfiability

function into the test selection strategy (cf. [Yu+13a]; [Yu+15]). As a disadvantage, the test

selection strategies may become more complex and the execution time may increase. However,

the strategy can be fully automated and the test suites are smaller.

In empirical studies conducted by PETKE et al. [Pet+13]; [Pet+15], test selection strategies

following the avoid strategy are applied to real-world IPMs. Even though there is room for

improvement, the results indicate that the avoid strategy is applicable in real-world contexts.

Therefore, we follow the avoid strategy in this work.

Symbols

T ⊆ E test suite

τ ∈ E test input

OK(τ, P (τ)) passing test input τ

¬OK(τ, P (τ)) failure-causing test input

IPM = 〈P̃ , V, Cex〉 input parameter model

P̃ = {p1, ..., pn} set of all parameters modeled by an IPM

n number of parameters modeled by an IPM

pi ∈ P̃ parameter with label i (0 ≤ i ≤ n)

V = {V1, ..., Vn} set of all value domains of all parameters

Vi domain of values associated with parameter pi

vj ∈ Vi value with a unique index j of parameter pi

mi number of values modeled by Vi

π = (pi, vj) parameter-value pair π with vj ∈ Vi for parameter pi parame-

ter value pair

E ⊆ I exhaustive test suite

3.1. A Taxonomy of Dependable Programs 35

A set of all schemata

τ = {(pi, vj), ...} schema

s = {(pi, vj), ...} schema (alternative symbol)

d = |τ | degree of schema τ

τa ⊆ τb coverage relation between two schemata

t testing strength

SAT : C∗ ×A → Bool satisfiability function

c constraint

C ∈ C∗ set of constraints

C∗ set of all possible constraint sets

Cex set of exclusion-constraints

Summary of Key Concepts

To conclude the taxonomy of dependable programs, Figure 3.3 depicts a structure diagram that

is based on the notation of UML 2.5.1 [Coo+17]. The objective of this summary is to provide an

overview of key concepts and relations in order to function as a reference point and in order to

highlight the distinction of specification-based and IPM-based concepts. The structure diagram

consists of named elements, aggregations, and generalization sets (cf. [Coo+17, p.119]). For

reasons of clarity, names of generalization sets and cardinalities are omitted. Further on, each

generalization set is considered disjoint. The diagram is divided into four quadrants which are

pictured by dashed circles and correspond to four different views on the central concept of input

τ ∈ I and its input domain I .

The upper left quadrant no. 1 corresponds to the concepts that are established by the authorita-

tive specification. A specification S partitions the input domain and all inputs into truly-relevant

inputs τ ∈ AI that belong to the anticipated input domain AI and into truly-irrelevant inputs

τ ∈ UI that belong to the unanticipated input domain UI .

For all truly-relevant inputs τ ∈ AI , expected outputs o ∈ O are defined by the specification

(τ, o) ∈ S. When the output of a program P differs from the expected outputs of specification S,

i.e. (τ, P (τ)) /∈ S, the truly-relevant input is failure-causing and program P is not dependable.

Testing is the primary approach to evaluate whether a program is dependable. In the context

of CT, an IPM is used as an explicit model of the specification S. An IPM defines parameters

and values that constitute a subset of the input domain E ⊆ I . A test input is a particular input

τ ∈ E that is modeled by an IPM. In addition, the parameters and values of an IPM allow

utilizing a schema as a finer-grained structure that generalizes over single values, combinations

of values, and complete test inputs. To make the concepts of truly-relevant, truly-irrelevant,

36 Chapter 3. Conceptual Foundations

and failure-causing inputs applicable in the context of CT, they are transferred to its schema

counterparts.

In the upper right quadrant no. 2, the aforementioned concepts are transferred from a purely

specification-based view to a view that incorporates the structure of parameters and values as

defined by an IPM.

Each schema s ∈ A can be partitioned according to the authoritative specification: A schema

s is truly-relevant if a truly-relevant input τ exists that covers the schema, i.e. ∃τ ∈ AI, s ⊆ τ .

A schema s is truly-irrelevant if no such truly-relevant input exists, i.e. �τ ∈ AI, s ⊆ τ .

Further on, a truly-relevant schema s is failure-causing when all truly-relevant inputs τ that

cover the schema are failure-causing, i.e. ∀τ ∈ AI, s ⊆ τ ⇒ (τ, P (τ)) /∈ S.

The concept of minimal failure-causing schemata utilizes the finer-grained structure and pro-

vides more detailed information about the cause of a failure. A failure-causing schema s is

minimal if no proper subset s′ ⊂ s is failure-causing.

Both upper quadrants display concepts that are based on the authoritative specification. How-

ever, not the authoritative specification but an IPM is used to select test inputs for testing. Since

an IPM is the result of a creation process, it may contain faults that result in a deviation from the

authoritative specification. As a consequence, an IPM may classify test inputs incorrectly. To

acknowledge potential deviations, the concepts of relevant, irrelevant, and failure-causing test

inputs are introduced as counterparts to truly-relevant, truly-irrelevant inputs, and failure-caus-

ing inputs. The concepts are depicted in the lower left quadrant no. 3.

The exclusion-constraints Cex of an IPM allow a partitioning of all test inputs τ ∈ E into

relevant and irrelevant test inputs. A test input is relevant if all exclusion-constraints are satisfied,

i.e. SAT(Cex, τ) = true. Otherwise, the test input is irrelevant, i.e. SAT(Cex, τ) = false.

Since the concept of failure-causing inputs relies on truly-relevant inputs, a counterpart is

required as well. A test input τ is failure-causing if a test oracle determines that the output P (τ)
does not conform to the specification, i.e. ¬OK(τ, P (τ)).

The classification of failure-causing test inputs is not limited to relevant test inputs because a

truly-relevant input that is failure-causing may be incorrectly classified as irrelevant.

In the lower right quadrant no. 4, the partitioning of exclusion-constraints Cex is combined

with the structure of parameters and values. Hence, the concepts of irrelevant, relevant, and

failure-causing schemata are analogous to the irrelevant, relevant, and failure-causing test inputs.

In addition, the concept of minimal failure-causing schemata introduces a finer-grained structure

that provides more detailed information about the cause of a failure.

3.1. A Taxonomy of Dependable Programs 37

Figure 3.3.: Key Concepts of Dependable Programs and its Relations

38 Chapter 3. Conceptual Foundations

3.2. An Extended Taxonomy of Robust Programs

The CT test method is build on the taxonomy of dependable programs as introduced in the

previous section. It relies on a uniform treatment that does not distinguish between different

types of failures. As already stated in the introduction of this work, CT has shortcomings and

potential improvements in the context of EH and input masking exist.

Now, we extend the previously introduced taxonomy to precisely distinguish different types

of failures. Furthermore, we refine the concepts of dependable programs to describe robust and

correct programs. Then, EH is introduced as a common approach to develop robust programs

and issues related to EH are identified to further motivate the necessity of testing with invalid

inputs. Afterwards, the introduced concepts are transferred to the domain of CT.

3.2.1. Robust Programs

As stated before, programs should operate as intended without undesirable side effects. One can

distinguish two different types of faults that can make a program not to operate as intended. The

two different types depend on the location of a fault and whether the fault is internal or external

with regards to the program [Avi+04].

Definition 49 (Internal Fault) For a given program, an internal fault is a fault that is located
within the boundaries [Avi+04].

Internal faults are typically introduced during the development phase of a system or during the

maintenance of a program [Avi+04]. Examples of internal faults are development faults where

incorrect computer instructions or data definitions are introduced or configuration faults where

wrong settings affect the security, network access or storage of a program.

Definition 50 (External Fault) For a given program, an external fault is a fault that is located
outside the boundaries, i.e. located in the program’s environment [Avi+04].

External faults occur during the use phase when interacting with a program [Avi+04]. Most of

the time, external faults are the result of human-made faults in the program’s environment either

by interacting incorrectly with the program or by introducing an internal fault when developing

another program. Even though external faults occur outside of a program’s boundary, they can

still infect state by interaction and interference [Avi+04]. Consequently, external faults cannot

only lead to errors in the program, but these errors can also propagate to failures. Examples

of external faults are inputs from humans or other programs that are malformed, or stressful

environmental conditions, e.g. other programs that do not respond within an expected time

frame [IEE90b].

The classification of internal and external faults depends on the perspective [Avi+04]. As an

example, an error made by a developer during the development phase results in a failure to write

correct computer instructions which, in turn, results in a fault of the program. During the use

phase of the program, the fault can produce an error which might propagate to a failure that

affects the program’s output. From the perspective of program A, the fault is internal. However,

from the perspective of another program that does not receive a correct response, the fault is

3.2. An Extended Taxonomy of Robust Programs 39

external. Another example is the inappropriate usage of a program by humans which is – from

the perspective of the used program – perceived as an external human-made fault with either

malicious or non-malicious intentions [Avi+04].

Internal and external faults are threats that can affect the dependability of every program. But

faults can only be removed from programs over which the developers have a sufficient level

of control. To detect internal faults in programs, testing is the primary approach in industry

[AO16]. Other programs of the environment and especially humans are beyond the control of

developers.

Therefore, the presence of external faults must be acknowledged and programs must become

tolerant towards external faults by considering, specifying and implementing appropriate re-

sponses. External faults must be detected and corresponding errors must be eliminated before

they can lead to errors and propagate to failures [Avi+04].

The tolerance of a program towards external faults is called robustness which IEEE [IEE90b]

defines as “the degree to which [a program behaves] correctly in the presence of [external

faults, i.e.] invalid inputs or stressful environmental conditions”. AVIŽIENIS et al. [Avi+04]

describe robustness as “a specializing secondary attribute” and as “dependability with respect

to external faults”. According to PEZZÈ & YOUNG [PY08, p.18], robustness involves weigh-

ing properties of a program depending on their criticality and deciding which properties should

be maintained in exceptional situations where the complete functionality cannot be guaranteed.

LIGGESMEYER [Lig09, p.10] understands robustness as a characteristic of programs to pro-

vide reasonable responses even in exceptional situations. Further on, KOOPMAN & DEVALE

[KD00] emphasize the scope of robustness “to be more than just catastrophic system crashes

and encompasses situations in which small, recoverable failures might occur”. What all the

different definitions of robustness have in common is the emphasis on a program’s acceptable
behavior in the presence of external faults [SF13].

Since a specification constitutes the dependable behavior of a program, robustness is, first

of all, a property of the specification [Lig09, p.10]. The specification has to define acceptable

behavior in the presence of external faults. Therefore, we divide the specification S = STS∪ES
into a standard specification STS and an exception specification ES [Cri89].

Definition 51 (Standard Specification) The standard specification STS defines the functions
of programs for standard situations without external faults.

Definition 52 (Exception Specification) The exception specification ES defines the functions
of programs for exceptional situations with external faults.

Accordingly, standard and exception behavior of programs can be distinguished.

Definition 53 (Standard Behavior) The standard behavior constitutes what a program does to
realize its functions as defined by the standard specification.

Definition 54 (Exception Behavior) The exception behavior constitutes what a program does
to realize its functions as defined by the exception specification.

The anticipated input domain AI that is associated with the specification S is further divided

into a standard input domain SI ⊆ AI and an exception input domain EI ⊆ AI which are

40 Chapter 3. Conceptual Foundations

Figure 3.4.: Extended Input Domain Structure Diagram

disjoint and complete, i.e. SI ∩ EI = ∅ and AI = SI ∪ EI . See Figure 3.4 (Page 40) for

a structure diagram of the extended input domain that is based on the notation of UML 2.5.2

[Coo+17]. Since the two domains are disjoint, the standard and exception specification cannot

specify expected outputs for the same input.

Definition 55 (Standard Input Domain) The standard input domain SI encompasses all in-
puts for which expected outputs are described by the standard specification, i.e. ∀τ ∈ SI, ∃o ∈
O such that (τ, o) ∈ STS.

Definition 56 (Exception Input Domain) The exception input domain EI encompasses all in-
puts for which expected outputs are described by the exception specification, i.e. ∀τ ∈ EI, ∃o ∈
O such that (τ, o) ∈ ES. The exception input domain covers inputs for all external faults that
are anticipated by the exception specification.

Further on, truly-valid and truly-invalid inputs can be distinguished according to whether they

belong to the standard or exception input domain.

Definition 57 (Truly-Valid Input) An input τ is truly-valid if and only if it belongs to the stan-
dard input domain τ ∈ SI .

Definition 58 (Truly-Invalid Input) An input τ is truly-invalid if and only if it belongs to the
exception input domain τ ∈ EI .

Consequently, a program is only dependable if it is consistent with its standard and exception

specification. A program that is consistent with its standard specification is correct [PY08, p.45]

and a program that is consistent with its exception specification is robust.

Definition 59 (Correct Program) A program P is correct if and only if its behavior is consis-
tent with its standard specification STS for the entire standard input domain SI , i.e. ∀τ ∈
SI, (τ, P (τ)) ∈ STS.

3.2. An Extended Taxonomy of Robust Programs 41

Definition 60 (Robust Program) A program P is robust if and only if its behavior is consis-
tent with its exception specification ES for the entire exception input domain EI , i.e. ∀τ ∈
EI, (τ, P (τ)) ∈ ES.

Please note, this is a narrow view on dependability that excludes further characteristics such

as availability, reliability, and safety because of our focus on robustness. Further on, robustness

is often understood as a gradual characteristic that encompasses different levels of robustness

[Lig09, p.7]. Our definition of robust programs is not gradual but describes an absolute criterion

because the distinction between different levels of robustness is not necessary here. Robustness

should also not be confused with safety [SF13]. Safety is another characteristic of depend-

ability that is typically a concern of critical programs such as in the avionics or medical that

is concerned with the avoidance of catastrophic consequences [PY08, p.44]; [Avi+04]. Safety

does not distinguish between truly-valid and truly-invalid inputs but defines safety requirements

which are generally valid even in the presence of internal faults. In contrast, robustness is limited

to truly-invalid inputs as it is concerned with the program’s behavior in the presence of external

faults. For truly-invalid inputs, robustness not only strives for the avoidance of catastrophic con-

sequences. It may also strive for retaining partial or alternative functionality despite the presence

of external faults [PY08, p.45].

Analogously to the distinction of correctness and robustness, ordinary and robustness faults

and corresponding failures can be distinguished.

Definition 61 (Ordinary Fault) An ordinary fault is an internal fault that is the identified or
hypothesized cause of an ordinary failure.

Definition 62 (Ordinary Failure) An ordinary failure is a failure that occurs if the output of a
program deviates from its standard specification.

Definition 63 (Robustness Fault) A robustness fault is an internal fault that enables an exter-
nal fault to cause a failure of the program.

Definition 64 (Robustness Failure) A robustness failure is a failure that occurs if the output of
a program deviates from its exception specification.

Both truly-valid and truly-invalid inputs may be failure-causing inputs. To distinguish the

causes of ordinary and robustness failures, failure-causing truly-valid inputs and failure-causing

truly-invalid inputs are defined. A failure-causing truly-valid input causes ordinary failures and

a failure-causing truly-invalid input causes robustness failures.

Definition 65 (Failure-Causing Truly-Valid Input) A truly-valid input τ ∈ SI is a failure-
causing truly-valid input if and only if the output of program P (τ) does not match the expected
output of the standard specification, i.e. (τ, P (τ)) /∈ STS.

Definition 66 (Failure-Causing Truly-Invalid Input) A truly-invalid input τ ∈ EI is a fail-
ure-causing truly-invalid input if and only if the output of program P (τ) does not match the
expected output of the exception specification, i.e. (τ, P (τ)) /∈ ES.

42 Chapter 3. Conceptual Foundations

Depending on the robustness fault, different types of robustness failures can be distinguished.

Robustness faults can lead to security breaches when an attacker gains privileges by exploiting,

for instance, a buffer overflow [BE11]. However, robustness faults are defined in a broad sense.

They are not limited to internal faults that cause security breaches. Exploiting robustness faults

can also cause programs to be unavailable because programs themselves or entire operating sys-

tems shut down [Koo+97]. Furthermore, robustness faults can remain silent when – despite the

presence of an external fault – the provided response is incorrect but meets some characteristics

of a correct response that might pass a superficial inspection. This type of failure can result in

financial losses when, for instance, business rules or even laws are violated. As an example, a

robustness fault can cause a program to accept a customer unintentionally reserving a car for the

29th of February in a non-leap year or a customer booking a flight with flipped begin and end

dates. When these external faults remain unnoticed, downstream business problems are caused

when the business is asked to fulfill the reservation or booking.

To make a program robust, it can be developed defensively [BF04]. Defensive programming is

a principle that is based on mistrusting all influences that are external to the program’s boundary

[Mey92]; [BE11]; [MSB11]. External influences that are invalid or even dangerous must be

either neutralized or rejected [TBL17]. Therefore, external faults must be anticipated and the

program must detect errors in its state that are caused by external faults [BF04]; [Avi+04]. Once

an error is detected, the hardware must execute computer instructions to recover the state by

eliminating the error. If the program fails to recover, the absence or incorrectness of necessary

computer instructions is a robustness fault.

In this context, fail fast is considered a good principle that strives to detect external faults

and to propagate their occurrence as early and fast as possible such that the error in the state

cannot become a robustness failure. SHORE [Sho04] provides the following argumentation in

favor of failing fast: “failing immediately and visibly sounds like it would make your program

more fragile, but it actually makes it more robust. Bugs are easier to find and fix, so fewer go

into production.”

List of Symbols

STS standard specification

SI ⊆ AI standard input domain

τ ∈ SI truly-valid input

ES exception specification

EI ⊂ AI exception input domain

τ ∈ EI truly-invalid input

3.2. An Extended Taxonomy of Robust Programs 43

3.2.2. Exception Handling

Overview of Exception Handling

Exceptions and EH are concepts commonly used in defensive programming to develop robust

programs [Goo75b]; [Gar+01]; [Mel+13]. Exceptions allow representing errors in the pro-

gram’s state and exception handling is used to detect errors in the state and to recover from

them [DG94]; [MT97]; [LS98]; [Gar+01].

Both concepts are introduced to emphasize the input masking effect that is caused by EH and

affects the fault detection ability of CT. The fundamental activities of EH are discussed in more

detail to allow a finer-grained discussion of potential robustness fault. Further on, issues related

to EH are presented to motivate the necessity of testing EH.

To realize the EH of a program, additional means are provided by the programming language,

run-time environment, or the operating system which are summarized as exception handling

mechanisms (EHMs). They are typically realized with features that are either inherent and

embedded into programming languages, or they are added through libraries and system calls

provided by the operating system [DG94]; [LS98]. The return code pattern [LS98]; [BDT06];

[BM00] requires each invoked operation to return a value to the invoking operation. Different

values are either results in the context of standard behavior or codes that indicate exception oc-

currences. Together with if-else statements to separate computer instructions for EH, the

return code pattern forms a simple EHM that solely relies on general purpose programming lan-

guage features. Another example of a simple EHM is the status flag pattern where the invoking

and invoked operation share a variable to indicate exception occurrences [BM00]. While made

popular by the C programming language and UNIX operating system, the return code and status

flag patterns are considered to have many major drawbacks [LS98]; [BM00].

EHM as inherent and embedded features can be traced back to programming languages like

PL/I [CC16] and LISP 1.5 [JG93] in the 1960s or ML [MTH90] in the 1970s [ECS15]. GOOD-

ENOUGH [Goo75b]; [Goo75c] first proposed a notation for EH in 1975. His work is commonly

acknowledged as being the foundation of most research on EH [Knu87]; [RM03]; [CM07].

GOODENOUGH [Goo75b]; [Goo75c] provided a broad definition of exceptions as “those [con-

ditions] brought to the attention of the operation’s invoker”. In addition to the recovery from

errors caused by external faults, the definition also includes cases where exceptions are used for

valid results and to monitor the progress of operations. Therefore, exceptions can be considered

as a more general concept that is not limited to recovery of external faults. However, follow-up

work argued against using exceptions for valid results and monitoring purposes [Cri82]. It is

also argued not to use exceptions to recover from internal faults because they should be removed

prior to execution [MR77]. We follow this argumentation and understand exceptions and related

concepts as a means to deal with external faults.

Definition 67 (Exception) An exception is a characterization of abnormal or unexpected con-
ditions that can appear in a program’s state and may require extraordinary computation [YB85];
[Knu87]; [BG18].

Definition 68 (Exception Occurrence) An exception occurrence denotes the presence of an ex-
ception in a program’s state [Cri89].

44 Chapter 3. Conceptual Foundations

Definition 69 (Exception Condition) An exception condition is a predicate and its satisfaction
implies the occurrence of an exception in a program’s state [YB85].

The invocation of programs with truly-invalid inputs from the exception input domain EI
implies external faults and the occurrence of one or more exceptions. However, the occurrence of

an exception does not imply that the exception is detected and that a program’s state is recovered.

To be consistent with its exception specification, a program must detect exception occurrences

and it must execute appropriate computer instructions to recover the state. Otherwise, it might

fail to deliver outputs as expected by its standard and exception specifications. The absence of

correct computer instructions for detection and recovery can be a robustness fault that can, in

turn, cause robustness failures.

Definition 70 (Exception Handling) EH is an umbrella term that encompasses all activities of
detecting exception occurrences and providing appropriate responses for recovery [Bai99].

When developing EH, two general strategies to deal with exception occurrences can be dis-

tinguished [Li+18]. The internal exception removal strategy attempts to recover from exception

occurrences locally. For instance, invalid inputs can be neutralized, e.g. fixing the format of

a date or floating-point number, requests to third-party programs that did not respond can be

retried, or the occurrence can be logged and ignored if appropriate. Afterwards, the program is

recovered and the normal mode of operation may continue.

If the program cannot recover from exception occurrences locally, the exception occurrences

must be propagated to the invoker. We denote this as the external exception propagation strategy
which often follows the fail fast principle. When the occurrence of an exception is detected and

propagated, the normal mode of operation cannot continue and the invoker has to provide an

appropriate reaction. Depending on the specific exception, the invoker may try to execute the

program again, execute an alternative, or propagate the exception occurrence even further and

back to its invoker.

From the very beginning, the objective of EH and EHMs is to improve the organization of

computer instructions. In addition to the notation of EH, GOODENOUGH [Goo75a] also dis-

cussed issues and objectives related to the design of EHMs. According to GOODENOUGH,

EHMs should be designed such that robustness faults are “avoided, discouraged, or detected at

compile-time” [Goo75a]. Moreover, he emphasizes the importance of comprehensibility of EH

designs which “is enhanced by reducing the complexity” and by fostering a “clear control-flow

structure”. He considers reusability as another aspect to support comprehensibility and distin-

guishes between the reuse of computer instructions to recover from the same type of exception

at different locations in the source code and the reuse of computer instructions to recover from

different types of exceptions at the same location in the source code. Finally, efficiency is men-

tioned as another important aspect to “avoid unacceptable run-time inefficiencies”.

Since then, EH and EHM are actively researched and address the points made by GOODE-

NOUGH [Goo75a]. Advances are, for instance, published in dedicated issues of the IEEE Trans-

actions on Software Engineering (TSE) journal [PRT00b]; [PRT00a] and the Springer Lecture

Notes in Computer Science (LNCS) [Rom+01]; [Don+06] book series. Most research has been

devoted to the design of EHMs for experimental and stable programming languages that follow

3.2. An Extended Taxonomy of Robust Programs 45

the paradigms of imperative, object-oriented, or functional programming [BAZ00]. There are

even proposals for alternative EHM designs for existing programming languages like C [Lee83];

[Geh92] or Java [GH05]; [Sil13]; [KSS17]. Furthermore, a variety of additional research on al-

ternative EHM designs exists. For instance, aspect-orientation is researched as an alternative to

improve reusability [LL00]; [Fil+06]; [Fil+09]; [Alm+14].

Language features of EHMs should be designed such that they avoid or discourage robustness

faults or such that they at least allow the detection of robustness faults at compile-time. The

language features should be understandable and reduce the complexity of EH. To improve the

organization of computer instructions, EHMs follow the separation of concerns design principle

and separate the computer instructions dedicated to the standard behavior of a program from

those dedicated to the exception behavior [Fil+09]; [Ber+08]. However, EHMs are criticized

for bringing only limited advantages if not bringing disadvantages [Bla82]; [MT97]; [LL00];

[Cac+08]. For instance, MILLER & TRIPATHI [MT97] argue “that EH may have different re-

quirements than object-orientation” and “that the differences are more like conflicts because

EH can contradict the conventional object-oriented paradigm”. They present unintended han-
dler action as a very common and harmful issue of EHMs where not the intended but another

unintended exception handling is invoked as a response to a detected exception.

Further on, empirical studies show that EHMs are often not adequately applied and itself a

significant cause of robustness failures (cf. [SAW12]; [BGB14]; [Cac+14]; [SCK16]; [Oli+16];

[Bar+16]; [Mon+18]). Investigations to better understand the causes of robustness failures are

still subject of research. Developers tend to focus on the normal behavior of programs while

oversimplifying [CM07]; [Jak+15]; [BG18] or even neglecting the exception behavior [SGH10];

[Ber+11]. For instance, SHAH et al. [SGH10] interviewed novice and expert software develop-

ers about their experience with EH. Novice software developers often adopt an ignore-for-now
approach when confronted with EH until they are forced to address EH because, for instance,

a robustness failure occurred. In contrast, expert software developers seem to acknowledge the

importance of EH and have trained themselves to incorporate EH into the software development.

The main usage pattern of EH is to propagate exceptions to the user in order to report an exter-

nal fault, e.g. invalid input and to ask for valid input. Although, developing the standard and

exception behaviors of a program simultaneously are perceived as conflicting goals because EH

is “not the use case that was identified” and “[EH] tends to get complex because of the number

of things that can happen all at once”.

BARBOSA & GARCIA [BG18] describe EH as the “least understood part of software projects”

and SAWADPONG & ALLEN [SA16] emphasize the inherent complexity of EH: “Intuitively,

humans tend to make mistakes when dealing with complex tasks. This applies to programming

tasks; mistakes are more likely to occur where the code is difficult to comprehend as is often

the case with EH code. Exceptions may be handled locally within a method or [propagated]

to [an exception handler] elsewhere in the call chain, further adding to the complexity of the

[program].” In fact, EH is often not locally limited to sub-programs. Instead, it globally affects

entire programs [Fil+09]. Due to dedicated language features of EHMs, an implicit control flow

for exceptions is established which is detached from the standard control flow and complicates

EH even more [RM00]; [Cac+08]; [WN08].

To support developers, static analysis tools to analyze and visualize the implicit flow of excep-

46 Chapter 3. Conceptual Foundations

Figure 3.5.: Fundamental Activities of Exception Handling

tions from sources of exception propagation to target exception handlers are developed. Static

analysis allows identifying paths from exception occurrences and to potential responses for re-

covery. Based on those paths, it is searched for exceptions that have no corresponding recovery

instructions or exceptions that might lead to unintended handler actions (cf. [RM99]; [RM03];

[Jo+04]; [BDT06]; [FR07]; [WN08]; [Coe+08a]; [Cac+09]; [SLM12]; [MCK12]; [Mel+13];

[Jin+17]; [Oli+18]). However, due to the nature of static analysis, usually many false positives

are reported [Ber+11]; [CC16]. Therefore, we focus on testing EH to identify robustness faults.

Subsequently, the fundamental activities of EH are discussed. They are a prerequisite for a

discussion of issues that are related to EH and current EHMs.

Fundamental Activities of Exception Handling

Again, an exception characterizes abnormal or unexpected conditions that can appear in a pro-

gram’s state. Some abnormal or unexpected conditions are predefined by the hardware, the

operating system, or by the run-time environment of a program [LS98]. Examples are attempts

to divide by zero or to access array elements with indices that are out of bounds. Besides these

predefined exceptions, another class of program-defined exceptions exists [LS98]. Program-de-

fined exceptions are defined on the program-level and are specific for the program.

To better describe robustness faults and failures, we further structure EH into five fundamental

activities. The fundamental activities and their ordering are depicted in Figure 3.5.

Exception Detection Exception detection is the first activity of EH to detect the occurrence

of an exception [DG94]. For predefined exceptions, the hardware, operating system, or run-time

environment implicitly performs reliability checks to detect exception occurrences [Gar+01].

For program-defined exceptions, the developers must explicitly define conditions and computer

instructions to detect exception occurrences.

After an exception is detected, appropriate computer instructions for the recovery must be

executed. Sometimes, the part of a program in which the exception occurrence is detected can

recover itself from an exception occurrence. For instance, some invalid inputs can be neutralized

by removing illegal characters from it. This is the aforementioned internal exception removal
strategy and exception detection is directly followed by the exception recovery as indicated by a

dashed line in Figure 3.5. However, the significance of an exception and appropriate computer

instructions for recovery are often only known outside the part of a program that detected the

exception occurrence [Goo75b]. This is the aforementioned external error propagation strategy.

3.2. An Extended Taxonomy of Robust Programs 47

Exception Propagation Exception propagation is the second activity of EH where the oc-

currence of an exception is propagated to request the recovery of the program’s state [Bai99].

Occurrences of predefined exceptions are implicitly propagated from the hardware, operating

system, or run-time environment [DG94]. For program-defined exceptions, the developers must

explicitly define computer instructions to propagate the exception occurrences.

The exception propagation requires an explicit exception representation that allows attaching

further information to distinguish different types of exceptions and to provide additional details

that can be utilized during exception recovery [DG94]; [LS98]; [Bai99]; [Gar+01]. Depending

on the programming language and run-time environment, an exception occurrence can be repre-

sented by a symbol, a data object, or a full object [Gar+01] with a singular, hierarchical or object

structure [LS98].

Following the aforementioned return code pattern or the status flag pattern, where the invok-

ing and invoked operation share a variable to indicate exception occurrences [BM00], general-

purpose value types like integers or strings are used to represent exception occurrences. More

sophisticated EHMs rely on dedicated types for exception representation. Object-oriented EHMs

typically have exception class hierarchies and new exception classes can be defined by derivation

from existing exception classes [BM00].

When exception occurrences are detected and all further information are collected, the excep-

tion occurrence is either implicitly propagated for predefined exceptions or explicitly propagated

for program-defined exceptions. In the latter case, programming language features like return,

throw, or raise can be used to propagate an exception occurrence [BM00].

Exception Handler Selection Exception handler selection is the third activity of EH to

search and select one appropriate exception handler for a propagated exception occurrence

[BM00]. As a consequence of exception propagation, a different part of a program becomes

responsible for the recovery activities. Therefore, two central elements can be distinguished:

exception handler and guarded region [DG94]. An exception handler is a sequence of computer

instructions that is devoted to recover from exception occurrences. A guarded region is a se-

quence of computer instructions that is ‘protected” by exception handlers such that at least one

exception handler is executed whenever an exception occurs within the protected region. The

granularity of a guarded region can range from complete programs to procedures, statements,

and expressions [DG94]; [LS98].

In order to determine an appropriate exception handler, guarded regions and exceptions are

associated with exception handlers. The association is either static or dynamic [LS98]; [BM00].

The static exception handler association is a permanent binding for an exception within a pro-

tected region that is fixed at compile-time where the same exception handler is used for every

propagated occurrence of the exception [LS98]. The dynamic exception handler association is

not permanent and cannot be determined at compile-time because it depends on run-time condi-

tions such as the path that the execution has taken [DG94]. The appropriate exception handler

is determined at run-time by searching for exception handlers along the execution path [BM00].

Conceptually, a default exception handler exists which is selected as a last choice if no other

appropriate exception handler is found [Bai99]; [BM00]. The dynamic exception handler asso-

ciation is adopted by most EHMs [LS98]; [BM00].

48 Chapter 3. Conceptual Foundations

While the dynamic exception handler association offers a great flexibility, it can make it dif-

ficult to understand which exception handler will be selected for recovery [BM00]. Therefore,

some programming languages strive for simplification and introduce exception lists where meth-

ods, functions, or similar source code regions must explicitly list all the exceptions that may be

propagated.

Exception Recovery Exception recovery is the fourth activity of EH where the program’s

state is recovered from a propagated exception occurrence once an appropriate exception han-

dler has been determined. Therefore, the exception representation of the propagated exception

occurrence and its attached information are passed to the selected exception handler and the

exception handler is executed.

When the exception handler is successfully executed, i.e. if no exception occurrence is propa-

gated, the exception occurrence is removed and the program’s state is considered to be recovered.

This case is followed by the next activity of exception continuation.

But an exception handler may also propagate exception occurrences [BM00]. Then, another

exception handler must be selected as indicated by the dashed line from exception recovery to

exception propagation in Figure 3.5.

Another propagation may be necessary because, for instance, another exception occurred dur-

ing the recovery or the selected exception handler cannot recover from the original exception

occurrence.

Exception Continuation Exception continuation is the last activity of EH. After an ex-

ception handler has been determined and successfully executed, the normal execution should

continue [Gar+01]. In general, resumption and termination are the two main models for contin-

uation [DG94]. Although, further models can be identified [BM00]. The termination model is

the most popular model among current programming languages [BM00].

Following the resumption model, the normal execution resumes in the protected region in

which the exception occurred and after the computer instruction that propagated the exception

[Gar+01]. Following the termination model, the protected region in which the exception oc-

currence was detected, propagated, and recovered by the successful execution of an exception

handler is terminated and cannot be resumed [Gar+01].

GARCIA et al. [Gar+01] distinguish three variations of the termination model: return, retry,

and strict termination. The return variation terminates the protected region and the normal con-

trol-flow continues after the protected region and after the successfully executed exception han-

dler. The retry variation can be understood as a special case of the return variation. Once the

normal activities can continue, the protected region that was terminated is executed again. The

strict termination variation does not only terminate the protected region but terminates the whole

program and the control is returned to the run-time environment or operating system.

Summary of Key Concepts To summarize the concepts and fundamental activities of

EHMs, Figure 3.6 depicts an example of EH in the Java programming language. The guarded

region is defined by the keyword try and different exception handlers are defined by the key-

word catch. The immediate succession of try and catch associates the exception handlers

3.2. An Extended Taxonomy of Robust Programs 49

void divide() {

try {

int dividend = readInput();

int divisor = readInput();

if(divisor == 0) {

throw new ArithmeticException("cannot divide by zero");

}

int division = dividend / divisor;

...

} catch(ArithmeticException ex) {

System.out.println("Please do not enter 0 as the divisor");

} catch(InputMismatchException ex) {

System.out.println("Please enter a valid integer");

} catch(IllegalStateException | NoSuchElementException ex) {

System.out.println("Internal error. Please try again");

}

...

}

int readInput() throws InputMismatchException, IllegalStateException, NoSuchElementException {

…

}

Exception Condition

Exception Occurrence

(1) Exception Detection

(2) Exception Propagation

(4) Exception Recovery

(5) Exception Continuation

G
ua

rd
ed

 R
eg

io
n

Ex
ce

pt
io

n
H

an
dl

er

Exception Representation

Exception List

Figure 3.6.: Exception Handling in Java

with the guarded region and the exception types within parentheses bind an exception handler to

specific exceptions.

The readInput method is a simplification to receive user inputs and convert them into in-

tegers. When zero is entered as the divisor, an exception occurrence takes place after the second

execution of the readInput method finished. In this case, the exception condition is explic-

itly defined by divisior == 0 and ArithmeticException is used as the corresponding

exception representation.

The first activity of exception detection is realized using an if statement and the throw
keyword is used to initiate exception propagation. The third activity of exception handler se-

lection is done implicitly by the Java run-time environment. After the exception handler that is

bound to the ArithmeticException has been selected, the exception recovery is initiated

by passing the exception representation and executing the exception handler. Afterwards, the

exception continuation resumes the normal activities after the catch statements. Further on,

the exception list of the readInput method defines three different exceptions that the method

may propagate. Although, this list is not necessarily exhaustive because Java only requires to

50 Chapter 3. Conceptual Foundations

list checked exceptions. For instance, IndexOutOfBoundsException is not required to

be listed. When no appropriate exception handler is found, the default exception handler is

implicitly selected and terminates program.

3.2.3. Combinatorial Robustness Testing

In the previous subsections, concepts related to correct and robust programs are defined and

details of EH are presented. Since these concepts are not considered by the CT test method, they

are now transferred and the CRT test method is introduced. Afterwards, a summary of the key

concepts is provided that points out the relationship between the ground truth concepts relative

to the specification and the concepts of CRT.

Foundations of Combinatorial Robustness Testing

The invocation of a program with truly-invalid inputs from the exception input domain EI im-

plies the occurrence of one or more external faults. The occurrence does not imply that the

external fault is detected and that the program’s state is recovered. But the occurrence implies

that a program functions as defined by the exception specification. To ensure that both the

standard and exception behaviors are checked, testing for correctness and robustness must be

distinguished.

Definition 71 (Functional Testing) Functional testing is a particular type of testing that checks
whether the SUT is consistent with its standard specification STS [IEE90b].

Definition 72 (Robustness Testing) Robustness testing is a particular type of testing that checks
whether the SUT is consistent with its exception specification ES [IEE90b]; [Mic+12].

To conduct functional and robustness testing, not only truly-relevant inputs must be distin-

guished from truly-irrelevant inputs. But truly-valid inputs must also be distinguished from

truly-invalid inputs. Therefore, the concepts are transferred to truly-valid and truly-invalid

schemata. These concepts are refinements of Definition 57 (Truly-Valid Input) and Definition

58 (Truly-Invalid Input) that incorporate the structure of parameters and values. A truly-valid

input is also a truly-valid schema and a truly-invalid input is also a truly-invalid schema.

Definition 73 (Truly-Valid Schema) A truly-relevant schema s is truly-valid if and only if at
least one truly-valid input τ ∈ SI exist that covers s ⊆ τ .

Definition 74 (Truly-Invalid Schema) A truly-relevant schema s is truly-invalid if and only if
no truly-valid input exists τ /∈ SI exist that covers s ⊆ τ , i.e. �τ ∈ SI∧s ⊆ τ . Consequently, at
least one truly-invalid test input exists that covers a truly-invalid schema s, i.e. ∃τ ∈ EI∧s ⊆ τ .

Two special cases of truly-invalid schemata play a primary role work.

Definition 75 (Truly-Minimal Invalid Schema) A truly-invalid schema s is a truly-minimal
invalid schema if and only if no proper subset schema s′ ⊂ s exists that is itself a truly-in-
valid schema. In other words, each proper subset schema s′ ⊂ s is a truly-valid schema and a
truly-valid input τ ∈ SI exists that covers s′.

3.2. An Extended Taxonomy of Robust Programs 51

Definition 76 (Truly-Strong Invalid Schema) A truly-invalid schema τ is a truly-strong in-
valid schema if and only if it covers exactly one truly-minimal invalid schema sa, i.e. for all
pairs of two truly-minimal invalid schemata (sa, sb) with sa �= sb, sa ⊆ τ ⇒ sb � τ .

By definition, a truly-minimal invalid schema is always a truly-strong invalid schema because

it only covers itself and no other invalid schema. But, a truly-strong invalid schema is not

necessarily a truly-minimal invalid schema since it can be expanded to a test input with a degree

of d = n that still covers exactly one minimal truly-invalid schema.

Running Example For the running example, the schemata [Packages:1] or

[Country:UK, Phone:+44] are truly-valid.

In contrast, the schemata [Country:UK, Phone:123] and [Country:UK,
Phone:+1] are truly-invalid. Both schemata are strong truly-invalid schemata because

each one covers exactly one truly-minimal invalid schema. Although, only the second

schema is a truly-minimal invalid schema because the first schema covers the truly-min-

imal invalid schema [Phone:123].

Analogously to truly-valid and truly-invalid inputs, truly-valid schemata may cause ordinary

failures and truly-invalid may cause schemata robustness failures.

Definition 77 (Failure-Causing Truly-Valid Schema) A truly-valid schema s is a failure-caus-
ing truly-valid schema if and only if each truly-valid input τ ∈ SI that covers s ⊆ τ is a
failure-causing truly-valid input.

Definition 78 (Failure-Causing Truly-Invalid Schema) A truly-invalid schema is a failure-
causing truly-invalid schema if and only if each truly-strong invalid input τ ∈ EI that covers
s ⊆ τ is a failure-causing truly-invalid input.

The concepts can be further refined to minimal failure-causing truly-valid schemata and min-

imal failure-causing truly-invalid schemata. The definitions are analogously to the definition of

minimal failure-causing schemata.

Definition 79 (Minimal Failure-Causing Truly-Valid Schema) A failure-causing truly-valid
schema s is a minimal failure-causing truly-valid schema if and only if no proper subset schema
s′ ⊂ s exists that is itself a failure-causing schema.

Definition 80 (Minimal Failure-Causing Truly-Invalid Schema) A failure-causing truly-invalid
schema s is a minimal failure-causing truly-invalid schema if and only if no proper subset
schema s′ ⊂ s exists that is itself a failure-causing schema.

It is important to note that the property of minimality is related to the concept of causing

failures. It should not be confused with the property of minimality that is related to invalidity.

A minimal failure-causing truly-invalid schema is a truly-invalid schema but not necessarily a

truly-strong invalid schema or a truly-minimal invalid schema. That distinction will be examined

more closely in Section 5.4 (Page 105 and following).

52 Chapter 3. Conceptual Foundations

Truly-irrelevant schemata are not the only cause of the input masking effect. The same phe-

nomenon can be observed with truly-invalid inputs which is neglected by most research on CT.

SUTs that are developed defensively follow the external exception propagation strategy and initi-

ate EH when the first truly-invalid schema of an input is detected. The SUTs switch to exception

behavior and the standard behavior is not resumed. As a consequence, all other schemata of the

test input are masked since the standard behavior for them remains untested.

Within the research on CT, the invalid input masking effect is recognized (cf. [She94];

[Coh+94]; [Coh+97]; [GOA05]; [Cze06]; [WT14]), but not yet conclusively researched. For

further research, we denote CRT as an extension to CT.

Definition 81 (Combinatorial Robustness Testing) Combinatorial robustness testing (CRT) is
a test method that is based on extended IPMs with additional semantic information to distinguish
valid from invalid schemata. CRT builds upon test adequacy criteria and test selection strate-
gies that incorporate the additional semantic information. The objective of CRT is to improve
the fault detection by avoiding the invalid input masking effect. Therefore, valid and invalid test
inputs are separated such that all values and value combinations are tested as expected.

Existing approaches and our new approach to define valid and invalid schemata with regards

to the IPM are discussed in Chapter 4 on related work and Chapter 6 on the robustness input

parameter model (RIPM). Hence, a definition cannot be provided in this section.

Summary of Key Concepts

An overview of key concepts of correct and robust programs is provided in Figure 3.7. It depicts

a structure diagram that is again based on the notation of UML 2.5.1 [Coo+17]. It consists of

named elements, aggregations, and generalization sets (cf. [Coo+17, p.119]). For reasons of

clarity, names of generalization sets and cardinalities are omitted. Further on, each generaliza-

tion set is considered disjoint. The concepts that are taken over from the taxonomy of dependable

programs (Figure 3.3, Page 37) are indicated by a gray background.

The diagram is again divided into four quadrants which are pictured by dashed circles and

correspond to four different views on the central concept of input τ ∈ I and its input domain I .

The upper left quadrant no. 1 depicts the concepts that are established by the authoritative

specification. Truly-relevant inputs τ ∈ AI are further separated into truly-valid τ ∈ SI and

truly-invalid inputs τ ∈ EI according to the distinct standard specification STS and exception

specification ES. In addition, truly-strong invalid inputs denote a special type of truly-invalid

inputs which cover exactly one truly-minimal strong invalid schema. Since the concept requires

schemata for its definition, it is only listed here for the sake of completeness.

Analogously, failure-causing inputs are further separated into failure-causing truly-valid and

failure-causing truly-invalid inputs.

In the upper right quadrant no. 2, the concepts are transferred to the structure of parameters

and values of IPMs. Truly-relevant schemata are separated into truly-valid schemata s that are

covered by at least one truly-relevant input, i.e. ∃τ ∈ AI ∧ s ⊆ τ , and truly-invalid schema s
that are not covered by truly-valid but covered by truly-invalid inputs, i.e. �τ ∈ SI ∧ s ⊆ τ and

∃τ ∈ EI ∧ s ⊆ τ .

3.2. An Extended Taxonomy of Robust Programs 53

The finer-grained structure of parameters provides more details about truly-invalid schemata.

Therefore, truly-minimal invalid schema and truly-strong invalid schema are introduced as re-

finements. A truly-minimal invalid schema s is a truly-invalid schema with the additional prop-

erty that no proper subset schema s′ ⊂ s is a truly-invalid schema. A truly-strong invalid schema

is a truly-invalid schema that covers exactly one truly-minimal invalid schema.

Furthermore, the failure-causing schemata are further separated into failure-causing truly-

valid schemata and failure-causing truly-invalid schemata. The classification depends on whether

the failure-causing schema is truly-valid or truly-invalid.

Analogously, minimal failure-causing truly-valid schemata and minimal failure-causing truly-

invalid schemata are refined concepts of minimal failure-causing schemata that again utilize the

finer-grained structure of parameters to provide more details about the cause of a failure.

Quadrant no 1 and 2 depict the concepts that are necessary to discuss testing in the concept

of EH and the invalid input masking effect. The authoritative specification is used to define

them. Although when testing, not the authoritative specification but an IPM is used to select test

inputs. Therefore, counterparts of the concepts are necessary and they must be described by the

structure of an IPM.

Therefore, quadrant no. 3 and no. 4 depict a partitioning of test inputs and schemata that

is based on the structure of an extended IPM. Since the structure is developed throughout this

work, both lower quadrants do not depict a summary of previously described concepts. Instead,

they depict concepts that are defined in Chapter 6 (Page 111 and following).

The following is therefore a summary of Chapter 6. It is integrated in this comprehensive

reference to support the understanding of the relationships. Since a test input is a special schema

with d = n, only the lower right quadrant no. 4 is explained.

Besides the exclusion-constraints that provide a means to separate relevant from irrelevant

schemata, error-constraints are introduced to separate valid from invalid schemata.

Based on the error-constraints, relevant schemata s, i.e. SAT(Cex, s) = true, are separated

into valid schemata s, i.e. SAT(Cex ∪Cerr, s) = true, and invalid schemata s, i.e. SAT(Cex) =
true ∧ SAT(Cerr, s) = false.

Furthermore, strong invalid schemata and minimal invalid schemata are the counterparts of

truly-strong schemata and truly-minimal schemata. An invalid schema s is strong invalid if

exactly one error-constraint remains unsatisfied, i.e. ∃!c ∈ Cerr, SAT(Cex ∪ Cerr) = false ∧
SAT(Cex∪Cerr\{c}) = true. Further on, a strong invalid schema s is a minimal invalid schema

if and only if no proper subset s′ ⊂ s is an invalid schema.

Accordingly, the counterparts of failure-causing truly-valid schemata and failure-causing truly-

invalid schemata are defined as follows. A failure-causing valid schema is a valid schema that is

failure-causing and a failure-causing invalid schema is an invalid schema that is failure-causing.

Further on, a failure-causing valid schema or a failure-causing valid schema is minimal if no

proper subset is a failure-causing schema.

In the following, we review existing approaches to CRT, argue why additional research for

CRT is necessary and highlight their shortcomings (Chapter 4, Page 55 and following). After-

wards, we present our CRT test method including the extended IPM structure.

54 Chapter 3. Conceptual Foundations

Figure 3.7.: Key Concepts of Robust Programs and its Relations

Chapter 4.

Related Work

Contents

4.1. Combinatorial Robustness Testing . 55

4.1.1. General Contributions . 56

4.1.2. CT Test Methods . 58

4.1.3. CRT Test Methods . 60

4.2. Non-Combinatorial Robustness Testing 69

Based on the previous introduction and problem description, we can distinguish CT as a gen-

eral black box test method and CRT as an extension that focuses on special treatment of invalid

schemata. But CRT is not the only test method that can be used to test for robustness. Therefore,

we distinguish combinatorial and non-combinatorial robustness testing. Although the focus is

on CT, we also discuss non-combinatorial robustness testing afterwards.

4.1. Combinatorial Robustness Testing

CT can be viewed as an adaptation of design of experiments (DOE) which can be dated back

to the 1920’s where it was used to conduct experiments in agricultural science [KKL13, p.237];

[Kuh+15]; [Tzo19]. In the 1980’s, methods of DOE were first used as test selection strategies for

testing programs [Tzo19]. Since then, significant advances have been made to original methods

and techniques that result in a plethora of different approaches to input parameter modeling, test

adequacy criteria, and test selection strategies. To get an overview of CT and different research

streams, we refer to existing surveys, e.g. [GOA05]; [NL11a]; [KL14]; [Ahm+17]; [Wu+19b];

[Wu+19a], summaries, e.g. [Yil+14b]; [Kuh+15]; [MPZ15]; [Tzo19], and books, e.g. [KKL13];

[ZZM14]; [TQ17].

In this section, we do not discuss all research streams of CT. First, we discuss general contri-

butions to CT that are related to our research. Afterwards, we discuss CT test methods that are

related to our research but that are not concerned with robustness testing. Finally, we discuss

CRT test methods that are also concerned with robustness testing. The CT and CRT test methods

are ordered chronologically.

56 Chapter 4. Related Work

4.1.1. General Contributions

Surveys and Case Studies GRINDAL et al. [Gri+03]; [GOA05]; [Gri+06] surveyed and

evaluated test selection strategies and related test adequacy criteria. Further on, the GRINDAL

et al. considered the exclusion of irrelevant schemata and special treatment of invalid values.

Therefore, they described the t-wise valid coverage which “requires every possible combination

of valid values of t parameters be included in some test [input], and the rest of the values are

valid”. To satisfy t-wise valid coverage, all irrelevant schemata and all invalid schemata must

be excluded, for instance, via exclusion-constraints. Thereby, the main drawback of t-wise

coverage, i.e. irrelevant and invalid input masking, is mitigated.

As pointed out earlier, testing only valid schemata is not sufficient. Therefore, GRINDAL

et al. also described single error coverage that is satisfied “if each [invalid] value of every

parameter is included in some test [input] in which the rest of the values are valid”. Since single

error coverage requires exactly one invalid value per test input, the risk of invalid input masking

between two or more invalid values is mitigated.

One case study conduced by WOJCIAK & TZOREF-BRILL [WT14] reports on applying CT

that also includes invalid test inputs. They report that single error coverage was not sufficient

because exception handling depended on interactions between invalid and valid values. In par-

ticular, “the same [exception] would often be handled differently depending on the firmware in

control [...] or depending on the configuration of the system”.

A further remark by WOJCIAK & TZOREF-BRILL is concerned with the ratio of valid versus

invalid test inputs: “Since a lot of attention was given to [robustness] testing [...] where full

recovery in the presence of [exceptions] was expected, the [test suite] contained a ratio of up to

2:1” invalid test inputs vs. valid test inputs. An evaluation on efficiency and early fault detection

of CT conducted by PETKE et al. [Pet+13] came to the same conclusion when comparing the

sizes of test suites that include invalid test inputs with test suites that do not.

In general, the aforementioned publications do often not clearly distinguish between relevance

and validness which results in blurred lines between what should be excluded entirely and what

should be tested separately.

We also did not find any discussions about the relationship between hypothesized robustness

faults and the single error coverage or the t-wise interaction between invalid values and valid

values. Hence, it is unclear if these test adequacy criteria are appropriate.

Further on, the invalid input masking effect is frequently mentioned in all aforementioned

publications as an argument for separating valid and invalid test inputs. But only GRINDAL et

al. [Gri+06] provide a deeper analysis and discussion. In their comparison of t-wise with base-

choice (another CT test method that is explained subsequently), they experienced differences in

the failure detection capability depending on ratio of valid to invalid values per parameter: “The

pair-wise coverage [...] gives best results for test subjects where there are many valid values

of each parameter, which is when [base-choice] is least effective. For test problems with many

invalid values for each parameter, when [base-choice] is most effective, the pair-wise strategies

may mask faults, that is, when tests cover several parameter value pairs with multiple invalid

values, the effects of some parameters may be masked by others” [Gri+06].

While this example demonstrates the impact of the invalid input masking effect, a deeper anal-

ysis and discussion is missing. In fact, it is generally unknown to what degree t-wise coverage is

4.1. Combinatorial Robustness Testing 57

suitable in the presence of EH. For those reasons, we conduct an experiment to assess the fault

detection effectiveness of CT in the presence of invalid values in Section 5.1.

Testing of Logical Expressions Testing of logical expressions is an important topic and

a lot of different test adequacy criteria such as decision or condition coverage exist [FG10];

[Gar11]. According to FRASER & GARGANTINI [FG10], the focus of new test methods is often

“to detect specific classes of realistic faults and to produce as small as possible test suites”.

Since CT is a generally-applicable test method, it can also be applied to the testing of logical

expressions. BALLANCE et al. [BVJ12], VILKOMIR et al. [VSB13], VILKOMIR & ANDERSON

[VA15] conduct experiments to investigate pair-wise and t-wise coverage. Their investigations

reveal that CT can be effectively applied to test logical expressions. An overview of related work

is provided by VILKOMIR [Vil16].

Moreover, WANG & QI [WQ15] analyze MFCSs to further understand why CT performs

well in testing logical expressions and present a model to compute the lower boundary of fault

detection probability for CT. Later, YU et al. [Yu+18] revisit the model to compute the lower

boundary of fault detection probability and publish a counterexample to illustrate a fault in the

model. In a follow-up study, XU et al. [Xu+16] analyze MFCSs of programs known as the

Siemens suite and report an observation that corresponds to an observation that we made when

investigating the fault detection effectiveness (FDE) in the presence of invalid input masking

(Page 89): “The high strengths of MFCSs makes it difficult to cover MFCSs by a lower-strength

combinatorial test suite. But the big number of MFCSs for each fault makes that it is easy to

cover at least one MFCS.”

Our CRT test method also tests logical expressions, i.e. exception conditions that should initi-

ate correct EH. Although we consider the invalid input masking effect since a schema that causes

an exception condition to be satisfied cannot satisfy another subsequent exception condition.

Repairing Inconsistent Test Models ARCAINI et al. [AGV14] research the detection

of inconsistencies in IPMs. Therefore, they introduce desired properties of IPMs (consistency,

completeness, minimality) and present algorithms to check whether IPMs adhere to these desired

properties. Our approach for detection and repair of over-constrained RIPMs (Chapter 9, Page

159 and following) is a related idea as we also check for desired properties in RIPMs. Although,

the work of ARCAINI et al. [AGV14] focuses on exclusion-constraints in IPMs. The desired

properties of RIPMs are slightly different due to the different semantics of exclusion- and error-

constraints. Further on, our approach reuses existing conflict diagnosis techniques and can also

repair inconsistencies semi-automatically.

To the best of our knowledge, it is only the related work by PILL & WOTAWA [PW17];

[PW18]; [PW19] where conflict diagnosis techniques are also applied in the context of CT. Al-

though their focus is substantially different. They combine CT and conflict diagnosis techniques

to derive knowledge-bases that can be used for abductive diagnosis [PW17]; [PW18]. Further

on, they use conflict diagnosis techniques to compute which components of a SUT explain the

failure of test inputs [PW19].

GARGANTINI et al. [Gar+16] also research the detection of inconsistencies in IPMs. They

focus on over-constrained exclusion-constraints that might prevent a truly-relevant schema from

58 Chapter 4. Related Work

being selected because the IPM classifies it as a irrelevant. Our approach for detection and repair

of over-constrained RIPMs (Chapter 9, Page 159 and following) is related since we focus on

over-restrictive error-constraints that prevent truly-invalid schemata from being selected. Further

on, our and their approach assume that the parameters and values are correctly captured and

focus on inconsistencies of constraints.

Although, their approach is not based on conflict diagnosis techniques but rather relies on test

execution to check if exclusion-constraints of an IPM conform to the SUT. Therefore, six poli-

cies are proposed that cause a test selection strategy to purposely select test inputs that violate

some exclusion-constraints. If a test input that purposely violates some exclusion-constraints

yields acceptable behavior of the SUT, a conformance fault is identified where the IPM is con-

sidered over-constrained. In addition, if a test input that does not violate any exclusion-con-

straints does not yield acceptable behavior of the SUT, a conformance fault is identified where

the IPM is considered under-constrained [GPR17].

GARGANTINI et al. [GPR17] extend their work on conformance faults and propose a repair

process to automatically identify conformance faults and to automatically repair the IPM by

either relaxing or strengthening exclusion-constraints. To automatically identify conformance

faults and to repair the IPM, FC and fault characterization algorithms (FCAs) are utilized to com-

pute a MFCS that represents the conformance fault and the MFCS is used to relax or strengthen

some exclusion-constraints.

As already stated before, we rely on conflict diagnosis techniques to detect and repair incon-

sistencies in RIPMs that do not require any test execution. But we adopt and extend the idea

of finding conformance faults based on test execution and aligning the RIPM with the program

using FCAs to identify invalid schemata and to align RIPMs with the EH of programs (Chapter

10, Page 187 and following).

4.1.2. CT Test Methods

Base-Choice Base-choice was originally published by AMMANN & OFFUTT [AO94] as an

alternative to each-choice. Base-choice does not consider exclusion-constraints but values are

annotated with additional semantic information to define a base test input with default values for

each parameter. Test inputs are created by replacing one parameter value of the base test input

at a time.

Although not mentioned in the initial publication [AO94], GRINDAL et al. show that base-

choice can subsume single error coverage, i.e. a test suite that satisfies base-choice also satisfies

single error coverage [Gri+03]; [GOA05]. As long as the base test input is valid, the value do-

mains of some parameters may contain invalid values and the base-choice test selection strategy

selects invalid test inputs according to single error coverage.

Even though it was not discussed in the initial publication nor in the survey or evaluation

by GRINDAL et al. [Gri+03]; [GOA05]; [Gri+06], base-choice also has limited support for

invalid value combinations: Since one parameter value of the base test input is replaced at a

time, an invalid value combination can be created as a combination of a replaced value and other

remaining values of the base test input.

The failure detection capability of base-choice highly depends on the quality of the base test

input [Gri+03]; [GOA05]; [Gri+06]. In contrast, failure detection capability of t-wise coverage

4.1. Combinatorial Robustness Testing 59

only depends on the chosen testing strength [Tzo19]. Therefore, we focus on t-wise coverage

and advancements to mitigate the various types of input masking effect.

Shielding Parameters CHEN et al. [CYZ10] propose another extension to CT. They intro-

duce so-called shielding parameters to target another kind of input masking. In general, param-

eters in CT are assumed to be effective all the time. But some specific parameter values may

disable and therefore mask potential effects of other parameter values. For instance, when the

help option -h of a command-line program is used, all other options are disabled.

When a parameter value v1 ∈ p1 is defined to disable another parameter p2, a vain value #
is implicitly defined and always selected for p2. Thereby, no schema that covers an ineffective

interaction of p2 and some other parameters is selected.

SEGALL et al. [STZ12] describe shielding parameters as a common pattern “conditionally-

excluded values” and discuss how to model it using traditional CT test methods. Therefore, vain

values must be explicitly modeled in the IPM and exclusion-constraints like p1 = v1 ⇒ p2 = #
model the shielding. Further interactions between explicit vain values and other relevant values

can be avoided via additional exclusion-constraints.

This extension can also be used for invalid values because if an invalid values is assigned to

parameter p1, parameter values that are evaluated after p1 are disabled. However, this requires

knowledge about the specific order of exception detection which we circumvent in our approach

by relying on valid values for all other parameter values. Shielding parameters are also limited

to single values and do not consider the shielding of value combinations. Further on, interactions

between invalid schemata and other valid schemata can also not be tested because of the vain

values.

Variable Strength Variable strength is a generalization of t-wise coverage that allows defin-

ing different testing strengths for subsets of parameters [Coh+03]; [YCP06]. Thereby, a main
testing strength is defined as a lower boundary for all parameter interactions. For interactions

between subsets of parameters, higher testing strengths can be defined.

When defining t = 0 as the main testing strength, variable strength coverage is very flexible

and each interaction between parameters can be defined individually. Consequently, the parame-

ter interactions that are defined by our combinatorial test adequacy criteria for strong invalid test

inputs (Chapter 7, Page 119 and following) can also be defined in terms of variable strengths.

Of course, the computed interactions and schemata could then be transferred to a variable

strength test selection strategy. A test selection strategy that supports variable strength coverage

with t = 0 as the main testing strength can be used to select strong invalid test inputs. However,

our family of test selection strategies allows including optimizations that cannot be realized in

a generic variable strength test selection strategy. Variable strength coverage should also not

be understood as a generalization that incorporates our work. The main concern of our test

adequacy criteria and test selection strategies is the computation of parameter interactions and

corresponding schemata that must be covered.

Existential-Constraints HALLÉ et al. [HCG15] propose a generalization of t-wise cover-

age and introduce existential-constraints as a particular type of constraints to express conditions

60 Chapter 4. Related Work

that have to be satisfied at least once. In contrast, exclusion-constraints are defined as “univer-

sal-constraints“ that must be satisfied by each test input. Existential-constraints allow to express

requirements such as “at least one test input should ...“ or “the test suite should include a test

input that ...“. In their approach, one test input may satisfy more than one existential-constraint

which allows to compose test inputs that satisfy several existential-constraint at once.

Our CRT test method follows a related idea that ensures for each error-constraint (another type

of constraints) at least one test input to exist for which the error-constraint remains unsatisfied.

The number of test inputs that exist for one error-constraint can be further adjusted by choosing

different test adequacy criteria.

Existential-constraints can be converted to error-constraints by negating them. But to ensure

that the test inputs are strong invalid, exactly one error-constraint remains unsatisfied for one

test input. Therefore, more test inputs would be required because the satisfaction of several

existential-constraints cannot be combined into one test input. Although the idea of HALLÉ et

al. [HCG15] is related, it is unsuitable for selecting strong invalid test inputs because test inputs

that satisfy several existential-constraints are not strong invalid.

4.1.3. CRT Test Methods

Constrained Array Test System (CATS) To the best of our knowledge, SHERWOOD

[She94] first mentioned invalid values in the context of CATS which is a test selection strat-

egy and tool for CT. SHERWOOD describes the effect of invalid input masking that is caused

by exception handling and the external exception propagation strategy. But the discussion is re-

stricted to invalid values and does not consider invalid value combinations. SHERWOOD further

proposes two approaches with manual intervention to adjust the test selection in order to cope

with invalid values. When the tester wants to ensure that each invalid value is covered by a test

input, SHERWOOD suggests executing the test selection strategy with only valid values and to

modify the test suite afterwards by replacing valid values with invalid values. When the tester

also wants to test interactions between invalid values and valid values of other parameters, Sher-

wood suggests modifying the IPM such that exactly one parameter contains invalid values at a

time and to execute the test selection strategy once for each modified IPM.

The two approaches with manual intervention may be ok from the perspective at the time

given limited computer resources and less advanced conflict handling strategies. However, from

today’s perspective with more advanced computer resources and conflict handling strategies, the

two approaches do not represent the state-of-the-art and repetitive human intervention should be

avoided. But the IPM of CATS only consists of parameters and values, i.e. IPM = 〈P̃ , V 〉, and

does not contain necessary semantic information for further automation.

The two approaches also resemble the replace and sub-models strategies for conflict handling

as presented by GRINDAL & OFFUTT [GOM07]. The strategies are originally intended to re-

move conflicts from an IPM. But they can be used to add invalid values just as well.

Similarly, the third strategy abstract parameter could be used to cope with invalid value com-

binations. Following the original strategy, two or more original parameters of the IPM are

merged into a new abstract parameter and the value domain of the abstract parameter is cre-

ated by computing the cartesian product for the value domains of all merged parameters and by

removing all composed values that are irrelevant or invalid. The abstract parameter could also

4.1. Combinatorial Robustness Testing 61

represent invalid value combinations when all irrelevant and valid composed values are removed

instead. However, the strategy is not ideal since it also requires repetitive manual intervention.

Avoid as the fourth strategy for conflict handling allows to reduce repetitive manual interven-

tion since the test selection strategies should automatically avoid the occurrence of unwanted

schemata. Since it promises the highest degree of automation, we follow this approach. How-

ever, it requires semantic information such that the test selection strategy can distinguish relevant

from irrelevant and valid from invalid schemata.

Automatic Efficient Test Generator (AETG) COHEN et al. [Coh+94]; [Coh+97] pub-

lished another test selection strategy and tool AETG for CT. They also acknowledge the neces-

sity to separate valid and invalid test inputs and to ensure that one invalid test input only contains

one invalid value. The IPM contains semantic information to distinguish relevant from irrelevant

schemata and to distinguish valid from invalid values. Besides a set of parameters P̃ and a set

of value domains V , the IPM, i.e. IPM = 〈P̃ , V, R〉, contains a nonempty set of relations R
to further specify relationships between subsets of parameters and their value domains. Each

relation r ∈ R is a tuple r = 〈P̃ r, V r, U〉 that defines a set of value domains V r for some pa-

rameters P̃ r ⊆ P̃ such that for each parameter ∀pi ∈ P̃ r, a value sub-domain V r
i ⊆ Vi denotes

the values that should be considered in the context of relation r. Further on, each relation has a

degree which corresponds to the testing strength t. In addition, U is a set of “unallowed tests”,

i.e. predefined forbidden schemata, that must not be covered by any schema selected for that re-

lation. To distinguish relevant from irrelevant schemata, either the set U can be used or multiple

relations can be used to resemble the sub-models strategy of conflict handling. To distinguish

valid from invalid values, the value domain Vi of each parameter pi ∈ P̃ is separated into a valid

value domain V valid
i and an invalid value domain V invalid

i . The two value domains are complete

and disjoint subsets of the value domain, i.e. Vi = V valid
i ∪ V invalid

i and V valid
i ∩ V invalid

i = ∅.

AETG selects schemata for one relation r ∈ R at a time and merges the schemata afterwards so

that their degree is k = n and that they cover a value for each parameter p ∈ P̃ . In order to select

valid test inputs for one relation r ∈ R, all invalid values are excluded from the test selection

strategy, i.e. ∀V r
i ∈ R, V r

i \ V invalid
i . Invalid test inputs are also selected for one relation r ∈ R

at a time. For each invalid value described by relation r ∈ R, i.e. ∀V r
i ∈ r, V r

i ∩ V invalid
i , a

valid test input of that relations is taken and a valid value is replaced by an invalid value.

In direct comparison to CATS, AETG also resembles the sub-model and replace strategies but

automates their application using the semantic information of the IPM. However, AETG does

not account for interactions between invalid and valid values. Although it can be modeled using

relations, it would require the same manual interventions as with CATS.

Pairwise Independent Combinatorial Testing (PICT) CZERWONKA [Cze06] published

another test selection strategy and tool PICT. It supports propositional logic to describe ex-

clusion-constraints and the IPM consists of parameters, values, and exclusion-constraints, i.e.

IPM = 〈P̃ , V, Cex〉. Similar to AETG, the value domain Vi of each parameter pi ∈ P̃ is sepa-

rated into a valid value domain V valid
i and an invalid value domain V invalid

i which are complete

and disjoint subsets of Vi.

62 Chapter 4. Related Work

The test selection strategy is divided into two actual strategies. First, only the valid value do-

mains are considered and PICT selects test inputs according to t-wise coverage while satisfying

all exclusion-constraints. Afterwards, the invalid value domains are considered and additional

exclusion-constraints are generated to ensure that no two invalid values are covered by the same

test input. To account for interactions between invalid values and other valid values, PICT
allows t-wise combining the invalid values with all valid values of other parameters.

Automated Combinatorial Testing for Software (ACTS) YU et al. [Yu+13b] published

yet another tool ACTSwhich implements the input parameter order (IPO) family of test selection

strategies (cf. [LT98]; [Lei+07]; [Yu+13a]; [Yu+15]; [KS18]). The scientific publication about

ACTS [Yu+13b] does not contain ideas that are concerned with invalid schemata. Their usage

of the terms “invalid combination” and “constraint handling” refers to irrelevant schemata and

exclusion-constraints. Although, the authors state that they “plan to support negative testing,

where each test contains only one ’invalid’ value. Negative testing is critical to ensure robustness

of a system.”

ACTS in version 3.0 contains the functionality and its user guide describes it accordingly. It is

basically the same functionality as offered by PICT, i.e. a separation of valid and invalid values

and the possibility of t-wise interaction among valid and invalid values. ACTS just provides a

graphical user interface and different test selection strategies. Besides IPO-based test selection

strategies, it also implements base-choice.

CATS, AETG, and ACTS do not even mention the selection of invalid test inputs that cover

invalid value combinations. PICT also has no direct support to model invalid value combina-

tions and to select invalid test inputs that cover those invalid value combinations. But the author

of PICT [Cze06] mentions that the concept that integrates invalid values “can be extended from

disallowing two values to disallowing any two or more combinations to coexist in one test case”

and that “appropriately crafted [exclusion-]constraints” can be used to achieve the same results.

Although the author provides no additional information on how to extend the approach or how

to craft the exclusion-constraints, invalid value combinations can in fact be integrated with the

help of a workaround that relies on propositional logic. The workaround can be applied using

PICT, ACTS, and all other tools that support the invalid values and exclusion-constraints based

on propositional logic. It requires a new artificial parameter perr to be added to the IPM. The

artificial parameter has no actual counterpart in the SUT and its only purpose is to influence

the test selection strategy. The actual values of the artificial parameter are ignored during the

execution.

To model invalid value combinations, let the variables inv1,inv2, ... represent logical con-

ditions expressed in propositional logic that describe the invalid value combinations. The valid

value domain V valid
err = {ok} consists of exactly one artificial valid value which will be covered

by each valid test input. The invalid value domain V invalid
err = {err1,err2, ...} contains one

artificial invalid value erri for each invalid value combination invi that is to be modeled.

In addition, a dedicated exclusion-constraint cerri that follows the pattern (perr = erri) ⇔
invi is added to Cex for each invalid value combination invi. Since perr = ok is selected

for all valid test inputs, the left-handed sides of these dedicated exclusion-constraints evaluate to

false. Consequently, the right-handed side of all dedicated exclusion-constraints must evaluate

4.1. Combinatorial Robustness Testing 63

to false as well when the modeled invalid value combination is not covered. When perr = erri
is selected for an invalid test input, the right-handed side of exclusion-constraint cerri must

evaluate to true while the right-handed side of all other dedicated exclusion-constraints must not

evaluate to true.

Running Example The value domains of all parameters are separated into two separate

domains for valid and invalid values.

Packages: {1, 3}valid ∪ {123}invalid
Country: {UK, USA}valid ∪ {123}invalid
Phone: {+44, +1}valid ∪ {123}invalid

Shipping: {Standard, Express}valid

In addition, an artificial parameter Error is introduced with an invalid value for each

invalid value combination that is to be modeled.

Error: {ok}valid ∪ {err1,err2}invalid

Two dedicated exclusion-constraints are added to model the invalid value combina-

tions between Country and Phone.

c1 : Error = err1 ⇔ (Country = UK ∧ Phone = +1)

c2 : Error = err2 ⇔ (Country = USA ∧ Phone = +44)

During the selection of valid test inputs, all invalid value domains are ignored and

the Error is fixed to the ok value. During the selection of invalid test inputs, err1 is

selected for Error and as a consequence the invalid value combination is selected such

that (Country = UK ∧ Phone = +1) evaluates to true.

In general, the workaround is suitable to describe and select invalid value combinations. But

the workaround increases the complexity of the IPM and makes mistakes more likely. It reduces

the clarity and expressiveness since additional values must be used and constraints are required

to match a certain pattern. Real exclusion-constraints are formulated such that schema τ is

relevant when it satisfies the exclusion-constraints C, i.e. SAT(C, τ) = true. When applying

the workaround, however, the pattern (perr = erri) ⇔ invi requires the right-handed side

invi to be modeled the other way around. Hence, to define the characteristics of a valid τ , invi
(the negation of invi) must evaluate to true. In practice, it becomes even more complex because

a ⇔ b is not supported by all user interfaces. Instead, the equivalent expression a ⇒ b ∧ b ⇒ a
must be used.

Besides the complexity of nested and negated conditions, the IPM with exclusion-constraints,

separated value domains, and the workaround also has a conceptual flaw and weakness. From

our point of view, there is no reason why invalid value combinations should be a second choice

that is not considered by the algorithm designers and tool developers. Compared with invalid

values, invalid value combinations are equally important.

64 Chapter 4. Related Work

Although invalid value combinations are not mentioned, one could argue that the workaround

establishes a transitive relation between the artificial invalid values V invalid
err = {err1,err2, ...}

and the invalid value combinations inv1,inv2, ... that are modeled by the workaround. When

each invalid value is covered by at least one invalid test input, all invalid value combinations are

covered as well. Nevertheless, when a test method explicitly includes the concept invalid values,

we believe it should also explicitly include the concept of invalid value combinations.

Further on, an explicit representation of invalid value combinations is necessary to define

test adequacy criteria independently from any workarounds. Single error coverage requires all

invalid values to appear at least once. When using it in conjunction with the workaround, it

required all invalid value combinations to appear at least once. In Chapter 7 (Page 119 and

following), we introduce test adequacy criteria that also allow to define combinatorics among

the parameters of invalid value combinations. Then, not all invalid value combinations but all

a-sized sub-schemata must appear at least once. Such test adequacy criteria require an explicit

representation of invalid value combinations.

Beyond that, the missing logical separation of real exclusion-constraints and exclusion-con-

straints used to work around invalid value combinations complicates further techniques to ana-

lyze invalid value combinations and to support their modeling.

In this aspect, the aforementioned approaches differ from our solution that we present in this

work. Our solution provides a generalization and provides an equal representation of invalid

values and invalid value combinations. Further on, our solution provides a logical separation of

exclusion-constraints and invalid value combinations to allow further analysis and support.

TestCover TestCover1 is developed by SHERWOOD and attempts to increase the expres-

siveness of constraints by using general-purpose programming rather than propositional logic

to specify them [She14]; [She15]; [She16]; [She17]. Therefore, TestCover uses combina-
tion functions [She15] to model functional dependencies among input parameters. In contrast to

logic-based constraints which partition already defined values of parameters, combination func-

tions are used to define values of a parameter in accordance to one or more other parameters.

According to SHERWOOD [She15], a combination function represents values of a parameter pi
in a “functionally dependent form” that is converted into a value set Vi before a test selection

strategy is applied. Although the details of the test selection strategy are not published, it seems

that parameters, values, and combination functions are converted into conflict-free sub-models.

While combination functions are designed to exclude irrelevant schemata, a workaround to

define invalid schemata exists that originates from an e-mail conversation with SHERWOOD.

Therefore, all relevant schemata are modeled as discussed before and for each parameter or

combination of parameters that encompass invalid schemata, an auxiliary parameter is defined

with a combination function that either takes valid or invalid as a value. In addition,

another auxiliary parameter with a combination function is defined to ensure the composition of

only strong invalid test inputs by counting the number of invalid values that are assigned to

auxiliary parameters.

1See https://www.testcover.com (Last access on 1st December 2020).

4.1. Combinatorial Robustness Testing 65

Running Example The actual parameters and values are modeled as shown in Fig-

ure 2.1. In addition, the auxiliary parameter Packages_Aux is defined to model an

invalid value. The corresponding combination function is depicted below. It is written in

the PHP programming language which is also used by the TestCover tool.

Packages_Fun($Packages) {
if(strcmp($Packages, "123") == 0) return "invalid";
else return "valid";

}

The Packages_Fun combination function is defined in accordance to the

Packages input parameter. The dependency is explicated by the function parameter

$Packages and all values of the parameter are passed to the combination function in

order to compute the values. The function strcmp() compares two strings and returns

0 if they are equal. The string invalid is returned for invalid values. For valid values,

the string valid is returned.

Further on, the auxiliary parameter PhoneCountry_Aux is defined to model in-

dividual invalid values for Phone and Country as well as to model combinations of

them that are invalid.

PhoneCountry_Fun($Country, $Phone) {
$Errors = 0;

if(strcmp($Country, "123") == 0) $Errors++;
if(strcmp($Phone, "123") == 0) $Errors++;

if(strcmp($Country, "UK")
&& strcmp($Phone, "+1") == 0) $Errors++;

if(strcmp($Country, "USA")
&& strcmp($Phone, "+44") == 0) $Errors++;

if($Errors == 0) return "valid";
if($Errors == 1) return "invalid";
else return;

}

The Errors variable is used to count the invalid schemata that are covered by each

combination of Country and Phone. For each combination that does not cover any

invalid schemata, the string valid is returned. For each combination that covers exactly

one invalid schemata, the string invalid is returned. For each combination that covers

two invalid schemata, e.g. the combination [Country:123, Phone:123], no value

is returned to mark the combination as irrelevant.

Further on, another auxiliary parameter TestInput_Aux and associated combina-

tion function is necessary to ensure only strong invalid test inputs.

TestInput_Fun($Packages_Aux, $PhoneCountry_Aux) {
$Errors = 0;

66 Chapter 4. Related Work

if(strcmp($Packages_Aux, "invalid") == 0) $Errors++;
if(strcmp($PhoneCountry_Aux, "invalid") == 0) $Errors++;

if($Errors == 0) return "valid";
else if($Errors == 1) return "invalid";
else return;

}

The combination function encompasses all auxiliary parameters and marks a test input

as valid if the values all auxiliary parameters are valid. If a value of exactly one auxiliary

parameter is invalid, the test input is marked as invalid. If more than one value is invalid,

the test input is marked as irrelevant.

The t-wise coverage guarantees the inclusion of each schema with degree d ≤ t. Therefore,

each invalid value and each invalid value combination of size d ≤ t appears in at least one test

input as well.

Since the auxiliary parameters are considered as well, at least one test input takes on the value

invalid for each auxiliary parameter paux. If there is only one invalid value combination

modeled by paux, then its inclusion is indirectly guaranteed by the one-to-one relationship –

even for invalid schemata with degrees d > t. But, the guarantee does not hold if there is more

than one invalid schema modeled by paux because there is no one-to-one relationship.

Running Example There is at least one test input that covers [Packages_-
Aux:invalid]. Since only one invalid value is modeled by Packages_Fun, the test

inputs that cover [Packages_Aux:invalid] always cover [Packages:123] as

well.

There is also at least one test input that covers [PhoneCountry_-
Aux:invalid]. Since three invalid schemata are modeled by PhoneCountry_Fun,

the test inputs that cover [PhoneCountry_Aux:invalid] also cover [Coun-
try:123], [Phone:123], [Country:UK, Phone:+1], or [Country:USA,
Phone:+44]. For t-wise coverage with t = 1, the coverage of [Country:123] and

[Phone:123] is guaranteed and consequently [PhoneCountry_Aux:invalid]
is also covered.

To ensure the coverage of larger invalid schemata, either the testing strength must be increased

to t = d or additional auxiliary parameters must be introduced such that each auxiliary parameter

and combination function only model one invalid schemata.

The one-to-one relationship between an auxiliary parameter, a combination function, and one

invalid schema also allows accounting for interactions between invalid schemata and other valid

schemata. For t-wise coverage, the value invalid of each auxiliary parameter is combined

with valid schemata for all parameter combinations of size t− 1.

However, the introduction of numerous auxiliary parameters makes the IPM more complex

and confusing, might slow down the execution of test selection strategies, and the involved

breakdown into numerous sub-models might result in test suites that are larger than necessary.

4.1. Combinatorial Robustness Testing 67

Further on, the combination functions ensure that invalid schemata only appear in strong

invalid test inputs. But test adequacy criteria for valid and invalid test inputs are not separated.

The invalid input masking effect still applies because a schema that is covered by an invalid

test input is not guaranteed to appear in another valid test input. To separate valid and invalid

test suites, the combination function TestInput_Fun must be adjusted such that all invalid

schemata are marked as irrelevant for the selection of valid test suites and that all valid schemata

are marked as irrelevant for the selection of invalid test suites.

Because all these concepts belong to a workaround, an automatic switch between test selection

for valid and invalid test inputs does not exist. The mixed usage of combination functions

to exclude irrelevant schemata and to distinguish valid from invalid schemata does not only

complicate the IPMs but makes further automated support and analysis techniques impossible.

JCUnit The JCUnit2 tool is developed by UKAI & QU [UQ17]. JCUnit integrates the

modeling of IPMs, the application of test selection strategies and the test execution into one

Java-based framework that is build on top of the JUnit3 framework for automated test execu-

tion. The IPMs are modeled as Java classes with constraints being modeled as ordinary Java

methods that return boolean values. Further on, parameterized test methods encode the com-

puter instructions to interact with the SUT. The parameterization allows using the same test

methods for many different test inputs. One or more parameterized test methods can be defined

and conditions can be attached to decide which test inputs are executed by which test method.

By default, the test selection strategy selects test inputs such that all constraints are satisfied.

Thus, the selected test inputs are relevant and valid. In addition, “negative testing” can be

enabled where invalid test inputs are selected such that they do violate constraints. Although the

selection of invalid test inputs is not discussed in the publication [UQ17], further information is

available in the online documentation45.

To enable “negative testing”, parameterized test methods are defined with conditions that

require at least one constraint to remain unsatisfied. If exactly one constraint must remain un-

satisfied, strong invalid test inputs for that constraint are executed. But the approach is more

flexible than the aforementioned approaches and also allows combining several unsatisfied con-

straints. Moreover, it can also deal with invalid value combinations when they are modeled by

constraints.

Based on the limited information available, it is unclear how many test inputs are selected

from an unsatisfied constraint and if all t-sized schemata appear in at least one valid test input

to prevent input masking. Further on, the constraints do not have an internal representation

such as propositional logic or forbidden schemata, the Java methods that represent constraints

are executed many times during the test input selection. To improve the efficiency, the IPM is

divided into sub-models for which test inputs are selected individually and merged afterwards.

However, sub-models lead to larger test suites and the constraint handling is still not as efficient

2See https://github.com/dakusui/jcunit (Last access on 1st December 2020).
3See https://junit.org (Last access on 1st December 2020).
4See https://github.com/dakusui/jcunit/issues/49 (Last access on 1st December 2020).
5See https://github.com/dakusui/jcunit/wiki/0.7.x-manual-07.Automatic-negative-test-generation (Last access on

1st December 2020).

68 Chapter 4. Related Work

as CSP solving or minimal irrelevant schemata. In addition, the missing internal representation

not only results in an inefficient constraint handling technique. It also impedes further reasoning

to develop automated support and analysis techniques.

Other CRT Test Methods A survey conducted by KHALSA & LABICHE [KL14] focused

on test selection strategies and tools for CT and identified two more tools that support CRT:

(1) PictMaster which integrates PICT into Microsoft Excel and (2) FoCuS which is a CT

tool developed by IBM. According to SEGALL et al. [STF11], FoCuS supports all features that

are also present in PICT which includes “testing with negative values that indicate error condi-

tions”. Beyond that, we do not have an indication that invalid value combinations are explicitly

considered. Although, KHALSA & LABICHE [KL14] state in their survey that “constraints can

also be used to test the robustness of the system, e.g., behavior of the system if the user selects

invalid options”. But, not further information or references are provided.

4.2. Non-Combinatorial Robustness Testing 69

4.2. Non-Combinatorial Robustness Testing

SHAHROKNI & FELDT [SF13] provide a systematic review of software robustness and as such

they also discuss verification and validation of robustness. Since these tools are only remotely

related to our work, we discuss them only briefly. For more information, please refer to system-

atic reviews by SHAHROKNI & FELDT [SF13] and MICSKEI et al. [Mic+12].

Fault injection is the primary technique used for robustness testing [SF13]. Given our trans-

formational view of programs P : I → O, fault injection can be achieved by stimulating a

program P with non-valid inputs τ /∈ SI . In practice, fault injection not only encompasses

passing inputs to a program but also injecting faults into or simulating faults in physical systems

[Mic+12].

Related black-box test methods are the robust variants of equivalence class testing (ECT)

and boundary value testing (BVT) that incorporate invalid values to create invalid test inputs

[Jor14]. For robust weak ECT and robustness BVT, one invalid value is combined with all

other parameter values being valid. Robust strong ECT and robust worst-case BVT describe the

cross-product of all valid and invalid values. They comprise single error coverage and N-wise

coverage for invalid values but do not mention invalid value combinations. They also do not

support t-combinatorics in between single error coverage and N-wise coverage.

Robustness testing is often automated and random testing is one of the first approaches to

robustness testing where random inputs are generated and used to stimulate a program [Mic+12].

It can be efficient and effective when combined with a simple test oracle such “program may

never crash or hang”.

This is the main objective of these robustness testing approaches whereas the objective of

our CRT is to check whether business rules are implemented correctly. For more detailed test

oracles that do not check for crashes but for the correct implementation of business rules like

“the start date must not be after the end date of a booking”, irrelevant test inputs with no defined

behavior may be selected by random testing. In addition, invalid test inputs that cover more than

one truly-minimal invalid schema may be generated and suffer from invalid input masking.

Grammar-based and type-specific tools like Ballista (cf. [KJS98]; [KD00]) are more

advanced approaches that rely on a model that describes the legal structure of inputs. Thereby,

the amount of irrelevant test inputs and invalid test inputs that cover more than one truly-minimal

invalid schema can be reduced [Mic+12]. However, the models describe legal structure of inputs

on a syntactic level and not on a semantic level. Thereby, business rules are not adequately

captured.

In a review on exception analysis by CHANG & CHOI [CC16], 15 publications on white-box

test methods are identified that incorporate the structure of exceptional control-flows. While

these approaches can be effective in revealing robustness faults, they only test existing EH and

cannot reveal robustness faults caused by the absence of EH.

Part II.

A Combinatorial Robustness Test
Method

Chapter 5.

A Combinatorial Robustness Fault Model

Contents

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking . . . 74

5.1.1. Motivation . 74

5.1.2. Applying the t-Factor Fault Model 75

5.1.3. Experiment Design . 81

5.1.4. Results and Discussion . 84

5.1.5. Threats to Validity . 90

5.2. A Classification of Robustness Fault Characteristics 91

5.2.1. Configuration-independent Robustness Faults 91

5.2.2. Configuration-dependent Robustness Faults 94

5.3. A Case Study on Minimal Failure-causing Schemata 97

5.3.1. Motivation . 97

5.3.2. Case Study Design . 98

5.3.3. Results and Discussion . 100

5.3.4. Threats to Validity . 104

5.4. A Refined t-Factor Fault Model for Robustness Faults 105

A CRT test method requires a fault model which functions as the basis of test adequacy criteria

and test selection strategies. A fault model is a collection of hypothesized faults. Test adequacy

criteria and test selection strategies are then constructed to detect these hypothesized faults.

Since CT already has a fault model – the t-factor fault model – we first evaluate if CT and its

t-factor fault model are appropriate to describe and to detect robustness faults.

Therefore, we first conduct an experiment (Section 5.1) to assess the appropriateness of CT in

the presence of invalid input masking. Since our findings indicate that extensions like CRT are

useful, we derive a classification of robustness fault characteristics (Section 5.2). Then, we con-

duct a case study on MFCSs in order to investigate robustness failures and to draw conclusions

regarding the classified robustness fault characteristics (Section 5.3). Afterwards, we integrate

the findings into a refined t-factor fault model for robustness faults that can be used to guide the

development of test adequacy criteria and test selection strategies (Section 5.4).

74 Chapter 5. A Combinatorial Robustness Fault Model

5.1. Fault Detection Effectiveness in the Presence of Invalid

Input Masking

5.1.1. Motivation

Although intended to make a SUT more robust, EH is itself a source of robustness faults and

failures [MT97]; [Mar11]; [SAW12]. In the context of CT, the invalid input masking effect may

mask a fault and prevent it from being detected by a test input. As discussed in the chapter

on related work (Chapter 4, Page 55 and following), the invalid input masking effect is used to

justify CRT extensions because the effectiveness of CT can become worse due to the masking.

But beyond qualitative arguments and examples, it is unclear to what extent the invalid input

masking effect can impact the effectiveness of CT. It is thus unclear to what degree CT is appro-

priate and if extensions like CRT are needed. Therefore, we investigate the following research

objective: How effective is CT and what are its shortcomings in detecting faults when invalid

input masking is present?

An important aspect when assessing the effectiveness of CT is collateral coverage: The

testing strength t determines which MFCSs are guaranteed to be detected. When testing with a

test suite that satisfies t-wise coverage, all schemata with degree d = t appear in some test input

and testing should fail for each test input that covers a MFCS with degree d = t. In addition, all

smaller sub-schemata with degrees d < t also appear in some test input and testing consequently

fails for MFCSs with degrees d < t as well. Testing with t-wise coverage cannot only detect

faults of factor d ≤ t. Even some larger super-schemata of degrees d = (t+ k) with k > 0 and

d ≤ n are covered by a test suite that satisfies t-wise coverage [CZ11]. This so-called collateral

coverage can help detect additional faults with MFCSs of degrees d > t [Pet+15]. While t-wise

coverage provides a guarantee that each MFCS with a degree d ≤ t is covered by at least one

test input, it cannot be guaranteed that a MFCS with a degree d > t is covered. However, there

is a probability that these larger MFCSs are also covered due to the collateral coverage.

For each-choice (t = 1), the fault detection probability of a minimal test suite can be cal-

culated for a given fault and a given IPM. When increasing the testing strength to t > 1, the

probability of fault detection also increases. But, finding a minimal set of test inputs that satis-

fies t-wise coverage for t > 1 is in general NP hard [LT98]. Heuristics are used as test selection

strategies which produce small but not always minimal test suites and the probability of detecting

a fault based on collateral coverage cannot be calculated easily anymore.

In this context, CHEN & ZHANG [CZ11] introduce the tuple density metric which “is the sum

of t and the percentage of the covered [schemata with degree d = t + 1] out of all possible

[schemata with degree d = t + 1]”. It allows distinguish test suites even if they have the same

size and satisfy t-wise coverage for the same testing strength t. A test suite that covers more

[schemata with degree d = t+ 1] has a higher tuple density and the probability that MFCSs are

detected due to collateral coverage is also higher.

As the test suites and tuple density values differ for each IPM and each test selection strategy, it

becomes difficult to calculate the probability. Particularly noteworthy are test selection strategies

of CHEN & ZHANG [CZ11] or CHOI et al. [Cho+16], which specifically try to increase the tuple

density for test suites that satisfy t-coverage.

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 75

In this respect, WANG & QI [WQ15] present a model to compute the lower boundary of fault

detection probability for CT. Later, YU et al. [Yu+18] revisit the model to compute the lower

boundary of fault detection probability and publish a counterexample to illustrate a fault in the

model. This is also discussed in the related work on testing of logical expressions (See Page 57).

Running Example Suppose another fault in the Ordering Web-Service implementation

(Listing 2.1, Page 14) where the function isInvalidCountry(country) is incor-

rect and does not detect invalid country codes which are modeled as [Country:123].

The fault is illustrated below.

if(isInvalidNumberOfPackages(packages)) return "INV_PACKAGES";
if(isInvalidCountry(country)) /* fault, do nothing */;
if(isInvalidPhoneNumber(phone)) return "INV_PHONE";
if(isInvalidCountryCode(country, phone)) return "INV_CODE";

To satisfy t-wise coverage with t = 1, a minimal set of three test inputs can be selected

with exactly one test input that covers [Country:123]. In total, 18 test inputs that

cover [Country:123] can be combined and one of them must be selected. Of the 18

test inputs, six cover [Packages:123] that cause invalid input masking. Therefore,

the probability of selecting a test input that activates the fault is 12
18 = 67%.

In this example, t-wise coverage with t = 2 guarantees the selection of a MFCS

like [Packages:1, Country:123] where the probability increases to 100%. In a

more complicated example where three particular values are required to activate a fault,

the probability of detecting a fault by a test suite that satisfies t-wise coverage with t = 2
cannot be calculated simply.

Because of the difficulties in calculating the probability, we instead conduct a controlled ex-

periment to investigate the research objective.

First, we apply the t-factor fault model to describe robustness faults. Then, we derive fac-

tors that influence the detectability of robustness faults. Afterwards, we conduct a controlled

experiment to measure the effectiveness of CT.

Please note, the assessment is consciously limited to robustness faults that are activated by

invalid values. Invalid value combinations are excluded since they complicate the description

of influencing factors. But the assessment still demonstrates an impact of invalid input masking

on the effectiveness: If invalid values and their masking have an impact on the effectiveness,

then invalid value combinations have an impact as well because their masking and their MFCSs

encompass more parameters.

5.1.2. Applying the t-Factor Fault Model

Overview

In general, a fault model is a description of hypothesized faults and how to activate them [Bin00].

To observe a failure, the source code region or regions that contain the fault must be reached

(reachability), the state must be incorrect after executing the regions (infection) and the infection

must propagate to a failure (propagation) [LO17].

76 Chapter 5. A Combinatorial Robustness Fault Model

The idea of CT and t-wise coverage is based on the corresponding t-factor fault model which

is formally introduced by DALAL & MALLOWS [DM98]. The t-factor fault model assumes that

faults are caused by the interaction of t parameters [DM98]. These faults are called t-factor

faults and t refers to the number of involved parameters.

Faults are static defects in the source code that manifest as incorrect computer instructions in

the SUT [Avi+04]. In contrast, MFCSs are black-box concepts that are defined in terms of a

specification and parameters and values of an IPM.

A t-factor fault is an abstraction of an actual fault. It is associated with a condition that is

defined relative to the SUT such that each input that satisfies the condition activates the fault and

causes the behavior of the SUT to deviate from its specification.

Definition 82 (t-Factor Fault) A t-factor fault is an abstraction that describes an actual fault
in the SUT by a condition over t parameters of the SUT which must be satisfied by an input to
the SUT in order to activate the fault.

To detect a t-factor fault, i.e. to satisfy reachability and infection, it is necessary and sufficient

for a test input to satisfy the condition of the t-factor fault (short: fault condition). If the fault

then propagates to a failure, it can be revealed by a test oracle [LO17]. To satisfy the fault

condition, the test input covers a MFCS with the parameter value pairs that correspond to the

parameters and values of the fault condition.

MFCSs are described relative to an IPM and t-factor faults are described relative to a SUT

model. Both models are input-oriented abstractions that describe an actual program as a set

of parameters. Since t-factor faults and MFCSs are used in the same context, both models

typically use the same set of parameters to ensure that at least one schemata selected to satisfy

t-wise coverage activates the t-factor fault. Although strictly speaking, the SUT model for t-
factor faults and the IPM for MFCSs could use different sets of parameters. Then, a mapping

function would be necessary to align the parameters of both models.

When assuming the same set of parameters, the input domain of a SUT I can be structured

by n parameters with each parameter pi having a domain Di consisting of a potentially infinite

number of values, i.e. I = D1 × ... × Dn. In contrast, the n parameters of an IPM have

associated nonempty sets of discrete values V = {V1, ..., Vn} where each value domain Vi

contains all values of the SUT Vi ⊆ Di a tester is interested in. The cartesian product of all

value domains E = V1 × ...× Vn denotes the exhaustive test suite which contains all test inputs

that are modeled by the IPM. It is a discrete subset of the SUT’s input domain E ⊆ I and a

superset T ⊆ E of each test suite T that is selected by a test selection strategy.

Running Example To describe the aforementioned fault in the isInvalidCoun-
try(country) function as a t-factor fault, EH must be taken into account. The fault

cannot be described as a 1-factor fault because not every input that satisfies isIn-
validCountry(country) activates the fault. Consequently, [Country:123] is

not a MFCS with regards to the given IPM (Figure 2.1, Page 14).

Detecting the fault does not only require an invalid country code. A valid number of

packages is necessary as well to prevent invalid input masking. Therefore, the fault can

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 77

be modeled as a 2-factor fault using a conjunction over all four parameters.

¬isInvalidNumberOfPackages(packages)
∧isInvalidCountry(country)

For the given IPM, the following schemata are minimal failure-causing.

[Packages:1, Country:123],

[Packages:3, Country:123]

Oftentimes, one MFCS exists for one t-factor fault and the degree of the MFCS is of the same

size as the t-factor fault, i.e. d = t. Therefore, a t-factor fault is often considered and used as a

synonymous term for MFCS. But there are also differences since a t-factor fault depends on the

implementation in which it is located while a MFCS depends on the parameters and values of

its IPM.

First, there can be zero, one, or multiple MFCSs that activate the same t-factor fault. Zero

MFCSs exist when the value domains of an IPM do not contain the values that are necessary

to satisfy the fault condition. In contrast, when each value domain of all parameters that are

involved in the fault condition contains a value to satisfy the fault condition, one MFCS exists.

When a value domain of an involved parameter contains multiple values that can be used to

satisfy the fault condition, multiple MFCSs exist for the same t-factor fault.

Second, the number of parameters involved in the t-factor fault condition predetermines an

upper boundary of the degree of MFCSs. Typically, the number of involved parameters and the

degree of MFCSs are the same, i.e. d = t.
There is also an exception which occurs in the context of incomplete IPMs that result in parts

of the SUTs not being tested. MFCSs do not cover values of a parameter when all values of

that parameter are sufficient to satisfy the fault condition. For instance, when no invalid value

is modeled for a particular parameter, related EH is skipped and there cannot be any invalid

input masking for that parameter. But the MFCSs cover fewer parameter-value pairs than the

t-factor fault, i.e. d < t. Since this work is about EH, our objective is to test and not to skip EH.

Therefore, we focus on complete IPMs without skipped invalid schemata to test EH extensively.

Another case is the occurrence of irrelevant schemata. The exclusion of irrelevant values by

removing them from the value domains and of irrelevant value combinations by modeling them

as exclusion-constraints does not result in untested parts of the SUT. While the existence of

irrelevant schemata may increase the number of parameters involved in a fault condition, the

exclusion of irrelevant schemata decreases the degree of MFCSs.

Running Example The aforementioned fault in the isInvalidCoun-
try(country) function allows illustrating this exception. The corresponding

t-factor fault involves two parameters because of the EH related to invalid numbers of

packages. If there were no invalid number of packages modeled in the IPM, the EH

would be skipped and invalid input masking could not happen.

Packages: { 1, 3 }

78 Chapter 5. A Combinatorial Robustness Fault Model

As a result, every combination of a number of packages and [Country:123]
would be failure-causing which makes it a MFCS with a degree of d = 1.

When applying the t-factor fault model, the number of parameters involved in a fault condition

and the number of MFCSs that activate the fault are important characteristics that influence the

effectiveness of CT. In the following, they are discussed in more detail.

Characteristics affecting Size of t-Factor Faults

Number of Parameters involved in Exception Handling In the presence of irrelevant

and invalid input masking, the condition to detect a t-factor fault can be formulated as a con-

junction of two sub-conditions. First, the location of the fault must be reached by ensuring that

the input is executable and that no prior EH propagates and terminates the SUT. We denote this

as the effective prevention sub-condition. Second, a MFCS must activate a fault so that it can

cause an incorrect program state that can propagate to a failure. We denote this as the activation

sub-condition.

Running Example The fault condition can be divided as follows:

¬isInvalidNumberOfPackages(packages) is used for effective preven-

tion and isInvalidCountry(country) is used for activation.

The distinction of effective prevention and activation sub-conditions also allows to further ex-

plain the aforementioned exception in the context of incomplete IPM. When no irrelevant value

combination or no invalid value is modeled by an IPM, the effective prevention sub-condition is

always satisfied and it is not necessary to specify failure-causing values for those parameters.

The size of a t-factor fault increases with the number of parameters involved in effective

prevention and activation sub-conditions. To guarantee that a t-factor fault is detected, the test

input set must satisfy t-wise coverage of the same size.

Priority of Exception Handling Each EH with a position in the control-flow prior to the

fault has the potential to propagate and terminate the SUT before the fault is reached. Therefore,

each prior EH extends the effective prevention sub-condition.

Running Example The effective prevention sub-condition for the fault in the isIn-
validCountry(country) function is already illustrated beforehand. For a fault

in the first EH of the example (Line 5 of Listing 2.1, Page 14), the effective

prevention sub-condition would be empty. In contrast, a fault in the third EH

would be modeled by a effective prevention sub-condition that includes the prior

two EHs, e.g. ¬(isInvalidNumberOfPackages(packages) ∨ isInvalid-
Country(country)).

While testing with t-wise coverage is appropriate to detect a fault that can be modeled as a t′-
factor fault with t′ ≤ t, the location of the fault is required to be known beforehand to determine

the appropriate testing strength t. But, the specification does typically not impose a specific

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 79

order of EH. To determine testing strength t independent from the specific location of a fault

within the control-flow, all EHs in every possible order must be taken into account. Then, the

testing strength t would grow with the number of parameters checked by EH.

Deriving the testing strength from all parameters that are involved in any EH is an idealized

approach that allows testing for incorrect EH without knowing the location of the fault. It is

assured that each EH is reached and potential faults are detected. While this testing strength de-

notes the lower limit to ensure that potential faults are detected independently from the ordering

of EHs, testing is still conducted for a specific implementation with a specific ordering. There-

fore, we distinguish the effective prevention sub-condition which is sufficient for a specific

implementation from the general prevention sub-condition which is sufficient for all possible

orderings. On average, the effective prevention sub-condition considers fewer EHs which im-

proves the likelihood of detecting a fault when using a testing strength that is not sufficient for

the general prevention sub-condition.

Running Example The general prevention sub-condition for the aforementioned fault

in the isInvalidCountry(country) function would be as follows.

¬(isInvalidNumberOfPackages(packages)
∨ isInvalidPhoneNumber(phone)

∨ isInvalidCountryCode(country, phone))

Together with the activation sub-condition isInvalidCountry(country) it

constitutes a 3-factor fault since three parameters are involved in the fault condition.

Characteristics affecting the Number of Minimal Failure-causing Schemata

Besides the number of parameters involved in the fault condition, the number of MFCSs is

also an important factor that affects the fault detection effectiveness. Depending on the number

of parameters involved in any EH and the location of a fault, the required testing strength to

guarantee the detection can easily exceed t > 6 and collateral coverage becomes more important.

A test suite that satisfies t-wise coverage contains all MFCSs with degrees of d ≤ t at least

once. In contrast, MFCSs with degrees of d > t have a probability of less than 100% to be

covered and the detection cannot be guaranteed. Although, the probability of detecting a t′-
factor fault with t′ > t increases with the number of MFCSs that exist in the exhaustive test suite

because it becomes more likely that at least one of them is covered due to collateral coverage.

Therefore, it is important to discuss characteristics that increase or decrease the number of

MFCSs for a t′-factor fault. To illustrate the effects, the following discussion is based on a given

t′-factor fault with t′ > 1, a given IPM, and a testing strength of t = 1. The impact of adding

another value to the IPM is assessed.

In general, the impact of valid and invalid values as well as the involvement of a value’s

parameter in the fault condition can be distinguished.

80 Chapter 5. A Combinatorial Robustness Fault Model

Number of Valid Values A valid value of a parameter that is involved in the activation

sub-condition has no effect on the number of MFCSs because it cannot contribute to satisfy the

activation sub-condition. The valid value and a value that is necessary to satisfy the activation

sub-condition are mutually exclusive because the activation sub-condition of a robustness fault

requires an invalid value.

A valid value of a parameter that is involved in the effective prevention sub-condition can

contribute to satisfy the effective prevention sub-condition. As a result, multiple additional

MFCSs exist that cover the valid value.

A valid value of a parameter that is neither involved in the activation nor in the effective pre-

vention sub-condition has no immediate effect on the number of MFCSs and the probability

of selecting failure-causing test inputs. Although, each value contributes to the set of t-sized

schemata that must be covered by some test input to satisfy t-wise coverage. As a result, addi-

tional values may affect the overall selection of test inputs and may cause a test selection strategy

to introduce some redundant selections that affect the fault triggering probability. But, these ef-

fects are specific to particular test selection strategies and beyond the scope of this discussion.

Running Example For the t-factor fault with the fault condition

¬isInvalidNumberOfPackages(packages) ∧ isInvalidCoun-
try(country), adding another valid number of packages [Packages:5] is

an example of adding an valid value that does satisfy the effective prevention sub-condi-

tion. It increases the probability of selecting a test input that covers [Country:123]
and that does not cause invalid input masking from 12

18 = 67% to 18
24 = 75%.

In contrast, adding a valid [PhoneNumber:+49] that is not involved in the fault

condition does not change the probability because the number of MFCSs remains the

same. Without the additional value 12
18 = 67% of the test inputs that cover [Coun-

try:123] can detect the fault. With the additional value 16
24 = 67% of the test inputs

that cover [Country:123] can detect the fault.

Number of Invalid Values An invalid value of a parameter that is involved in the activation

sub-condition results in multiple MFCSs if the invalid value satisfies the activation sub-condi-

tion. If the invalid value does not satisfy the activation sub-condition, it has no effect on the

number of MFCSs because a satisfying value and this invalid value are mutually exclusive se-

lections.

An invalid value of a parameter that is involved in the effective prevention sub-condition

increases the risk of invalid input masking because it results in multiple schemata that do not

satisfy the effective prevention sub-condition.

An invalid value of a parameter that is neither involved in the activation nor in the effective

prevention sub-condition has no immediate effect on the number of MFCSs and the probability

of selecting failure-causing test inputs. The invalid values do not affect the MFCSs because the

EH would happen at a location after the fault.

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 81

Running Example For the aforementioned t-factor fault with the fault con-

dition ¬isInvalidNumberOfPackages(packages) ∧ isInvalidCoun-
try(country), adding another invalid country [Country:456] that satisfies the

activation sub-condition increases the probability because more MFCSs exist. The prob-

ability of selecting a test input with [Country:123] that does not cause invalid input

masking remains the same 12
18 = 67%. However, a second test input with [Coun-

try:456] that has the same probability must be selected as well.

In contrast, adding another invalid number of packages [Packages:456] is an

example of adding an invalid value that does not satisfy the effective prevention sub-con-

dition. The number of MFCSs remains the same. Moreover, it decreases the probability

of selecting a test input with [Country:123] that does not cause invalid input mask-

ing from 12
18 = 67% to 12

24 = 50%.

5.1.3. Experiment Design

Test Scenarios

The objective of our experiment is to evaluate the effectiveness of CT when selecting test inputs

in the presence of invalid input masking due to EH. In particular, we want to determine in which

cases CT is appropriate such that CRT and its additional effort can be avoided. Therefore, we

generated test inputs with different characteristics and executed them in test scenarios.

For an experiment, it is important to control the factors that can influence the results. There-

fore, we designed artificial test scenarios and changed different characteristics in a controlled

and traceable way. Each test scenario contains exactly one fault in EH that always propagates to

a failure when activated and the failure is always revealed by the test oracle. Thus, the selection

of test inputs is the only factor that influences the results of test execution.

Based on the application of the t-factor fault model, we describe each test scenario SC in

terms of (1) the number of parameters, (2) the number of parameters that are involved in EH, (3)

the number of valid values per parameter, (4) the number of invalid values per parameter, and

(5) the location l of the incorrect EH that contains a fault.

The implementation of a test scenario is illustrated in Listing 5.1. A test scenario accepts

input values for a number of parameters and includes a sequence of EHs with one EH for one

parameter implemented with if statements. The result of a test scenario execution is INV_-
INPUT if an invalid value is correctly identified and if the execution is correctly terminated.

If an invalid value is identified by an incorrectly implemented EH, null is returned instead;

VAL_INPUT is returned if all EHs are passed because all values are valid.

1 String checkInput (Object a, b, c){
2 if(isInvalid(a)) return "INV_INPUT";
3 else if(isInvalid(b)) return null;
4 else if(isInvalid(c)) return "INV_INPUT";
5 else return "VAL_INPUT";
6 }

Listing 5.1: Illustration of a Test Scenario Implementation

82 Chapter 5. A Combinatorial Robustness Fault Model

The illustrated test scenario uses 3 parameters where the second EH (location l = 2) is incor-

rect. The number of valid and invalid values per parameter is implicitly encoded by the IPM that

is used to generate test inputs.

By varying the index of the incorrect EH, three different test scenarios for our example can

be created, where either the first, second or third EH is incorrect. A set of test scenarios that

shares the same parameters and values but differs in the index of the incorrect EH is called a test

scenario family SC∗.

As a notation, we use P-V-I-E where P refers to the total number of parameters, V refers to

the number of valid values per parameter, I refers to the number of invalid values per parameter,

and E refers to the number of parameters that are involved in EH.

The experiment starts with a root test scenario family 6-1-1-6. It is chosen to represent a

simple application of CT. With fewer parameters, we believe that CT would not be beneficial.

With fewer values, EH and strong invalid test inputs would not be possible. The root test scenario

family is then extended as follows. The number of parameters is increased by six up to 30

parameters. The number of EHs in a test scenario family either remains at six or is equal to the

number of parameters. The total number of values per test scenario family is extended up to six

with one to five valid and invalid values.

Test Input Generation

The IPMs used in this experiment share the same set of parameters with the test scenario and

define the number of valid and invalid values per parameter. To avoid any bias, we use test

suites from the NIST Covering Array Tables1. They are publicly available and contain many of

the smallest known test suites [For+08]. Table 5.1 depicts the sizes of the test suites. Column

P refers to the number of parameters and column V refers to the total number of values per

parameter. The test suites are reused for different ratios of valid and invalid values.

The order of parameters and values in an IPM has no impact on whether a generated test

suite satisfies t-wise coverage. However, it has an impact on which schemata with degree t are

combined in a single test input. To reduce the effect of accidental fault detection that is caused

by ordering, the parameters and values of a test suite are randomly reordered and 100 different

variants of each test suite are generated. The set of all test suite variants is called a test suite

family T ∗.

The testing strengths used in the experiment range from t = 1 to t = 5 because most failures

are induced by this range.

Evaluation Metrics

A common metric to evaluate test selection strategies is called fault detection effectiveness

(FDE) [GOA05]; [Pet15]. A test suite T is denoted as failing for a test scenario SC if at least

one of the test inputs τ ∈ T detects the t-factor fault f in SC and the test suite consequently

fails.

failing(T, SC) =

{
1 if ∃τ ∈ T that fails for SC
0 otherwise

1https://math.nist.gov/coveringarrays/ (Last access on 1st May 2020)

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 83

P V t=1 t=2 t=3 t=4 t=5

6 2 2 6 14 26 42

6 3 3 15 49 140 318

6 4 4 24 109 442 1377

6 5 5 38 209 1059 4195

6 6 6 52 361 2165 10407

12 2 2 8 19 47 105

12 3 3 20 71 262 885

12 4 4 31 170 835 3854

12 5 5 48 329 2068 11889

12 6 6 67 564 4295 29645

18 2 2 10 24 60 144

18 3 3 20 88 336 1241

18 4 4 36 202 1098 5458

18 5 5 54 401 2725 16843

18 6 6 75 689 5650 42102

24 2 2 10 26 71 175

24 3 3 21 98 396 1513

24 4 4 40 232 1298 6629

24 5 5 59 454 3203 20482

24 6 6 83 786 6662 51287

30 2 2 11 28 80 200

30 3 3 23 106 446 1715

30 4 4 41 255 1448 7555

30 5 5 63 495 3589 23369

30 6 6 86 859 7473 58468

Table 5.1.: Test Suite Sizes used for the Experiment

Using the failing function, FDE is defined as the ratio between the number of test suites

T ∈ T ∗ of a family that fail for a test scenario SC and the number of all test suites in a family

T ∗ that is used to test SC.

FDE(T ∗, SC) =

∑
T∈T ∗ failing(T, SC)

|T ∗|
In other words, the FDE is based on randomized variants of a test suite that all satisfy the

same testing strength. They all are used to test the same test scenario SC which has an incorrect

EH with a fixed location.

The FDE metric can be used to identify and isolate characteristics that influence the FDE met-

ric values. However, that information cannot be used in practice because one must know which

EH is incorrect beforehand. Therefore, we introduce the average fault detection effectiveness

(AFDE) which is the average FDE over a family of test scenarios SC∗. Thus, AFDE represents

the effectiveness of a test scenario family when knowing that an EH is incorrect but without

84 Chapter 5. A Combinatorial Robustness Fault Model

knowing its location.

AFDE(T ∗, SC∗) =
∑

SC∈SC∗ FDE(T ∗, SC)

|SC∗|

List of Symbols

SC test scenario

SC∗ test scenario family

T ∗ test suite family

l location of an incorrect EH

5.1.4. Results and Discussion

Overview

The overall results of the experiment are consistent with the indications of applying the t-factor

fault model to robustness faults. Whenever an EH at location l is incorrect, the effective preven-

tion sub-condition includes the parameters checked by all EHs with earlier locations. Since one

parameter is involved in the activation sub-condition, l − 1 parameters belong to the effective

prevention sub-condition.

When the first EH is incorrect (l = 1), the effective prevention sub-condition is empty and one

parameter is involved in the activation sub-condition. The resulting 1-factor fault is detected in

each test scenario and by all test suites that satisfy the testing strength t = 1. For all considered

testing strengths 1 ≤ t ≤ 5, all l-factor faults are detected by all test suites that satisfy the

corresponding testing strength. Beyond that, collateral coverage causes higher l+k-factor faults

to be repeatedly detected by test suites that satisfy lower testing strengths.

Fault Detection Effectiveness

Table 5.2 depicts an excerpt2 of the FDEs computed for test scenario families with six to 30 pa-

rameters consisting of two valid values and one invalid value. Each test scenario family contains

six EHs. The l column denotes the location of the incorrect EH, t denotes the testing strength

that is satisfied by the family of test suites and the remaining columns denote the computed FDE

values.

According to the t-factor fault model, a testing strength of t = 2 is required to guarantee that

incorrect EH at location l = 2 is detected.

According to the FDE values of this experiment, the same fault is triggered by all test suites

that satisfy a testing strength of t = 2. Moreover, the same fault is on average also triggered by

67.6% of all test suites that only satisfy t = 1. The exact FDE values for the five test scenarios

2The complete data of this experiment can be found in Appendix A (Page 279 and following).

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 85

l t 6-2-1-6 12-2-1-6 18-2-1-6 24-2-1-6 30-2-1-6

1 1 100 100 100 100 100

2 1 63 74 65 66 70

2 2 100 100 100 100 100

3 1 43 34 38 35 52

3 2 98 99 100 99 100

3 3 100 100 100 100 100

4 1 30 35 33 29 31

4 2 90 96 95 95 99

4 3 100 100 100 100 100

5 1 22 22 20 19 27

5 2 72 82 84 85 91

5 3 100 100 100 100 100

6 1 12 14 11 13 18

6 2 61 61 69 63 69

6 3 95 99 100 100 99

6 4 100 100 100 100 100

Table 5.2.: FDE of Test Scenario Families with Six to 30 Parameters and Six EHs (Excerpt)

(6-2-1-6, 12-2-1-6, 18-2-1-6, 24-2-1-6, and 30-2-1-6 with l = 2 and t = 1) are

depicted in the second row of Table 5.2 (Page 85).

Testing with higher testing strengths is even more effective. On average, test suite families

that satisfy a testing strength of t = 2 detect incorrect EHs at location l = 3 in 99.2% of all

cases. As expected, a family of test suites that satisfies t = 3 always detects the incorrect EH at

location l = 3. However, incorrect EHs at locations l = 4 and l = 5 are always detected as well.

The incorrect EH at location l = 6 is detected by 98.6% of all test suite families.

When increasing the number of parameters while the number of EHs remains at six, the data

indicates no general trend for the FDE. In many cases, FDE improves slightly. Although, there

are cases where the FDE deteriorates. For instance, the FDE for detecting an incorrect EH at

location l = 2 with a test suite family that satisfies only testing strength t = 1 improves from

64% for the test scenario family with six parameters to 74% for the test scenario family with 12

parameters. But, it deteriorates to 65% for the test scenario family with 18 parameters.

Table 5.3 (Page 86) depicts the FDE for test scenario families with six to 30 parameters and an

equal number of EHs. Increasing the number of EHs such that one EH exists for each parameter

has no direct impact on the FDE. Over all indices, testing strengths and parameter sizes, the

difference between the FDE for six EHs and the FDE for |P | EHs is 1.25 percentage points on

average. For instance, the difference for l = 2, t = 1 and 12 parameters is 11 percentage points

with an FDE of 74% for 6 EHs (Table 5.2, Page 85) and a FDE of 63% for 12 EHs (Table 5.3,

Page 86).

The biggest deviations are noticed for test scenario families with 30 parameters. For l = 2
and t = 1, the difference between the FDE for six EHs (57%) and the FDE for 30 EHs (42%) is

15 percentage points. For l = 6 and t = 2, the difference between the FDE for six EHs (40%)

86 Chapter 5. A Combinatorial Robustness Fault Model

l t 6-2-1-6 12-2-1-12 18-2-1-18 24-2-1-24 30-2-1-30

1 1 100 100 100 100 100

2 1 63 63 66 77 66

2 2 100 100 100 100 100

3 1 43 48 55 39 49

. .

8 3 78 86 91 87

. .

10 3 52 52 61 55

10 4 95 96 98 99

. .

12 3 34 29 30 34

12 4 67 78 88 83

12 5 99 100 100 100

. .

18 3 2 2 2

18 4 13 16 16

18 5 38 36 44

. .

24 4 2 2

24 5 3 5

Table 5.3.: FDE of Test Scenario Families with Six to 30 Parameters and an Equal Number of

EH (Excerpt)

and the FDE for 30 EHs (60%) is -20 percentage points.

Analyzing later locations of incorrect EHs (l > 6) emphasizes that the required testing

strength to detect a fault increases as well. Although, the testing strength grows slower com-

pared to the growth of locations (l ≤ 6). For instance, t = 3 is sufficient to detect incorrect

EHs at location l = 5 in 100% of all cases and it is almost sufficient (98.6% on average) to

detect all incorrect EHs at location l = 6. For l = 8, the average FDE decreases to 85.5%. For

l = 18, only 2% of all incorrect EHs are detected. In comparison, t = 4 is sufficient to detect

an incorrect EH at location l = 8 in 100% of all cases. t = 5 is sufficient to detect a fault at

location l = 11 in 100% of all cases and even a fault at location l = 12 is detected in 99.75% of

all cases. Afterwards, the FDE for t = 5 decreases to an average of 39.3% for location l = 18
and to 4% for l = 24.

Overall, the findings are consistent with the t-factor fault model. Changing the number of

parameters of a test scenario family has no clear effect on the FDE as well as changing the total

number of EHs. In contrast, increasing or decreasing the specific location of the incorrect EH

has the biggest effect on the FDE.

According to the t-factor fault model, a testing strength t guarantees to detect incorrect EH up

to location l = t. Beyond that, collateral coverage of CT causes a reliable detection of incorrect

EH at later locations. Although for index l = 12 and higher, even t = 5 is not sufficient to detect

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 87

incorrect EH for the test scenario families depicted in Table 5.3 (Page 86).

To use the knowledge acquired from the FDE metric, knowledge about the location of an

incorrect EH is required which makes it hard to use the information in practice. In contrast,

the AFDE allows drawing conclusions regarding the effectiveness of CT assuming that one EH

is incorrect when only the number of checked parameters as well as the number of valid and

invalid values is known. Therefore, all further analyzes are based on the AFDE metric.

Average Fault Detection Effectiveness

P E t 1-1 1-2 1-3 1-4 1-5 2-2 3-3 2-1 3-1 4-1 5-1

6 6 1 36 33.17 34.83 34.17 33.83 47.5 53.33 45 53 63.33 65.83

6 6 2 55.33 53.83 53 53.33 52.33 79.5 94.67 86.83 97 99.5 99.83

6 6 3 71.83 71.5 73.33 70.83 70.67 98 99.83 99.17 100 100 100

6 6 4 86.67 86.67 86.5 85.33 86.33 100 100 100 100 100 100

6 6 5 95 96 96.33 97.33 98.33 100 100 100 100 100 100

6 6 Avg. 68.97 68.23 68.8 68.2 68.3 85 89.57 86.2 90 92.57 93.13

12 6 1 33.33 32.17 31.5 33 34 46.5 57.5 46.5 55.83 64 67.5

12 6 2 60 60.67 57.33 54.67 56 84.5 92.83 89.67 99 99.67 100

12 6 3 76.67 74.83 74.33 75 71.33 99.33 100 99.83 100 100 100

12 6 4 94.17 92.5 90.5 91 88.83 100 100 100 100 100 100

12 6 5 97.83 99.33 99.83 99.33 100 100 100 100 100 100 100

12 6 Avg. 72.4 71.9 70.7 70.6 70.03 86.07 90.07 87.2 90.97 92.73 93.5

18 6 1 33.33 32.83 33.33 32.83 34 43.83 52.17 44.5 57 58.33 65.83

18 6 2 62.33 58.83 57 56.67 53.5 86 94.5 91.33 97.5 100 100

18 6 3 80.83 79.67 77.33 74 73.83 99.5 100 100 100 100 100

18 6 4 94 94.17 94.17 92.17 90.5 100 100 100 100 100 100

18 6 5 99.67 100 100 100 100 100 100 100 100 100 100

18 6 Avg. 74.03 73.1 72.37 71.13 70.37 85.87 89.33 87.17 90.9 91.67 93.17

24 6 1 31.33 33.33 33 33.5 32.67 46.17 52.33 43.67 53.67 60.33 66.5

24 6 2 63.17 59.83 58.17 57.33 55.5 85.83 94.17 90.33 98.33 100 100

24 6 3 80.67 77.67 77.5 75.67 75 99.67 100 100 100 100 100

24 6 4 94.83 94.67 94.33 91.5 91.83 100 100 100 100 100 100

24 6 5 100 99.83 100 100 100 100 100 100 100 100 100

24 6 Avg. 74 73.07 72.6 71.6 71 86.33 89.3 86.8 90.4 92.07 93.3

30 6 1 35.33 34.5 33.17 33.83 32.33 45.83 51.67 49.67 54.17 60.83 69.17

30 6 2 65.17 61.67 57.17 57.17 56.67 84.83 95 93.17 98.83 100 100

30 6 3 84.33 83.5 79 77 72.5 100 100 99.83 100 100 100

30 6 4 95.83 96.67 93.5 91.33 93 100 100 100 100 100 100

30 6 5 99.83 99.83 100 100 100 100 100 100 100 100 100

30 6 Avg. 76.1 75.23 72.57 71.87 70.9 86.13 89.33 88.53 90.6 92.17 93.83

Table 5.4.: AFDE of all Test Scenario Families with Six EHs

Table 5.4 (Page 87) and Table 5.5 (Page 88) list the AFDE values for all test suite families and

the testing strengths from t = 1 to t = 5. Column P denotes the number of parameters, column

E denotes the number of EHs, and column t denotes the testing strength. Avg. depicts the

average AFDE among all testing strengths. The remaining columns follow the pattern V-I with

88 Chapter 5. A Combinatorial Robustness Fault Model

P E t 1-1 1-2 1-3 1-4 1-5 2-2 3-3 2-1 3-1 4-1 5-1

6 6 1 36 33.17 34.83 34.17 33.83 47.5 53.33 45 53 63.33 65.83

6 6 2 55.33 53.83 53 53.33 52.33 79.5 94.67 86.83 97 99.5 99.83

6 6 3 71.83 71.5 73.33 70.83 70.67 98 99.83 99.17 100 100 100

6 6 4 86.67 86.67 86.5 85.33 86.33 100 100 100 100 100 100

6 6 5 95 96 96.33 97.33 98.33 100 100 100 100 100 100

6 6 Avg. 68.97 68.23 68.8 68.2 68.3 85 89.57 86.2 90 92.57 93.13

12 12 1 17 16 16.58 16.5 16.67 23.08 26.33 25.42 32.08 38.75 44.5

12 12 2 29.5 30 27.83 26.83 26.92 46.58 54.17 54.08 74.75 89.58 95.83

12 12 3 41.92 39.5 38.08 36.75 36.08 64.92 78.33 79.67 98.25 100 100

12 12 4 52 49.5 46.83 45.67 45.17 81.42 96.75 95.58 100 100 100

12 12 5 61.33 57.83 55.33 55.08 54.75 94.67 100 99.92 100 100 100

12 12 Avg. 40.35 38.57 36.93 36.17 35.92 62.13 71.12 70.93 81.02 85.67 88.07

18 18 1 11 11.17 11.28 11 10.72 15.78 18.61 17.11 23.22 27.94 32.78

18 18 2 22.33 19.72 19.28 18.5 17.5 31.83 36.67 39.22 58.94 72.67 84.72

18 18 3 28.61 27.72 26 24.83 24.22 44.78 54.78 58.11 84.56 98.78 99.83

18 18 4 36.39 33.83 32.44 31 30.83 58.56 70.94 74.33 98.5 100 100

18 18 5 42.67 40.11 38.72 37.56 36.56 70.28 86.5 90.17 100 100 100

18 18 Avg. 28.2 26.51 25.54 24.58 23.97 44.24 53.5 55.79 73.04 79.88 83.47

24 24 1 8.25 8.38 8.46 8.04 8.63 11.79 13.38 11.75 16.71 21.08 32.06

24 24 2 16.46 14.96 14.08 14.58 13.75 23.29 29.33 31.04 47.88 63.25 87.5

24 24 3 22.08 19.67 19.88 19.29 19.13 34.46 41.33 49 80.75 98.08 99.94

24 24 4 27.83 26.54 24.71 24.38 23.67 45.04 54.71 72.79 99.33 100 100

24 24 5 33.92 31.21 29.21 28.79 28.58 54.75 69.29 92.58 100 100 100

24 24 Avg. 21.71 20.15 19.27 19.02 18.73 33.72 40.79 43.37 64.3 73.78 79.32

30 30 1 6.3 6.93 6.3 6.47 6.83 9.07 10.8 10.3 13.5 17 19.73

30 30 2 13.57 12.1 11.8 11.47 10.93 19.53 22.53 23.57 35.73 48.87 60.5

30 30 3 18.03 16.67 15.6 15.73 15.07 27.8 34.17 36.17 57.87 77.53 92.93

30 30 4 23.1 20.77 19.77 19.3 19.03 35.77 44 47.47 75.2 96.6 100

30 30 5 27.13 24.97 23.67 23.07 22.8 44.3 53.7 58.57 91.87 100 100

30 30 Avg. 17.63 16.29 15.43 15.21 14.93 27.29 33.04 35.21 54.83 68 74.63

Table 5.5.: AFDE of all Test Scenario Families with Increasing No. of EHs

V describing the number of valid values and I describing the number of invalid values. Table

5.4 (Page 87) contains the AFDE values for test scenario families with six EHs. In Table 5.5

(Page 88), the number of EHs equals the number of parameters.

As discussed in the prior subsection, increasing only the number of parameters has no clear

effect on the FDE. The AFDE metric reflects this as depicted by Table 5.4 (Page 87).

Increasing the total number of EHs had no impact on the FDE of existing EH indices. But

the FDE for the additional locations is worse because more parameters belong to the effective

prevention sub-condition. Since AFDE represents the average FDE among all locations of in-

correct EHs, the worse FDE of additional EHs decreases the AFDE value. This is depicted in

Table 5.5 (Page 88).

Changing the number of values per parameter has a great effect on the AFDE. Depending on

whether the additional values are valid or invalid, the AFDE increases or decreases.

The AFDE always improves when adding only valid values. For the largest test scenario

5.1. Fault Detection Effectiveness in the Presence of Invalid Input Masking 89

P = 30 and E = 30 with four and five valid values, the testing strengths t = 4 and t = 5
are sufficient to detect an incorrect EH almost always. Although, testing with t = 5 can be

perceived as impractical as it would require the execution of 23369 (4-1) and 58468 (5-1) test

cases (See Table 5.1, Page 83).

This result is also consistent with the characteristics of valid values when applying the t-
factor fault model. The FDE is improved because more MFCSs are created by the additional

valid values.

In another context that is not concerned with CRT, the same general observation has been

made by XU et al. [Xu+16] when analyzing MFCSs of the Siemens tool suite: “The high

strengths of MFCSs makes it difficult to cover MFCSs by a lower-strength combinatorial test

suite. But the big number of MFCSs for each fault makes that it is easy to cover at least one

MFCS.”

Besides the two favorable cases with (4-1) and (5-1), t = 5 is not sufficient to detect all

EHs reliably. For 2 valid values (2-1) and E = 18, the AFDE is 90.17%. A higher testing

strength would be necessary which further increases the time for test input generation and the

time for test execution due to the larger test suite size.

There is also a trend indicating that the AFDE decreases when adding only invalid values. For

instance, the average AFDE for P = 30 and E = 6 decreases from 76.1% for one valid and one

invalid value (1-1) to 70.9% for five invalid values (1-5). However, this trend is not as clear as

for valid values. One exception exists for P = 6 and E = 6 where the average AFDE improves

by 0.57 (1-3) and 0.1 (1-5) percentage points.

But the trend is also consistent with the characteristics of invalid values when applying the

t-factor fault model. The parameter of one invalid value belongs to the activation sub-condition

and improves the probability of detecting the fault. But all other invalid values either deteriorate

the probability because their respective parameter belongs to the effective prevention sub-condi-

tion or the invalid value has no effect.

When adding valid and invalid values equally (2-2 and 2-2), the AFDE always increases

compared to 1-1. The AFDE is also always higher when comparing it to test scenario families

with more invalid than valid values. But the AFDE is always lower compared to test scenario

families with more valid than invalid values.

This finding is still consistent with the t-factor fault model. Although, it cannot be directly

derived from it. The numbers indicate that the additional MFCSs introduced by additional valid

values have a stronger effect on the AFDE than the effective prevention sub-conditions increased

by additional invalid values.

To summarize the findings, CT can detect all t-factor faults as guaranteed by t-wise coverage.

Beyond that, even more faults are detected via collateral coverage. Test suites that satisfy higher

testing strengths t ≥ 3 trigger many faults in EH at later locations.

Adding valid values to the test suite increases the AFDE. But the required test suite size in-

creases as well. Conversely, adding invalid values decreases the AFDE. Adding new parameters

with EH has no impact on the FDE for existing EH. But the faults in the additional EH are harder

to detect. Hence, AFDE deteriorates with an increasing number of parameters involved in EH.

The experiment shows that CT can be an effective approach to detect robustness faults. Al-

though, not all robustness faults can be detected reliably. Depending on the number of EH and

90 Chapter 5. A Combinatorial Robustness Fault Model

the distribution of valid and invalid values, a high testing strength is necessary which requires

the execution of large test suites.

To the best of our knowledge, this experiment is the first that assess the effect of invalid

input masking on combinatorial test suites. Although, only invalid values are considered. When

considering invalid value combinations, the number of parameters involved in fault conditions

and MFCSs likely increases and even higher testing strengths would be required. To improve the

reliability of CT and to improve the efficiency of CT, extensions like CRT are useful additions

worth investigating.

5.1.5. Threats to Validity

The effectiveness of CT in the presence of invalid input masking is evaluated. Therefore, test

inputs are generated and executed on test scenarios. Publicly available test suites are used to

avoid bias in the test input selection.

The used test scenarios are artificial and do not necessarily represent realistic scenarios. In

addition, it is possible that we unconsciously designed the test scenarios in a way that their pre-

established characteristics are supported. However, the considered characteristics are explicit

and all data is made available in our Appendix A (Page 279 and following) so that it is compre-

hensible and repeatable. In addition, the AFDE metric is designed to derive knowledge and to

apply it to real-world scenarios.

To prevent falsified results due to accidental fault detection, the parameters and values of each

test suite are randomized and 100 variants of each test suite are combined to a test suite family.

All presented numbers are average numbers.

5.2. A Classification of Robustness Fault Characteristics 91

5.2. A Classification of Robustness Fault Characteristics

The previous section has demonstrated that extensions like CRT are useful additions to CT. In

order to construct a CRT test method, we derive a classification of robustness fault characteristics

as a next step. It encompasses the hypothesized fault types that our CRT test method focuses on.

Therefore, we link the activities of EH to faults that are hypothesized and observed by re-

lated work. Based on the previous discussion of EH and EHMs (Subsection 3.2.2, Page 43 and

following) and the related work, we group robustness faults into two categories configuration-
independent and configuration-dependent robustness faults.

The related work that we use consists of studies concerned with issues related to EHMs.

Moreover, it is concerned with categorizing and detecting EH-related robustness faults [MT97];

[BDT06]; [Coe+08b]; [MCK12]; [Mel+13]; [BGB14]; [ECS15]; [SCK16]; [PS17a]; [Li+18];

[Che+19]. We do not claim that the selection of related work nor that the distinction of config-

uration-dependent and -independent robustness faults are complete. However, this classification

and the selected related work show that robustness faults of both types are prevalent and should

be detected.

5.2.1. Configuration-independent Robustness Faults

A configuration is part of the input abstraction (Definition 13, Page 21) that allows to adapt

a program and to customize a program for different needs. Hence, configuration-independent

robustness faults are present in each configuration of a program. They are activated by invalid

schemata that initiate the corresponding incorrect EH. Configuration-independent robustness

faults may occur in all activities of EH as illustrated in Figure 3.6 (Page 49). In the following,

faults of each activity are discussed in more detail.

Fault in Exception Detection The first activity of EH is to detect the occurrence of an

exception. Faults in this activity are limited to the detection of program-defined exceptions

because predefined exceptions are automatically detected by hardware, operating system, or the

run-time environment of the program.

For program-defined exceptions, the developer must define exception conditions and com-

puter instructions to detect exception occurrences. Thereby, mistakes may happen and faults

may be introduced. The exception condition that is used for the detection may be too strong,

too weak, or completely missing. Virtually all types of faults associated with logic expressions

may appear in exception conditions. Examples of fault types are variable reference faults where

a variable is replaced by another variable, incorrect relational operators, or incorrect parentheses

(cf. [VTP94]; [WGS94]; [Kuh99]).

In the case of too strong exception conditions, testing with truly-invalid inputs is not necessary

because truly-valid inputs would incorrectly satisfy the exception condition. In the literature

it is classified as excessive throwing condition [BGB14] and exception that should not have
been thrown [ECS15]. This is an issue of correctness and not robustness since the incorrect

exception condition prevents the program from fulfilling the functions as defined by the standard

specification.

92 Chapter 5. A Combinatorial Robustness Fault Model

In case of too weak exception conditions or completely missing exception conditions (which

can be understood as a special case of too weak exception conditions), testing with truly-invalid

inputs that should satisfy the exception condition is necessary. In the literature it is classified as

missing throwing condition [BGB14] and error in the exception assertion [ECS15].

Fault in Exception Propagation The second activity of EH is to propagate a detected

exception occurrence. Faults in this activity are again limited to program-defined exceptions

because predefined exceptions are automatically propagated.

For program-defined exceptions, the developer must define an exception representation that

describes the exception occurrence and propagate it. Mistakes may introduce faults and either

the exception representation may contain incorrect information or the propagation of the ex-

ception representation may be missing. In the literature, incorrect information in the exception

representation is classified as error in the definition of exception class [ECS15], information
swallowed [BGB14], uninformative or wrong error message [BGB14]; [Che+19], and wrong
encapsulation of exception cause [ECS15]. Missing propagation is classified as exception not
thrown [ECS15].

More sophisticated EHMs rely on dedicated types for exception representations. Then, in-

correct information of exception representations can mean that a wrong types is chosen. For in-

stance, a NullPointerException is propagated in a Java program when a IllegalArgu-
mentException would be correct. As a result, not the intended but another or no exception

handler will be selected and executed. In the literature it is classified as throwing wrong type
[BDT06]; [BGB14], wrong exception thrown [ECS15], and wrong exception class [Che+19].

When choosing a type that is too generic, the corresponding exception handler must also be

generic and may not be able to recover adequately. In the literate it is classified as uninformative
generic type thrown [BGB14] and throws generic [PS17a].

Another type of fault can occur when exceptions that may be propagated are nor documented

and the client does not expect them. In the literature it is classified as inconsistency between
source code and application programming interface (API) documentation [ECS15] and un-
caught run-time exceptions undocumented [SCK16].

Fault in Exception Handler Selection The third activity of EH is the selection of an

exception handler after an exception occurrence has been detected and propagated. Therefore,

an exception handler is associated with a guarded region that it “protects” and exceptions for

which it provides recovery instructions.

The selection itself is typically determined by the EHM and can be considered correct. How-

ever, the selection is based on the exception handlers and their associations. A fault in the

exception handler selection is caused by incorrect associations.

One cause of an incorrect association can be a guarded region that is defined too narrow such

that an exception handler is not selected when it should be selected. In the literature it is classi-

fied as fragile catch bug pattern [Coe+08b] and unreachable handler [PS17a]. We understand

the entire absence of an exception handler as a special case of a too narrow association. It is one

of the most common failures of EH [Coe+08b] and in the literature it is classified as uncaught

5.2. A Classification of Robustness Fault Characteristics 93

exception [Coe+08b]; [BGB14], unhandled exceptions [PS17a], throw without catch bug pattern
[Coe+08b], and lack of a handler that should exist [ECS15].

One cause of an incorrect association can be a guarded region that is defined too wide such

that it is selected for a propagated exception when it should not be selected. In literature it is

classified as overly protective try-block fault [BGB14].

It is closely related to another incorrect association where an exception handler is associated

with too many exceptions or with a too generic exception type. In the literature it is classified

as exception stealer [Coe+08b], overly-generic catch-block [BGB14], exception caught at the
wrong level [ECS15], and over-catch [PS17a].

An exception handler with an association that is too generic is selected for too many propa-

gated exceptions. The too generic association causes the exception handler to be selected when

it should not be selected [Coe+08b]; [BGB14]. It catches the propagated exception before the

intended exception handler could be selected. This problem is also known as the unintended
handler action [MT97] and faults are considered as being very difficult to diagnose [Coe+08b]

and harmful [SCK16].

Fault in Exception Recovery The fourth activity of EH is exception recovery which is

invoked after the correct exception handler has been selected.

The unintended handler action is not the only problem of exception handlers that are asso-

ciated with too many or too generic exceptions. As a consequence of too many or too generic

exceptions, an exception handler can only provide generic responses and may not be able to re-

cover adequately. In the literature it is classified as general catch block [ECS15], catch generic
[PS17a], catching generic exceptions [Li+18], centralized handler [Bez+19], overly-general re-
action [Che+19].

Since an exception handler consists of computer instructions, it may be incorrect and contain

faults. In the literature it is classified as error in the handler [ECS15], incomplete implementa-
tion [PS17b], and incorrect reaction logic [Che+19].

Besides incorrect computer instructions, another general issue may be the absence of com-

puter instructions. In this case, an exception handler is correctly selected and invoked but

the exception handler does not contain any computer instructions for recovery. In addition,

the exception occurrence is ignored. In the literature it is classified as swallowed exception
[BGB14], empty catch block [ECS15], ignoring exceptions [SCK16]; [Li+18], catch and do
nothing [PS17b], and missing reaction [Che+19].

Another issue is related to exception handlers that return NULL or propagate another excep-

tion representation. Thereby, the original exception occurrence is obfuscated and the diagnosis

is complicated. In the literature it is classified as catch and return null [PS17b], destructive
wrapping [PS17b], [SCK16], andexception remapping [BGB14], [SCK16]. A special case is

classified as suppressed exception [BGB14] and throw within finally [PS17b] where the original

exception occurrence is suppressed by another exception occurrence.

Another special case is the premature termination [BGB14] where the return of NULL or the

repeated propagation is premature and results in the termination of the program when retrying

the original operation would be a better option.

94 Chapter 5. A Combinatorial Robustness Fault Model

On the contrary, missing termination action [BGB14] refers to an issue where a (strict) termi-

nation is expected but the computer instruction is missing.

Another issue is related to exception handlers that also do not recover but log the occurrence

of an exception. In the literature it is classified as a dummy handler [PS17b]. A special case of

this issue is classified as log and throw [PS17b], logging and returning null [Li+18], and log and
return null [PS17b], [SCK16].

A closely related issue refers to exception handlers that are correctly selected and invoked but

that logged exception occurrences insufficiently. In the literature it is classified as missing log
[BGB14] [BDT06] and multi-line log [PS17b].

Fault in Exception Continuation The last activity of EH is exception continuation. It is

concerned with performing the standard behavior once an exception handler has been executed

successfully and once the program’s state has been recovered. The continuation is typically done

by the EHM and in most cases the successful recovery is synonymous with a strict termination

and an error message. Therefore, no severe faults related to this activity are expected. But two

issues exist that can be related to exception continuation.

First, exception continuation may execute computer instructions that are not intended to be

executed right after a successful exception recovery. In the literature it is classified as wrong
location of execution resumption [BGB14]

Second, computer instructions to clean-up and deallocate resources are important to prevent

resource and memory leaks. Often, these computer instructions are written once and should be

executed with and without the occurrence of an exception. For that purpose, special language

features exist in many languages which may be used inappropriately. In the literature it is classi-

fied as resource leak fault [BGB14], error in the clean-up action [ECS15], lack of a finally block
that should exist [ECS15], and catch block where only a finally would be appropriate [ECS15].

5.2.2. Configuration-dependent Robustness Faults

The aforementioned robustness faults are related to specific activities of EH. Furthermore, they

are present in every configuration of a program. Besides them, robustness faults may exist that

are not present in every configuration of a program. In the following, we discuss configuration-

dependent robustness faults and again link them to faults that are hypothesized and observed by

related work.

Configuration-dependent robustness faults must also be activated by truly-invalid schemata

that initiate the corresponding incorrect EH. But in addition, certain configurations of the pro-

gram are required. Many modern programs like JHipster, Apache, or GCC are highly config-

urable [CDS08]; [Hal+19]. Features can be enabled or disabled and different implementations

of the same feature can be exchanged via configuration parameters at compile-time or at run-

time. Typically, these programs can be divided into a common part which is relevant to all

configurations and variable features which are relevant only for certain configurations. There-

fore, different implementation techniques exist [AG01]. Examples are conditional compilation
where source code regions are enabled or disabled at compile-time, dynamic class loading where

classes are chosen and loaded at run-time, polymorphism and design patterns where implemen-

5.2. A Classification of Robustness Fault Characteristics 95

class CurrentAccount implements Account {
void withdraw(int amount) {
if((balance - amount) < limit)

throw new AccountNotCoveredException();
...

}
}

class SavingAccount implements Account {
void withdraw(int amount) {
if((balance + amount) < 0)

throw new AccountNotCoveredException();
...

}
}

Robustness fault in exception detection of variable feature

class CoreBankingSystem {
void withdraw(int accountId, int amount) {
try {

Account acc = findAccount(accoundId);
acc.withdraw(amount);

} catch(AccountNotCoveredExc. ex) { ... }
}

}

Figure 5.6.: Illustration of Configuration-dependent Robustness Fault

tations are exchanged at run-time, or aspect-orientation where meta-programming is used to

modify and inject additional instructions at run-time.

In general, the configuration-independent robustness faults may appear in variable features

as well. Then, not only the truly-invalid schema but also a specific configuration that enables

the variable feature is required. In addition, configuration-dependent robustness faults may be

caused by interactions of configuration parameters [CDS08].

Research on EH in configurable programs shows that the activities of EH are scattered across

the common part and variable features [MCK12]; [Mel+13]. Variable features are involved in

propagating exception occurrences, handling propagated exceptions or they are intermediaries

between exception detection and exception recovery. For most propagated exceptions, excep-

tion handlers are selected that reside in the same variable feature or in the common part of the

program.

But a significant number of exceptions propagated in variable features are not recovered ap-

propriately [Mel+13]. For exceptions propagated by one variable feature, MELO et al. [Mel+13]

observed the selection of no exception handler or exception handlers of other distinct variable

features with no association between the two variable features. In the latter case, the exception

handler was mistakenly selected had not enough information to properly recover from the excep-

tion occurrence. This is another instance of the unintended handler action (cf. [MT97]) where

the propagated exception is catched before the intended exception handler could be selected.

96 Chapter 5. A Combinatorial Robustness Fault Model

For further illustration of configuration-independent and configuration-dependent robustness

faults, Figure 5.6 depicts an example. A core banking system has a common part which provides

a service to withdraw money from an account. Different implementations of the withdraw func-

tionality exist which are considered variable features. Depending on the account type, different

implementations are chosen at run-time.

First, assume findAccount propagates a AccountNotFoundException for non-ex-

istent accounts, the core banking system would crash because no appropriate exception handler

exists. This is caused by a configuration-independent robustness fault because it is present in

every configuration of the program and can be activated with each non-existent account.

Second, assume a robustness fault in the SavingAccount feature where the exception con-

dition is incorrect, i.e. plus is used instead of minus. This is caused by a configuration-depen-

dent robustness fault because it can be activated with the combination of a certain truly-invalid

schema, i.e. the withdraw amount exceeds the account limit, and a certain configuration that

enables the SavingAccount feature.

5.3. A Case Study on Minimal Failure-causing Schemata 97

5.3. A Case Study on Minimal Failure-causing Schemata

The previous section provides a classification of robustness fault characteristics. In order to

develop a CRT test method that detects robustness faults with these characteristics, we now

conduct a case study to gain insights from existing ordinary failures and robustness failures in

order to draw conclusions regarding the degrees of minimal failure-causing valid and invalid

schemata.

For the sake of simplicity, we again assume that the value domains of a hypothetical IPM

contain all values necessary for the propagation of analyzed failures.

5.3.1. Motivation

CT can help detect failures that are triggered by the interaction of two or more parameter values.

For instance, a bug report analyzed by WALLACE & KUHN [WK01] describes that ”the venti-

lator could fail when the altitude adjustment feature was set on zero meters and the total flow

volume was set at a delivery rate of less than 2.2 liter per minute“. The failure is triggered by

the interaction of altitude = 0 and delivery-rate < 2.2. Because of the interaction of

two parameter values, a MFCS of degree d = 2 is required for its detection.

Testing each value only once is not sufficient to detect MFCSs with a degree d > 1 and ex-

haustively testing all interactions among all input parameters is almost never feasible in practice.

Therefore, CT pursues an alternative approach.

If the highest degree of parameters involved in MFCSs was known before testing, i.e. if all

failures of a SUT are triggered by an interaction of d or fewer parameter values, then testing all

d-wise parameter value combinations should be as effective as exhaustive testing [KWG04].

However, d cannot be determined for a SUT a-priori because the faults are not known before

testing. Hence, the motivation of related empirical studies is to derive common knowledge about

the MFCS degrees and its frequency of occurrence to guide future test activities.

Existing research on the effectiveness of CT derives the distribution and maximum MFCS

degree among different types of programs based on bug reports. WALLACE & KUHN [WK01]

review 15 years of recall data from medical devices, i.e. software written for embedded systems.

KUHN & REILLY [KR02] analyze bug reports from two large open-source software projects;

namely the Apache web server and the Mozilla web browser. KUHN & WALLACE [KWG04]

report findings from analyzing 329 bug reports of a large distributed data management system

developed at NASA Goddard Space Flight Center. BELL & VOUK [BV05] analyze the effec-

tiveness of pairwise testing a network-centric program. They derive their characteristics from a

public database of security flaws and create simulations based on that data. COTRONEO et al.

[Cot+16] again analyze bug reports from Apache and the MySQL database system and RATLIFF

et al. [Rat+16] report the MFCS degrees of 242 bug reports from the MySQL database system.

As concluded by KUHN et al. [KKL16], the studies show that most failures in the investigated

domains are triggered by single parameter values and parameter value pairs. Progressively fewer

failures are triggered by an interaction of three or more parameter values. In addition to the dis-

tribution of MFCS degrees, a maximum interaction of four to six parameter values is identified.

No reported failure required an interaction of more than six parameter values to be triggered.

98 Chapter 5. A Combinatorial Robustness Fault Model

Thus, pairwise testing should trigger most failures and 4- to 6-wise testing should trigger all

failures of a SUT.

So far, research focuses on positive test scenarios with valid test inputs. To the best of our

knowledge, it is only PAN et al. [Pan99]; [PKS99] who characterize data of failures from testing

with invalid test inputs. Although in contrast to the aforementioned studies, their results are not

obtained from analyzing bug reports. Instead, the results are obtained from testing the POSIX
APIs of 15 operating systems with the Ballista robustness testing tool. The results indicate

that most (81.75%) robustness failures are caused by single invalid values, i.e. MFCSs of degree

d = 1. Unfortunately, there is no more information on robustness failures that are caused by

MFCSs with higher degrees. According to a later publication [KD00], robustness failures of

type silent or hindering are not detected and considered by the study.

Also, as KUHN et al. [KWG04] state, more empirical studies are required to confirm or reject

the distribution and upper limit of MFCSs for other types of programs. Therefore, we conduct

this case study.

5.3.2. Case Study Design

Research Method

To gather more information on robustness failures triggered by invalid value combinations, we

conduct a case study to analyze bug reports of a newly developed distributed enterprise appli-

cation for financial services. Therefore, we follow the guidelines for conducting and reporting

case study research in software engineering as suggested by RUNESON & HÖST [RH09]. As

they state, a case study ”investigates a contemporary phenomenon within its real life context,

especially when the boundaries between phenomenon and context are not clearly evident“. Case

study research is typically used for exploratory purposes, i.e. seeking new insights and gen-

erating hypotheses for new research, and explanatory purposes, i.e. seeking explanations of

situations or problems which involves testing of existing theories [RH09].

The guidelines suggest conducting a case study in five steps. First, the objectives are defined

and the case study is planned. As a second step, the data collection is prepared before the data

is collected in a third step. Afterwards, the collected data is analyzed and finally, the results of

the analysis are reported.

Research Objective

The overall objective of this case study is to gather information on MFCSs to compare the results

with the ones of other published case studies and to identify MFCSs that trigger robustness

failures in order to provide further information for the development a combinatorial robustness

fault model.

The work by PAN et al. [Pan99]; [PKS99] indicates that most robustness failures in operat-

ing system APIs are triggered by single values rather than by value combinations, i.e. a MFCS

degree of one, Hence, our aim is to either confirm or reject this indication for enterprise appli-

cations. By conducting this case study, the indication cannot only be confirmed or rejected but

the indication can also be enriched with additional information.

5.3. A Case Study on Minimal Failure-causing Schemata 99

Therefore, the objective of this case study is to extract MFCSs from the bug reports and to

identify their degrees, their maximum degree, and their distribution.

Further on, the objective is to classify MFCSs as either positive or negative depending on

whether or not the failure is a robustness failure.

If the MFCS is classified as negative, a second objective is to identify the invalid schema that

is covered by the MFCS and to derive their degrees, maximum degree and distribution as well.

Case and Unit of Analysis

The case is a software development project from an IT service provider for an insurance com-

pany. A new system is developed to manage the life-cycle of life insurances. It is based on

an off-the-shelf framework which is customized and extended to meet the company’s require-

ments. In total, the new system consists of 2.5 MLOC and an estimated workload of 5000 person

days. The core is an inventory sub-system with a central database to store information on cus-

tomer’s life insurance contracts. In addition, complex financial calculation engines and business

processes like capturing and creating new customer insurances are implemented. The business

processes also integrate with a variety of already existing systems which are, for instance, re-

sponsible for managing information about the contract partners, about claims and damages, and

to the support insurance agents.

Since life insurance contracts have decade-long lifespans and rely on complex financial mod-

els, the correctness of the system is business critical. Mistakes can have severe effects which

can even amplify over the long-lasting lifespans and cause enormous damage to the company.

Therefore, thorough testing is important.

Even though the business processes are managed by the new system, they rely on other sys-

tems of which each system again relies on other systems. This makes it hard to test the system

or its parts in isolation. It is also difficult to control the state of the systems and to observe the

complete behavior which makes testing even more complicated.

Therefore, most testing is conducted on a system level within an integrated test environment

in which all required systems are deployed. The test design is often based on experience and

error-guessing. Tests are executed mostly manually because of the low controllability and ob-

servability.

Data Collection Procedure

To answer the research objectives, the case study relies on archival data from the aforementioned

software development project. A project-wide issue management system contains all bug reports

from the project start in 2015 to the productive deployment at the beginning of 2018. In general,

a bug report is a specifically categorized issue which coexists with other project management-

and development-related issues.

For our case study, we analyzed the issue’s title, its category, its initial description, additional

information in the comment section and its status. Further on, some bug reports are also con-

nected to a central source code management system. If a bug report does not contain sufficient

information, the corresponding source code modifications can be analyzed as well.

100 Chapter 5. A Combinatorial Robustness Fault Model

The issues are filtered to restrict the analysis to only reasonable bug reports. Therefore, issues

created automatically by static analysis tools are excluded. Further on, only issues categorized

as bug reports whose status is set to complete are considered because we expect only them to

contain a correct description on how to systematically reproduce the failure.

Data Analysis Procedure

Once the bug reports are exported from the issue management system, each bug report is ana-

lyzed one at a time. First, it is checked if the bug report describes a failure in the sense that an

incorrect behavior is observable by the user. Otherwise, the bug report is rejected.

Afterwards, the trigger type of the reported failure is determined. A trigger is a set of con-

ditions that exposes a failure when all conditions are satisfied and different types of triggers

exist [Cot+16]. In the context of CRT, we focus on variations and different constellations of

values for the same parameters which are in particular stimulus, configuration, and state spaces

of a program which we abstract as inputs (Definition 13). Trigger that do not depend on inputs

but rather on sequences of operations, their ordering, or timing of operations are excluded from

further analysis. The bug report is also not further analyzed if no systematically reproducible

trigger is found.

If a specific value or value combination is identified to trigger the failure, the degree of the

MFCS is determined in the next step.

Then, the bug report is classified as either positive or negative depending on whether any

invalid schema is covered. If it is classified as negative, the degree of the invalid schema is

identified as well.

5.3.3. Results and Discussion

Analyzed Data

In total, 683 bug reports are analyzed. All reported bugs are revealed and fixed during the

development phase of the system. Even though filters are applied to export the bug reports, 249

bug reports are classified as unrelated, because the issue management system is also used as a

communication and task management tool. For instance, problems with configurations of test

environments, refactorings or build problems are categorized as bug reports as well.

The remaining 434 bug reports describe failures, they are classified as follows. Eight bug re-

ports do not provide enough information for further analysis and classification. 38 reported bugs

require specific timing and ordering of sequences to be triggered. For instance, one sequence to

trigger a failure is to search for a customer, open its details, edit the birthday, press cancel and

edit the birthday again. Three reported bugs are related to robustness testing. They are triggered

by other systems that timeout and do not response to requests. All these bug reports are excluded

from further analysis because CRT is about varying test inputs rather than varying sequences and

timing.

The remaining 388 bug reports describe failures triggered by some test inputs. A subset of

176 bug reports describes integration failures with other systems where values are not correctly

mapped from one data structure to another. They can be triggered by any test input. The use

5.3. A Case Study on Minimal Failure-causing Schemata 101

d All Positive Negative

1 162 121 41

2 40 31 9

3 6 5 1

4 4 4 -

5 - - -

6 - - -

Table 5.7.: Observed MFCS Degrees

Previous Studies Our Study

d (A) (B) (C) (D) (E) (F) (G) Avg. All Pos. Neg.

1 66 28 41 67 18 9 49 39.7 76 75 80

2 97 76 70 93 62 47 86 75.9 96 94 98

3 99 95 89 98 87 75 97 91.4 98 98 100

4 100 97 96 100 97 97 99 98.0 100 100

5 99 96 100 100 100 99.0

6 100 100 100.0

Table 5.8.: Cumulative Percentage of MFCS Degrees

of different date time formats is another cause. There are so many reported integration issues

(45% out of 434 bug reports) because the system consists of several independently developed

components which are early and often integrated with the other components and other systems

using one of the test environments.

Finally, 212 bug reports are considered to be suitable for CT, which is 49% of all 434 bug

reports that describe failures which is 55% of all 388 bug reports that are triggered by some test

input To reproduce one of the bugs reported, the test input requires at least one specific value.

Observed MFCS Degrees

The observed MFCS degrees for the 212 bug reports are depicted in Table 5.7. Overall, the

numbers confirm the conclusion made by Kuhn et al. [KKL16]. Most failures are triggered by

single parameter values and parameter value pairs and progressively fewer failures are triggered

by 3-wise and 4-wise interactions. In our case, no reported bug requires an interaction of more

than 4 parameters in order to trigger the failure.

Table 5.8 presents the cumulative percentage of the MFCS degrees. The last three columns

refer to our case study and show that 76% of all reported failures require 1-wise (each choice)

coverage to be reliably triggered. It adds up to 96% when testing with pairwise coverage and

100% are covered when all 4-wise parameter value combinations are used for testing.

To compare our results, the first columns of the table show the results of previous case stud-

ies, briefly introduced in the related work section. The numbers and also the average percentage

values are taken from KUHN et al. [KKL16]. The first case (A) refers to WALLACE & KUHN

[WK01] analyzing bug reports of medical devices. The second case (B) and the third case (C)

102 Chapter 5. A Combinatorial Robustness Fault Model

refer to KUHN & REILY [KR02] analyzing bug reports of the Apache web server and Mozilla

web browser, respectively. Bug reports of a large distributed data management system are ana-

lyzed in the fourth case (D) [KWG04]. The fifth case (E) analyzes security flaws from a public

database [BV05]. Case six (F) again analyzed Apache web server and the MySQL database

system [Cot+16]. Though, the numbers cannot directly be derived from the case study. The sev-

enth case (G) analyzes bug reports of the MySQL database system [Rat+16]. The distribution

of MFCS degrees obtained in our case study is not in contradiction to the other cases. However,

the distribution is mostly similar to cases [WK01] and [KWG04]. While there are no obvious

similarities with embedded systems for medical devices [WK01], the large data management

system [KWG04] is probably quite similar to our case in terms of requirements and used tech-

nologies. Similar to our case, the bug reports are also from a development project whereas the

other studies analyze fielded products [KKL16]. For all three cases, most failures are triggered

by single parameter values and almost all failures are triggered by the combination of single

parameter values and pairwise parameter value combinations. All failures should be triggered

by 4-wise parameter value combinations.

So far, only the degree of failure-inducing interactions is considered but differences between

positive and negative scenarios are not discussed. Table 5.7 depicts the observed MFCS degrees

and their distribution divided into positive and negative test scenarios. As can be seen, the

maximum degree of MFCSs that trigger robustness failures is three. Compared to positive test

scenarios, fewer negative scenarios are discovered and the MFCS dimensions are also lower. For

single parameter values and parameter value pairs, the ratio is 3:1 of valid vs invalid test inputs

and no invalid test inputs are identified for higher degrees.

While these numbers indicate that most failures are triggered by valid test inputs, we empha-

size that the test design is based on experience and error-guessing, robustness testing was not

in the focus. Hence, the ratio can also result from a general bias towards testing of positive

scenarios which is identified in research [Lev+93]; [Tea+94]; [Cau+13].

Nevertheless, these findings underpin the results of Pan et al. [Pan99]; [PKS99] who observe

that most robustness failures in operating systems APIs are triggered by single invalid values. In

their study, 81.75% of robustness failures are triggered by single invalid values. We observe the

same ratio in our case.

Besides the quantitative assessment, qualitative information can be extracted as well. All in

all, 51 robustness failures are identified which are classified as follows. 22 failures are caused

by incorrect exception detection where conditions to detect exception occurrences are either

too weak or missing. Consequently, these occurrences are not discovered. For instance, bank

transfer is accepted as a payment option even though incorrect or no bank account information

is provided.

In 19 cases, reported failures are caused by incorrect exception propagation where an excep-

tion occurrence is correctly detected but incorrectly propagated. As a consequence, the correct

exception handler cannot be selected. For instance, a misspelled first name is detected by a user

registration service but the error message complaints a misspelled last name.

In seven cases, failures are triggered by the system’s run-time environment. For instance, a

NullPointerException is propagated when the run-time environment detects attempts to

access NULL values. Since developers mistakenly did not anticipate NULL values, no respective

5.3. A Case Study on Minimal Failure-causing Schemata 103

exception handlers are implemented and, as a result, the default handler is incorrectly selected

and terminates the process. These failures denote incorrect exception handler selections.

For three reported failures, the exception occurrence is correctly detected and propagated.

However, the system performs incorrect exception recovery because the instructions to recover

from the exception occurrence contain faults. For instance, the user is asked to correct wrong

input, e.g. a misspelled first name. After the input is corrected, the system does not recover and

the corrected input cannot be processed.

Regarding the exception continuation activity, no faults are found. On the one hand, this may

be due to the fact that the Java run-time environment takes care of the exception continuation and

automatically follows the termination model without additional effort from developers. On the

other hand, this may be due to the fact that the analyzed program follows the fail fast principle

and terminates with an error message returned to the user.

The bug reports also demonstrate the importance of strong invalid test inputs, i.e. test inputs

with exactly one invalid value or exactly one invalid value combination. For instance, the com-

ponent that manages contracting parties ensure data quality by checking that, e.g. the title of a

person matches the gender of the first name and that the first name and family name are correct

and not confused with each other. However, when using an unknown invalid title, the system re-

sponds with a wrong error message saying that the family name was wrong. If an invalid family

name was combined with the unknown title, the failure would not have been discovered.

The 10 invalid test inputs with a MFCS degree greater than one are further analyzed. For two

reported bugs, the invalid schema is not identical but rather a subset of the MFCS. Even though

a combination of two and three specific parameter values is required to trigger the robustness

failures, the invalid schema only has a degree of one and two, respectively.

The two reported bugs describe failures with robustness interactions that require an interaction

of invalid value (combinations) and a valid value of another parameter.

One reported bug is related to the communication between two systems. The response of

the second system contains one parameter value with error information to indicate whether the

requested operation succeeded or failed. Another value provides details about the internal pro-

cessing of the request and a certain value indicates an internal resolution of the error. In that

case, the calling system is expected to handle the error in a different way.

The other reported bug belongs to the storage of details on contracting parties where one

contracting party must be responsible for paying the insurance premiums. If direct debit is

chosen as the payment method but an invalid bank account, i.e. an invalid IBAN number,

is provided, the resulting error message remains even after the invalid IBAN is replaced by

a valid IBAN. While the combination [payment-method:direct-debit, account-
number:invalid] is required as a invalid combination, the bug report states that this phe-

nomenon could only be observed for [role:contributor].

Beyond the two reported failures caused by configuration-dependent robustness faults, no

further configuration-dependent robustness faults are identified.

Implications for Combinatorial Testing

To summarize the findings of this case study, the observed MFCS degrees of 212 failures could

be extracted from bug reports from which 161 bug reports describe ordinary failures and 51

104 Chapter 5. A Combinatorial Robustness Fault Model

describe robustness failures.

In general, the MFCS degrees confirm to the findings of previous empirical studies. But

additional observations can be made regarding the MFCS degrees of robustness failures.

The importance of avoiding the invalid input masking effect is again highlighted for valid test

inputs and strong invalid test inputs that must not contain more than one invalid schema.

Further on, 49 out of 51 robustness failures are caused by configuration-independent robust-

ness faults that are located in four out of five fundamental EH activities.

For the fifth fundamental activity, which is exception continuation, we did not encounter any

robustness fault. We hypothesize that exception continuation in the analyzed case is rather sim-

ple because (1) Java has built-in continuation that automatically applies the termination model,

and (2) invalid requests are terminated and fail fast with an error message returned to the user.

10 robustness failures are revealed by MFCSs with degrees d > 1 which once more demon-

strates that the fundamental hypothesis of single error coverage and base-choice coverage, i.e.

robustness failures are caused by invalid values, is not sufficient and invalid value combinations

should also be taken into account.

The majority of analyzed robustness failures does not indicate any interaction between valid

values and invalid values or invalid value combinations. However, two robustness failures could

be observed where invalid values or invalid value combinations interact with valid values and

valid value combinations. This is in line with aforementioned existing research that most faults

are caused by low interactions among parameters. In an analogous manner, we can expect

(1) that most robustness faults are activated by single values and are independent from any

further configuration and (2) that fewer robustness faults require invalid value combinations and

interactions between valid and invalid schemata.

5.3.4. Threats to Validity

A general threat to validity is that case studies are difficult to generalize from [RH09]. Espe-

cially, because only one particular type of programs of one company is analyzed. The archival

data of the case study is only a snapshot and the ground truth, i.e. the set of all failures that

can be triggered, is unknown. Hence, the data set can be biased, for instance, towards positive

scenarios which has been observed in research [Lev+93]; [Tea+94]; [Cau+13]. Since the bug

reports result from tests based on experience an error-guessing, it may apply here as well.

Further on, the data set can be biased towards simple faults and MFCSs with lower degrees as

they are easier to trigger. Relevant and reasonable bug reports may be excluded by our filtering

because the bug reports are incorrectly categorized. Maybe not all triggered failures are reported.

For instance, a developer who finds a fault might just fix it without creating a bug report.

The bug reports can further be incomplete resulting in a wrong classification. For instance,

default values of some parameters may be hidden. When those default values are required to

trigger a failure, the extracted MFCS does not contain all parameter-value pairs. As a conse-

quence, the MFCS degree is too low and interactions between valid and invalid schemata may

remain unnoticed.

All in all, the findings of the case study must be grasped as examples of an incomplete data

set. But in combination with the previous sections, two different types of robustness faults can

be distilled.

5.4. A Refined t-Factor Fault Model for Robustness Faults 105

5.4. A Refined t-Factor Fault Model for Robustness Faults

After the deficiencies of CT in the presence of invalid input masking are shown in Section 5.1

(Page 74 and following), robustness fault characteristics are developed (Section 5.2, Page 91 and

following) and a case study to analyze MFCSs is conducted (Section 5.3, Page 97 and following).

Now, the previous findings are combined into a refined t-factor fault model which then functions

as a basis for the development of test adequacy criteria and test selection strategies.

The basic assumption of the t-factor fault model is that faults are caused by the interaction of

t parameters [DM98]. The t-factor faults are detectable by certain schemata that have a degree

of d ≤ t and that satisfy the fault condition of the t-factor fault (MFCSs). To detect t-factor

faults, the corresponding t-wise coverage is a test adequacy criterion that ensures to cover each

schema of size d ≤ t by at least one test input. Thereby, it is assured that the failure-causing

schemata with d ≤ t are also tested.

Since the subset of failure-causing schemata is not known in advance, it is important to test

all schemata with degrees of d ≤ t since all of them are potentially failure-causing. The degrees

of MFCSs are also not known in advance. Therefore, empirical studies like [WK01]; [KR02];

[KWG04]; [BV05]; [Cot+16]; [Rat+16] and our case study in Section 5.3 (Page 97 and follow-

ing) help to estimate what is an appropriate testing strength t for a specific SUT.

The controlled experiment in Section 5.1 that was based on the t-factor fault model to describe

robustness faults shows that the t-factor fault model also applies to SUTs with EH, invalid in-

put masking, and robustness faults. Although, depending on the number of parameters that

are involved in EH and the distribution of truly-valid and truly-invalid schemata, high testing

strengths and large test suite may be required with CT and t-wise coverage. Even with high test-

ing strengths, not all robustness faults can be detected reliably. Because of irrelevant and invalid

input masking, the number of parameters involved in the effective prevention sub-condition in-

creases with the number of irrelevant combinations and EH. Irrelevant schemata can be excluded

from testing to reduce the degrees of corresponding MFCSs. But truly-invalid schemata cannot

simply be excluded because it is important to test EH as well. With CT, a higher testing strength

and a larger test suite are required resulting in a potentially lower FDE when the number of

parameters involved in EH increases. Thus, an alternative approach to reduce the degrees of

MFCSs is necessary.

The CRT extension is based on the incorporation of additional semantic information beyond

the number of parameters that are involved in the fault condition. To develop alternative test

adequacy criteria and test selection strategies, we define a refined t-factor fault model for ordi-

nary faults and robustness faults. It utilizes another perspective that is based on a distinction of

truly-valid and truly-strong invalid schemata.

For ordinary faults regarding the standard behavior as well as for robustness faults regarding

the exception behavior, faults can only be detected when they are reached, i.e. when the effective

prevention sub-condition is satisfied, and when the fault is activated, i.e. when the activation sub-

condition is satisfied [LO17]. By refining the fault model to focus on truly-valid and truly-strong

invalid schemata, the invalid input masking effect is avoided and the effective and also general

prevention sub-conditions are always satisfied.

This is another perspective on the same faults and distinguishes ordinary faults and robust-

106 Chapter 5. A Combinatorial Robustness Fault Model

ness faults. The perspective imposes additional requirements on test adequacy criteria and test

selection strategies. To detect a fault, test inputs that satisfy the activation sub-condition must be

truly-valid or truly-strong invalid. Since the invalid input masking effect is excluded, the focus

is on the activation sub-condition which determines the number of involved parameters.

To detect an ordinary fault, the fault condition of the corresponding t-factor ordinary fault

must be satisfied. A t-factor ordinary fault is an abstraction of an ordinary fault and a truly-

minimal failure-causing and truly-valid schema is required to detect it. Since the effective and

general prevention sub-conditions are always satisfied by a truly-valid schema, the fault condi-

tion and the activation sub-condition are equivalent.

Definition 83 (t-Factor Ordinary Fault) A t-factor ordinary fault is a particular t-factor fault
that defines a fault condition over t parameters of the SUT which must be satisfied by a truly-
valid input in order to activate the fault.

To activate robustness faults, minimal failure-causing schemata are required that are also truly-

strong invalid schemata. Two cases can be distinguished.

First, to detect a configuration-independent robustness fault, the minimal failure-causing and

truly-strong invalid schema is also a truly-minimal invalid schema. The MFCS is congruent with

the truly-minimal invalid schema. Besides the truly-minimal invalid schema, no other schema

is necessary to activate the robustness fault. The assignments of all other parameters is of no

relevance as long as they do not cause any input masking.

Second, to detect a configuration-dependent robustness fault, the minimal failure-causing and

truly-strong invalid schema is not a truly-minimal invalid schema. This is because additional

assignments of other parameters are required such that the combination activates the fault. In

this case, the MFCS is composed of a truly-minimal invalid schema and another truly-valid

schema and only the combination of both is minimal failure-causing.

Both, configuration-independent and -dependent robustness faults can be uniformly described

by a (a, b)-factor robustness fault.

Definition 84 ((a,b)-Factor Robustness Fault) A (a, b)-factor robustness fault is a particular
t-factor fault that defines a condition over t = a+b parameters of the SUT that must be satisfied
by a strong invalid input in order to activate the fault.

The fault condition and the activation sub-condition are again equivalent. Because of the

interaction between a truly-minimal invalid schema and another truly-valid schema, the fault

condition over t parameters is divided into two conditions over disjoint parameters with a and b
parameters, respectively. First, the exception sub-condition over a parameters constitutes what

a truly-strong invalid test input must satisfy to ensure the occurrence of an exception. Second,

the configuration sub-condition over b parameters constitutes what a truly-strong invalid test

input must additionally satisfy to ensure that the fault is reached and the state is infected. The

conjunction of the exception sub-condition and the configuration sub-condition constitutes the

fault condition over t = a+ b parameters.

5.4. A Refined t-Factor Fault Model for Robustness Faults 107

Running Example Let’s again suppose a fault in the ordering web-service implementa-

tion (Listing 2.1, Page 14). First, let’s suppose an ordinary fault in the processDomes-
ticStandardOrder(packages, phone) function. The fault can be modeled

as a t-factor ordinary fault with processDomesticStandardOrder(packages,
phone) as its activation sub-condition.

Next, a configuration-independent fault where the function isInvalidCoun-
try(country) is incorrect and does not properly handle an exception occurrence.

The configuration-independent fault can be modeled as a (a, b)-factor robustness fault

with a = 1 and b = 0 since only one parameter is involved in the isInvalidCoun-
try(country) exception sub-condition and the configuration sub-condition is empty.

In contrast, another configuration-independent fault in the isInvalidCoun-
tryCode(country, phone) function would be modeled as a (a, b)-factor robust-

ness fault with a = 2 and b = 0 because two parameters are involved in the exception

sub-condition.

A configuration-dependent fault in the isInvalidCountryCode(country,
phone) function that is only activated for express shippings would be modeled as a

(a, b)-factor robustness fault with a = 2 and b = 1 because the configuration sub-condi-

tion ¬isStandardShipping(shipping) would comprise one parameter.

For the detection of t-factor ordinary faults, a truly-valid test input that covers a corresponding

MFCSs of degree d = t is required. Consequently, the MFCSs for t-factor ordinary faults are

truly-valid schemata as well. Therefore, the extended structure of an IPM for our CRT test

method must provide additional semantic information that allows defining and selecting valid

schemata that are potentially minimal failure-causing.

For the detection of (a, b)-factor robustness faults, a truly-strong invalid test input that covers

MFCSs of degree d = a + b is required. The MFCSs are truly-strong invalid schemata as well

but not necessarily truly-minimal invalid schemata. Therefore, the extended structure of an IPM

for our CRT test method must provide additional semantic information that allows defining and

selecting strong invalid schemata that are potentially minimal failure-causing.

To reflect the exception and configuration sub-conditions, minimal failure-causing truly-in-

valid schemata have two associated properties. These properties are later transferred to the

concept of minimal failure-causing invalid schemata. The degree d of a minimal failure-causing

truly-invalid schema consists of a robustness degree a and a robustness interaction degree b with

d = a+ b.

Definition 85 (Robustness Degree) The robustness degree a of a minimal failure-causing truly-
invalid schema is defined by the number of parameter-value pairs that constitute the truly-mini-
mal invalid sub-schema sinv, i.e. a = |sinv|.

In addition to the truly-minimal invalid sub-schema, the minimal failure-causing truly-invalid

schema may cover another disjoint truly-valid sub-schema with which the truly-minimal invalid

sub-schema interacts. Let τ denote the minimal failure-causing truly-invalid schema and let sinv
denote the truly-invalid sub-schema, then svalid = τ � sinv denotes the truly-valid sub-schema.

108 Chapter 5. A Combinatorial Robustness Fault Model

Definition 86 (Robustness Interaction Degree) The robustness interaction degree b of a mini-
mal failure-causing truly-invalid schema is defined by the number of parameter-value pairs that
do not constitute the truly-minimal invalid sub-schema. The degree of the truly-valid sub-schema
sval constitutes the robustness interaction degree, i.e. b = |sval|.

In the case of robustness failures triggered by single truly-invalid values (d = 1), the robust-

ness fault is always configuration-independent. Further on, the minimal failure-causing truly-

invalid schema and the truly-invalid schema are congruent, i.e. both contain the same parame-

ter-value pairs. As a consequence, the robustness degree is a = 1 and the robustness interaction

degree is b = 0. For robustness failures that are triggered by truly-invalid value combinations

(d ≥ 2), two cases of configuration-independent and configuration-dependent robustness fail-

ures can be distinguished. First, when the truly-invalid value combination is a truly-minimal

invalid schema, the minimal failure-causing truly-invalid schema activates a configuration-inde-

pendent fault, its robustness degree is a = d and there is zero robustness interaction (b = 0).

Second, when the truly-invalid value combination is not a truly-minimal invalid schema, the

minimal failure-causing truly-invalid schema covers a truly-minimal invalid schema and a truly-

valid schema, i.e. b > 0 and a = d− b.

Running Example For the given IPM (Figure 2.1, Page 14), one MFCS with d =
2 exists that can activate the t-factor fault if it is covered by a truly-valid test input:

[Country:UK, Shipping:Standard].

One minimal failure-causing truly-invalid schema exists for the configuration-inde-

pendent fault in the isInvalidCountry(country) function: [Country:123].

The degree and robustness degree are equal and there is zero interaction with valid

schemata, i.e. d = 1, a = 1, and b = 0.

Two minimal failure-causing truly-invalid schemata with d = 2, a = 2,

and b = 0 exist for the configuration-independent fault in the isInvalid-
CountryCode(country, phone) function: [Country:UK, Phone:+1] and

[Country:USA, Phone:+44].

For the configuration-dependent fault in the isInvalidCoun-
tryCode(country, phone) function that interactions with express shipping,

two MFCSs exist: [Country:UK, Phone:+1, Shipping:Express] and

[Country:USA, Phone:+44, Shipping:Express]. In this case, the degree

is d = 3 but the robustness degree is still a = 2 because there is an interaction with a

valid schema b = 1.

To conclude, information about the context is required to distinguish t-factor ordinary faults

and (a, b)-factor robustness faults. When the activation sub-condition of a fault can only be sat-

isfied by truly-valid schemata, then the fault can be abstracted as a t-factor ordinary fault. When

the activation sub-condition of a fault can only be satisfied by truly-strong invalid schemata, then

the fault can be abstracted as a (a, b)-factor robustness fault. Furthermore, when the schemata

that satisfy the activation sub-condition are truly-minimal invalid schemata, the fault is a con-

figuration-independent robustness fault which can be abstracted as a (a, 0)-factor robustness

fault. When the schemata that satisfy the activation sub-condition are not truly-minimal invalid

5.4. A Refined t-Factor Fault Model for Robustness Faults 109

schemata, the fault is a configuration-dependent robustness fault which can be abstracted as a

(a, b)-factor robustness fault with b > 0. The parameters involved in the exception sub-condition

determine the robustness degree a and the parameters involved in the configuration sub-condi-

tion determine the robustness interaction degree b.
The example faults and example minimal failure-causing truly-invalid schemata also highlight

the convertibility between the new perspective of the refined t-factor fault model and the t-factor

fault model. The refined t-factor fault model always satisfies the effective and general prevention

sub-conditions because of its focus on truly-valid and truly-strong invalid schemata. In order to

convert faults described by the refined t-factor model, the general prevention sub-condition must

be defined. Thereby, it is also ensured that truly-valid test inputs are used to activate ordinary

faults. When the general prevention sub-condition is used, it is also ensured that truly-invalid test

inputs that activate robustness faults are truly-strong invalid. When the effective prevention sub-

condition is used, the test inputs that activate a robustness fault are not necessarily truly-strong

invalid but there is at least no invalid input masking for that fault.

Because of the effective and general prevention sub-conditions, more parameters are involved

in the fault condition and higher testing strengths are required to guarantee the detection of

faults. In contrast, the fault conditions of the refined t-factor fault model are smaller. Because the

distinction of truly-valid and truly-strong invalid schemata is utilized, smaller testing strengths

are required. But, the test adequacy criteria and test selection strategies are required to strictly

distinguish truly-valid and truly-strong invalid test inputs.

Therefore, the IPM is extended in the next chapter to capture semantic information that allows

a distinction between valid and strong invalid schemata. Together with the refined t-factor fault

model and its additional properties, it is then used to define test adequacy criteria for CRT.

List of Symbols

a robustness degree

b robustness interaction degree

Chapter 6.

A Combinatorial Robustness Input
Parameter Model

In the previous chapters, concepts to describe correct and robust programs from the perspective

of an authoritative specification are defined. Further on, the concepts are used to discuss issues

of CT in the presence of invalid input masking and a refined t-factor fault model is developed. To

develop a CRT test method with test adequacy criteria and test selection strategies that target the

refined t-factor fault model, the concepts are required to be defined in terms of an IPM because

an authoritative specification is not available for the test selection. Therefore, we extend the

structure of IPMs and provide the required definitions in this chapter.

To capture semantic information that allows a distinction between valid and invalid schemata,

we distinguish two different types of constraint. The previously discussed set of exclusion-

constraint Cex (Definition 45, Page 32) models schemata that should be excluded from testing

because they are marked as irrelevant. In addition, a separate set of error-constraints is intro-

duced to mark schemata as invalid.

Definition 87 (Error-Constraints) The set of error-constraints Cerr is a set of constraints to
distinguish valid and invalid schemata.

We define the robustness input parameter model (RIPM) as an extension of the IPM that

includes the set of error-constraints. Formally, a RIPM is a 4-tuple RIPM = 〈P̃ , V, Cex, Cerr〉
which includes the separate set of error-constraints denoted as Cerr.

Definition 88 (Robustness Input Parameter Model) A RIPM is a specification-based model
of the input domain. It is an extension of the IPM structure that structures the input domain via
parameters, associated values, exclusion-constraints, and error-constraints.

In contrast to the related work by COHEN et al. [Coh+94]; [Coh+97], CZERWONKA [Cze06],

and YU et al. [Yu+13b] (Page 61 and following), values are not modeled via disjoint sets V valid

and V invalid. Only one set of values is used and unary error-constraints describe the validity of

values. Taking the two types of constraints into account, exclusion-constraints partition values

into relevant and irrelevant schemata and error-constraints further partition relevant schemata

into valid and invalid schemata.

Since IPMs and RIPMs can deviate from the authoritative specification, the partition is with

regards to the model. Valid and invalid schemata are the counterparts of the truly-valid and truly-

invalid schemata. Valid and invalid test inputs are not defined separately since they are subsumed

112 Chapter 6. A Combinatorial Robustness Input Parameter Model

by the schema-based concepts. Analogously to truly-irrelevant schemata, the irrelevant schemata

are not further refined.

To define valid and invalid schemata, recall the SAT : C∗×A → Bool function (See Page 32)

to evaluate whether a schema s ∈ A satisfies a set of constraints C ∈ C∗. The function evaluates

to true if schema s satisfies all constrains C. Otherwise, the function evaluates to false.

Definition 89 (Valid Schema) A relevant schema s is a valid schema if and only if it satisfies
all exclusion- and error-constraints, i.e. SAT(Cex ∪ Cerr, s) = true.

Definition 90 (Invalid Schema) A relevant schema s is an invalid schema if and only if all
exclusion-constraints Cex are satisfied but at least one error-constraint c ∈ Cerr is not satisfied,
i.e. SAT(Cex, s) = true and SAT(Cerr, s) = false.

To improve readability, the following predicates are introduced.

IsRelevant(s) = SAT(Cex, s)

IsValid(s) = SAT(Cex ∪ Cerr, s)

IsInvalid(s) = SAT(Cex, s) ∧ ¬SAT(Cerr, s)

Running Example The example IPM in Figure 2.1 (Page 14) can also be interpreted

as a RIPM with error-constraints c1, ..., c4. To further illustrate the difference between

exclusion- and error-constraints, suppose a fault in the processDomensticStan-
dardOrder(packages, phone) function that is activated by valid test inputs that

cover the MFCS [Country: UK, Shipping: Standard]. Since this fault is

known, it should be excluded from testing while valid and invalid test inputs should be

distinguished. A RIPM that considers both aspects is depicted in Figure 6.1 with error-

constraints Cerr = {c1, ..., c4} and exclusion-constraint Cex = {c5}.

[Packages:1, Country:UK, Phone:+44, Shipping:Standard] is a

valid schema because it satisfies all exclusion- and error-constraints. In contrast, schema

[Packages:123, Country:UK, Phone:+44, Shipping:Standard] is

invalid because it satisfies all exclusion-constraints but error-constraint c1 remains unsat-

isfied. [Packages:1, Country:UK, Phone:+1, Shipping:Standard]
is another invalid schema with an invalid value combination that does not satisfy

c4. Further on, [Packages:123, Country:UK, Phone:+1, Shipping:
Standard] is an invalid schema with two unsatisfied error-constraints c1 and c4.

The partition of valid and invalid schemata eliminates irrelevant and invalid input masking

for valid test inputs. However, invalid schemata may still be subjected to invalid input masking

when more than one minimal invalid schema is covered. Therefore, the concepts of minimal and

strong invalid schemata are introduced.

According to Definition 75 (Page 50), a truly-invalid schema s is minimal if and only if no

proper subset schema s′ ⊂ s exists that is itself truly-invalid. Further on, a truly-invalid schema

is strong truly-invalid if and only if it covers exactly one minimal truly-invalid schema (Defini-

tion 76, Page 51). With regards to error-constraints, the concepts are transferred as follows.

113

Parameters:
p1 : Packages: 1, 3, 123
p2 : Country: UK, USA, 123
p3 : Phone: +44, +1, 123
p4 : Shipping: Standard, Express

Error-Constraints:
c1 : Packages �= 123
c2 : Country �= 123
c3 : Phone �= 123
c4 : ¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = USA ∧ Phone = +44)

Exclusion-Constraints:
c5 : Shipping = Standard ⇒ Country �= USA

Figure 6.1.: RIPM for the Ordering Web-Service Example

Definition 91 (Strong Invalid Schema) An invalid schema s is a strong invalid schema if and
only if exactly one error-constraint remains unsatisfied, i.e. ∃!c ∈ Cerr such that SAT(Cex ∪
Cerr\{c}, s) = true and SAT(Cex ∪ Cerr, s) = false.

To reduce the number of evaluations, let ci denote the negation of ci. Then, the following

predicates determine whether a schema s is strong invalid for error-constraint c or in general.

IsStrongInvalid(s, ci) = SAT(Cex ∪ (Cerr\{ci}) ∪ {ci}, s)
IsStrongInvalid(s) = ∃!ci ∈ Cerr, IsStrongInvalid(s, ci)

A strong invalid schema is an extension of a minimal invalid schema which may cover ad-

ditional valid schemata besides the one minimal invalid schema. A minimal invalid schema

is always a strong invalid schema while not every strong invalid schema is a minimal invalid

schema.

Definition 92 (Minimal Invalid Schema) A strong invalid schema s is a minimal invalid schema
if and only if no proper subset schema s′ ⊂ s exists that is itself an invalid schema, i.e. �s′ ⊂ s
such that IsInvalid(s′).

The following predicate determines whether a schema s is minimal invalid.

IsMinimalInvalid(s) = IsStrongInvalid(s) ∧ ∀s′ ⊂ s,¬IsInvalid(s′)

Running Example The invalid schema [Packages:123, Country:UK,
Phone:+44, Shipping:Standard] is a strong invalid schema because it sat-

isfies all constraints except error-constraint c1. It covers the minimal invalid schema

[Packages:123]. [Packages:1, Country:UK, Phone:+1, Ship-
ping:Standard] is another strong invalid schema that does not satisfy c4. It covers

the minimal invalid schema [Country:UK, Phone:+1]. Further on, [Pack-

114 Chapter 6. A Combinatorial Robustness Input Parameter Model

ages:123, Country:UK, Phone:+1, Shipping:Standard] is an invalid

schema but not a strong invalid schema because two error-constraints c1 and c4 remain

unsatisfied. Consequently, it covers two minimal invalid schemata [Packages:123]
and [Country:UK, Phone:+1].

Error-constraints have a dual role. First, they are supposed to exclude invalid schemata from

valid test inputs and from strong invalid test inputs. Second, they are supposed to specify invalid

schemata that should appear in some strong invalid test inputs depending on the test adequacy

criteria. If it wasn’t for the second role, there would be no difference between exclusion- and er-

ror-constraints. Because of the dual role, our design of error-constraints has some implications.

To discuss them, another view on error-constraints is useful that highlights the relationship be-

tween error-constraints and invalid schemata.

An error-constraint specifies a set of strong invalid schemata Ici . While each strong invalid

schema s ∈ Ici must not be covered by any valid test input, some invalid schemata must be

covered by strong invalid test inputs depending on the test adequacy criteria. A single error-

constraint ci can be transformed into a set of strong invalid schemata Ici for a non-empty set of

d parameters by reasoning about the specified condition.

To transform ci ∈ Cerr into the set of strong invalid schemata Ici , we introduce the following

symbols and functions that are based on the concept of parameter indices.

Definition 93 (Parameter Index) A parameter index r ∈ [1, n] is a label that references one
parameter pr ∈ P̃ of P̃ = {p1, ..., pn}.

Let φ denote a set of parameter indices and let d = |φ| denote its degree.

φ = {r1, ..., rd} with each r ∈ [1, n] and d = |φ|
Let the function Indices(ci) compute the set of parameter indices φ for an error-constraint

ci ∈ Cerr and let the function Degree(ci) compute the number of parameters involved in the

condition of an error-constraint, i.e. Degree(ci) = d for φ = Indices(ci).
Let the function Pairs(r) compute all mr parameter-value pairs for all values in Vr of pa-

rameter pr.

Pairs(r) = {(pr, vj)|vj ∈ Vr} = {π1, ..., πmr}
Further on, let Xφ denote the set of all d-sized schemata with d = |φ| that exist for the

parameters as indexed by φ. It is computed by the Cartesian product of all parameter-value pairs

for all parameters indices in φ.

Xφ = {{πj1 , ..., πjd}|πj1 ∈ Pairs(r1), ..., πjd ∈ Pairs(rd)}
To compute the set of all strong invalid schemata Ici for error-constraint ci ∈ Cerr, the set

of all d-sized schemata Xφ for φ = Indices(ci) is computed first. Then, the set of all strong

invalid schemata is a filtered proper subset Ici ⊂ XIndices(ci) where each schema s ∈ Ici does

not satisfy error-constraint ci but all exclusion-constraints and all other error-constraints.

Ici = {s ∈ XIndices(ci)|IsStrongInvalid(s, ci)}

115

Please note if the set of strong invalid schemata Ici was a not proper subset of the Cartesian

product, i.e. Ici = XIndices(ci), no valid test inputs and no strong invalid test inputs with other

unsatisfied error-constraints could exist.

Running Example Error-constraint c1 as listed in Figure 6.1 (Page 113) speci-

fies a strong invalid schema for parameter indices Indices(c1) = φ = {1}.

The corresponding Cartesian product is XIndices(c1) = {[Packages:1], [Pack-
ages:3], [Packages:123]} and the subset of strong invalid schemata is Ic1 =
{[Packages:123]}.

Error-constraint c4 specifies strong invalid schemata for parameter indices

Indices(c4) = φ = {2, 3}. The corresponding Cartesian product is

XIndices(c4) = {[Country:UK, Phone:+44], [Country:UK, Phone:+1],

[Country:UK, Phone:123], ..., [Country:123, Phone:+1], [Coun-
try:123, Phone:123]} and the subset of strong invalid schemata is Ic4 =
{[Country:UK, Phone:+1], [Country:USA, Phone:+44]}.

The strong invalid schemata Ici are typically not only strong invalid but minimal invalid

schemata. But there is an exception when error-constraints are defined in a non-minimal for-

mulation. The non-minimal formulation has no implication for the first role of error-constraints

to partition valid and invalid schemata. However, it has implications on the second role to specify

strong invalid schemata that should appear in some strong invalid test inputs.

Running Example Consider a different example with two parameters and three values

for each parameter.

P1: { 1, 2, 3 }

P2: { 1, 2, 3 }

c1 :¬(P1 = 3 ∧ P2 = 1) ∧ ¬(P1 = 3 ∧ P2 = 3) ∧ ¬(P1 = 3 ∧ P2 = 3)

In this case, Ic1 encompasses three strong invalid schemata [P1:3, P2:1],

[P1:3, P2:2], and [P1:3, P2:3]. They are strong invalid but not minimal in-

valid because a sub-schema [P1:3] exists that does not satisfy c1.

An alternative formulation c′1 = ¬(P1 = 3) is equivalent for the first role. However,

for the second role only one strong invalid schema is defined by I ′c1 which is [P1:3].

Depending on the test adequacy criterion, the two formulations require more or less

strong invalid schemata to be covered.

The introduction of error-constraints and its conditions can be justified by the need to model

invalid value combinations instead of only invalid values. But the transformation to strong in-

valid schemata Ici requires a design decision. Therefore, we contrast the design of error-con-

straints with the design of exclusion-constraints. When describing irrelevant schemata, exclu-

sion-constraints are local and independent descriptions that specify sets of irrelevant schemata.

An exclusion-constraint is local and independent in the sense that other exclusion- and error-

constraints do not change its semantics. Independently from any other constraint, an exclusion-

116 Chapter 6. A Combinatorial Robustness Input Parameter Model

constraint always specifies the same set of schemata that are considered as irrelevant.

The transformation from error-constraints to strong invalid schemata as defined above does

not have the same characteristics of locality and independence. The subset of strong invalid

schemata varies depending on the descriptions of other exclusion- and error-constraints. This

is due to the fact that the definition of strong invalid schemata is not based on single error-

constraint but on sets of exclusion- and error-constraints. Nevertheless, it makes the modeling

of invalid values and invalid value combinations unnecessary complex.

Running Example Let’s consider one parameter and one invalid value first. Using the

workaround, it is modeled via two sets of values.

Packages: { 1, 3 }valid ∪ { 123 }invalid

Using our approach and the RIPM, it is modeled with one set of values and an error-

constraint. In this example, both approaches specify the same minimal invalid schema.

Packages: { 1, 3, 123 }

c1 : Packages �= 123

Although, the invalid value cannot be derived by locally reasoning about the strong

invalid schemata Ic1 of the single error-constraint c1. Instead, all constraints must be

considered. Suppose a second error-constraint c2 which interferes with c1. Then, both

error-constraints do not specify any invalid schema, i.e. Ic1 = ∅ and Ic2 = ∅.

Packages: { 1, 3, 123 }

c1 : Packages �= 123

c2 : Packages �= 123

To improve the comprehensibility and to allow local reasoning of error-constraints, we intro-

duce another set of schemata that is specified by a single error-constraint. The set of schemata

Lci denotes the schemata that are locally-specified by error-constraint ci.

Ici ⊆ Lci ⊂ XIndices(ci)

Lci = {s ∈ XIndices(ci)|SAT({ci}, s) = false}

The transformation from error-constraints to locally-specified schemata has the characteris-

tics of locality and independence. Independently from any other constraint, error-constraint ci
always specifies the same set of schemata Lci .

Although the set of schemata is defined locally and independently, not all schemata are nec-

essarily relevant and strong invalid. On the one side, it is important to maintain local reasoning

and comprehensibility of error-constraints. On the other side, it is important to ensure that only

strong invalid schemata are described by error-constraints. Therefore, we argue that whenever a

schema s is locally-specified by an error-constraint ci, i.e. s ∈ Lci , but that schema is not strong

invalid, i.e. s /∈ Ici , the RIPM is inconsistent and needs to be repaired.

117

Running Example For the first example with Packages and only one error-con-

straint c1, both Lc1 and Ic1 are equivalent, i.e. Lc1 = Ic1 = {[Packages:123]}.

For the second example with two error-constraints c1 and c2, the locally-specified

schemata are Lc1 = Lc2 = {[Packages:123]}. However, the minimal invalid

schemata deviate and indicate inconsistency, i.e. Ic1 = Ic2 = ∅, because the error-

constraints conflict each other.

By considering both sets of schemata for an error-constraint, the comprehensibility of local

reasoning is linked with the global scope of strong invalid schemata. Moreover, the combination

of both sets allows detecting and repairing inconsistent RIPMs which would not be possible

when considering only one set. In the following, we assume that the RIPMs are consistent

and that the sets of locally-specified schemata and strong invalid schemata are equivalent for

all error-constraints. A definition of inconsistent RIPMs and techniques to detect and repair

inconsistent RIPMs are discussed in a later chapter (Chapter 9, Page 159 and following).

Based on the classification of valid and invalid schemata, different failure-causing schemata

can be distinguished. Again, the test input-based concepts are not defined separately since they

are subsumed by the schema-based concepts.

Definition 94 (Failure-causing Valid Schema) A valid schema s is also a failure-causing valid
schema if and only if each valid test input τ that covers s ⊆ τ is failure-causing, i.e. s ⊆ τ ⇒
¬OK(τ, P (τ)).

Definition 95 (Failure-causing Invalid Schema) An invalid schema s is a failure-causing in-
valid schema if and only if each strong invalid test input τ that covers s ⊆ τ is failure-causing,
i.e. s ⊆ τ ⇒ ¬OK(τ, P (τ)).

Definition 96 (Minimal Failure-causing Valid Schema) A failure-causing valid schema s is a
minimal failure-causing valid schema if and only if no proper subset schema s′ ⊂ s exists that
is itself a failure-causing schema.

Definition 97 (Minimal Failure-causing Invalid Schema) A failure-causing invalid schema s
is a minimal failure-causing invalid schema if and only if no proper subset schema s′ ⊂ s exists
that is itself a failure-causing schema.

Again, the property of minimality is related to the concept of causing failures. It should not

be confused with the property of minimality that is related to invalid schemata. A minimal

failure-causing invalid schema is an invalid schema but not necessarily a strong or minimal

invalid schema. A minimal failure-causing invalid schema that is also a minimal invalid schema

activates a configuration-independent robustness fault while a minimal failure-causing invalid

schema that is not a minimal invalid schema activates a configuration-dependent robustness

fault. That distinction is examined more closely in Section 5.4 (Page 105 and following).

To conclude this chapter, the structure of IPMs is extended to the structure of RIPMs with

error-constraints. The error-constraints allow distinguishing valid and invalid schemata as well

as failure-causing valid and invalid schemata. In the following, test adequacy criteria and test

selection strategies are developed that are based on these newly introduced concepts to target the

refined t-factor fault model.

118 Chapter 6. A Combinatorial Robustness Input Parameter Model

List of Symbols

RIPM = 〈P̃ , V, Cex, Cerr〉 input parameter model

Cerr set of error-constraints

r ∈ [1, n] parameter index

φ = {r1, ..., rd} set of d = |φ| parameter indices

Indices(ci) function to compute the set of parameter indices φ for pa-

rameters involved in the condition of error-constraint ci

Degree(ci) function to compute the number of parameters involved in

the condition of error-constraint

Pairs(r) function to compute all parameter-value pairs of parameter

with index r

Xφ set of all d-sized schemata of parameters indexed by φ

XIndices(ci) set of all schemata defined by error-constraint ci

Ici set of all strong invalid schemata specified by error-

constraint ci

Lci set of invalid schemata locally specified by error-constraint

ci

IsRelevant(s) predicate to check if schema s is relevant

IsValid(s) predicate to check if schema s is valid

IsInvalid(s) predicate to check if schema s is invalid

IsStrongInvalid(s, ci) predicate to check if schema s is strong invalid for error-

constraint ci

IsStrongInvalid(s) predicate to check if schema s is strong invalid

IsMinimalInvalid(s) predicate to check if schema s is minimal invalid

Chapter 7.

Combinatorial Robustness Test Adequacy
Criteria

Contents

7.1. Existing t-wise Combinatorial Test Adequacy Criteria 119

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 127

Given the RIPM structure as defined in the previous chapter, test adequacy criteria can now

incorporate the partitioning of error-constraints and distinct test adequacy criteria can now be

defined for testing correctness and robustness.

To discuss new test adequacy criteria, we first introduce existing test adequacy criteria and

use a formalism. First, the introduction of existing test adequacy criteria allows to illustrate rela-

tionships to the new test adequacy criteria and to differentiate them from the new test adequacy

criteria. Second, the formalism enables a precise description of test adequacy criteria and allows

to show why test adequacy criteria for strong invalid test inputs cannot be defined analogously.

7.1. Existing t-wise Combinatorial Test Adequacy Criteria

In CT, a test adequacy criterion is defined in relation to a IPM with the parameters, values, and

constraints the tester decides to be important [GOA05]. The fault detection effectiveness (FDE)

depends on the completeness and correctness of chosen parameters and values as well as their

partitions based on exclusion-constraints and – in the case of CRT – error-constraints. The test

adequacy criteria cannot influence the completeness and correctness of IPMs and RIPMs. The

exhaustive test suite E = V1 × ...× Vn defines the domain of which test inputs are selected and

the selection is guided by test adequacy criteria. Although, what is not described in IPMs and

RIPMs, is not part of the exhaustive test suite and cannot be taken into account. Instead, test

adequacy criteria can influence which and how many test inputs of the exhaustive test suite must

be selected into the test suite T ⊆ E.

In the case of t-wise coverage, the predicate that test suites must satisfy is solely defined by

combinatorics of parameters and values without considering semantic information [GOA05].

As we have argued beforehand, it is important to avoid irrelevant schemata and to separate

valid from invalid schemata because covering an irrelevant schema makes an entire test input

irrelevant and covering an invalid schema makes an entire test input invalid.

120 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

To incorporate the refined t-factor fault model for robustness faults, we define combinatorial

robustness test adequacy criteria that consider semantic information. Therefore, we first intro-

duce a definition of t-wise coverage that is based on a formalism by WILLIAMS & PROBERT

[WP01]. Afterwards, we extend the definition to relevant t-wise coverage and introduce combi-

natorial robustness test adequacy criteria in relation to RIPMs that further refine the selection of

relevant test inputs into separate test suites for valid and strong invalid test inputs.

t-wise Coverage The t-wise coverage test adequacy criterion requires a test suite T to cover

all schemata with degree d = t at least once [GOA05]. To formally define t-wise coverage, we

rely on the following symbols and functions.

Let φ again denote a set of d = |φ| parameter indices.

φ = {r1, ..., rd} with each r ∈ [1, n] and d = |φ|

Let φn denote a particular set of n parameter indices that contains all parameter indices of P .

φn = {r1 = 1, ..., rn = n}
Let Φd denote a set of parameter index sets with all parameter index sets containing d indices.

Φd = {φ1, φ2, ...} with |φ1|, |φ2|, ... = d

Let the function Subsets(φ, d) compute a set Φd that contains all possible d-sized parameter

index subsets of a given set φ.

Subsets(φ, d) = Φd =

⎧⎨
⎩

{∅} if d ≤ 0
{φ′|φ′ ⊆ φ ∧ |φ′| = |φ|} if d < |φ|
{φ} if d ≥ |φ|

Let AllSubsets denote a function that computes a set Φd that contains all generally possible

d-sized sets of parameter indices. Therefore, the Subsets function is applied to φn.

AllSubsets(d) = Subsets(φn, d)

Let Xφ again denote a set of all schemata with degree d = |φ| that exist for the parameter

indices of φ.

Xφ = {{πj1 , ..., πjd}|πj1 ∈ Pairs(r1), ..., πjd ∈ Pairs(rd)}
Finally, let Xd denote the set of all schemata with degree d. It can be built as the union of all

Xφ schema sets for all φ ∈ AllSubsets(d).

Xd =
⋃

Xφ
φ∈AllSubsets(d)

Running Example For the IPM of Figure 6.1 (Page 113), six subsets of parame-

ter indices exist for φn = {1, 2, 3, 4}, i.e. AllSubsets(2) = {φ1 = {1, 2}, φ2 =

7.1. Existing t-wise Combinatorial Test Adequacy Criteria 121

{1, 3}, φ3 = {1, 4}, φ4 = {2, 3}, φ5 = {2, 4}, φ6 = {3, 4}}.

For the set of parameter indices φ5 = {2, 4}, the set of all schemata Xφ5 is as follows.

Xφ5 = {[Shipping:Standard, Country:UK],

[Shipping:Standard, Country:USA],

[Shipping:Standard, Country:123],

[Shipping:Express, Country:UK],

[Shipping:Express, Country:USA],

[Shipping:Express, Country:123],

[Shipping:123, Country:UK],

[Shipping:123, Country:USA],

[Shipping:123, Country:123]}

The set of all schemata X2 encompasses all sets of Xφ for all φ ∈ AllSubsets(2).

A test suite T ⊆ E satisfies the t-wise coverage test adequacy criterion if and only if each

schema in Xt with d = t is covered by at least one test input in T .

∀s ∈ Xt, ∃τ ∈ T such that s ⊆ τ

N-wise Coverage For the sake of completeness, N -wise coverage denotes a special case of

t-wise coverage with t = n which can only be satisfied by the exhaustive test suite, i.e. T = E
[GOA05]. It can be alternatively defined such that a test suite T satisfies N -wise coverage if and

only if each test input of the exhaustive test suite τa ∈ E is covered by at least one test input of

the test suite τb ∈ T .

∀τa ∈ E, ∃τb ∈ T such that τa ⊆ τb

In the following, the above presented formalism is extended to describe combinatorial test

adequacy criteria that consider constraints.

N-wise Relevant Coverage A subset of N -wise coverage is N -wise relevant coverage

which excludes irrelevant test inputs and limits testing to relevant test inputs [GOA05].

A test suite T satisfies N -wise relevant coverage if and only if each relevant test input of the

exhaustive test suite E is covered by at least one test input of the test suite.

T ⊇ {τ ∈ E|IsRelevant(τ)}

t-wise Relevant Coverage The t-wise relevant coverage test adequacy criterion requires a

test suite T ⊆ E to cover each relevant schema with degree d = t by at least one relevant test

input [GOA05]. To describe t-wise relevant coverage more precisely, Xφ and Xd are refined to

Xrelevant
φ and Xrelevant

d to only cover relevant schemata and to exclude irrelevant schemata.

122 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Xrelevant
φ = {s ∈ Xφ|IsRelevant(s)} and Xrelevant

d =
⋃

Xrelevant
φ

φ∈AllSubsets(d)

Running Example When incorporating the exclusion-constraint c6 of Figure 6.1 (Page

113), the schema [Shipping:Standard, Country:USA] is excluded. Conse-

quently, Xrelevant
φ for φ5 = {2, 4} is a subset of Xφ5 that consists of the eight remaining

schemata.

Xφ5 = {[Shipping:Standard, Country:UK],

[Shipping:Standard, Country:123],

[Shipping:Express, Country:UK],

[Shipping:Express, Country:USA],

[Shipping:Express, Country:123],

[Shipping:123, Country:UK],

[Shipping:123, Country:USA],

[Shipping:123, Country:123]}

For the other sets of parameter indices φ, the sets of all relevant schemata Xrelevant
φ

are equal to the sets of all schemata Xφ. Therefore, Xrelevant
2 is a subset of X2 without

[Shipping:Standard, Country:USA].

A test suite T ⊆ E satisfies the t-wise relevant coverage test adequacy criterion if and only if

each schema in Xrelevant
t with d = t is covered by at least one relevant test input in T .

∀s ∈ Xrelevant
t , ∃τ ∈ T such that s ⊆ τ and IsRelevant(τ)

N-wise Valid Coverage To detect t-factor ordinary faults, not only irrelevant schemata but

also invalid schemata must be excluded to avoid irrelevant and invalid input masking. Therefore,

N -wise valid coverage is a subset of N -wise relevant coverage which further excludes invalid

test inputs and limits testing to valid test inputs.

A test suite T satisfies N -wise valid coverage if and only if each valid test input of the ex-

haustive test suite E is covered by at least one valid test input of the test suite.

T ⊇ {τ ∈ E|IsValid(τ)}

t-wise Valid Coverage The t-wise valid coverage is another refinement of t-wise relevant

coverage that targets t-factor ordinary faults. It covers only valid schemata and excludes all

schemata that are irrelevant or invalid [GOA05]. Therefore, Xrelevant
φ and Xrelevant

d are further

refined to Xvalid
φ and Xvalid

d to only cover valid schemata and to exclude irrelevant and invalid

schemata.

Xvalid
φ = {s ∈ Xrelevant

φ |IsValid(s)} and Xvalid
d =

⋃
Xvalid

φ
φ∈AllSubsets(d)

7.1. Existing t-wise Combinatorial Test Adequacy Criteria 123

Running Example To define the sets of all valid schemata, the exclusion-and error-

constraints must be taken into account. For φ5 = {2, 4}, Xvalid
φ5

is a subset of Xrelevant
φ5

with each schema satisfying not only all exclusion- but also all error-constraints.

Xvalid
φ5

= {[Shipping:Standard, Country:UK],

[Shipping:Express, Country:UK],

[Shipping:Express, Country:USA]}

The set of all valid schemata Xvalid
2 for all sets of parameter indices φ is consequently

a subset of Xrelevant
2 with only valid schemata.

A test suite T ⊆ E satisfies the t-wise valid coverage if and only if each schema in Xvalid
d

with d = t is covered by at least one valid test input in T .

∀s ∈ Xvalid
t , ∃τ ∈ T such that s ⊆ τ and IsValid(τ)

In related work such as the survey by GRINDAL et al. [GOA05], relevance and validness are

often not clearly distinguished. It depends on the context whether the N -wise and t-wise valid

coverage as defined by related work equates to our relevant or valid test adequacy criteria. When

the tester uses constraints to avoid all schemata that are not of any interest to the test, it equates

to our relevant test adequacy criteria. It equates to our valid test adequacy criteria when certain

schemata are not excluded but marked as invalid to test them separately.

Hierarchy of Test Adequacy Criteria Before we discuss and introduce test adequacy cri-

teria for strong invalid test inputs, we illustrate the hierarchy of and relationships between the

existing test adequacy criteria. Figure 7.1 (Page 124) depicts the relationships between the test

adequacy criteria. The figure is adapted from GRINDAL et al. [GOA05] and the relationships

are based on the subsumption relation.

The subsumption relation is defined as follows: A test adequacy criterion TAC1 subsumes a

test adequacy criterion TAC2 if and only if each test suite that satisfies TAC1 always satisfies

TAC2 as well [FW88]; [Wei90]; [GOA05]; [AO16]. It is widely used to analytically compare

test adequacy criteria [Wei89]; [AO16]. It can be seen as an approximation with regards to

the FDE of related test adequacy criteria [Wei89]. For accurate comparisons, subsumption and

similar relations are viewed critically (cf. [Wei89]; [WWH91]; [Wey02]). Instead of formal

analyses, empirical approaches are commonly used to compare test adequacy criteria, test se-

lection strategies, and test methods in general. Therefore, we use the subsumption relation to

provide an overview and to support the comprehension. Later on, empirical approaches are used

in our evaluation (Part IV, Page 211 and following).

In the context of combinatorial test adequacy criteria, the subsumption relation can be dis-

cussed in terms of schemata that a test suite must cover.

N -wise coverage can only be satisfied by the exhaustive test suite T = E. Therefore, it

subsumes all other RIPM-related test adequacy criteria by definition. The N -wise coverage is

equivalent to t-wise coverage with t = n and t-wise coverage with t ≤ n is subsumed by N -

124 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Figure 7.1.: Subsumption Hierarchy of Existing Combinatorial Test Adequacy Criteria

wise coverage. Each-choice coverage (t = 1) and pair-wise coverage (2-wise) are special cases

of t-wise coverage which are subsumed by t-wise coverage with t = n and t ≥ 2.

Further on, N -wise relevant coverage is also subsumed by N -wise coverage because test

suites that satisfy N -wise relevant coverage must cover all relevant test inputs which is a subset

of the exhaustive test suite. Analogously, t-wise relevant coverage is subsumed by N -wise

relevant coverage. Pair-wise relevant coverage and each-choice relevant coverage are subsumed

by t-wise relevant coverage.

Even though N -wise coverage subsumes N -wise relevant coverage, t-wise coverage does

not subsume t-wise relevant coverage. The set of all t-sized schemata Xt of t-wise coverage

is a superset of the set of all t-sized relevant schemata Xrelevant
t . Therefore, a test suite that

satisfies t-wise coverage covers all schemata that a test suite must cover to satisfy t-wise relevant

coverage. However, t-wise relevant coverage has an additional requirement that restricts the way

how schemata are combined. To satisfy t-wise relevant coverage, all schemata must be covered

by relevant test inputs.

When all schemata are relevant and no irrelevant schemata exist, the set of test suites that sat-

isfy N -wise relevant coverage and t-wise relevant coverage are equivalent to N -wise coverage

and t-wise coverage.

The N -wise relevant coverage subsumes N -wise valid coverage because all valid test inputs

are a subset of all relevant test inputs. Again, t-wise valid coverage is subsumed by N -wise valid

coverage and is equivalent for t = n. In addition, each-choice valid coverage and pair-wise valid

coverage are subsumed by t-wise valid coverage with t ≥ 2.

7.1. Existing t-wise Combinatorial Test Adequacy Criteria 125

The t-wise relevant coverage does not subsume t-wise valid coverage. The set of all valid

t-sized schemata Xvalid
t of t-wise valid coverage is a subset of the set of all t-sized relevant

schemata Xrelevant
t . But, t-wise valid coverage requires all schemata to be covered by valid test

inputs.

When all relevant schemata are valid and no invalid schemata exist, the set of test suites that

satisfy N -wise relevant coverage and t-wise relevant coverage are equivalent to N -wise valid

coverage and t-wise relevant coverage.

Furthermore, the subsumption hierarchy depicts base-choice coverage. Base-choice coverage

is a test adequacy criterion defined by AMMANN & OFFUTT [AO94] as an alternative to each-

choice. It is considered as related work (Chapter 4, Page 58) and has limited support for testing

with valid and strong invalid test inputs. Therefore, it is included in this subsumption hierarchy.

Base-choice coverage uses a base test input with default values and test inputs are derived from

the base test input by replacing one parameter value at a time. Therefore, base-choice coverage

subsumes each-choice coverage because a test suite that satisfies base-choice coverage covers all

values. Although, a test suite that satisfies base-choice coverage requires more test inputs than a

test suite that only satisfies each-choice coverage since a new test input is derived from the base

test input for each value. Base-choice coverage can also subsume each-choice relevant coverage

and each-choice valid coverage when all test inputs that are derived for relevant or valid values

are itself relevant or valid, respectively.

List of Symbols

φ = {r1, ..., rd} set of d = |φ| parameter indices

φn = {r1 = 1, ..., rn = n} set of all n parameter indices

Φd set of d-sized parameter index sets

Subsets(φ, d) function to compute all d-sized subsets of parameter in-

dices for φ

AllSubsets(d) function to compute all d-sized subsets of parameter in-

dices for φn

Xφ set of all d-sized schemata of parameters indexed by φ

Xd set of sets of all schemata Xφ for all φ ∈ AllSubsets(d)

Xrelevant
φ set of all relevant d-sized schemata of parameters indexed

by φ

Xrelevant
d set of sets of all relevant schemata Xrelevant

φ for all

φ ∈ AllSubsets(d)

Xvalid
φ set of all valid d-sized schemata of parameters indexed by

φ

126 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Xvalid
d set of sets of all valid schemata Xvalid

φ for all φ ∈
AllSubsets(d)

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 127

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid

Test Inputs

Based on the formalism introduced in the previous section, we first discuss why an analogously

defined test adequacy criterion for strong invalid test inputs is insufficient. Afterwards, we in-

troduce a family of test adequacy criteria to detect (a, b)-factor robustness faults as defined by

the refined t-factor fault model (Section 5.4, Page 105 and following).

To detect (a, b)-factor robustness faults, it is important (1) to avoid irrelevant input masking

and invalid input masking that can be caused by EHs with earlier locations in the control-flow,

(2) to cover the failure-causing invalid schema of degree a, and (3) to cover the robustness

interactions of degree b. Given our fault model, this work is limited to robustness faults that are

detected by strong invalid schemata.

N-wise Strong Invalid Coverage N -wise strong invalid coverage defines the upper bound-

ary of all strong invalid test inputs of which other test adequacy criteria can define a meaningful

subset. A test suite T ⊆ E satisfies N -wise strong invalid coverage if and only if each strong

invalid test input of the exhaustive test suite E is covered by at least one strong invalid test input

of the test suite.

T ⊇ {τ ∈ E|IsStrongInvalid(τ)

t-wise Strong Invalid Coverage Analogously to t-wise valid coverage, one could define

t-wise strong invalid coverage utilizing the ideas of t-wise valid coverage but selecting strong

invalid schemata instead. The test adequacy criterion would require to cover each schema of

degree d = t that can appear in a strong invalid test input:

X
′
φ = {s ∈ Xrelevant

φ |IsStrongInvalid(s)} and X
′
d =

⋃
X

′
φ

φ∈AllSubsets(d)

However, this test adequacy criterion would not be useful for the following reasons. First,

strong invalid test inputs require exactly one error-constraint to remain unsatisfied. Therefore,

the schemata cannot be arbitrarily combined to minimize the overall number of test inputs. This

is contrary to the combinatorics of t-wise valid coverage and would result in larger test suites.

Second, the criterion would require to cover valid schemata of degree d = t independently of

any strong invalid schema simply because they can appear in a strong invalid test input. Third,

the degree d of minimal failure-causing invalid schemata is divided into the robustness degree

a and the robustness interaction degree b with d = a + b. With a fixed testing strength t, the

robustness interaction degree would vary depending on the degree of strong invalid schemata

that are defined by an error-constraints. Fourth, the test adequacy criterion would require to

cover all schemata of size d = t but strong invalid schemata with a higher degree d > t are not

guaranteed to be covered. This conversely means that the testing strength is determined by the

largest strong invalid schemata as modeled by the RIPM.

128 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Running Example Suppose a testing strength of t = 2 for the example depicted in

Figure 6.1 (Page 113). Invalid schemata of error-constraint c1 have a degree of d = 1
and cover a value for the parameter Indices(c1) = φ = {1}. Since 2-wise strong invalid

coverage would require to cover all schemata of all 2-wise subsets of parameter indices

X
′
2, the parameter index 1 would be combined with all other parameter indices, e.g.

Φ2 = {φ1 = {1, 2}, φ2 = {1, 3}, φ3 = {1, 4}}. In contrast, invalid schemata of error-

constraint c4 have a degree of d = 2 and encompass the parameters Indices(c4) = φ =
{2, 3}. Therefore, the invalid schemata would not be combined with any valid schema

of other parameters. For strong invalid schemata of error-constraints c1, the robustness

interaction degree would be b = 1 and for strong invalid schemata of error-constraints

c4, the robustness interaction degree would be b = 0.

Further on, suppose a testing strength of t = 1 for t-wise strong invalid cov-

erage. All invalid schemata of error-constraint c1 would be considered because Φ1

contains Indices(c1) = φ = {1}. In contrast, the invalid schemata of error-con-

straints that encompass more parameters like c4 would only be considered partially. Not

Indices(c4) = φ = {2, 3} but φ = {2} and φ = {3} are considered by X
′
1.

In the running example, both invalid schemata [Country:UK, Phone:+1] and

[Country:USA, Phone:+44] could appear in a test suite that satisfies 1-wise

strong invalid coverage. However, it is not guaranteed because the four values that they

cover could have been covered by other strong invalid test inputs.

To summarize the problems of t-wise strong invalid coverage, the robustness interaction de-

gree would be distributed unevenly among specified strong invalid schemata and the coverage

of specified strong invalid schemata would be uneven as well. For small strong invalid schemata

for sets of parameter indices φ with |φ| ≤ t, all strong invalid schemata would be covered by a

test suite that satisfies t-wise strong invalid coverage. Small strong invalid schemata for sets of

parameter indices φ with |φ| < t would appear more often because of the robustness interaction

degree. For larger strong invalid schemata for sets of parameter indices φ with |φ| > t, the

appearance would not be guaranteed. It is even possible to have error-constraints ci for which

none of the specified strong invalid schemata Ici are covered when their parameter index sets

encompass too many parameters. i.e. φ with |φ| > t.

For those reasons, t-wise strong invalid coverage is rejected and a different approach to strong

invalid coverage is chosen. Since exactly one error-constraint remains unsatisfied for every

strong invalid test input and each error-constraint specifies a set of strong invalid schemata of

which some should appear in the test suite, we define the test adequacy criteria relative to one

error-constraint. These test adequacy criteria can be defined once for all error-constraints of a

RIPM or individually for each error-constraint of a RIPM.

To circumvent the uneven distribution of robustness interaction degrees and the uneven cov-

erage of strong invalid schemata, the test adequacy criteria can be adjusted in two dimensions

that reflect the robustness degree a and the robustness interaction degree b.

In the following, the first dimension regarding the robustness degree a is discussed. It defines

how many different invalid schemata must appear in some strong invalid test inputs. Therefore,

the perspective is on one particular error-constraint ci ∈ Cerr which specifies a set of strong

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 129

invalid schemata Ici for which some strong invalid test inputs should be generated such that all

strong invalid test inputs do not satisfy ci but all other exclusion- and error-constraints.

All Strong Invalid Schemata The most demanding requirement is to expect all strong in-

valid schemata s ∈ Ici as specified by error-constraint ci ∈ Cerr to be covered by some

strong invalid test input s ⊆ τ . When the parameters of the error-constraint match the pa-

rameters of an exception-condition, the exception-condition is falsified by each specified

strong invalid schemata.

Some Strong Invalid Schemata The least demanding requirement is to expect at least one

strong invalid schemata s ∈ Ici as specified by error-constraint ci ∈ Cerr to be covered by

some strong invalid test input s ⊆ τ . When the parameters of the error-constraint match

the parameters of an exception-condition, the exception-condition is falsified by at least

one strong invalid test input.

a-wise Strong Invalid Schemata In between the least and most demanding requirement, a-

wise allows to find a compromise that utilizes the idea of combinatorics similar to the idea

of t-wise combinatorics in CT. All a-sized sub-schemata of Ici are expected to be covered

by some strong invalid test inputs. When the parameters of the error-constraint match

the parameters of an exception-condition, the exception-condition is falsified by strong

invalid schemata that cover each a-sized sub-schema of Ici .

The first option “All Strong Invalid Schemata” can be considered as a special case of “a-wise

Strong Invalid Schemata” with a being equal to the number of parameters, i.e. a = Degree(ci).

In the following, the second dimension regarding the robustness interaction degree b is dis-

cussed. It defines how the different strong invalid schemata as selected by an option of the first

dimension are combined with valid schemata of the remaining parameters.

No Robustness Interactions Each selected strong invalid schemata is expected to appear

in at least one test input. The other schemata of the same test input are of no significance

as long as the test input is strong invalid.

All Robustness Interactions Each selected strong invalid schemata is expected to be com-

bined with all valid schemata of the remaining parameters.

b-wise Robustness Interactions Each selected strong invalid schemata is expected to be

combined with all b-wise valid schemata of the remaining parameters.

The first option “No Robustness Interactions” and the second option “All Robustness Inter-

actions” can be considered as special cases of “b-wise Robustness Interactions” with b = 0
indicating no robustness interactions and b being equal to the number of remaining parameters

indicates all robustness interactions, i.e. b = n − Degree(ci). Since our focus is on robust-

ness faults, we believe that “All Robustness Interactions” is not a significant option that should

be emphasized with a distinct name. Therefore, we only distinguish no robustness interaction

(b = 0) and b-wise robustness interactions with b > 0.

130 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

No Robustness Interactions b-wise Robustness Interactions

All Strong

Invalid Schemata

(∀, 0)-wise

Strong Invalid Coverage

(∀, b)-wise

Strong Invalid Coverage

Some Strong

Invalid Schemata

(∃, 0)-wise

Strong Invalid Coverage

(∃, b)-wise

Strong Invalid Coverage

a-wise Strong

Invalid Schemata

(a, 0)-wise

Strong Invalid Coverage

(a, b)-wise

Strong Invalid Coverage

Table 7.2.: Strong Invalid Coverage Test Adequacy Criteria

Combining the two dimensions results in six possible test adequacy criteria of which we

consider five to be meaningful. The combinations are depicted in Table 7.2 (Page 130) and

discussed below.

All Strong Invalid Schemata and No Robustness Interactions The (∀, 0)-wise strong

invalid coverage test adequacy criterion focuses on configuration-independent robustness faults

and all specified strong invalid schemata must appear in strong invalid test inputs. Thereby,

the exception-condition that is described by an error-constraint is falsified several times and

robustness faults can be detected if at least one strong invalid schema activates them.

A test suite T ⊆ E satisfies (∀, 0)-wise strong invalid coverage for error-constraint ci ∈ Cerr

if and only if for each strong invalid schema s ∈ Ici as specified by ci there exists at least one

strong invalid test input τ ∈ T that covers s ⊆ τ .

∀s ∈ Ici , ∃τ ∈ T such that s ⊆ τ and IsStrongInvalid(τ, ci)

Running Example Since error-constraint c1 of the example depicted in Figure 6.1

(Page 113) specifies exactly one strong invalid schema [Packages:123], only one

test input is required to satisfy (∀, 0)-wise strong invalid coverage. In this case, there is

no difference to (∃, 0)-wise strong invalid coverage.

Error-constraint c4 specifies two strong invalid schemata [Country:UK,
Phone:+1] and [Country:USA, Phone:+44]. While only one strong invalid

test input is required to satisfy (∃, 0)-wise strong invalid coverage, at least two test in-

puts are required that cover both strong invalid schemata to satisfy (∀, 0)-wise strong

invalid coverage, e.g. [Packages:1, Country:UK, Phone:+1, Shipping:
Standard] and [Packages:1, Country:USA, Phone:+44, Shipping:
Standard]. Although, the same valid schemata can be used for the remaining pa-

rameters.

All Strong Invalid Schemata and b-wise Robustness Interactions To test interac-

tions with valid schemata of the remaining parameters, the “b-wise robustness interactions” op-

tion introduces an additional requirement to the (∀, b)-wise strong invalid coverage. In contrast

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 131

to (∀, 0)-wise strong invalid coverage, each strong invalid schema must not only be covered by

some strong invalid test inputs but it must be combined all valid schemata of degree d = b.

This test adequacy criteria focuses on configuration-dependent robustness faults where a

strong invalid schema s ∈ Ici only becomes failure-causing in combination with a certain valid

schema of degree d = b. Since the exact combination of strong invalid schema and valid schema

is unknown before detection, each strong invalid schema is combined with all valid schemata.

To formally define (∀, b)-wise strong invalid coverage, we first describe how to compute the

sets of parameter indices that reflect the interaction between strong invalid schemata and valid

schemata. For error-constraint ci, the set of parameter indices is computed by Indices(ci).

Further, we introduce the function Complement(φ) to compute the complement of φ relative

to all parameter indices φn.

Complement(φ) = {l ∈ φn|l /∈ φ}

The set of remaining parameter indices is computed by Complement(Indices(ci)) and its

degree is n − Degree(ci). To compute all b-sized subsets of remaining parameter indices with

b ∈ [0, n− Degree(ci)], the Subsets(φ, d) function can be applied to the remaining parameter

indices. We use the function RemainingSubsets(ci, b) as an abbreviation for all b-sized subsets

of remaining parameter indices.

RemainingSubsets(ci, b) = Subsets(Complement(Indices(ci)), b)

To incorporate the interaction between the parameter indices of the error-constraint and the

remaining parameters, we introduce the function AllInteractions(ci, b) that computes all

combinations of parameter indices of Indices(ci) and the b-sized index sets of the remaining

parameters. The computation is based on an element-wise union operation of Indices(ci) and

each φ ∈ RemainingSubsets(ci, b).

AllInteractions(ci, b) = {φ ∪ Indices(ci)|φ ∈ RemainingSubsets(ci, b)}

The degree of the resulting parameter index sets is Degree(ci) + b. With b = 0, the set of

interactions that must be covered is equivalent to the “No Robustness Interactions” option.

Running Example Error-constraint c1 of the example depicted in Figure 6.1 (Page

113) specifies one strong invalid schema [Packages:123]. The parameter indices of

error-constraint c1 are Indices(c1) = φ = {1} and the remaining parameter indices are

Complement(Indices(c1)) = {2, 3, 4}.

The b-sized sets of remaining parameter indices with b = 1 are

RemainingSubsets(c1, 1) = {φ1 = {2}, φ2 = {3}, φ3 = {4}}. With b = 2,

the sets are RemainingSubsets(c1, 2) = {φ1 = {2, 3}, φ2 = {2, 4}, φ3 = {3, 4}}.

The parameter index sets for 1-wise robustness interaction are

AllInteractions(c1, 1) = {φ1 = {1, 2}, φ2 = {1, 3}, φ3 = {1, 4}}. For 2-

wise robustness interaction, they are AllInteractions(c1, 2) = {φ1 = {1, 2, 3}, φ2 =
{1, 2, 4}, φ3 = {1, 3, 4}}.

132 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Please note, the interaction between strong invalid schemata and b-sized valid schemata is an

important aspect and the computation of AllInteractions(ci, b) significantly influences the

characteristics of the test adequacy criterion. When choosing (∀, b)-wise strong invalid coverage,

one assumes that there might be a configuration-dependent robustness fault where one of the

specified strong invalid schemata ∃s ∈ Ici of ci might be failure-causing but only in combination

with a b-sized valid schema of the remaining parameters. To ensure that such a robustness fault

can be detected reliably, each strong invalid schema is combined with all b-sized valid schemata.

The computation of parameter index sets is based on an element-wise union operation, i.e.

{φ∪Indices(ci)|φd ∈ RemainingSubsets(ci, b)}. Other computations like union of sets, i.e.

RemainingSubsets(ci, b) ∪ Indices(ci), are not sufficient. We will show by example that set

union covers all strong invalid schemata s ∈ Ici and all b-sized valid schemata but no interaction

between them.

Running Example Again, the parameter index set for error-constraint c1 (Figure 6.1,

Page 113) is Indices(c1) = {1}, the b = 2-sized sets of remaining parameter indices

are RemainingSubsets(c1, 2) = {φ1 = {2, 3}, φ2 = {2, 4}, φ3 = {3, 4}}. And the

parameter index sets for b = 2 are AllInteractions(c1, 2) = {φ1 = {1, 2, 3}, φ2 =
{1, 2, 4}, φ3 = {1, 3, 4}}.

Using the set union, i.e. {Indices(c1)} ∪ RemainingSubsets(c1, 2)}, results in

{φ1 = {1}, φ2 = {2, 3}, φ3 = {2, 4}, φ4 = {3, 4}}, the parameter index set of the

error-constraint and the parameter index sets of all remaining parameters appear in the

final set but there is no interaction between them. Therefore, a test adequacy criterion

that is based on the set union can guarantee that all strong invalid schemata of ci and

all b-sized valid schemata appear at least once. But it cannot guarantee any interaction

between them.

In the following, we discuss how to compute the schemata that must be covered by a test

suite. Based on the sets of parameter indices that reflect the interaction between strong invalid

schemata and valid schemata, all schemata that must be covered by a test suite to satisfy (∀, b)-
wise strong invalid coverage can be computed.

For each φ ∈ AllInteractions(ci, b), the set of all schemata for a parameter index set

Xφ is computed and filtered to contain only schemata that can be covered by strong invalid test

inputs for error-constraint ci. Therefore, Xφ is refined to Xinvalid
ci,φ

.

Xinvalid
ci,φ

= {s ∈ Xφ|IsStrongInvalid(s, ci)}

In addition, Xinvalid
ci,d

denotes the set that contains all sets of all schemata for all parameter

index sets φ ∈ AllInteractions(ci, b).

Xinvalid
ci,b

=
⋃

Xinvalid
ci,φ

φ∈AllInteractions(ci,d)

Running Example To further illustrate the concepts, let’s compute Xinvalid
ci,φ

for error-

constraint c1 and φ = {1, 2, 4} ∈ AllInteractions(c1, 1) of the example (Figure 6.1,

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 133

Page 113). Therefore, Xφ is computed first and filtered afterwards.

Xφ = {[Packages:1, Country:UK, Shipping:Standard],

[Packages:1, Country:UK, Shipping:Express],

[Packages:1, Country:USA, Shipping:Standard],

[Packages:1, Country:USA, Shipping:Express],

[Packages:1, Country:123, Shipping:Standard],

[Packages:1, Country:123, Shipping:Express],

...

[Packages:123, Country:UK, Shipping:Standard],

[Packages:123, Country:UK, Shipping:Express],

[Packages:123, Country:USA, Shipping:Standard],

[Packages:123, Country:USA, Shipping:Express],

[Packages:123, Country:123, Shipping:Standard],

[Packages:123, Country:123, Shipping:Express]}

The set of all strong invalid schemata Xinvalid
ci,φ

for φ = {1, 2, 4} is as follows.

Xinvalid
c1,φ = {[Packages:123, Country:UK, Shipping:Standard],

[Packages:123, Country:UK, Shipping:Express],

[Packages:123, Country:USA, Shipping:Express]}

The set of all strong invalid schemata Xinvalid
ci,φ

for φ = {1, 2, 3} is as follows.

X invalid
c1,φ = {[Packages:123, Country:UK, Phone:+44],

[Packages:123, Country:USA, Phone:+1]}

The set of all strong invalid schemata Xinvalid
ci,φ

for φ = {1, 3, 4} is as follows.

X invalid
c1,φ3

= {[Packages:123, Phone:+44, Shipping:Standard],

[Packages:123, Phone:+44, Shipping:Express],

[Packages:123, Phone:+1, Shipping:Express]}

It is worth mentioning that the schema [Packages:123, Phone:+1, Ship-
ping:Standard] is excluded from the last set because it is irrelevant. Exclusion-con-

straint c5 excludes [Country:USA, Shipping:Standard] and because of er-

ror-constraint c4 [Phone:+1] must be combined with [Country:USA] to be valid.

Therefore, [Phone:+1, Shipping:Standard] is irrelevant as well.

Xinvalid
c1,1

is the union of all three Xinvalid
c1,φ

sets.

134 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

A test suite T ⊆ E satisfies the (∀, b)-wise strong invalid coverage for error-constraint ci ∈
Cerr if and only if each schema in s ∈ Xinvalid

ci,b
is covered by at least one strong invalid test

input in T .

∀s ∈ Xinvalid
ci,b

, ∃τ ∈ T such that s ⊆ τ and IsStrongInvalid(τ, ci).

While all strong invalid schemata as specified by error-constraint ci must be covered by sepa-

rate strong invalid test inputs, the example also illustrates that strong invalid schemata of differ-

ent φ can be combined such that one strong invalid test input τ ∈ T covers several strong invalid

schemata s ∈ Xinvalid
ci,b

.

Running Example Continuing with the example (Figure 6.1, Page 113), when two

strong invalid schemata of different φ ∈ AllInteractions(ci, b) share a common

strong invalid sub-schema, they can often be combined in one strong invalid test in-

put if no other constraint prohibits the combination. For instance, the following three

schemata can be combined to [Packages:123, Country:UK, Phone:+44,
Shipping:Standard].

[Packages:123, Country:UK, Shipping:Standard],

[Packages:123, Country:UK, Phone:+44],

[Packages:123, Phone:+44, Shipping:Standard]

In total, all strong invalid schemata can be covered by the following three test inputs

which satisfy (∀, 2)-wise strong invalid coverage for error-constraint c1.

[Packages:123, Country:UK, Phone:+44, Shipping:Standard],

[Packages:123, Country:USA, Phone:+1, Shipping:Express],

[Packages:123, Country:UK, Phone:+44, Shipping:Express]

Some Strong Invalid Schemata and No Robustness Interactions The (∃, 0)-wise

strong invalid coverage test adequacy criterion describes test suites such that an exception-con-

dition that is described by the error-constraint is falsified at least once and that the described

exception should occur at least once during testing. This test adequacy criterion focuses on con-

figuration-independent robustness faults and is useful to test if a particular EH was forgotten or

is entirely incorrect such that each strong invalid schema s ∈ Ici could detect the fault.

A test suite T ⊆ E satisfies (∃, 0)-wise strong invalid coverage for error-constraint ci ∈ Cerr

if and only if there exists a strong invalid schema s ∈ Ici as specified by ci that is covered by at

least one strong invalid test input τ ∈ T .

∃s ∈ Ici , ∃τ ∈ T such that s ⊆ τ and IsStrongInvalid(τ, ci)

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 135

Running Example Error-constraint c1 as listed in Figure 6.1 (Page 113) specifies one

strong invalid schema [Packages:123]. It must be covered by at least one strong

invalid test input, e.g. [Packages:123, Country:UK, Phone:+44, Ship-
ping: Standard]. Since it is the only strong invalid schema s ∈ Ici , the outcome

is equivalent to the “All Strong Invalid Schemata” option.

Error-constraint c4 specifies two strong invalid schemata [Country:UK,
Phone:+1] and [Country:USA, Phone:+44] of which at least one must

be covered by a strong invalid test input, e.g. [Packages:1, Country:UK,
Phone:+1, Shipping:Standard]. If the corresponding EH (Line 8, Listing 2.1,

Page 14) was forgotten, both strong invalid schemata would be able to activate the ro-

bustness fault.

Some Strong Invalid Schemata and b-wise Robustness Interactions Our emphasis

is on covering strong invalid schemata and combining them to achieve low degrees of robustness

interactions. Therefore, we consider this combination of “Some Strong Invalid Schemata” and

“b-wise Robustness Interactions” as not meaningful. To satisfy the test adequacy criterion, it

would only require one random strong invalid schema s ∈ Ici to appear which then would be

duplicated and combined with all b-sized valid schemata to achieve the robustness interaction.

Instead of duplicating a random strong invalid schema, a-wise strong invalid schemata could

result in a similar test suite size but with varying strong invalid schemata. For the sake of

completeness, the test adequacy criteria is still defined.

The test adequacy criterion requires that some strong invalid schema s ∈ Ici is combined with

all b-sized valid schemata of the remaining parameters.

To define it, we can reuse the concepts of previous test adequacy criteria. The function

AllInteractions(ci, b) computes all parameter index interactions and Xinvalid
ci,b

encompasses

the interactions between all strong invalid schemata in Ici and all b-sized valid schemata. Since

the interactions of only one strong invalid schemata s ∈ Ici are required, a subset Xinvalid
s,b ⊆

Xinvalid
ci,b

can be used that encompasses all interactions of s ∈ Ici with all b-sized valid schemata.

Xinvalid
s,b = {s′ ∈ Xinvalid

ci,b
|s ⊆ s′}

A test suite T ⊆ E satisfies (∃, b)-wise strong invalid coverage for error-constraint ci ∈ Cerr

if and only if a strong invalid schema s ∈ Ici as specified by ci exists for which each schema in

s′ ∈ Xinvalid
s,b is covered by at least one strong invalid test input in T .

∃s ∈ Ici , ∀s′ ∈ Xinvalid
s,b , ∃τ ∈ T such that s ⊆ τ and IsStrongInvalid(τ, ci).

a-wise Strong Invalid Schemata and No Robustness Interactions On the one hand,

“All Strong Invalid Schemata” as the most demanding requirement expects all strong invalid

schemata as specified by ci ∈ Cerr to be covered by some strong invalid test inputs. For er-

ror-constraints with conditions that encompass many parameters and parameters that encompass

many values, the set of specified strong invalid schemata Ici can become very large and test-

ing may become cumbersome if many such error-constraints exist. On the other hand, “Some

136 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Strong Invalid Schemata” only requires one schema s ∈ Ici to be covered which might not be

extensively enough for EH with complex exception conditions.

In between, we incorporate “a-wise Strong Schemata” and (a, 0)-wise strong invalid coverage

to utilize the idea of combinatorics to provide the right balance between too little and too many

schemata that must be tested where a defines the degree of sub-schemata of Ici that must be

covered. Similar to related work where t-wise coverage is used to test logical expressions in

general (Page 57), we use combinatorics to test logical expressions of exception conditions.

Again, Indices(ci) computes the set of parameter indices for the strong invalid schemata

specified in s ∈ Ici . To compute the a-wise parameter index subsets with a ∈ [1, Degree(ci)],
the Subsets function can be applied. The lower boundary a = 1 is chosen because of our fault

model since a = 0 would not require any interaction between specified parameter indices. The

upper boundary a = Degree(ci) is a natural limit that requires all specified parameter indices

to interact with each other. As an abbreviation, we use the function SpecifiedSubsets(ci, a)
to compute all a-sized subsets of parameter indices as specified by ci ∈ Cerr.

SpecifiedSubsets(ci, a) = Subsets(Indices(ci), a)

Running Example Error-constraint c4 of the example (Figure 6.1, Page 113) specifies

strong invalid schemata Ic4 for two parameters Indices(c4) = φ = {2, 3}. For a = 1
and a = 2, the specified subsets are as follows.

SpecifiedSubsets(c4, 1) = {φ1 = {2}, φ2 = {3}}
SpecifiedSubsets(c4, 2) = {φ1 = {2, 3}}

For a = 2, there is only 2-sized subset which is equivalent to the entire set of param-

eter indices Indices(c4).

Based on the a-wise parameter index subsets, the schemata that must be covered by strong

invalid test inputs for ci can be computed. For each a-sized parameter index subset φ ∈
SpecifiedSubsets(ci, a), the set of all invalid schemata Xinvalid

ci,φ
(Page 132) for parameter

indices φ is used again.

When using Xinvalid
ci,φ

for a φ ∈ SpecifiedSubsets(ci, a), it denotes the set of all a-sized

sub-schemata that must be covered by strong invalid test inputs for φ and error-constraint ci.

Further, Xinvalid
ci,a denotes the set of all Xinvalid

ci,φ
subsets for all φ ∈ SpecifiedSubsets(ci, a).

Xinvalid
ci,a =

⋃
Xinvalid

ci,φ

φ∈SpecifiedSubsets(ci,a)

The schemata in Xinvalid
ci,a are itself not necessarily invalid but they can be extended to strong

invalid schemata that contain parameter-value pairs for all parameters in Indices(ci).

Running Example For error-constraint c4 of the example (Figure 6.1, Page 113), the

1-sized subsets of specified parameter indices are SpecifiedSubsets(c4, 1) = {φ1 =

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 137

{2}, φ2 = {3}}. The sets of invalid schemata Xinvalid
ci,φ

are as follows.

Xinvalid
c4,φ1

= {[Country:UK],[Country:USA]} for φ1 = {2}
Xinvalid

c4,φ2
= {[Phone:+44],[Phone:+1]} for φ2 = {3}

The set of all schemata that must be covered Xinvalid
c4,1

is the union of Xinvalid
ci,φ1

and

Xinvalid
ci,φ2

. The schemata themselves are not necessarily invalid but their combinations

must be strong invalid.

A test suite T ⊆ E satisfies the (a, 0)-wise strong invalid coverage for error-constraint ci ∈
Cerr if and only if each schema in Xinvalid

ci,a is covered by at least one strong invalid test input in

T .

∀s ∈ Xinvalid
ci,a , ∃τ ∈ T such that s ⊆ τ ∧ IsStrongInvalid(τ, ci).

Running Example In the example depicted in Figure 6.1 (Page 113), the schemata of

Xinvalid
c4,1

can only be combined in one way to be covered by strong invalid test inputs for

error-constraint c4:

[Country:UK, Phone:+1],

[Country:USA, Phone:+44]

The schemata of Xinvalid
c4,1

can be covered by strong invalid test inputs such as the

following to satisfy (1, 0)-wise strong invalid coverage.

[Packages:1, Country:UK, Phone:+1, Shipping:Express],

[Packages:1, Country:USA, Phone:+44, Shipping:Express]

For this particular example, the strong invalid schemata that must be covered to satisfy

(1, 0)-wise strong invalid coverage are equivalent to the strong invalid schemata that must

be covered to satisfy (∀, 0)-wise strong invalid coverage.

To illustrate the difference, we extend the example and introduce Germany as another

country with +49 as its phone code. The extended RIPM is depicted in Figure 7.3 (Page

138) where the values GER and +49 are added and the constraints c4 and c5 are updated.

As a result, Ic4 encompasses six instead of two strong invalid schemata. All of them must

be covered by six distinct strong invalid test inputs to satisfy (∀, 0)-wise or (2, 0)-wise

strong invalid coverage.

Ic4 = {[Country:UK: Phone:+1],

[Country:UK, Phone:+49],

[Country:USA, Phone:+44],

[Country:USA, Phone:+49],

138 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Parameters:
p1 : Packages: 1, 3, 123
p2 : Country: UK, USA, GER, 123
p3 : Phone: +44, +1, +49, 123
p4 : Shipping: Standard, Express

Error-Constraints:
c1 : Packages �= 123
c2 : Country �= 123
c3 : Phone �= 123
c4 : ¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = UK ∧ Phone = +49)
∧¬(Country = USA ∧ Phone = +44) ∧ ¬(Country = USA ∧ Phone = +49)
∧¬(Country = GER ∧ Phone = +1) ∧ ¬(Country = GER ∧ Phone = +44)

Exclusion-Constraints:
c5 : Shipping = Standard ⇒ (Country �= USA ∧ Country �= GER)

Figure 7.3.: RIPM for the Ordering Web-Service Example

[Country:GER, Phone:+1],

[Country:GER, Phone:+44]}

In contrast, (1, 0)-wise strong invalid coverage requires fewer test inputs for its sat-

isfaction. Again, the specified subsets of parameter indices for error-constraint c4 are

SpecifiedSubsets(c4, 1) = {φ1 = {2}, φ2 = {3}}. The sets of schemata that must

be covered are as follows.

Xinvalid
c4,φ1

= {[Country:UK],[Country:USA],[Country:GER]} for φ1 = {2}
X invalid

c4,φ2
= {[Phone:+44],[Phone:+1],[Phone:+49]} for φ2 = {3}

To satisfy (1, 0)-wise strong invalid coverage, the schemata can be covered in differ-

ent ways. For instance, by the following three strong invalid test inputs.

[Packages:1, Country:UK: Phone:+44, Shipping:Express],

[Packages:1, Country:USA, Phone:+49, Shipping:Express],

[Packages:1, Country:GER, Phone:+1, Shipping:Express]

a-wise Strong Invalid Schemata and b-wise Robustness Interactions The options

“a-wise Strong Invalid Schemata” and “b-wise Robustness Interactions” reflect the idea of t-
wise combinatorics in both dimensions of (a, b)-factor robustness faults. The (a, b)-wise strong

invalid coverage combines both dimensions into one test adequacy criterion.

Again, a ∈ [1, Degree(ci)] determines the degree of sub-schemata of Ici that must be covered

by strong invalid test inputs. In addition, b ∈ [0, n− Degree(ci)] determines the degree of valid

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 139

schemata that must interact with the a-sized sub-schemata of Ici .

Running Example Continuing with the extended example of Figure 7.3 (Page 138),

the parameter index sets that must interact to satisfy (1, 1)-wise strong invalid coverage

for error-constraint c4 are as follows:

SpecifiedSubsets(c4, 1) = {φ1 = {2}, φ2 = {3}}
RemainingSubsets(c4, 1) = {φ1 = {1}, φ2 = {4}}

To compute parameter interactions, AllInteractions(ci, b) cannot be used since it relies

on a fixed set of all specified parameter indices, i.e. SpecifiedSubsets(ci, Indices(ci)) =
Indices(ci), instead of a-sized sub-schemata. Therefore, we introduce Interactions(ci, a, b)
as a generalization.

Interactions(ci, a, b) = {φa ∪ φb|φa ∈ SpecifiedSubsets(ci, a)

∧ φb ∈ RemainingSubsets(ci, b)}

Running Example Continuing with the extended example of Figure 7.3 (Page 138),

the interactions between the parameter index sets RemainingSubsets(c4, 1) and

SpecifiedSubsets(c4, 1) are as follows.

Interactions(c4, 1, 1) = {φ1 = {2, 1}, φ2 = {2, 4}, φ3 = {3, 1}, φ4 = {3, 4}}

With a = Degree(ci), the computation of Interactions is equivalent to AllInteractions

and reflects the “All Strong Invalid Schemata” option. With b = 0, the test adequacy criterion

reflects the “No Robustness Interactions” option. The “All Robustness Interactions” option is re-

flected by b = n− Degree(ci). When a = Degree(ci) and b = n− Degree(ci) are used for all

error-constraints, the test adequacy criteria are equivalent to the N -wise strong invalid coverage.

For each interaction φ ∈ Interactions(ci, a, b), the set of strong invalid all schemata that must

be covered by strong invalid test inputs is again determined by Xinvalid
ci,φ

. Additionally, Xinvalid
ci,a,b

encompasses all sets of strong invalid schemata Xinvalid
ci,φ

for all φ ∈ Interactions(ci, a, b).

Xinvalid
ci,a,b

=
⋃

Xinvalid
ci,φ

φ∈Interactions(ci,a,b)

A test suite T ⊆ E satisfies (a, b)-wise strong invalid coverage for error-constraint ci ∈ Cerr

if and only if each schema in Xinvalid
ci,a,b

is covered by at least one strong invalid test input in T .

∀s ∈ Xinvalid
ci,a,b

, ∃τ ∈ T such that s ⊆ τ ∧ IsStrongInvalid(τ, ci).

Running Example Analogously to previous test adequacy criteria, the sets Xinvalid
ci,φ

for all φ ∈ Interactions(ci, a, b) must be computed and a test suite must be found that

140 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

Figure 7.4.: Subsumption Hierarchy extended with Combinatorial Test Adequacy Criteria for

Strong Invalid Test Inputs

covers all schemata as defined by them. For instance, the schemata that must be cov-

ered for error-constraint c4 and φ = {2, 1} ∈ Interactions(c4, 1, 1) of the extended

example (Figure 7.3, Page 138) are as follows.

Xinvalid
c4,φ = {[Packages:1, Country:UK],

[Packages:1, Country:USA],

[Packages:1, Country:GER],

[Packages:3, Country:UK],

[Packages:3, Country:USA],

[Packages:3, Country:GER]}

Hierarchy of Test Adequacy Criteria In the previous paragraphs, six new test adequacy

criteria for testing with strong invalid test inputs are introduced. Depending on the expectations,

the rigor of a test suite can be controlled and the two types of configuration-independent and

configuration-dependent robustness faults can be targeted. In order to better understand the

test adequacy criteria, we illustrate the hierarchy of and relationships between them and relate

them to existing test adequacy criteria. Figure 7.4 (Page 140) depicts the extended subsumption

7.2. Combinatorial Test Adequacy Criteria for Strong Invalid Test Inputs 141

hierarchy. The previously discussed test adequacy criteria are indicated by a gray background.

The new test adequacy criteria can be selected individually for each error-constraint while

the previously discussed test adequacy criteria are selected for the entire RIPM. Therefore, they

cannot be directly compared to the previously discussed test adequacy criteria.

The N -wise strong invalid coverage can be selected for the entire RIPM and subsumes all six

new test adequacy criteria. (∀, b)-wise strong invalid coverage is the most comprehensive test

adequacy criteria. When choosing (∀, b)-wise strong invalid coverage with b = n− Degree(ci)
for all error-constraints, it is equivalent to N -wise strong invalid coverage. When chosen with

smaller b values, it is subsumed by N -wise strong invalid coverage. When chosen with b > 0,

it subsumes (∀, 0)-wise strong invalid coverage and with b = 0, it is equivalent to (∀, 0)-wise

strong invalid coverage.

The (a, b)-wise strong invalid coverage is the most versatile test adequacy criteria which is

equivalent to (∀, b)-wise strong invalid coverage with a = Degree(ci). (a, b)-wise strong in-

valid coverage subsumes (a, 0)-wise strong invalid coverage with b > 0 and is equivalent to

(a, 0)-wise strong invalid coverage with b = 0. For smaller a values, (a, b)-wise strong in-

valid coverage is subsumed by (∀, b)-wise strong invalid coverage and (a, 0)-wise strong invalid

coverage is subsumed by (∀, 0)-wise strong invalid coverage.

(∃, b) strong invalid coverage and (∃, 0) strong invalid coverage are the least demanding test

adequacy criteria since only one invalid schema s ∈ Ici must be covered for their satisfaction.

If there is only one invalid schema defined by Ici , (∃, b) strong invalid coverage and (∃, 0) are

equivalent to (∀, b) strong invalid coverage and (∀, 0) and also equivalent to (a, b) and (a, 0)
strong invalid coverage. Otherwise, they are subsumed by (a, b)-wise strong invalid coverage

and (a, 0)-wise strong invalid coverage.

Not only the relationships between the new test adequacy criteria can be discussed. The new

test adequacy criteria can also be related to base-choice and single error coverage.

Again, base-choice coverage can subsume each-choice relevant coverage and each-choice

valid coverage when all derived test inputs for relevant or valid values are itself relevant or valid,

respectively. Therefore, it is required that the base test input is relevant or valid as well. In

addition, base-choice coverage can also subsume single error coverage when the base test input

is valid and when all derived test inputs for invalid values are strong invalid.

Strictly speaking, single error coverage is defined for invalid values only. To ensure a mini-

mum of interaction (a, 0)-wise strong invalid coverage is defined for a ∈ [1, Degree(ci)]. When

chosen for all error-constraints, a ≥ 1 requires each invalid value to be covered which means

that (a, 0)-wise strong invalid coverage subsumes single error coverage. When no invalid value

combinations exist, both test adequacy criteria are equivalent.

When all invalid value combinations can be composed by replacing one value of the base test

input, base-choice coverage can be equivalent to (a, 0)-wise strong invalid coverage. Since this

is a border case, the relationship is not depicted in Figure 7.4 (Page 140).

Shielding parameters and existential coverage are not directly relatable for the reasons dis-

cussed in the chapter on related work (Chapter 4, Page 58 and following). As discussed in the

chapter on related work as well, variable strength coverage is a generalization of t-wise coverage

which can be parameterized to define any parameter interaction. Therefore, it can also be param-

eterized with the parameter interactions that are computed and defined by the new test adequacy

142 Chapter 7. Combinatorial Robustness Test Adequacy Criteria

criteria. Then, variable strength coverage is equivalent to the new test adequacy criteria.

In the next chapter, we discuss and introduce test selection strategies to select strong invalid

test inputs such that they satisfy these new test adequacy criteria.

List of Symbols

Complement(φ) function to compute the complement of φd relative to φn

RemainingSubsets(ci, b) function to compute the set of all sets of b-sized remaining

parameter indices

AllInteractions(ci, b) function to compute the sets of parameter indices with b-
wise robustness interaction for ci

Xinvalid
ci,φ

set of all strong invalid schemata for parameters in φ and

error-constraint ci

Xinvalid
ci,b

set of sets of all strong invalid schemata Xinvalid
ci,φ

for all

φ ∈ AllInteractions(ci, b)

Xinvalid
s,b set of all strong invalid schemata for s ∈ Ici

SpecifiedSubsets(ci, a) function to compute the set of all sets of a-sized parameter

indices for Indices(ci)

Xinvalid
ci,a set of sets of all schemata Xinvalid

ci,φ
for all

φ ∈ SpecifiedSubsets(ci, a)

Interactions(ci, a, b) function to compute the a- and b-wise parameter index

interactions for error-constraint ci

Xinvalid
ci,a,b

set of sets of all schemata Xinvalid
ci,φ

for all

φ ∈ Interactions(ci, a, b)

Chapter 8.

Combinatorial Robustness Test Selection
Strategies

Contents

8.1. Test Selecting Strategies for Valid Test Inputs 143

8.2. Test Selection Strategies for Strong Invalid Test Inputs 147

With the RIPM structure and the defined test adequacy criteria for valid strong invalid test

inputs, the next step is to define test selection strategies to select valid and strong invalid test

inputs such that the test adequacy criteria are satisfied.

Therefore, we first discuss how existing test selection strategies can be used to select valid test

inputs. Afterwards, we discuss modifications and present a family of test selection strategies to

select strong invalid test inputs to satisfy the six newly introduced test adequacy criteria.

8.1. Test Selecting Strategies for Valid Test Inputs

The challenge of test selection strategies is to find a small test suite T ⊆ E within a reasonable

time such that T satisfies the chosen test adequacy criteria [CDS07]. Due to the formal defi-

nitions of the strong invalid coverage test adequacy criteria, it is already clear which schemata

must be covered and which schemata must not be combined to a single test input. The remaining

challenge is to combine all the schemata to test inputs within a reasonable time.

LEI & TAI [LT98] proved that the selection of minimal test suites is an NP-complete problem.

As a consequence, many different test selection strategies are proposed. In general, the classes

of algebraic construction, meta-heuristic search, and greedy algorithms can be distinguished

[CDS07]. The surveys of GRINDAL et al. [GOA05] and NIE & LEUNG [NL11a] provide a

comprehensive overview and classification of existing test selection strategies.

Greedy algorithms are a class of algorithms that typically produce small but not minimal test

suites with reasonable time requirements [CDS07]; [NL11a]. Greedy algorithms are applicable

to a wide range of IPMs if not to all IPMs and they support constraint handling.

Many greedy algorithms generate “one test input at a time” and are variations of the AETG
(cf. [Coh+94]; [Coh+97]) test selection strategy [CDS07]. A second type of greedy algorithm

follows the “one parameter at a time” principle. These algorithms are typically variations of the

IPO test selection strategy (cf. [LT98]). IPO-based test selection strategies are deterministic,

144 Chapter 8. Combinatorial Robustness Test Selection Strategies

i.e. the test suites selected for a particular IPM are always the same [GOA05]. In contrast, AETG-

based test selection strategies are non-deterministic. Further on, LEI & TAI [LT98]; [Lei+07]

showed that IPO has a superior time complexity to AETG [GOA05]; [KS18].

Therefore, we develop our test selection strategies as greedy algorithms and base them on the

IPO family of test selection strategies.

IPO [LT98] was initially introduced as a test selection strategy that had a fixed pair-wise

testing strength. It was later extended to IPOG [Lei+07] which is a generalization with an

adjustable testing strength t ∈ [1, n] and to IPOG-C [Yu+13a] which incorporates constraint

handling such that the selected test inputs satisfy all constraints in C. In order to generate a test

suite that satisfies t-wise valid coverage, it is sufficient to use IPOG-C with C = Cex ∪ Cerr.

In the following, the IPOG-C test selection strategy is explained in more detail. Since the

RIPM and strong invalid coverage test adequacy criteria also rely on constraints, it is modified

in the next section to create strong invalid test inputs that satisfy our test adequacy criteria.

1 algorithm: IPOG-C
2 input: P, V, C, t
3 output: A set of test inputs T
4 let φn ← {r1, ..., rn}
5 let φinitial ← {r1, ..., rt}
6 let Xφinitial

← compute-schemata(φinitial, V, C)
7 let T ← Xφinitial

8
9 foreach j in [t+ 1, n]
10 let φprevious ← {r1, ..., rj−1}
11 let Φt ← next-interactions(φprevious, rj, t)
12 let Xt ← compute-all-schemata(Φt, V, C)
13 T ← horizontal-extension(T, Xt)
14 if(uncovered-schemata-exist(T, Xt))
15 T ← vertical-extension(T, Xt)
16
17 T ← replace-do-not-care-values(T)
18
19 return T

Listing 8.1: IPOG-C Test Selection Strategy

Listing 8.1 (Page 144) depicts the IPOG-C test selection strategy in pseudo-code. It is adapted

from YU et al. [Yu+13a] and KLEINE & SIMOS [KS18]. The description reuses the formalism

that we introduced in the discussion about test adequacy criteria.

The first two statements (Lines 3 and 4) define two variables that contain sets of parameter

indices. The algorithm requires all parameter indices to be sorted in decreasing order of the

value domain sizes, i.e. ∀ri, ri+1 ∈ φ, |Vri | ≥ |Vri+1 |. The variable φn contains all n parameter

indices and φinitial contains the initial t parameter indices.

The set Xφinitial
contains the initial schemata for the parameter indices in φinitial.

Therefore, the function compute-schemata computes the subset of schemata for φ that

8.1. Test Selecting Strategies for Valid Test Inputs 145

satisfies the constraints in C.

compute-schemata(φ,V,C) = {s ∈ Xφ|SAT(C, s) = true}

Although comparable to Xrelevant
φ and Xvalid

φ for φ = φinitial (See Page 120), the algorithm

relies on a different set of constraints C which makes it independent from the IPM or RIPM in

the sense that it is not fixed to Cex or Cerr. Depending on the context, the user can choose which

constraint are passed to the algorithm. If the user chooses C = Cex, Xφinitial
is equivalent to

Xrelevant
φinitial

. If the user chooses C = Cex ∪ Cerr, Xφinitial
is equivalent to Xvalid

φinitial
.

The set Xφinitial
functions as the initial test suite T for the first t parameters. Afterwards, the

initial test suite is extended with parameter-value pairs for the remaining n − t parameters one

after another. In each iteration, the variable φprevious denotes a set of parameter indices for the

previously extended parameters and rj denotes the current parameter index. It starts with the

parameter indices of φinitial. With each iteration of the loop, it is then continuously extended.

In total, all t-sized interactions between the parameter indices as computed by Subsets(φn, t)
must be considered. Due to the step-wise iterative extension of an initial test suite, only the

interactions between the previous parameter indices φprevious and the current parameter index

rj are of interest. These interactions are computed by the next-interactions function. It

is the subset of Subsets(φn, t) that is exclusively related to rj and does not cover any other

parameter indices than rj and φprevious.

next-interactions(φprevious, rj , t)

= {s ∈ Subsets(φn, t)|rj ∈ s ∧ s\({rj} ∪ φprevious) = ∅}

Running Example To illustrate the “one parameter at a time” principle, we oppose the

interactions between parameters as computed by t-wise coverage with the interactions as

computed by the IPOG-C test selection strategy.

For the test adequacy criterion, all 2-wise parameter index subsets are computed by

Subsets(φn, 2) in one step. For the four parameters of the running example, the 2-wise

interactions are as follows.

Φ2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

For the IPOG-C test selection strategy, the interactions are computed step by step.

First of all, φn is ordered according to the sizes of the value domains. For the RIPM of

Figure 6.1 (Page 113), the ordering is φn = {r1 = 2, r2 = 3, r3 = 1, r4 = 4}. The initial

test suite covers values for φinitial = {2, 3}.

φprevious = {2, 3}, r3 = 1,Φ2 = {{1, 2}, {1, 3}} for iteration j = 3

φprevious = {2, 3, 1}, r4 = 4,Φ2 = {{2, 4}, {3, 4}, {1, 4}} for iteration j = 4

The same interactions are computed for the test adequacy criterion and for the test

selection strategy. For the algorithm, it is simply divided into several iterations.

146 Chapter 8. Combinatorial Robustness Test Selection Strategies

Based on the interactions Φt, all schemata Xt that must be covered during this iteration can

be computed. The function compute-all-schemata computes the schemata for all φ ∈ Φt

such that they satisfy the constraints C.

compute-all-schemata(Φd,V,C) =
⋃

φ∈Φd

compute-schemata(φ,V,C)

Up to this point, the algorithm computes – in an iterative manner – all schemata that must

be covered by test inputs similar to what is defined by Xvalid
t . In the remaining part of the

algorithm, the schemata of the initial test suite τ ∈ T are – again in an iterative manner –

extended with parameter-value pairs such that all schemata s ∈ Xt are covered and all schemata

of the test suite s ∈ T satisfy the constraints C.

The extension of T with parameter-value pairs for rj is further divided into a horizontal ex-

tension and a vertical extension. During the horizontal extension, each existing schema of the

test suite τ ∈ T is extended with a value for parameter prj . Ideally1, a value v ∈ Vrj is selected

such that the extended schema τ ′ ∈ T covers many yet uncovered schemata s ∈ Xt.

The horizontal extension ends when all schemata s ∈ Xt are covered or when all schemata

τ ∈ T are extended. In the first case, all schemata s ∈ Xt are covered while perhaps not all

schemata τ ∈ T are yet extended. Then, the remaining schemata τ ∈ T are extended with a “do

not care” value for the current parameter because the actual assignment is not important for the

coverage.

When all schemata s ∈ Xt are covered after horizontal extension, the vertical extension is

skipped. Otherwise, when there are some schemata s ∈ Xt left uncovered by T, the vertical

extension adds them to the test suite. First, it is checked if the uncovered schemata can be added

to existing schemata τ ∈ T by replacing “do not care” values with actual values. Afterwards,

the remaining uncovered schemata are added as new schemata to T. The new schemata τ ∈ T
only cover the remaining schemata of s ∈ Xt. For all other previous parameters, the “do not

care” is assigned.

After all parameter indices have been iterated and the test suite T is extended such that it

covers parameter-value pairs for all n parameters, the function replace-do-not-care-
values replaces “do not care” values with actual values.

The algorithm also supports two edge cases t = n and t = 0. For t = n, the initial test suite

(Listing 8.1, Page 144, Lines 5-7) already covers all schemata and the loop is not entered since

there are no remaining parameter indices. For t = 0, the initial set of parameter indices φinitial,

the initial test suite T as well as the computed interactions Φt are all empty. Using the algorithm

in this form with t = 0 does not make sense because it produces an empty test suite. However,

it is important to acknowledge that the computation for t = 0 produces a valid result because it

becomes relevant for the generation of strong invalid test inputs.

1Please note, this is an over-simplification on how to choose a value to extend a particular schema. A more detailed

discussion is beyond this description. Please refer to related work for more information (cf. [Gao+14]; [Gao+15]).

8.2. Test Selection Strategies for Strong Invalid Test Inputs 147

8.2. Test Selection Strategies for Strong Invalid Test Inputs

In the following, a family of test selection strategies for the six test adequacy criteria is discussed.

The strategies are based on the IPOG-C algorithm and utilizes the same horizontal and vertical

extension. But, the computations of interactions between parameter indices and the construction

of the initial test suites are modified.

Analogously to the test adequacy criteria, the test selection strategy for (a, b)-wise strong

invalid coverage is the most versatile strategy that can be used to generate test suites that satisfy

all six test adequacy criteria. For greater comprehensibility, all six test selection strategies are

discussed consecutively to introduce individual aspects.

Since strong invalid coverage is defined in relation to a single error-constraint, the entire

selection of strong invalid test inputs can be understood as an iteration over all error-constraints.

In Listing 8.2 (Page 147), such an extensive test selection strategy is depicted. We denote it

as ROBUSTA which combines the test selection to satisfy t-wise valid coverage with the test

selection to satisfy the combinatorial robustness test adequacy criteria for strong invalid test

inputs.

1 algorithm: ROBUSTA
2 input: P, V, Cex, Cerr, t, A, B
3 output: A set of test inputs T
4 let T+ ← IPOG-C(P, V, Cex ∪ Cerr, t)
5 let T− ← ∅
6
7 foreach ci in Cerr

8 if(ai �= 0)

9 let C ← Cex ∪ modify-〈∗, ∗〉(Cerr, ci)

10 T− ← T− ∪ IPOG-NEG-〈∗, ∗〉(P, V, C, ai, bi)
11
12 return T+ ∪ T−

Listing 8.2: ROBUSTA Test Selection Strategy

The ROBUSTA test selection strategy is a higher level test selection strategy that delegates the

actual test input selection to IPOG-C and variations of IPOG-C.

After selecting valid test inputs via IPOG-C (Line 3), a loop iterates over all error-constraints

to select strong invalid test inputs for each error-constraint separately. Therefore, two new sets A
and B are introduced which contain the robustness degree ai and robustness interaction degree

bi for each error-constraint ci. The robustness degree ai = 0 can be used to indicate that the

selection for one error-constraint should be skipped. If the selection is not skipped, C represents

a set of constraints with a modified error-constraint ci that allows selecting strong invalid test

inputs for ci. The strong invalid test inputs are selected by invoking a IPOG-C variation. The

details of modify-〈∗, ∗〉 and IPOG-NEG〈∗, ∗〉 depend on the chosen test adequacy criterion

for ci. They are discussed subsequently.

148 Chapter 8. Combinatorial Robustness Test Selection Strategies

All Strong Invalid Schemata and No Robustness Interactions To select test inputs

such that 〈∀, 0〉-wise strong invalid coverage is satisfied for error-constraint ci, the negation of

ci must be used.

modify-〈∀, 0〉(Cerr, ci) = (Cerr\{ci}) ∪ {ci}

Listing 8.3 (Page 148) depicts the IPOG-NEG-〈∀, 0〉 test selection strategy. For 〈∀, 0〉-wise

strong invalid coverage, the values for a and b are always fixed to a = Degree(ci) and b = 0.

But to achieve a common interface among all IPOG-NEG-〈∗, ∗〉 variations, the values are still

passed as arguments. Although, the arguments are not used within the test selection strategy.

The negation of ci ensures that only strong invalid test inputs are selected. But the negation

is not sufficient to ensure that each specified strong invalid schemata s ∈ Ici appears in at

least one strong invalid test input. Further on, the robustness interaction degree b = 0 must be

incorporated. Therefore, additional modifications of IPOG-C are required. The changes to the

algorithm are highlighted by borders.

1 algorithm: IPOG-NEG-〈∀, 0〉
2 input: P, V, C, a, b
3 output: A set of test inputs T−

4 let φn ← {r1, ..., rdegree(ci), ..., rn}
5 let φinitial ← indices(ci)

6 let Xφinitial
← compute-schemata(φinitial, V, C)

7 let T− ← Xφinitial

8

9 foreach j in [degree(ci)+1, n]

10 let φprevious ← {r1, ..., rj−1}
11 let Φ0 ← ∅
12 let X0 ← compute-all-schemata(Φ0, V, C)
13 T− ← horizontal-extension(T−, X0)
14 if(uncovered-schemata-exist(T−, X0))
15 T− ← vertical-extension(T−, X0)
16
17 T− ← replace-do-not-care-values(T−)
18
19 return T−

Listing 8.3: IPOG-NEG-〈∀, 0〉 Test Selection Strategy

The first modification ensures that each specified strong invalid schemata s ∈ Ici appears in at

least strong invalid test input. It encompasses the definition of the initial test suite T− (Lines 4 to

7). Instead of using the Cartesian product of the value domains of the first t parameters, all value

domains of parameters that are involved in the condition of error-constraint ci are used (Line 5).

Because of the negation of error-constraint ci, the resulting Cartesian product is equivalent to

the set of specified strong invalid schemata Ici (Line 6).

8.2. Test Selection Strategies for Strong Invalid Test Inputs 149

Since φinitial is changed, the ordering of parameter indices (Line 4) must be adjusted accord-

ingly to ensure an iteration over all remaining parameter indices φn\φinitial. In IPOG-C, it was

ensured by ordering of parameter indices rj ∈ φn such that φinitial = {r1, ..., rt} covers the

first t parameter indices. To maintain the same behavior, we refine the ordering such that the

first parameter indices are covered by φinitial = {r1, ..., rdegree(ci)}. Further on, the loop starts

iterating at j = degree(ci) + 1 instead of j = t+ 1.

Running Example For the RIPM of Figure 6.1 (Page 113), the IPOG-C ordering of

parameter indices and the initial parameter indices for t = 2 are as follows.

φn = {r1 = 2, r2 = 3, r3 = 1, r4 = 4

φinitial = {r1 = 2, r2 = 3}

For the IPOG-NEG-〈∀, 0〉 variations, the parameter index sets depend on the current

error-constraint ci. For error-constraint c1, they are as follows.

φn = {r1 = 1, r2 = 2, r3 = 3, r4 = 4

φinitial = {r1 = 1}

For error-constraint c4, they are as follows.

φn = {r1 = 2, r2 = 3, r3 = 1, r4 = 4

φinitial = {r1 = 2, r2 = 3}

The second modification removes the computation of interactions because no interactions are

required. It encompasses the definition of parameter index interactions Φ0 for schemata X0 that

must be covered by the test suite (Lines 10 to 12). Since no robustness interactions are required,

zero interactions are computed and no additional schemata must be covered by the test suite.

The horizontal extension is still required to extend the initial test suite until it contains pa-

rameter-value pairs for all n parameters. Since no additional schemata of X0 must be covered,

all schemata τ ∈ T− are extended with “do not care” values. The vertical extension is skipped.

Afterwards, all “do not care” values are replaced before the final test suite is returned.

All Strong Invalid Schemata and b-wise Robustness Interactions To select test in-

puts such that 〈∀, b〉-wise strong invalid coverage is satisfied for error-constraint ci, the negation

of ci must be used again.

modify-〈∀, b〉(Cerr, ci) = (Cerr\{ci}) ∪ {ci}

Further on, the first modification of the IPOG-NEG-〈∀, 0〉 variation can also be reused. But

the second modification must be revised. The IPOG-NEG-〈∀, b〉 test selection strategy is de-

picted in Listing 8.4 (Page 150) and the modifications are again highlighted by borders.

In total, all b-wise interactions between indices(ci) and all other parameters must be con-

sidered as computed by AllInteractions(ci, b). Due to the step-wise extension, only the

150 Chapter 8. Combinatorial Robustness Test Selection Strategies

1 algorithm: IPOG-NEG-〈∀, b〉
2 input: P, V, C, a, b
3 output: A set of test inputs T−

4 let φn ← {r1, ..., ldegree(ci), ..., rn}
5 let φinitial ← indices(ci)

6 let Xφinitial
← compute-schemata(φinitial, V, C)

7 let T− ← Xφinitial

8

9 foreach j in [degree(ci)+1, n]

10 let φprevious ← {r1, ..., rj−1}
11 let Φdegree(ci)+b ← next-b-wise-interactions(φinitial, φprevious, rj , b)

12 let Xdegree(ci)+b ← compute-all-schemata(Φdegree(ci)+b, V, C)
13 T− ← horizontal-extension(T−, Xdegree(ci)+b)
14 if(uncovered-schemata-exist(T−, Xdegree(ci)+b))
15 T− ← vertical-extension(T−, Xdegree(ci)+b)
16
17 T− ← replace-do-not-care-values(T−)
18
19 return T−

Listing 8.4: IPOG-NEG-〈∀, b〉 Test Selection Strategy

interactions that involve the previous parameter indices φprevious and the current parameter in-

dex rj are of interest. Therefore, the next-b-wise-interactions function cannot simply

compute a subset of AllInteractions(ci, b).
For b = 0, the AllInteractions function returns a singleton set including the empty set,

i.e. {∅}. Then, the interactions computed by next-b-wise-interactions only contain

the parameter indices of the error-constraint, i.e. {φinitial}. Since these interactions are already

covered by the initial test suite, the result is equivalent to IPOG-NEG-〈∀, 0〉 and it becomes

apparent that IPOG-NEG-〈∀, b〉 is a generalization of IPOG-NEG-〈∀, 0〉.
For b > 0, the interactions are computed as described by the AllInteractions(ci, b) func-

tion. The filtering may cause the first iterations to only cover interactions that are smaller than

indicated by b. For instance, the first iteration only covers interactions between the parameter

indices of ci and rj even for b > 1. Later iterations may contain duplicate interactions of the

first iteration.

Running Example For the RIPM of Figure 6.1 (Page 113), the IPOG-NEG-〈∀, b〉 the

initial parameter index sets for error-constraint c1 and b = 2 and the interactions that

must be covered are as follows.

φn = {r1 = 1, r2 = 2, r3 = 3, r4 = 4

φinitial = {r1 = 1}
AllInteractions(c1, 2) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}

8.2. Test Selection Strategies for Strong Invalid Test Inputs 151

Since the RIPM encompasses four parameters, the initial test suite is extended three

times.

rj = 2, φprevious = {1},Φdegree(ci)+b = {{1, 2}} for iteration j = 2

rj = 3, φprevious = {1, 2},Φdegree(ci)+b = {{1, 2, 3}} for iteration j = 3

rj = 4, φprevious = {1, 2, 3},Φdegree(ci)+b = {{1, 2, 4}, {1, 3, 4}} for iteration j = 4

The interaction of the first iteration with j = 2 is only a subset of an actual interaction

which is then subsumed by the second iteration with j = 3. This is due to the step-wise

extension. At the end, all required interactions are covered. Since {1, 2} is not a subset of

AllInteractions(c1, 2), a computation different than AllInteractions is required.

To implement the next-b-wise-interactions function, the Subsets function is first

applied to a set of parameter indices that contains all previous parameter indices φprevious, the

current parameter index rj , but excludes the parameter indices of the error-constraint φinitial,

i.e. (φprevious ∪ {rj})\φinitial. The resulting set of b-sized subsets is element-wise united with

the parameter indices of the error-constraint.

next-b-wise-interactions(φinitial, φprevious, rj , b) =

= {φinitial ∪ φb|φb ∈ Subsets((φprevious ∪ {rj})\φinitial, b)}

After computing the interactions, the schemata that must be covered as well as the horizontal

and vertical extension remain the same.

Some Strong Invalid Schemata and No Robustness Interactions To satisfy 〈∃, 0〉-
wise strong invalid coverage for error-constraint ci, the IPOG-NEG-〈∀, 0〉 test selection strategy

can be reused. But it is not necessary to include all specified strong invalid schemata. Instead,

only one of the specified strong invalid schemata is sufficient. The algorithm is depicted in

Listing 8.5 (Page 152).

In comparison to IPOG-NEG-〈∀, 0〉, one additional modification to the test selection strat-

egy is necessary to limit the initial test suite to exactly one specified strong invalid schemata.

Therefore, the function first is introduced such that the result of compute-schemata is

limited to exactly one schema. The final test suite only covers one strong invalid test input since

the loop extends the test suite only horizontally with “do not care” values.

Some Strong Invalid Schemata and b-wise Robustness Interactions To select test

inputs such that 〈∃, b〉-wise strong invalid coverage is satisfied for error-constraint ci, the IPOG-
NEG-〈∀, b〉 test selection strategy can be reused. But again, it is not necessary to include all

specified strong invalid schemata.

Using the function first is not enough because the computation of b-wise interactions and

the vertical extension may introduce additional test inputs and the resulting test suite could

cover more than one of the specified strong invalid schemata. Alternatively, the constraints can

be adjusted to ensure that only of the specified strong invalid schemata is used. In other words,

152 Chapter 8. Combinatorial Robustness Test Selection Strategies

1 algorithm: IPOG-NEG-〈∃, 0〉
2 input: P, V, C, a, b
3 output: A set of test inputs T−

4 let φn ← {l1, ..., ldegree(ci), ..., ln}
5 let φinitial ← indices(ci)

6 let Xφinitial
← first(compute-schemata(φinitial, V, C))

7 let T− ← Xφinitial

8

9 foreach j in [degree(ci)+1, n]

10 let φprevious ← {r1, ..., rj−1}
11 let Φ0 ← ∅
12 let X0 ← compute-all-schemata(Φ0, V, C)
13 T− ← horizontal-extension(T−, X0)
14 if(uncovered-schemata-exist(T−, X0))
15 T− ← vertical-extension(T−, X0)
16
17 T− ← replace-do-not-care-values(T−)
18
19 return T−

Listing 8.5: IPOG-NEG-〈∃, 0〉 Test Selection Strategy

the error-constraint is modified such that it only specifies one strong invalid schema. Then, this

one strong invalid schema is used in all computations.

modify-〈∃, b〉(Cerr, ci) = (Cerr\{ci}) ∪ {c′i} with c′i =
∧

(p = v)

∀(p,v)∈s
for one s ∈ Ici

Running Example To illustrate the alternative constraint modification, consider error-

constraint c4 and its c4 of the RIPM example (Figure 6.1, Page 113).

c4 :¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = UK ∧ Phone = +49) ∧ ...

c4 :(Country = UK ∧ Phone = +1) ∨ (Country = UK ∧ Phone = +49) ∨ ...

All specified strong invalid schemata s ∈ Ic4 can be used to satisfy the negated error-

constraint. To ensure that there is exactly one strong invalid schema that can be used to

satisfy the negated error-constraint, the negated error-constraint can be re-modeled such

that it is only satisfied by exactly one specified strong invalid schema.

For instance, when selecting [Country:UK, Phone:+1], the re-modeled and

negated error-constraint c′4 is as follows.

c′4 : (Country = UK ∧ Phone = +1)

8.2. Test Selection Strategies for Strong Invalid Test Inputs 153

This modification allows reusing the IPOG-NEG-〈∀, b〉 test selection strategy which is de-

picted in Listing 8.4 (Page 150) without further modifications. Because of the modified con-

straint, only one strong invalid schemata is used as the initial test suite and only that one strong

invalid schemata can appear in additional test inputs. Since IPOG-NEG-〈∀, b〉 is a generaliza-

tion of IPOG-NEG-〈∀, 0〉, this modification makes it a generalization of IPOG-NEG-〈∃, 0〉 as

well.

1 algorithm: IPOG-NEG-〈a, 0〉
2 input: P, V, C, a, b
3 output: A set of test inputs T−

4 let φn ← {r1, ..., ra, ..., rdegree(ci), ..., rn}
5 let φinitial ← {r1, ..., ra}
6 let Xφinitial

← compute-schemata(φinitial, V, C)
7 let T− ← Xφinitial

8

9 foreach j in [a+ 1,degree(ci)]

10 let φprevious ← {r1, ..., rj−1}
11 let Φa ← next-interactions(φprevious, rj, a)

12 let Xa ← compute-all-schemata(Φa, V, C)
13 T− ← horizontal-extension(T−, Xa)
14 if(uncovered-schemata-exist(T−, Xa))
15 T− ← vertical-extension(T−, Xa)
16

17 foreach j in [degree(ci) + 1, n]

18 let φprevious ← {r1, ..., rj−1}
19 let Φ0 ← ∅
20 let X0 ← compute-all-schemata(Φ0, V, C)
21 T− ← horizontal-extension(T−, X0)
22 if(uncovered-schemata-exist(T−, X0))
23 T− ← vertical-extension(T−, X0)
24
25 T− ← replace-do-not-care-values(T−)
26
27 return T−

Listing 8.6: IPOG-NEG-〈a, 0〉 Test Selection Strategy

a-wise Strong Invalid Schemata and No Robustness Interactions For 〈a, 0〉-wise

strong invalid coverage, the IPOG-NEG-〈∀, 0〉 test selection strategy can be adjusted. Instead

of covering all specified strong invalid schemata s ∈ Ici , only all a-wise subsets are covered by

modifying the computation of parameter indices for the initial test suite and for further exten-

sions.

154 Chapter 8. Combinatorial Robustness Test Selection Strategies

Therefore, the modification of error-constraints only encompasses the negation of ci.

modify-〈a, 0〉(Cerr, ci) = (Cerr\{ci}) ∪ {ci}

The IPOG-NEG-〈a, 0〉 algorithm is depicted in Listing 8.6 (Page 153). The ordering of pa-

rameter indices φn again prioritizes the parameter indices of the error-constraint. But in contrast

to the IPOG-NEG-〈∀, 0〉 test selection strategy, the initial test suite does not encompass the

Cartesian product of all parameter indices of indices(ci). It only encompasses the Cartesian

product of the first a parameter indices (Line 5). Although for a = degree(ci), the IPOG-
NEG-〈∀, 0〉 and IPOG-NEG-〈a, 0〉 test selection strategies are equal.

The extension of the initial test suite is further divided into two separate loops. First, the

test suite is extended with all a-wise interactions for the remaining parameters of the error-

constraint ci. Therefore, the next-interactions function can be reused that computes all

a-sized interactions between φprevious which – up to this point – only contains parameter indices

of ci and rj which is another parameter index of ci. Afterwards, the test suite is extended with

values for all parameters. Since no further interactions must be covered, the vertical extension

is skipped here.

a-wise Strong Invalid Schemata and b-wise Robustness Interactions To select

test inputs such that 〈a, b〉-wise strong invalid coverage is satisfied for error-constraint ci, the

mechanism for a-wise interactions as implemented by IPOG-NEG-〈a, 0〉 must be combined

with a mechanism for b-wise interactions. Although, the mechanism for b-wise interactions

cannot be copied from IPOG-NEG-〈∀, b〉 and IPOG-NEG-〈∃, b〉 because they only work for

a = degree(ci).
The IPOG-NEG-〈a, b〉 test selection strategy extends the IPOG-NEG-〈a, 0〉 test selection

strategy. The same modification of error-constraints is used that only encompasses the negation

of ci.

modify-〈a, b〉(Cerr, ci) = (Cerr\{ci}) ∪ {ci}

The algorithm is depicted in Listing 8.7 (Page 156). It utilizes the same ordering of φn as

described before where the parameters of the error-constraint have the highest priority. The

initial test suite consists of schemata for the first a parameters (Line 7). The initial test suite is

extended with the remaining parameters of the error-constraint (Lines 9 to 15).

Afterwards, the test suite encompasses all parameters of the error-constraint similar to the

IPOG-NEG-〈∀, b〉 and IPOG-NEG-〈∃, b〉 strategies. But in this case, the b-wise interactions

are defined in relation to the a-sized schemata of error-constraint parameters as computed by

Interactions(ci, a, b) instead of AllInteractions(ci, b) (See Page 139). Because of the

step-wise extension, an alternative approach to the computation of next-a-b-wise-in-
teractions is required.

next-a-b-wise-interactions(φinitial, φprevious, rj , a, b)

= {φa ∪ φb|φa ∈ Subsets(φinitial, a) ∧ φb ∈ Subsets((φprevious ∪ {rj})\φinitial, b)}

8.2. Test Selection Strategies for Strong Invalid Test Inputs 155

Running Example For error-constraint c4 of the RIPM example (Figure 6.1, Page

113), 〈1, 1〉-wise strong invalid coverage requires to cover schemata for the following

parameter index sets.

Interactions(c4, 1, 1) = {{2, 1}, {2, 4}, {3, 1}, {3, 4}}

When using the IPOG-NEG-〈a, b〉 test selection strategy, the following parameter

index sets are compute for the initial test suite.

φn = {r1 = 2, r2 = 3, r3 = 1, r4 = 4

φinitial = {2}

Afterwards, the initial test suite is extended by one more parameter of the error-con-

straint (j=2) an d all remaining parameters.

rj = 3, φprevious = {2},Φa = {{3}} for iteration j = 2

rj = 1, φprevious = {2, 3},Φa+ b = {{2, 1}, {3, 1}} for iteration j = 3

rj = 4, φprevious = {2, 3, 1},Φa+ b = {{2, 4}, {3, 4}} for iteration j = 4

As can be seen, all parameter index sets as computed by Interactions(c4, 1, 1) are

covered by IPOG-NEG-〈a, b〉.

The conceptual foundations (Chapter 3, Page 17 and following) establishes the distinction of

valid and invalid schemata to detect ordinary and robustness failures. The discussion of the fault

model (Chapter 5, Page 73 and following) further emphasizes the need to distinguish valid and

invalid schemata during testing and presents hypothetical faults that are targeted by our CRT test

method. Since the authoritative specification is not available during testing, we first introduce

a RIPM structure that allows distinguishing valid and invalid schemata during testing (Chapter

6, Page 111 and following). Based on the RIPM structure, we discuss existing test adequacy

criteria and develop a family of six new test adequacy criteria for strong invalid test inputs that

correspond to the hypothetical faults of the fault model (Chapter 7, Page 119 and following).

In this chapter, test selection strategies are presented to select test inputs that satisfy the afore-

mentioned test adequacy criteria. First, we discuss IPO-based test selection strategies and how

they can be applied to select valid test inputs. Afterwards, we present a family of six test selec-

tion strategies that correspond to the six test adequacy criteria for strong invalid test inputs. With

these test selection strategies, the CRT test method is complete and can be used to test SUTs.

An evaluation of the test selection strategies is conducted in the final part (Part IV, Page

211 and following). In the next part, supporting techniques are discussed (1) to ensure that the

RIPMs are consistent and represent the authoritative specification correctly (Chapter 9, Page

159 and following), (2) to automate the construction of error-constraints (Chapter 10, Page 187

and following), and (3) to automate the CRT based on a test automation framework (Chapter 11,

Page 199 and following).

156 Chapter 8. Combinatorial Robustness Test Selection Strategies

1 algorithm: IPOG-NEG-〈a, b〉
2 input: P, V, C, a, b
3 output: A set of test inputs T−

4 let φn ← {r1, ..., ra, ..., rdegree(ci), ..., ln}
5 let φinitial ← {r1, ..., ra}
6 let Xφinitial

← compute-schemata(φinitial, V, C)
7 let T− ← Xφinitial

8

9 foreach j in [a+ 1,degree(ci)]

10 let φprevious ← {r1, ..., rj−1}
11 let Φa ← next-interactions(φprevious, rj, a)

12 let Xa ← compute-all-schemata(Φa, V, C)
13 T− ← horizontal-extension(T−, Xa)
14 if(uncovered-schemata-exist(T−, Xa))
15 T− ← vertical-extension(T−, Xa)
16

17 foreach j in [degree(ci) + 1, n]

18 let φprevious ← {r1, ..., rj−1}
19 let Φa+b ← next-a-b-wise-interactions(φinitial, φprevious, rj, a, b)

20 let Xa+b ← compute-all-schemata(Φa+b, V, C)
21 T− ← horizontal-extension(T−, Xa+b)
22 if(uncovered-schemata-exist(T−, Xa+b))
23 T− ← vertical-extension(T−, Xa+b)
24
25 T− ← replace-do-not-care-values(T−)
26
27 return T−

Listing 8.7: IPOG-NEG-〈a, b〉 Test Selection Strategy

Part III.

Supporting Techniques for
Combinatorial Robustness Testing

Chapter 9.

Detection and Repair of Over-Constrained
RIPMs

Contents

9.1. Detection and Manual Repair of Over-Constrained RIPMs 160

9.1.1. A Process for Detection and Manual Repair 160

9.1.2. Identifying Missing Invalid Schemata 164

9.1.3. Explaining Conflicting Constraints 166

9.2. Semi-Automatic Repair of Over-Constrained RIPMs 169

9.2.1. Automatic Diagnosis of Over-Constrained RIPMs 170

9.2.2. Automatic Relaxation of Conflicting Constraints 174

9.2.3. Selection and Application of Diagnosis Hitting Sets 177

9.3. Strong Invalid Test Input Selection from Over-Constrained RIPMs 178

9.3.1. General Idea of Soft Constraint Handling Strategies 178

9.3.2. Basic Soft Constraint Handling Strategy 180

9.3.3. Diagnostic Soft Constraint Handling Strategy 182

The previously discussed CRT test method allows defining a RIPM with error-constraints.

Based on the partition into valid and strong invalid schemata that is imposed by the error-con-

straints, test selection strategies can be applied to select valid and strong invalid test inputs. But

to ensure the right quality of selected test inputs, it is important that the partitioning of error-

constraints is consistent with the partitioning of the authoritative specification.

In the following, we discuss techniques to detect and identify such inconsistencies. Thereby,

we focus on a special case of over-constrained RIPMs where constraints are modeled too strict.

As a result, some truly-strong invalid schemata are classified as not-strong invalid schemata and

cannot appear in any strong invalid test input. The case of under-constrained RIPMs where

constraints are modeled too relaxed and truly-strong invalid schemata are classified as valid

schemata will be covered in the next chapter (Chapter 10, Page 187 and following).

In the first section, we extend the test process to include necessary activities to detect and

repair over-constrained RIPMs. In addition, we define over-constrained RIPMs and discuss how

to automatically identify incorrectly classified schemata and how to automatically explain the

cause of the incorrect classification. Until now, repair is a fully-manual activity.

Therefore, we discuss a technique to automatically repair over-constrained RIPMs in the sec-

ond section. The discussion unfortunately points out that a fully-automated approach is not

meaningful and a semi-automated approach seems better.

160 Chapter 9. Detection and Repair of Over-Constrained RIPMs

But semi-automated repair can still be rejected because it may be perceived as complex and

time-consuming. Therefore, we discuss an alternative technique in Section 3 that allows select-

ing invalid test inputs from over-constrained RIPMs without repairing them beforehand.

9.1. Detection and Manual Repair of Over-Constrained RIPMs

9.1.1. A Process for Detection and Manual Repair

The CRT test method as presented in Part II (Page 73 and following) works in general to test for

ordinary failures and robustness failures. Depending on the test adequacy criterion, all or some

modeled invalid schema should appear in strong invalid test inputs. However, it can be easy to

create over-constrained RIPMs when applying it in practice. Especially when modeling invalid

value combinations. In fact, real-world models are often over-constrained and when constraints

are not correctly modeled, an invalid value or invalid value combination might not appear in

strong invalid test inputs and robustness faults may remain undetected.

Here, we focus on a special case of over-constrained RIPMs. Therefore, we assume that the

parameters and values are correctly modeled and the constraints are conflict-free for valid test

input selection. But, when generating invalid test inputs, conflicts between constraints arise and

prevent invalid values or invalid value combinations from appearing. Then, a tester must repair

the RIPM by relaxing some constraints.

Running Example To illustrate the issue of over-constrained RIPMs, we slightly mod-

ify error-constraint c4 of the RIPM example for the ordering web-service (Figure 6.1,

Page 113). The error-constraints are depicted below.

c1 : Packages �= 123

c2 : Country �= 123

c3 : Phone �= 123

c4 : ¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = USA ∧ Phone = +44)

First, we split the error-constraint c4 into two error-constraints ccorrect4 and ccorrect5 .

ccorrect4 : ¬(Country = UK ∧ Phone = +1)

ccorrect5 : ¬(Country = USA ∧ Phone = +44)

This transformation does not make the RIPM over-constrained. Its purpose is a bet-

ter illustration of over-constrained RIPMs only. In fact, the partition of valid and strong

invalid schemata is equivalent to the original unsplit error-constraint c4. To create an

over-constrained RIPM, consider slightly rewritten error-constraints c4 and c5 that could

be the result of small mistakes made by the tester. The complete over-constrained exam-

ple RIPM is depicted in Figure 9.1 (Page 161). The slightly rewritten error-constraints

are depicted as follows.

c4 : Country = UK ⇒ Phone = +44

9.1. Detection and Manual Repair of Over-Constrained RIPMs 161

Parameters:
p1 : Packages: 1, 3, 123
p2 : Country: UK, USA, 123
p3 : Phone: +44, +1, 123
p4 : Shipping: Standard, Express

Error-Constraints:
c1 : Packages �= 123
c2 : Country �= 123
c3 : Phone �= 123
c4 : Country = UK ⇒ Phone = +44
c5 : Country = USA ⇒ Phone = +1

Exclusion-Constraints:
c6 : Shipping = Standard ⇒ Country �= USA

Figure 9.1.: Over-Constrained RIPM for the Ordering Web-Service Example

c5 : Country = USA ⇒ Phone = +1

For the selection of valid test inputs, these slightly rewritten error-constraints are se-

mantically equivalent to the original error-constraints. But the error-constraints are more

restrictive for the selection of strong invalid test inputs. For instance, error-constraint c3
originally defined the strong invalid schema Ic3 = {[Phone:123]} that should appear

in some strong invalid test inputs. Since the schema cannot appear in a strong invalid

test input for the over-constrained RIPM, this is one example of a conflict caused by a

over-constrained RIPM.

When considering the original RIPM as consistent with the authoritative specification,

the partition of schemata into relevant, valid, and strong invalid schemata as imposed by

the constraints is equivalent to the partition of truly-relevant, truly-valid, and truly-strong

invalid schemata as imposed by the authoritative specification. To maintain consistency,

it is important to repair the over-constrained RIPM.

In the following, it is further explained why the schema cannot appear in a strong

invalid test input and how to repair the RIPM.

To further explain the absence of schemata, we use another view on error-constraints. There-

fore, recall the initial discussion about error-constraints (Chapter 6, Page 111 and following).

Error-constraints have a dual role. During the selection of valid test inputs, error-constraints

represent conditions that must be satisfied by all valid test inputs. During the selection of strong

invalid test inputs for error-constraint ci, the error-constraint is negated (ci) to specify schemata

that should appear in some strong invalid test inputs. A single negated error-constraint ci can

be transformed into a set of strong invalid schemata Ici and the selected test adequacy criteria

determines whether a subset or all schemata of Ici must appear in strong invalid test inputs. Be-

sides the strong invalid schemata Ici , a set of locally-specified schemata Lci can be derived. The

locally-specified schemata Lci improve the comprehensibility of error-constraints because they

162 Chapter 9. Detection and Repair of Over-Constrained RIPMs

allow local reasoning of a single error-constraint independently of any other constraint.

Ici = {sj ∈ XIndices(ci)|SAT(Cex ∪ (Cerr\{ci} ∪ {ci}), sj) = true}
Lci = {sj ∈ XIndices(ci)|SAT({ci}, sj) = true}

Please note, in order to distinguish different schemata, we label schemata consecutively with

an integer j ≥ 1. For the sake of simplicity, we assume that sj1 and sj2 refer to the same schema

when j1 = j2 even across different sets for the same error-constraint ci: Ici , Lci , and Mci which

is introduced subsequently. In other words, sj1 ∈ Ici and sj2 ∈ Lci refer to the same schema

when j1 = j2.

The locally-specified schemata are not necessarily relevant and strong invalid because a global

scope that includes all constraints is required to derive strong invalid schemata. To maintain

local reasoning and comprehensibility of error-constraints, we argue that whenever a schema sj
is locally-specified by an error-constraint ci, i.e. sj ∈ Lci , but that schema is not strong invalid,

i.e. sj ∈ Ici , the RIPM is inconsistent and needs to be repaired. By considering both sets of

schemata, the comprehensibility of local reasoning is linked with the global scope of strong

invalid schemata. Furthermore, the combination of both sets allows detecting and repairing

inconsistent RIPMs.

To further investigate the issue, conflicts, over-constrained RIPMs, and missing invalid schema

(MIS) are defined first.

Definition 98 (Conflict) When selecting strong invalid test inputs for error-constraint ci, a
conflict is a contradiction between the negated error-constraint ci and some other constraints
Cex ∪ (Cerr\{ci}). The interaction between negated error-constraint ci and some other con-
straints explicitly or implicitly prevents a schema sj ∈ Lci from being covered by at least one
strong invalid test input.

Definition 99 (Missing Invalid Schema) A locally-specified schema sj ∈ Lci for error-con-
straint ci is a MIS if a conflict with some other constraints Cex ∪ (Cerr\{ci}) prevents it from
appearing in any strong invalid test input.

sj ∈ Lci is a MIS for error-constraint ci iff SAT(Cex ∪ (Cerr\{ci} ∪ {ci}), sj) = false

Definition 100 (Over-Constrained RIPM) A RIPM is over-constrained if and only if at least
one conflict exists that prevents at least one locally-specified schema s ∈ Lci of any error-
constraint ci ∈ Cerr from appearing in a strong invalid test input.

∃ci ∈ Cerr, ∃sj ∈ Lci , SAT(C
ex ∪ (Cerr\{ci} ∪ {ci}), sj) = false

Running Example The strong invalid schemata for error-constraints c3, c4, and c5 of

the over-constrained example 9.1 (Page 161) are depicted below.

Ic3 = {∅}
Ic4 = {s1 = [Country:UK, Phone:+1]}

9.1. Detection and Manual Repair of Over-Constrained RIPMs 163

Ic5 = {s1 = [Country:USA, Phone:+44]}

The locally-specified schemata are as follows.

Lc3 = {s1 = [Phone:123]}
Lc4 = {s1 = [Country:UK, Phone:+1],

s2 = [Country:UK, Phone:123]}
Lc5 = {s1 = [Country:USA, Phone:+44],

s2 = [Country:USA, Phone:123]}

Although five schemata are locally-specified, only two of them ([Country:UK,
Phone:+1] and [Country:USA, Phone:+44]) can be selected in strong in-

valid test inputs. The remaining three schemata [Phone:123], [Country:UK,
Phone:123], and [Country:USA, Phone:123] are MISs.

The absence of the three MISs can be explained by two different types of issues that

can be observed. Because of error-constraint c3, some invalid test inputs should con-

tain [Phone:123]. But due to error-constraints c4 and c5, [Phone:123] cannot be

combined with [Country:UK] and [Country:USA]. Further on, error-constraint

c2 prevents the combination with [Country:123]. Therefore, error-constraint c3 im-
plicitly conflicts with c2, c4, and c5 which needs to be repaired.

Two other contradictions are related to [Country:UK, Phone:123] and

[Country:USA, Phone:123] as specified by error-constraints c4 and c5. Both

schemata are forbidden by error-constraint c3. Therefore, error-constraints c4 and c5
explicitly conflict with c3 which needs to be repaired as well.

In order to remove conflicts, a tester must repair the RIPM by relaxing some constraints.

Relaxation is often a labor-intensive and complicated task. Therefore, we propose a process to

repair an over-constrained RIPM that is supported by an automatic identification of so-called

MIS and by an automatic identification of suspect constraints (explanation). The process is

depicted in Figure 9.2 (Page 164). The gray background indicates manual activities while the

other activities can be automated.

After modeling the parameters with values and constraints, the RIPM is analyzed to identify

MIS that cannot appear in strong invalid test inputs because of contradicting constraints. When

no MISs are identified, the normal CT process continues with test input selection (cf. Figure

3.2, Page 29).

When MISs are identified, the tester needs an explanation, e.g. a list of constraints which are

suspected to be incorrect, that helps to understand why an invalid schema is missing. Using the

explanation, the tester can analyze and update the suspect constraints. The tester must decide to

either remove the MIS from the test or to relax conflicting constraints. Afterwards, the RIPM is

again analyzed and either remaining MISs are identified or test input are selected.

In the following, the activities of identifying MISs and providing explanations are described

in more detail. Since both activities are labor-intensive and complicated, we discuss (1) the

164 Chapter 9. Detection and Repair of Over-Constrained RIPMs

Figure 9.2.: Extended CRT Test Process with Detection and Manual Repair Activities (Excerpt)

automatic identification of MIS and (2) the automatic explanation of contradictions between

constraints that require relaxation.

9.1.2. Identifying Missing Invalid Schemata

To repair an over-constrained RIPM, all conflicts must be resolved by relaxing one or more

constraints. Therefore, all MISs must be identified first. Then, the tester can decide for each

MIS if it should be removed from the test or if the constraints that cause its absence should be

relaxed.

Therefore, we introduce the set of all MISs for error-constraint ci which is denoted as Mci ⊆
Lci . A locally-specified sj ∈ Lci is missing if and only if it is not a strong invalid schema

as defined by error-constraint ci, i.e. sj /∈ Ici . Mci can be computed by checking for each

locally-specified schemata sj ∈ Lci if at least one strong invalid test input can be selected. If

this assessment fails, the schema is a MIS.

Mci = Lci\Ici
= {sj ∈ Lci |SAT(Cex ∪ (Cerr\{ci} ∪ {ci}), sj) = false}

Please note again, for the sake of simplicity we let sj1 ∈ Lci , sj2 ∈ Ici , sj3 ∈ Mci refer to the

same schema when j1 = j2 or j1 = j3. The indices j2 = j3 cannot refer to the same schema

because Ici and Mci are mutually exclusive.

When selecting test inputs with a test selection strategy like IPOG-C (cf. [Yu+13a]) or

IPOG-NEG, schemata of size t or a are created and extended until they consist of n param-

eter-value pairs for all n parameters.

9.1. Detection and Manual Repair of Over-Constrained RIPMs 165

Parameters:
p1 : Pa V1 = {1, 2, 3}
p2 : C V2 = {1, 2, 3}
p3 : Ph V3 = {1, 2, 3}
p4 : S V4 = {1, 2}

Error-Constraints:
c1 : Pa �= 3
c2 : C �= 3
c3 : Ph �= 3
c4 : C = 1 ⇒ Ph = 1
c5 : C = 2 ⇒ Ph = 2

Exclusion-Constraints:
c6 : S = 1 ⇒ C �= 2

Figure 9.3.: Internal Representation of Over-Constrained RIPM for the Ordering Web-Service

Example

Every time a schema s ∈ A is created or extended, the satisfiability function SAT : C∗×A →
Bool is involved to check if s can be extended to contain n parameter-value pairs while satisfying

all constraints of a set C, i.e. SAT(C, s) = true. Any extension of s that does not satisfy all

constraints is rejected. In order to check a schema s, the parameters, values, all constraints, and

schema s are transformed into a CSP.

In order to better understand the computation of MISs, we discuss how the satisfiability func-

tion works when the RIPM and its constraints are transformed into a CSP and a constraint solver

determines whether or not a schema satisfies the constraints.

A CSP consists of three components X, D and C [RN10]. X is a set of variables, D is a set

of domains with one domain for each variable and C is a set of constraints that restricts value

combinations of variables. A solution for a CSP is an assignment of values to variables which is

both consistent and complete. An assignment that does not violate any constraint is consistent.

Otherwise, the assignment is inconsistent. An assignment is complete if every variable has a

value assigned. Otherwise, it is partial. A constraint solver is applied to find a solution for the

CSP. If a solution is found, the schema is accepted and can be further used during test input

selection. If no solution exists, the schema cannot be used since one or more constraints cannot

be satisfied.

To determine whether a schema s ∈ A satisfies a set of constraints C ∈ C∗, the parameters

and values of the RIPM, the set of constraints C and the schema under change s are transformed

into a CSP [Yu+13a]. For the sake of clarity, Figure 9.3 (Page 165) depicts the internal represen-

tation of our over-constrained example (Figure 9.1, Page 161). Based on that internal representa-

tion, the translation into a CSP with C = Cex∪Cerr and s = [Packages:1, Country:UK]
is done as follows [Yu+13a].

Each parameter pi ∈ P̃ of the RIPM is represented as a variable xi ∈ X. The domain of xi
represents the values Vi of parameter pi as integers Dxi = {1, ...,mi}. All constraints of the

RIPM are translated to constraints of the CSP. The parameter Packages is represented as the

166 Chapter 9. Detection and Repair of Over-Constrained RIPMs

variable Pa and its values are DPa = {1, 2, 3}. Variable C represents Country, variable Ph
represents Phone, and S represents Shipping. Constraints are translated accordingly. For

instance, Packages �= 123 becomes Pa �= 3.

Furthermore, the values of the schema under change s are also added as constraints. We refer

to them as schema-constraints. A schema s = [Packages:1, Country:UK] translates to

the constraint of the CSP {Pa = 1∧C = 1}s. Given the CSP, the satisfiability function evaluates

to true if a CSP solver finds a solution. Otherwise, it evaluates to false. The complete CSP is

depicted below.

X = {Pa,C,Ph,S}
D = {DPa = {1, 2, 3}, DC = {1, 2, 3}, DPh = {1, 2, 3}, DS = {1, 2}}
C = {Pa �= 3,C �= 3,Ph �= 3,C = 1 ⇒ Ph = 1,C = 2 ⇒ Ph = 2,

S = 1 ⇒ C �= 2}
∪{Pa = 1 ∧ C = 1}s

To identify all MISs for an error-constraint ci with one or more conflicts, analogously created

CSPs can be used prior to the selection of strong invalid test inputs. For each locally-specified

schema sj ∈ Lci , it is checked if at least one strong invalid test input exists that covers schema sj
and satisfies the negated error-constraint ci as well as all other constraints. Therefore, a CSP as

shown above is created and solved for each locally-specified schema sj ∈ Lci . Every time, the

current schema sj is modeled as a schema-constraint {...}sj and the specifying error-constraint

ci is negated, i.e. SAT(Cex ∪ (Cerr\{ci} ∪ {ci}), sj).
Running Example When computing the MISs for the over-constrained example (Fig-

ure 9.1, Page 161), the following three schemata are identified as expected.

Mc3 = {s1 = [Phone:123]}
Mc4 = {s2 = [Country:UK, Phone:123]}
Mc5 = {s2 = [Country:USA, Phone:123]}

List of Symbols

Mci ⊆ Lci set of missing invalid schemata for error-constraint ci

9.1.3. Explaining Conflicting Constraints

Knowing the MISs is a necessary first step to repair an over-constrained RIPM. Understanding

the absence of a MIS is the next step. Then, the tester must either discard the MIS from testing by

relaxing the error-constraint ci whose negation error-constraint ci is contradictory or the tester

must relax some other constraints Cex ∪ (Cerr\{ci}).
To further explain the absence of a MIS caused by a conflict, we introduce the notion of

conflict sets.

9.1. Detection and Manual Repair of Over-Constrained RIPMs 167

Definition 101 (Conflict Set) A conflict set Oci,j ⊆ Cex ∪ (Cerr\{ci}) is a set of constraints
that explains the absence of a MIS sj ∈ Mci . No strong invalid test input exists that covers sj
while satisfying the constraints of the conflict set.

∀sj ∈ Mci , ∃Oci,j , SAT(Oci,j , sj) = false

Technically, a conflict a for MIS sj ∈ Mci can be explained by the set of all other constraints

Oci,j = Cex ∪ (Cerr\{ci}). But since repairing is a labor-intensive task, dealing with many

constraints is often not useful because conflicts can become unclear and confusing. In addition,

only a subset of constraints is responsible for the conflict and not every relaxation of constraints

resolves the conflict. Rather than dealing with all constraints, it is more useful to identify and

deal with a subset of constraints that explains the conflict more precisely. Therefore, we search

for a minimal conflict set as an explanation that consists of as few constraints as possible.

Definition 102 (Minimal Conflict Set) A conflict set Oci,j for a MIS sj ∈ Mci is a minimal
conflict set for sj if and only if there exists no proper subset O′

ci,j
⊂ Oci,j that is a conflict set

for sj .

Oci,j is minimal for sj ∈ Mci iff �O′
ci,j

⊂ Oci,j for which SAT(O′
ci,j

, s) = false holds

Running Example For instance, consider the strong invalid test input selection

for error-constraint c4 of the over-constrained example (Figure 9.1, Page 161). To

have an explanation for the one MIS [Country:UK, Phone:123], the mini-

mal conflict set Oc4,2 = {c3} can be identified since it prohibits the selection of

[Phone:123]. Without searching, the conflict set that contains all other constraints

Oc4,2 = {c1, c2, c3, c5, c6} could function as an explanation.

Because of the small example, the difference between the two conflict sets is small.

However, the benefit of minimal conflict sets increases for real-world models with many

more constraints.

Constraints and conflicts are interconnected, e.g. a constraint can belong to several conflict

sets and a relaxation of one constraint can solve several conflicts. Therefore, the iterative pro-

cess is reasonable where the tester focuses on one MIS and one minimal conflict set at a time.

Afterwards, the updated model is again analyzed to identify further MIS that still exist.

To identify minimal conflict sets, we rely on conflict detection techniques for CSPs. Generally

speaking, if there exists no solution for a CSP, some constraints must be relaxed to restore

consistency [Jun04]. Therefore, constraints are partitioned into two disjoint groups: Constraints

that can be relaxed (denoted as C) and so-called background constraints that cannot be relaxed

(denoted as B) are distinguished. If no solution exists for both sets of constraints C ∪ B, the

model is over-constrained. A proper subset R ⊂ C is a relaxation if and only if a solution exists

for R∪B. But no relaxation exists if B is already inconsistent without any relaxable constraints.

A subset of relaxable constraints C denotes a conflict set Oci,j ⊆ C if and only if no solution

exists for Oci,j ∪ B.

168 Chapter 9. Detection and Repair of Over-Constrained RIPMs

To automatically find a minimal conflict set, a conflict detection algorithm like QuickX-
Plain [Jun04] can be used. Briefly explained, it is a divide and conquer approach that inspects

constraints and determines whether they belong to the conflict or to the relaxation. To utilize

QuickXPlain, it is necessary to identify the background constraints B. Since the conflict set

should explain why a schema sj ∈ Mci is missing, ci and the schema-constraint {...}sj should

not be relaxed: B = {ci} ∪ {...}sj . In contrast, the remaining exclusion- and error-constraints

are potentially too strict and should be relaxed: C = Cex ∪ (Cerr\{ci}).
Running Example For the over-constrained example (Figure 9.1, Page 161) with

s2 = [Country:UK, Phone:123] missing for error-constraint c4, the constraints

are separated as shown below.

Mc4 = {s2 = [Country:UK, Phone:123]}
B = {c4} ∪ {T = 1 ∧G = 3}s2
C = {c6} ∪ {c1, c2, c3, c5}

When applying QuickXPlain, the minimal conflict set Oc4,2 = {c3} is computed.

Once MISs and minimal conflict sets are identified, the RIPM must be updated. Either the

negated error-constraints ci or the conflicting constraints O4,2 must be manually relaxed until no

more schemata are missing. Afterwards, strong invalid test inputs can be selected such that they

satisfy the chosen strong invalid coverage test adequacy criteria.

To summarize the contributions of this section, the issue of MISs is introduced and the neces-

sity of repairing over-constraints RIPMs is discussed. To support the labor-intensive and com-

plex task of repairing over-constrained RIPMs, necessary activities are identified and integrated

into an extended CRT test process (Figure 9.2, Page 164). Although the task of repairing over-

constrained RIPMs is perceived as a manual task until now, automated techniques are presented

to identify MISs and to provide explanations in form of minimal sets of conflicting constraints.

In the next section, we focus on techniques that allow to repair over-constrained RIPMs semi-

automatically to further reduce the manual effort.

List of Symbols

Oci,j conflict set for MIS sj ∈ Lci

C set of relaxable constraints

B background constraints

R ⊂ C relaxation

9.2. Semi-Automatic Repair of Over-Constrained RIPMs 169

9.2. Semi-Automatic Repair of Over-Constrained RIPMs

In the previous section, we discussed techniques to explain over-constrained RIPMs by identi-

fying MISs and conflicting constraints. Based on the explanations, a tester can manually repair

the RIPMs and remove one or more conflicts by relaxing identified constraints.

Although the repair activities are already supported by automated identification and explana-

tion, manual repair could still be rejected since it can be perceived as too time-consuming, too

costly or too complex. Instead, further automation of repair activities would be desirable.

In this section, we extend the manual repair of over-constrained RIPMs and present a tech-

nique for automatic and semi-automatic repair. Even though the technique can be applied fully-

automatically, we also provide an argument why the semi-automatic application is preferable.

Using the previously described concepts, minimal conflict sets explain the absence of the

MISs. Due to the minimality property, only one constraint of a minimal conflict set must be

relaxed to remove a conflict. However, it remains unclear (1) which constraint to select for

relaxation and (2) how the selected constraint must be relaxed.

Running Example Until now, it is the tester’s responsibility to select a constraint and

to decide how to relax it. For a better illustration, we discuss the relaxation of the over-

constrained example (Figure 9.1, Page 161) with s = [Phone:123] that is missing for

error-constraint c3.

Based on the application of a conflict detection algorithm, the following minimal

conflict set can be computed.

Mc3 = {s1 = [Phone:123]}
Oc3,1 = {c2, c4, c5}

To remove the conflict, a tester must choose to either discard [Phone:123] of

negated error-constraint c3 or to relax one of the error-constraints in Oc3,1.

When choosing to relax c4 or c5, the tester must decide how the chosen constraint

is relaxed. Either the entire constraint can be discarded or it can be loosened such that

fewer schemata are locally-specified. For instance, either c4 or c5 could be replaced with

the original ccorrect4 or ccorrect5 as depicted below.

ccorrect4 : ¬(Country = UK ∧ Phone = +1)

ccorrect5 : ¬(Country = USA ∧ Phone = +44)

This example also highlights the existence of several conflicts. A relaxation of c4 to

ccorrect4 removes the conflicts related to c3 and c4. But for error-constraint c5, still one

MIS exists.

Mc5 = {s2 = [Country:USA, Phone:123]}

Both aspects are discussed in the next subsections. Afterwards, we argue why semi-automatic

repair is preferable over a fully-automatic repair.

170 Chapter 9. Detection and Repair of Over-Constrained RIPMs

{c1, c2, c3}

{c2, c4}

c1

{c2, c4}
√

X

c3c2

√
c2 c4

X √
c2 c4

Figure 9.4.: Example HS-tree

9.2.1. Automatic Diagnosis of Over-Constrained RIPMs

Conflict detection algorithms like QuickXplain [Jun04] allow to find a minimal conflict set

Oci,j for a given MIS sj ∈ Mci . While a minimal conflict set helps to identify subsets of

constraints that explain a conflict, a tester must still manually decide which constraint of the

subset to relax in order to solve the conflict. Since the absence of a MIS can be caused by more

than one conflict, it may be necessary to relax more than one constraint.

To determine all constraints that must be relaxed, a so-called diagnosis set can be computed

by a conflict diagnosis algorithm [Fel+14]: In the context of CSPs, a diagnosis set is a set of

constraints such that a model is repaired if all constraints of the diagnosis set are relaxed. If B
is consistent and C ∪ B has no solution, a diagnosis set � ⊆ C is a set of constraints such that

B ∪ C\� is consistent.

Definition 103 (Diagnosis Set) For a MIS sj ∈ Mci , a diagnosis set �ci,j ⊆ Cex∪(Cerr\{ci})
is a set of constraints such that all conflicts between negated error-constraint ci and some other
constraints can be removed by relaxing all constraints in �ci,j . Formally, �ci,j is a diagnosis
set if and only if SAT(Cex ∪ (Cerr\{ci})\�ci,j , sj) = true.

Technically, all constraints (�ci,j = Cex ∪ (Cerr\{ci})) form a diagnosis set. However, it is

preferable to relax a smaller subset of constraints instead. Therefore, we introduce the notion of

minimal diagnosis sets [Fel+14].

Definition 104 (Minimal Diagnosis Set) A diagnosis set �ci,j for a MIS sj ∈ Mci is a minimal
diagnosis set if and only if no proper subset �′

ci,j
⊂ �ci,j is a diagnosis set for sj .

Different algorithms to find minimal diagnosis sets exist [Fel+14]. A common approach is

to compute a hitting set tree (HS-tree) from which all minimal diagnosis sets can be read off

[Fel+14]; [Rei87]. The conflict diagnosis algorithm as introduced by REITER [Rei87] is based

on the repeated application of a conflict detection algorithm [Fel+14]. Starting with an initial

minimal conflict set, a breadth-first search is conducted by relaxing one constraint of the conflict

set at a time. Then, the resulting set of constraints is again checked for consistency and either

a solution or a new minimal conflict set is found. Minimal diagnosis sets can be created by

following the path from a solution to the root conflict set.

9.2. Semi-Automatic Repair of Over-Constrained RIPMs 171

{c2, c4, c5}Oc3,1 {c3}Oc4,2 {c3}Oc5,2

√ √ √
c2 c4 c5

√ √
c3 c3

Figure 9.5.: HS-trees for MISs of the Over-constrained Example

Running Example Figure 9.4 (Page 170) depicts an example HS-Tree adopted from

[JSS15]. An initial minimal conflict set forms the tree’s root node. The edges label the

constraint which is relaxed. The node, to which the edge is pointing, is either another

minimal conflict set, a diagnosis (
√

) or pruned (X). Three minimal diagnosis sets can be

created, i.e. � = {c1, c4}, � = {c2}, and � = {c3, c4}. The paths {c1, c2} and {c3, c2}
are pruned because of � = {c2}.

It is important to note that the application of one diagnosis set only partially repairs the over-

constrained model. For each missing invalid schema sj ∈ Mci , either one of the computed

minimal diagnosis sets �ci,j must be applied such that sj is not missing anymore or error-

constraint ci itself must be relaxed (�ci,j = {ci}) such that sj is discarded and not locally-

specified anymore.

Therefore, let �all
ci,j

denote the set of all minimal diagnosis sets �ci,j ∈ �all
ci,j

for a particular

MIS sj ∈ Mci which also includes �ci,j = {ci} as another minimal diagnosis set that relaxes

error-constraint ci to discard sj .

Running Example Figure 9.5 shows the HS-trees for the three MISs of the over-con-

strained example (Figure 9.1, Page 161). The root nodes are annotated with Oci,j to

indicate the corresponding MISs.

Five different minimal diagnosis sets can be computed. They are depicted below

including �ci,j = {ci}.

�all
c3,1 = {�1

c3,1 = {c2},�2
c3,1 = {c4},�3

c3,1 = {c5}} ∪ {�4
c3,1 = {c3}}

�all
c4,2 = {�1

c4,2 = {c3}} ∪ {�2
c4,2 = {c4}}

�all
c5,2 = {�1

c5,2 = {c3}} ∪ {�2
c5,2 = {c′5}}

Applying �1
c3,1

= {c2} only removes the conflict for s1 ∈ Mc3 such that [Coun-
try:123, Phone:123] can be selected as a strong invalid schema for error-con-

straint c3. But conflicts for error-constraints c4 and c5 still exist. They require additional

relaxation since there are still MISs of M4 and M5.

In contrast, relaxing c3 as proposed by �1
c4,2

and �1
c5,2

resolves two conflicts for

error-constraints c4 and c5. Further on, s1 ∈ Mc3 is discarded and the conflict for error-

constraints c3 is also removed.

172 Chapter 9. Detection and Repair of Over-Constrained RIPMs

Therefore, a set of constraints is required such that their relaxation removes all conflicts

among all constraints.

Definition 105 (Diagnosis Hitting Set) A diagnosis hitting set �HS ⊆ Cex ∪ Cerr is a set of
constraints such that the relaxation of all constraints in �HS repairs the complete RIPM.

Formally, let RIPM = 〈P̃ , V, Cex, Cerr〉 denote an over-constrained RIPM for which �HS

is a diagnosis hitting set if and only if RIPM ′ = 〈P̃ , V, Cex\�HS , C
err\�HS〉 is not over-

constrained anymore, i.e. no MISs exist ∀ci ∈ Cerr of RIPM ′,Mci = ∅.

A diagnosis hitting set �HS can be composed of minimal diagnosis sets if �HS subsumes at

least one minimal diagnosis set for each MIS. Therefore, let �all = �all
ci1 ,j1

×�all
ci2 ,j2

×... denote

the Cartesian product of all sets of all minimal diagnosis sets �all
ci,j

for all MISs sj ∈ Mci . Then,

each tuple e ∈ �all contains one minimal diagnosis set for each MIS and can be used to repair

the complete RIPM. A tuple e ∈ �all can be further transformed into a diagnosis hitting set

�HS by unifying all contained minimal diagnosis sets.

�HS(e) =
⋃

�ci,j
∈e

�ci,j

Running Example For the over-constrained example (Figure 9.1, Page 161), minimal

diagnosis sets for three MISs must be subsumed.

Mc3 = {s1 = [Phone:123]}
Mc4 = {s2 = [Country:UK, Phone:123]}
Mc5 = {s2 = [Country:USA, Phone:123]}

The sets of all minimal diagnosis sets for the three MISs are again shown below.

�all
c3,1 = {�1

c3,1 = {c2},�2
c3,1 = {c4},�3

c3,1 = {c5}} ∪ {�4
c3,1 = {c3}}

�all
c4,2 = {�1

c4,2 = {c3}} ∪ {�2
c4,2 = {c4}}

�all
c5,2 = {�1

c5,2 = {c3}} ∪ {�2
c5,2 = {c5}}

�all is the Cartesian product �all = �all
c3,1

×�all
c4,2

×�all
c5,2

that contains, for instance,

the following two selections e1 and e2.

e1 = 〈�1
c3,1 = {c2},�1

c4,2 = {c3},�1
c5,2 = {c3}〉

e2 = 〈�1
c3,1 = {c2},�1

c4,2 = {c3},�2
c5,2 = {c5}〉

Both selections can be transformed into diagnosis hitting sets:

�HS(e1) = {c2, c3}
�HS(e2) = {c2, c3, c5}

The first three columns of Table 9.6 (Page 173) depict all possible selections and the

fourth column depicts all diagnosis hitting sets.

9.2. Semi-Automatic Repair of Over-Constrained RIPMs 173

�c3,1 �c4,2 �c5,2 �HS

{c2} {c3} {c3} {c2, c3}
{c2} {c3} {c5} {c2, c3, c5}
{c2} {c4} {c3} {c2, c3, c4}
{c2} {c4} {c5} {c2, c4, c5}
{c4} {c3} {c3} {c3, c4}
{c4} {c3} {c5} {c3, c4, c5}
{c4} {c4} {c3} {c3, c4}
{c4} {c4} {c5} {c4, c5}
{c5} {c3} {c3} {c3, c5}
{c5} {c3} {c5} {c3, c5}
{c5} {c4} {c3} {c3, c4, c5}
{c5} {c4} {c5} {c4, c5}
{c3} {c3} {c3} {c3}
{c3} {c3} {c5} {c3, c5}
{c3} {c4} {c3} {c3, c4}
{c3} {c4} {c5} {c3, c4, c5}

Table 9.6.: Diagnosis Hitting Sets for the Over-Constrained Example

The application of each diagnosis hitting set results in a repaired model that is not over-

constrained anymore. But to avoid unnecessary changes to the model, only minimal diagnosis

hitting sets are further considered.

Definition 106 (Minimal Diagnosis Hitting Set) A diagnosis hitting set �HS is a minimal di-
agnosis hitting set if and only if no proper subset �′

HS ⊂ �HS is a diagnosis hitting set.

Definition 107 (Cardinality-minimal Diagnosis Hitting Set) A diagnosis hitting set �HS is a
cardinality-minimal diagnosis hitting set if and only if there exists no diagnosis hitting set �′

HS

that contains fewer constraints.

�HS is cardinality-minimal iff ��′
HSwith |�′

HS | < |�HS |

Running Example For the over-constrained example (Figure 9.1, Page 161), the diag-

nosis hitting sets are depicted in Table 9.6 (Page 173). The minimal diagnosis hitting sets

for the example are �1
HS = {c4, c5} and �2

HS = {c3}.

Furthermore, �HS = {c3} is a cardinality-minimal diagnosis hitting set.

List of Symbols

�ci,j diagnosis set for MIS sj ∈ Mci

�all
ci,j

set of all minimal diagnosis sets for MIS sj ∈ Mci

174 Chapter 9. Detection and Repair of Over-Constrained RIPMs

�all Cartesian product of all sets of all minimal diagnosis sets

e ∈ �all tuple with one minimal diagnosis set for each MIS

�HS diagnosis hitting set

9.2.2. Automatic Relaxation of Conflicting Constraints

Minimal diagnosis hitting sets answer the question which constraints to relax but not how to

relax them. When a minimal diagnosis hitting set references a constraint ci that encompasses

several schemata sj ∈ Lci , it remains unclear whether the relaxation should remove all or only

a subset of schemata. Therefore, we discuss appropriate changes to the diagnostic in order to

support automatic relaxation.

Running Example Error-constraint c4 of the over-constrained example (Figure 9.1,

Page 161) specifies two schemata:

Lc4 = {s1 = [Country:UK, Phone:+1],

s2 = [Country:UK, Phone:123]}

When c4 is selected for relaxation – for instance to resolve the conflict for

[Phone:123] of Mc3 – it is unclear whether both or only one of the two schemata

should be removed.

To provide more information about the specific schemata sj ∈ Lci that must be relaxed, a

finer-grained schema-level representation of diagnosis hitting sets is necessary. Therefore, the

transformation into CSP is adjusted. Instead of translating constraints of the RIPM directly into

constraints of the CSP, a schema-based CSP can be used where a separate constraint is created

for each schema that is either irrelevant or invalid.

Therefore, let the concept of locally-specified schemata sj ∈ Lci be extended from error-

constraints to exclusion-constraints. For an exclusion-constraint ci ∈ Cex, the computation

of Lci is equivalent to the computation for error-constraints. But the computed schemata are

irrelevant and are not supposed to appear in any valid or strong invalid test input.

Based on the locally-specified schemata Lci of each constraint ci ∈ Cex ∪ Cerr, a separate

error- or exclusion-constraint ci,j is created for each irrelevant or invalid schema sj ∈ Lci where

j in ci,j indicates the j-th schema sj ∈ Lci . Each parameter-value pair π = (p, v) of an irrelevant

or invalid schema sj is translated into a proposition p = v, all propositions are combined via

logical conjunction, and the conjunction is negated such that irrelevant and invalid schemata are

avoided.

ci,j = ¬
(∧

(p,v)∈sj
(p = v)

)

9.2. Semi-Automatic Repair of Over-Constrained RIPMs 175

Running Example Error-constraint c4 of the over-constrained example (Figure 9.1,

Page 161) is modeled as an implication Country = UK ⇒ Phone = +44 that specifies

the following two schemata.

Lc4 = {s1 = [Country:UK, Phone:+1],

s2 = [Country:UK, Phone:123]}

When transforming the RIPM into a schema-based CSP, the error-constraint is trans-

formed into two error-constraints c4,1 and c4,2.

c4,1 : ¬(Country = UK ∧ Phone = +1)

c4,2 : ¬(Country = UK ∧ Phone = 123)

Conflict detection and diagnosis with schema-based CSPs provide more details for relaxation

as they compute minimal conflict sets, minimal diagnosis sets, and minimal diagnosis hitting

sets that reference some schema-level constraints ci,j . Since each schema-level constraint ci,j
refers to exactly one schema, the question whether the entire constraint ci or only a subset must

be relaxed is unambiguously resolved.

When a schema-level constraint ci,j must be relaxed so that one or more schemata are not

missing anymore, the original constraint ci must be rewritten such that it excludes the sj ∈ Lci .

The constraint can be either manually or automatically rewritten to exclude sj by adding a logical

disjunction for each parameter-value pair of sj to ci.

Exclude(ci, sj) = ci ∨
(∧

(p,v)∈sj
(p = v)

)

Running Example To conclude the section, we walk through the transformations and

computations with schema-level constraints for the over-constrained example (Figure

9.1, Page 161). First, the constraints are transformed into schema-level constraints as

follows:

c1,1 :¬(Packages = 123)

c2,1 :¬(Country = 123)

c3,1 :¬(Phone = 123)

c4,1 :¬(Country = UK ∧ Phone = +1)

c4,2 :¬(Country = UK ∧ Phone = 123)

c5,1 :¬(Country = USA ∧ Phone = +44)

c5,2 :¬(Country = USA ∧ Phone = 123)

c6,1 :¬(Shipping = Standard ∧ Country = USA)

The same schemata are still MISs but the assignment to schema-level constraints

176 Chapter 9. Detection and Repair of Over-Constrained RIPMs

makes it more precise.

Mc3,1 = {s1 = [Phone:123]}
Mc4,2 = {s1 = [Country:UK, Phone:123]}
Mc5,2 = {s1 = [Country:USA, Phone:123]}

Based on the MISs, three initial minimal conflict sets can be computed. They can also

be more precisely assigned to schema-level constraints.

Oc3,1,1 = {c2,1, c4,2, c5,2}
Oc4,2,1 = {c3,1}
Oc5,2,1 = {c3,1}

With these minimal conflict sets, the following two minimal diagnosis hitting sets can

be computed.

�1
HS = {c4,2, c5,2}

�2
HS = {c3,1}

Since the schema-level constraints are assigned to single schemata, the required re-

laxation is unambiguous. When choosing to apply �1
HS , the error-constraints c4 and c5

must be relaxed such that they exclude the schema-level constraints c4,2 and c5,2. Using

the technique based on logical disjunction as described above, the error-constraints can

be rewritten as follows.

c′4 :(Country = UK ⇒ Phone = +44)

∨ (Country = USA ∧ Phone = 123)

c′5 :(Country = USA ⇒ Phone = +1)

∨ (Country = USA ∧ Phone = 123)

These rewritten error-constraints are again semantically equivalent to the correct but

split error-constraints ccorrect4 and ccorrect5 (See running example on Page 160).

ccorrect4 : ¬(Country = UK ∧ Phone = +1)

ccorrect5 : ¬(Country = USA ∧ Phone = +44)

List of Symbols

ci,j schema-level constraint for sj ∈ Lci

Exclude(ci, sj) function to exclude schema sj ∈ Lci from constraint ci

9.2. Semi-Automatic Repair of Over-Constrained RIPMs 177

9.2.3. Selection and Application of Diagnosis Hitting Sets

Combining the previously discussed techniques allows completely automated repairs of over-

constrained RIPMs: Schema-based CSP provide all information to automatically relax con-

straints and diagnosis hitting sets describe sets of constraints that must be relaxed. Focusing on

minimal diagnosis hitting sets reduces the number of options, but still one out of several minimal

diagnosis hitting sets must be selected.

While choosing the cardinality-minimal diagnosis hitting set, i.e. the diagnosis hitting set that

contains the fewest constraints, seems appealing, it is not necessarily the best choice. Unfortu-

nately, not every repaired RIPM is equivalent to the correct RIPM in the sense that it represents

the partitioning of the authoritative specification and that selected test inputs covers all expected

schemata.

In order to repair an over-constrained RIPM such that its partitioning is consistent with the

authoritative specification, an appropriate minimal diagnosis hitting set must be selected. Since

there is no further information that can be utilized by a fully-automated approach, we argue that

semi-automation is preferable. During the evaluation, this phenomenon is further investigated.

Running Example In order to illustrate the remaining problem of selecting one out of

several minimal diagnosis hitting sets, we apply the cardinality-minimal diagnosis hitting

set �2
HS = {c3,1} to repair the over-constrained example (Figure 9.1, Page 161) and to

contrast it with the previous repair of applying �1
HS = {c4,2, c5,2}.

Below the error-constraint c3, the schema-level constraint c3,1, and the rewritten error-

constraint c′3 are shown.

c3 :Phone �= 123

c3,1 :¬(Phone = 123)

c′3 :(Phone �= 123) ∨ (Phone = 123)

After the repair, the RIPM is not over-constrained anymore and no schemata are MISs.

However, the repair makes error-constraint c′3 ineffective since it is always satisfied. As a

consequence, no dedicated strong invalid test input for [Phone:123] must be selected.

Instead, two strong invalid test inputs must be selected for [Country:UK,
Phone:123] and [Country:USA, Phone:123] of error-constraints c4 and c5.

Since [Phone:123] is not marked as invalid, schemata like [Packages:123,
Phone:123] or [Country:123, Phone:123] are incorrectly considered strong

invalid schemata.

For this example, it is desirable to choose �1
HS = {c4,2, c5,2} over �2

HS = {c3,1}.

However, since no further information is available, the selection cannot be automated.

178 Chapter 9. Detection and Repair of Over-Constrained RIPMs

9.3. Strong Invalid Test Input Selection from

Over-Constrained RIPMs

While the application of conflict diagnosis techniques as presented in the previous section al-

lows to increase the level of automation in the repair process for over-constrained RIPMs, the

selection of appropriate minimal diagnosis hitting sets demonstrates its limit for automation. In

practice, the manual and semi-automatic repair could be rejected because it could be perceived

as too time-consuming, too costly or too complex.

Since a fully-automated approach is still desirable, we discuss a different approach in this

section to select invalid test inputs directly from over-constrained RIPMs without repairing them

beforehand. Therefore, the idea of alternative constraint handling strategies is introduced and

different constraint handling strategies are presented to automatically deal with conflicts during

the test input selection.

In the following subsections, we first discuss the general idea of soft constraint handling

strategies. Afterwards, we discuss different soft constraint handling strategies that are based on

that idea.

9.3.1. General Idea of Soft Constraint Handling Strategies

As stated before, when generating test inputs, schemata of size t or a are created and extended

until they consist of n parameter-value pairs for all n parameters. Every time a schema s is

created or extended, constraint handling is used to check if possible extensions of s′ ⊃ s satisfy

all constraints. Any extension that does not satisfy all constraints is rejected. The satisfiability

function SAT : C∗ ×A → Bool is responsible to accept or reject a schema s ∈ A.

In order to realize the evaluation function, the parameters and values of the RIPM, all con-

straints C ∈ C∗, and the schema under change s ∈ A can be transformed into a CSP and a

constraint solver can be applied to search for a solution. If a solution is found, the schema is

accepted. Otherwise, the schema is rejected.

Different approaches for the transformation into CSPs exist which we denote as constraint

handling strategies. In Section 9.1.2 (Page 164 and following), a first transformation into CSPs

is presented. It is the hard constraint handling (HCH) strategy which is the default constraint

handling strategy that is used in test selection strategies like IPOG-C [Yu+13a] and IPOG-NEG.

The HCH strategy is already discussed in Section 9.1.2 (Page 166). However, it is briefly

repeated here. Each parameter pi ∈ P of the RIPM is represented as a variable xi ∈ X. The

domain of xi represents the values Vi of parameter pi as integers Dxi = {1, ...,mi}. All con-

straints of the RIPM are directly translated to constraints of the CSP. Furthermore, the schema

under change s is also added as a so-called schema-constraints.

Running Example The resulting CSP for a given schema under change s =
[Packages:1, Country:UK] and the internal representation of the over-con-

strained example (Figure 9.3, Page 165) is depicted below.

X = {Pa,C,Ph,S}

9.3. Strong Invalid Test Input Selection from Over-Constrained RIPMs 179

D = {DPa = {1, 2, 3}, DC = {1, 2, 3}, DPh = {1, 2, 3}, DS = {1, 2}}
C = {Pa �= 3,C �= 3,Ph �= 3,C = 1 ⇒ Ph = 1,C = 2 ⇒ Ph = 2,

S = 1 ⇒ C �= 2}
∪{Pa = 1 ∧ C = 1}s

When using the HCH strategy with an over-constrained RIPM, the test adequacy criteria for

strong invalid test inputs cannot be satisfied because some specified schemata are MISs and the

HCH strategy excludes them. To cover all specified schemata, the HCH strategy requires the

tester to repair the RIPM and to remove all conflicts.

Therefore, we introduce soft constraint handling (SCH) strategies that does not require any

repair prior to the test input selection. The idea of SCH is based on partial constraint satisfaction

as described by FREUDER & WALLACE [FW92]. Instead of requiring all constraints to be

satisfied by a solution, a partial solution that satisfies as many constraints as possible is accepted

as well.

For SCH, hard-constraints and soft-constraints are distinguished. A solution must satisfy

all hard-constraints (denoted as H) but not all soft-constraints (denoted as S). Although, it is

desirable to satisfy as many soft-constraints as possible.

To take into account that the satisfaction of soft-constraints is optional, each soft-constraint

ci ∈ S is reified when transforming it into a CSP. Therefore, an additional boolean variable

ri ∈ X is created for each soft-constraint ci and ci is modified to capture whether or not it

is satisfied. The variable ri is true if the constraint ci is satisfied by an assigment and false
otherwise, i.e. ri ⇔ ci.

The CSP is transformed into an optimization problem and a utility function U(α) counts all

reified soft-constraints ri that are satisfied by assignment α. Then, the constraint solver searches

for an assignment α that satisfies all hard-constraints and calculates the utility value.

U(α) =
∑
ci∈S

1× α.ri

When checking whether or not to reject a schema, a binary answer true or false is required.

However, an optimization problem always has a solution. Even zero satisfied soft-constraints

with a utility value of zero may represent a consistent assignment. Therefore, a threshold η
with 0 ≤ η ≤ |S| is introduced to decide whether or not α is acceptable. The threshold is a

lower boundary for the utility function η ≤ U(α). An assignment is only consistent if at most

η soft-constraints remain unsatisfied. In other words, a solution must satisfy at least |S| − η
soft-constraints.

In the following, two SCH strategies are discussed that are based on the idea of soft constraint

handling.

List of Symbols

H set of hard-constraints

S set of soft-constraints

180 Chapter 9. Detection and Repair of Over-Constrained RIPMs

α assignment of a CSP

U(α) function to compute the utility of soft-constraints

η threshold for the utility of soft-constraints

9.3.2. Basic Soft Constraint Handling Strategy

Following the idea of SCH, the transformation for the basic soft constraint handling (B-SCH)

strategy is realized as follows. The transformation of parameters, values and constraints that are

considered as hard-constraints is analogous to the HCH strategy.

Each input parameter pi is represented as a variable xi ∈ X and xi represents its domain as

integers Dxi = {1, ...,mi} ∈ D.

Hard- and soft-constraints are distinguished as follows. The set of hard-constraints H is equiv-

alent to the set of background constraints B. In both cases, the sets encompass the schema-con-

straint and negated error-constraints ci. The remaining constraints are modeled as soft-con-

straints which affect the utility value.

H = {ci} ∪ {...}τ
S = Cex ∪ Cerr\{ci}

An additional constraint enforces the threshold.

|S| − η ≤ U(α)

Running Example Below, an example CSP is depicted that is the result of a B-SCH

transformation. Therefore, error-constraint c3 is chosen to be negated for the invalid input

selection. The transformation and the CSP is based on the internal representation of the

over-constrained example (Figure 9.3, Page 165).

Error-constraint c3 : Phone �= 123 is transformed into the hard-constraint c3 with

¬(Phone �= 123) which is ¬(PH �= 3) in the internal representation. Constraints

c1, c2, c4, c5, and c6 are modeled as soft-constraints. The threshold is enforced by

|{r1, r2, r4, r5, r6}| − η ≤ (r1 + r2 + r4 + r5 + r6).

X = {Pa,C,Ph,S}
∪{r1, r2, r4, r5, r6} // reified variables

D = {DPa = {1, 2, 3}, DC = {1, 2, 3},
DPh = {1, 2, 3}, DS = {1, 2}}

∪{Dr1,2,4,5,6 = {0, 1}} // domains for reified variables

C = {r1 ⇔ (Pa �= 3), // soft-constraint c1

r2 ⇔ (C �= 3), // soft-constraint c2

r4 ⇔ (C = 1 ⇒ Ph = 1), // soft-constraint c4

9.3. Strong Invalid Test Input Selection from Over-Constrained RIPMs 181

r5 ⇔ (C = 2 ⇒ Ph = 2), // soft-constraint c5

r6 ⇔ (S = 1 ⇒ C �= 2), // soft-constraint c6

¬(Ph �= 3), // negated error-constraint c3

5− η ≤ (r1 + r2 + r4 + r5 + r6)} // constraint to enforce threshold

∪{...}s // schema-constraint

Furthermore, an actual value for the threshold η must be determined. With a threshold of

η = 0, the B-SCH strategy is identical to the HCH strategy since all five soft-constraints must be

satisfied. For a threshold of η = 1, a solution must only satisfy four out of five soft-constraints.

Running Example With a threshold of η = 1, the following schemata could be se-

lected for error-constraint c3 because one of the other constraints may remain unsatisfied:

[Country:UK, Phone:123],

[Country:USA, Phone:123],

[Country:123, Phone:123]

Each of them leaves one constraint unsatisfied (c4, c5, or c2). But even though the

RIPM is over-constrained, two out of three schemata are truly-strong invalid schemata

and should be selected.

To fully automate B-SCH, the threshold η must be determined automatically. It is impor-

tant to use an appropriate threshold. Otherwise, some MISs could remain absent or too many

constraints could remain unsatisfied.

A cardinality-minimal diagnosis set �ci,j describes a minimal number of constraints to relax

in order to resolve all conflicts that prevent sj ∈ Mci from appearing in a strong invalid test

input for error-constraint ci. Hence, a strong invalid test input for sj ∈ Mci can be generated if

at least |�ci,j | constraints may remain unsatisfied.

Since strong invalid test inputs are selected for one error-constraint at a time, the constraint

handling strategy and threshold can also be adjusted individually for each error-constraint.

Instead of using a global η for all error-constraints, individual thresholds ηci can be deter-

mined for each error-constraint ci. To determine one threshold ηci , the size of cardinality-min-

imal diagnosis sets |�ci,j | for each MIS sj ∈ Mci must be checked and the size of the largest

cardinality-minimal diagnosis set can be used as the threshold.

ηci = max
sj∈Mci

|�ci,j |

If no conflict exists for error-constraint ci, no MISs exists (Mci = ∅) and the threshold ηci = 0
is used which is equivalent to the HCH strategy.

182 Chapter 9. Detection and Repair of Over-Constrained RIPMs

9.3.3. Diagnostic Soft Constraint Handling Strategy

Utilizing the size of cardinality-minimal diagnosis sets allows a complete automation of the

B-SCH strategy with individual thresholds for each error-constraint. But, there are two more

problems with B-SCH.

First, except for the error-constraint ci for which invalid inputs are selected, all constraints

are modeled as soft-constraints. Since soft-constraints may remain unsatisfied, it can result in

unnecessary relaxations. Soft-constraints also add complexity to the CSP by introducing an

additional indirection and additional variables for reification.

Running Example An example CSP as the result of a B-SCH transformation was dis-

cussed previously (Page 180 and following). The discussed invalid test input selection for

error-constraint c3 has one MIS s1 = [Phone:123] that is explained by the minimal

conflict set Oc3,1 = {c2, c4, c5}.

Even though it is not involved in any conflict, one can observe that the exclusion-

constraint c6 is modeled as a soft-constraint. For an eta = 1, exclusion-constraint c6 will

always be satisfied because either c2, c4, or c5 must remain unsatisfied because of the

conflict.

Therefore, it is not necessary to model exclusion-constraint c6 as a soft-constraint.

Second, the threshold still increases the solution space because thresholds for different invalid

schemata of the same error-constraint are not distinguished.

Running Example When selecting invalid test inputs for error-constraint c4 of the

over-constrained example (Figure 9.1, Page 161), two schemata are locally-specified of

which one is a MIS.

Mc4 = {s2 = [Country:UK, Phone:123]}
Lc4 = {s1 = [Country:UK, Phone:+1],

s2 = [Country:UK, Phone:123]}

While [Country:UK, Phone:123] requires relaxation or a threshold of ηc4 =
1, [Country:UK, Phone:+1] is not a MIS and does not require any soft-constraint

handling. Since the threshold ηc4 = 1 is effective for all schemata, [Country:UK,
Phone:123] may be combined with a schema that violates another constraint like

[Packages:123] which is undesirable and should be avoided.

To address both problems, the diagnostic soft constraint handling (D-SCH) strategy exploits

the information from minimal diagnosis sets to adjust the constraint handling individually for

each locally-specified schema. Both improvements are discussed in the following.

Minimize Number of Soft-Constraints It is desirable to have as few soft-constraints as

possible. To distinguish hard- and soft-constraints, we utilize the information from minimal di-

agnosis sets. For each MIS sj ∈ Mci , a set of minimal diagnosis sets �all
ci,j

= {�1
ci,j

,�2
ci,j

, ...}
can be computed.

9.3. Strong Invalid Test Input Selection from Over-Constrained RIPMs 183

A constraint c ∈ Cex ∪ Cerr\{ci} that is not contained in any minimal diagnosis set does

not require relaxation. Therefore, it should be modeled as a hard-constraint. A constraint c ∈
Cex ∪ Cerr\{ci} that is contained in at least one minimal diagnosis set may require relaxation

and should be modeled as a soft-constraint.

H ={ci} ∪ {...}s
∪ {c ∈ Cex ∪ Cerr\{ci}|��ci,j ∈ �all

ci,j , c ∈ �ci,j}
S ={c ∈ Cex ∪ Cerr\{ci}|∃�ci,j ∈ �all

ci,j , c ∈ �i,j}

Running Example To illustrate the new partitioning of hard- and soft-constraints, we

contrast the partitions as computed by B-SCH and D-SCH.

For error-constraint c3 of the over-constrained example (Figure 9.1, Page 161), the

partitioning of B-SCH is as follows.

H = {c3} ∪ {...}s
S = {c1, c2, c4, c5, c6}

The minimal diagnosis sets for the one MIS are again listed below.

�all
c3,1 = {�1

c3,1 = {c2},�2
c3,1 = {c4},�3

c3,1 = {c5}} ∪ {�4
c3,1 = {c3}}

Based on these minimal diagnosis sets, the D-SCH partitioning is as follows.

H = {c3} ∪ {...}s ∪ {c1, c6}
S = {c2, c4, c5}

The resulting CSP is shown below.

X = {Pa,C,Ph,S}
∪{r2, r4, r5} // reified variables

D = {DPa = {1, 2, 3}, DC = {1, 2, 3},
DPh = {1, 2, 3}, DS = {1, 2}}

∪{Dr2,4,5 = {0, 1}} // domains for reified variables

C = {r2 ⇔ (C �= 3), // soft-constraint c2

r4 ⇔ (C = 1 ⇒ Ph = 1), // soft-constraint c4

r5 ⇔ (C = 2 ⇒ Ph = 2), // soft-constraint c5

Pa �= 3, // hard-constraint c1

S = 1 ⇒ C �= 2, // hard-constraint c6

¬(Ph �= 3), // negated error-constraint c3

3− η ≤ (r2 + r4 + r5)} // constraint to enforce threshold

∪{...}s // schema-constraint

184 Chapter 9. Detection and Repair of Over-Constrained RIPMs

For error-constraint c4 of the same example, the partitioning of B-SCH is as follows.

H = {c4} ∪ {...}s
S = {c1, c2, c3, c5, c6}

The minimal diagnosis sets for the one MIS are again listed below.

�all
c4,2 = {�1

c4,2 = {c3}} ∪ {�2
c4,2 = {c4}}

Based on these minimal diagnosis sets, the D-SCH partitioning is as follows.

H = {c4} ∪ {...}s ∪ {c1, c2, c5, c6}
S = {c3}

The resulting CSP is shown below.

X = {Pa,C,Ph,S}
∪{r3} // reified variable

D = {DPa = {1, 2, 3}, DC = {1, 2, 3},
DPh = {1, 2, 3}, DS = {1, 2}}

∪{Dr3 = {0, 1}} // domain for reified variable

C = {r3 ⇔ (Ph �= 3), // soft-constraint c3

Pa �= 3, // hard-constraint c1

C �= 3, // hard-constraint c2

C = 2 ⇒ Ph = 2, // hard-constraint c5

S = 1 ⇒ C �= 2, // hard-constraint c6

¬(C = 1 ⇒ Ph = 1), // negated error-constraint c4

1− η ≤ (r3)} // constraint to enforce threshold

∪{...}s // schema-constraint

As can be seen, this new partitioning can greatly reduce the number of soft-con-

straints.

Individual Thresholds To further reduce the solution space, each invalid schema should

have an individual threshold.

Invalid schemata sj ∈ Ici that are not missing (sj /∈ Mci) do not require any relaxation. The

threshold should be ηci,j = 0 which is equal to the HCH strategy. In contrast, each missing

invalid schema sj ∈ Mci should have an individual threshold that corresponds to the size of the

9.3. Strong Invalid Test Input Selection from Over-Constrained RIPMs 185

minimal cardinality-minimal diagnosis sets.

ηci,j = min
�ci,j

∈�all
ci,j

|�ci,j |

To distinguish several individual thresholds for different actual schema under change in one

CSP, implications with the following pattern can be used.

(<invalid schema>) ⇒ η = <value>

Running Example Error-constraint c3 only specifies one schema s1 ∈ Mc3 with an

individual threshold of ηc3,1 = 1. Therefore, the CSP is semantically equivalent to a CSP

without this improvement. Although the changes to define the individual threshold are

depicted below.

X = {Pa,C,Ph,S}
∪{r2, r4, r5} // reified variables

D = {DPa = {1, 2, 3}, DC = {1, 2, 3},
DPh = {1, 2, 3}, DS = {1, 2}}

∪{Dr2,4,5 = {0, 1}} // domains for reified variables

C = {r2 ⇔ (C �= 3), // soft-constraint c2

r4 ⇔ (C = 1 ⇒ Ph = 1), // soft-constraint c4

r5 ⇔ (C = 2 ⇒ Ph = 2), // soft-constraint c5

Pa �= 3, // hard-constraint c1

S = 1 ⇒ C �= 2, // hard-constraint c6

¬(Ph �= 3), // negated error-constraint c3

3− η ≤ (r2 + r4 + r5), // constraint to enforce threshold

(Ph = 3) ⇒ η = 1} // constraint for threshold ηc3, 1

∪{...}s // schema-constraint

Error-constraint c4 specifies two schemata of which one is missing s2 ∈ Mc3 . The in-

dividual threshold of the strong invalid schema s1 ∈ Ic4 is ηc4,1 = 0 while the individual

threshold of the MIS is ηc4,2 = 1.

Due to the improvements, s1 = [Country:UK, Phone:+1] is treated similarly

to the HCH strategy which prevents it from being combined with other invalid schemata.

While the MIS s2 = [Country:UK, Phone:123] can still be combined with a

schema of the conflicting error-constraint c3. The corresponding CSP is depicted below.

X = {Pa,C,Ph,S}
∪{r3} // reified variable

186 Chapter 9. Detection and Repair of Over-Constrained RIPMs

D = {DPa = {1, 2, 3}, DC = {1, 2, 3},
DPh = {1, 2, 3}, DS = {1, 2}}

∪{Dr3 = {0, 1}} // domain for reified variable

C = {r3 ⇔ (Ph �= 3), // soft-constraint c3

Pa �= 3, // hard-constraint c1

C �= 3, // hard-constraint c2

C = 2 ⇒ Ph = 2, // hard-constraint c5

S = 1 ⇒ C �= 2, // hard-constraint c6

¬(C = 1 ⇒ Ph = 1), // negated error-constraint c4

1− η ≤ (r3), // constraint to enforce threshold

(Country = UK ∧ Phone = +1) ⇒ η = 0, // constraint for threshold ηc4, 1

(Country = UK ∧ Phone = 123) ⇒ η = 1} // constraint for threshold ηc4, 2

∪{...}s // schema-constraint

To conclude this section, two alternative constraint handling strategies B-SCH and D-SCH

are developed. They are based on the idea of partial constraint satisfaction which allows some

constraints to remain unsatisfied during test input selection. Thereby, it is possible to select in-

valid test inputs for MISs without repairing the over-constrained RIPM beforehand. By utilizing

the information provided by minimal diagnosis sets, the CSPs can be formulated much more

specific to the individual conflicts as shown above. In the evaluation, both B-SCH and D-SCH

strategies are further compared to the HCH strategy.

Both B-SCH and D-SCH strategies enable a fully-automated approach to select invalid test

inputs from over-constrained RIPMs. With the combination of alternative constraint handling

strategies, manual, and semi-automatic repair activities, three related techniques are presented

that allow postponing the repair activities when necessary and that support the repair activities

when due. Thereby, the effort of maintaining error-constraints can be reduced.

In the following chapter, another technique is introduced to reduce the initial effort of model-

ing error-constraints.

Chapter 10.

Automatic Generation of Error-Constraints

Contents

10.1. A Process for Automatic Generating of Error-Constraints 187

10.2. Identifying Non-Conforming Schemata 191

10.3. Generating New Error-Constraints . 196

Although the CRT test method promises to avoid the invalid input masking effect by improv-

ing test selection of valid and strong invalid test inputs, additional modeling effort is required by

the tester to construct error-constraints. Since the manual construction of error-constraints can

be considered a error-prone and tedious task, automated support is desirable.

In the previous chapter, we introduced techniques to identify over-constrained RIPMs that are

helpful to repair existing and inconsistent error-constraints. However, they are not helpful dur-

ing the initial modeling of RIPMs when error-constraints are incomplete and under-constrained

rather than over-constrained. To also support the initial modeling of error-constraints, an ad-

ditional technique to automatically support the modeling of error-constraints is introduced in

this chapter. The technique relies on FC. Its idea was implemented and its appropriateness was

evaluated in the context of a master thesis (cf. [Maß20]).

In the following sections, the general idea is motivated and the process based on FC is pre-

sented first. Afterwards, the identification of non-conforming schemata (Section 10.2) and the

generation of error-constraints (Section 10.3) is discussed.

10.1. A Process for Automatic Generating of

Error-Constraints

The objective is to automatically generate error-constraints such that a tester must not model

them manually any longer. In comparison to CT, CRT requires additional effort to model error-

constraints. The effort to model parameters, values, and exclusion-constraints is equal for CT

and CRT. To focus solely on error-constraints as the missing piece, we assume that parameters,

values, and exclusion-constraints already exist. The set of error-constraints is then generated in

an iterative manner. Therefore, we assume that the set of error-constraints is either empty, i.e.

Cerr = ∅, or incomplete and under-constrained.

To automatically generate error-constraints, another system is required which automatically

classifies a relevant test input as either truly-valid or truly-invalid. Based on strategically se-

188 Chapter 10. Automatic Generation of Error-Constraints

RIPM-based

Classification

of Test Input

System-based

Classification

of Test Input

Conclusion

Valid Truly-Valid Conforming

Valid Truly-Invalid Non-Conforming (Cerr is under-constrained)

Invalid Truly-Valid Non-Conforming (Cerr is over-constrained)

Invalid Truly-Invalid Conforming

Table 10.1.: Conclusions for Conformance between a RIPM and another System

lected test inputs, we expect this to be able to even identify truly-valid and truly-strong invalid

schemata.

In general, this approach can be understood as a conformance check between a RIPM with its

error-constraints and another system. The result is conformance or non-conformance between

the RIPM and the other system such that both classify a test input or a schema as either valid or

strong invalid in an analogous manner. The other system functions as an authoritative specifica-

tion and could be an executable specification that is “queried” with relevant test inputs. Since

executable specifications seldom exist, the other system could also be a SUT that is assumed

to be correct. In that case, the behavior of the SUT is observed and a test oracle classifies the

test input as valid if it observes standard behavior and it classifies the test input as invalid if it

observes exception behavior. As an example, the classification could be based on whether the

SUT remains in the normal control-flow (valid test input) or an exception is propagated (invalid

test input).

Until the generation of error-constraints is complete, non-conformance between the classifi-

cations of the SUT and the other system is expected. Every time both classifications differ, a

conformance fault exists. Since we assume the other system (executable specification, SUT) to

be correct, the only way to fix a conformance fault is to update the error-constraints of the RIPM.

Table 10.1 (Page 188) depicts the four possible classification outcomes and their conclusions.

The two non-conforming cases are as follows. First, a test input that is classified as valid by

the RIPM but classified as truly-invalid by the other system depicts non-conformance due to

under-constrained error-constraints. One or more schemata exist which are truly-minimal invalid

according to the other system but no error-constraint exists yet that marks the schema as invalid.

This is the typical case that is expected when error-constraints are initially incomplete and under-

constrained.

Second, a test input that is classified as invalid by the RIPM but classified as truly-valid by the

other system depicts non-conformance due to over-constrained error-constraints. One or more

schemata exist which are invalid as specified by some error-constraints. But the schemata are

not truly-invalid as specified by the other system. This is possible when error-constraints are

modeled manually. Since this case does not occur when error-constraints are generated in an

iterative manner, we focus on the first case.

In order to generate error-constraints, it is first necessary to identify test inputs which are

non-conforming for the current version of the RIPM. Afterwards, it is necessary to identify the

particular cause, i.e. the minimal schemata that explain the non-conformation. Finally, error-

10.1. A Process for Automatic Generating of Error-Constraints 189

Figure 10.2.: Idealized CRT Process for Automatic Generation of Error-Constraints

constraints must be generated to establish conformance between the RIPM and the other system.

Figure 10.2 (Page 189) depicts the idealized process for automatic generation of error-con-

straints in more detail. It is an extension of the idealized CT and CRT test process (Figure 3.2,

Page 29). The gray background highlights activities that are updated or newly introduced.

Since the process for automatic generation of error-constraints starts with an empty or at

least under-constrained set of error-constraints, test inputs that are valid according to the current

version of the RIPM can be selected to identify non-conforming test inputs.

Therefore, a test selection strategy for valid test inputs must be chosen first which is a restric-

tion compared to the idealized CT and CRT test process. Further on, the RIPM is modeled. But

only parameters, values, and exclusion-constraints are expected to be modeled. Thereby, the

initial effort of modeling RIPMs is comparable to the effort of modeling IPMs.

The first feedback circle is equal to the idealized CT and CRT test process. The test selection

strategy is applied and the resulting test suite is evaluated. If something is wrong with the test

suite, the test selection strategy or the initial RIPM are updated and the test selection strategy is

applied again. Otherwise, tests are executed to obtain test results for the test suite. Therefore, a

test oracle is required that is capable of identifying the truly-valid or truly-invalid classification

of the other system. Since all test inputs are valid according to the RIPM, the other system is

expected to label the test inputs as truly-valid. Whenever the other system classifies test inputs

as truly-invalid, non-conformance can be deduced.

After executing tests, the test results are evaluated and it is checked whether non-conforming

test inputs exist. If at least one non-conforming test input exists, the minimal schemata that

cause non-conformance must be identified and error-constraints must be generated to mark the

190 Chapter 10. Automatic Generation of Error-Constraints

non-conforming schemata as strong invalid. Both activities are explained in more detail in the

following two sections. Afterwards, the RIPM must be updated to contain the new error-con-

straints and the process must be executed again until no more non-conforming test inputs exist.

If no non-conforming test inputs exist, the current version of the RIPM can be considered as

conforming. However, this is no general statement and it is not valid for the entire exhaustive

test suite that is defined by the RIPM. It is only valid for the selected and evaluated test suite.

To increase the informative value of the statement, the conformance of more test inputs must be

checked. Therefore, the testing strength of t-wise valid coverage can be increased or the test in-

put selection can be randomized to select different test inputs that satisfy the same test adequacy

criterion. Then, the process for automatic generation of error-constraints starts again. Although,

the set of error-constraints is not empty and contains the already generated error-constraints. The

process can be completed if, on the other hand, the informative value is considered sufficient.

In the following two sections, the two activities of identifying minimal non-conforming schemata

and generating error-constraints are explained in more detail. Since this CRT process for au-

tomatic generation of error-constraints is idealized to illustrate and motivate the general idea,

solutions for the new activities and its challenges are discussed in-depth.

10.2. Identifying Non-Conforming Schemata 191

10.2. Identifying Non-Conforming Schemata

After having discussed the idealized process for automatically generating error-constraints, we

now discuss how to identify non-conforming schemata. We base the idea of identifying non-

conforming schemata on FC which is an additional activity in the CT and CRT test process.

First, we explain how FC works and then we discuss how to adapt FC to identify non-conforming

schemata.

FC is concerned with identifying MFCSs that can be held responsible for causing one or more

test inputs to fail [NL11a]. By knowing the MFCSs that cause test inputs to fail, finding and

fixing the related faults can be greatly simplified. To identify MFCSs, FCAs exist that describe

in detailed steps how to identify MFCSs and also how to automate the identification of MFCSs.

Roughly speaking, FCAs search for MFCSs by, first of all, considering all sub-schemata of

a failing test input as suspicious and then by searching for evidence to rule out as many sub-

schemata as possible (cf. [SNX05]; [LNL12]; [Gha+12]; [Niu+18]; [AGR19]). To rule out a

suspicious sub-schema, it is typically searched for a passing test input that covers the suspicious

sub-schema. Each sub-schema that is covered by a passing test input is not suspicious anymore

because a counter-example to the hypothesis is found. At the end, the remaining set of suspicious

sub-schemata is considered as failure-causing (static FCAs, cf. [YCP06]; [CM08]; [LCM19])

or additional test inputs are selected and executed to get more information and to rule out even

more suspicious sub-schemata (adaptive FCAs and interleaving FCAs) (cf. [SNX05]; [LNL12];

[Gha+12]; [Niu+18]; [AGR19]). Unfortunately, the FCAs only compute approximate solutions

because an exact solution is often times infeasible. Therefore, a variety of FCAs exist. The

FCAs can be assigned to one of three different types of FCAs: static, adaptive, or interleaving

FCA [NL11a]; [JK18].

With static FCAs, the entire test suite is selected and executed first [CM08]. Then, the in-

formation that can be derived from the test results is used to determine MFCSs. When using

conventional test selection strategies, not enough information is available to precisely determine

MFCSs. Therefore, dedicated test selection strategies exist that select test inputs in a way that

supports the identification of MFCSs. However, these dedicated test selection strategies typically

require more test inputs than conventional test selection strategies to satisfy the same test ade-

quacy criteria. Further on, they have only limited support for constraints (cf. [JST20]; [JT20])

and can only determine a limited number of MFCSs (cf. [CM08]; [LCM19]).

With adaptive FCAs, the entire test suite is selected and executed first. In the case of failing

test inputs, the test results are analyzed by an FCA and maybe more test inputs are selected

and executed until the FCA determines the MFCSs. With interleaving FCAs, test inputs are

selected and executed one at a time [Niu+18]; [AGR19]. In the case of a failing test input, an

FCA analyses the already executed test inputs and their results. Maybe the FCA selects and

execute more test inputs to determine the MFCSs. After the MFCSs are determined, the primary

test input selection and execution can continue until the next test input fails or the chosen test

adequacy criterion is satisfied. The advantage of interleaving FCAs over adaptive FCAs is that

the information about MFCSs can be directly used to influence test input selection. This way,

fewer test inputs are required because identified MFCSs can be directly excluded from further

test inputs.

192 Chapter 10. Automatic Generation of Error-Constraints

IPM-based

Classification

of Test Input

Test Oracle Conclusion

Relevant Pass Conforming

Relevant Fail Non-Conforming (Cex is under-constrained)

Irrelevant Pass Non-Conforming (Cex is over-constrained)

Irrelevant Fail Conforming

Table 10.3.: Conclusions for Conformance between a IPM and a SUT

To determine whether a test input is passing or failing and to identify MFCSs, a test oracle is

required to reveal failures. The way how a test oracle labels test inputs after execution determines

the FC and the results of FCAs. Besides using FCAs in combination with conventional test

oracles that reveal failures of SUTs to determine MFCSs, the idea of FC has already been used

to identify conformance faults between IPMs and SUTs.

As discussed in related work (Chapter 4, Page 57 and following), GARGANTINI et al. [GPR17]

use FC to automatically identify conformance faults and embedd FC into a process to automati-

cally repair IPMs. They assume that the other system is correct and check if the exclusion-con-

straints of the IPM are correctly aligned, i.e. if the IPM conforms to the other system.

While a conventional test oracle checks if a SUT behaves as expected for a given test input, the

test oracle used by GARGANTINI et al. checks if the given test input is a truly-relevant test input

according to another system. A conformance fault occurs if a test input is relevant according to

the IPM while the same test input is not relevant according to the other system and test oracle. Or

if a test input is irrelevant according to the IPM while the same test input is relevant according to

the other system and test oracle. In both cases, the IPM does not conform to the other system. In

the first case, the IPM and its exclusion-constraints are under-constrained. In the latter case, the

IPM and its exclusion-constraints are over-constrained. Table 10.3 (Page 192) summarizes the

four different conclusions when checking for conformance between an IPM and another system.

GARGANTINI et al. use the example of a compiler as a test oracle that checks for confor-

mance of a IPM that represents configurations of a highly-configurable system. Each test input

represents a configuration of the highly-configurable system and each test input for which the

compiler successfully builds the configuration highly-configurable system is considered as truly-

relevant. Each test input for which the compiler fails to build is considered as truly-irrelevant.

When a test oracle that checks for conformance faults is used in combination with FC, non-

conforming test inputs are further analyzed and FCAs search for MFCSs that represent minimal

non-conforming schemata. After minimal non-conforming schemata are identified via FC, the

exclusion-constraints can be repaired such that the IPM conforms to the SUT. For MFCSs that

are caused by under-constrained exclusion-constraints, the exclusion-constraints are strength-

ened. For MFCSs that are caused by under-constrained exclusion-constraints, the exclusion-

constraints are relaxed.

Here, we adopt the idea of finding conformance faults based on test execution to align RIPMs

with other systems, e.g. the exception conditions of SUTs. Therefore, we assume that the EH

of SUTs is correct. Furthermore, a test oracle is required that is able to distinguish standard and

10.2. Identifying Non-Conforming Schemata 193

Parameters:
p1 : Packages: 1, 3, 123
p2 : Country: UK, USA, 123
p3 : Phone: +44, +1, 123
p4 : Shipping: Standard, Express

Figure 10.4.: Incomplete RIPM for the Ordering Web-Service Example

exception behavior of SUTs. Since only valid test inputs are selected, a test oracle is required

to label truly-valid test inputs as passing and to label truly-invalid test inputs as failing. For

instance, a test oracle could label test inputs as failing whenever SUTs propagate exception

representations, respond with error-codes or error messages. Based on this information, FCAs

can search for MFCSs that represent truly-minimal invalid schemata that are not yet modeled by

error-constraints.

Running Example To illustrate the process for automatic generation of error-con-

straints and the identification of non-conforming schemata , Figure 10.4 (Page 193) de-

picts a RIPM for the ordering web-service example where the error-constraints are not

yet modeled. For the sake of simplicity, the known fault (cf. Figure 6.1, Page 113) that is

included in previous RIPMs is not considered here. The example implementation (List-

ing 2.1, Page 14) is considered to be correct. It is used as the other system to which the

RIPM should conform. Therefore, test inputs are selected and the other system classifies

them as truly-valid or truly-invalid according to the following validation rules.

1 if(isInvalidNumberOfPackages(packages)) return "INV_PACKAGES";
2 if(isInvalidCountry(country)) return "INV_COUNTRY";
3 if(isInvalidPhoneNumber(phone)) return "INV_PHONE";
4 if(isInvalidCountryCode(country, phone)) return "INV_CODE";

After executing the process for automatic generation of error-constraints, all strong

invalid schemata shall be correctly identified. They are depicted below.

[Packages:123]

[Country:123]

[Phone:123]

[Country:UK, Phone:+1]

[Country:USA, Phone:+44]

For this example, the TRT (Tuple Relationship Tree) [Niu+13] FCA is used as an in-

terleaving FCA in combination with the AETG [Coh+94]; [Coh+97] test selection strat-

egy and a testing strength of t = 1.

The first selected test input is truly-valid and therefore passes the test. As a conse-

quence, the coverage information is updated and AETG selects the next input. The second

test input is classified as truly-invalid (INV_PACKAGES) by the other system. Both test

194 Chapter 10. Automatic Generation of Error-Constraints

inputs are depicted below.

[Ph.:+1, Co.:USA, Sh.:Standard, Pa.:3] �→ SUCCESS

[Ph.:+44, Co.:UK, Sh.:Express, Pa.:123] �→ INV_PACKAGES

Consequently, the test fails and the FCA takes over control to identify the non-con-

forming schema to explain the failure. Since only two test inputs are executed until now,

the available information is insufficient to identify a non-conforming schema. Therefore,

the FCA selects additional test inputs and executes them until sufficient information is

available.

[Ph.:+44, Co.:USA, Sh.:Express, Pa.:123] �→ INV_PACKAGES

[Ph.:+44, Co.:123, Sh.:Express, Pa.:123] �→ INV_PACKAGES

[Ph.:+44, Co.:USA, Sh.:Express, Pa.:3] �→ INV_CODE

[Ph.:+44, Co.:123, Sh.:Express, Pa.:1] �→ INV_COUNTRY

[Ph.:+44, Co.:UK, Sh.:Express, Pa.:1] �→ SUCCESS

...

[Ph.:+44, Co.:UK, Sh.:Express, Pa.:3] �→ SUCCESS

Once sufficient information is available, [Packages:123] is correctly identified

as the non-conforming schema. Afterwards, the schema is stored internally to exclude it

from further test selection and the conventional test selection with AETG resumes.

[Ph.:123, Co.:123, Sh.:Standard, Pa.:1] �→ INV_COUNTRY

Since the very next test input is again non-conforming, the FCA again takes over

control. This time, two non-conforming schemata are identified because the first non-

conforming test input covers two, e.g. [Phone:123] and [Country:123].

The schemata are again stored and the conventional test selection with AETG resumes.

Since the previously selected and executed test inputs already satisfy t-wise valid cover-

age with t = 1, the identification of non-conforming schemata terminates at this point.

The two yet unidentified non-conforming schemata [Country:UK, Phone:+1]
and[Country:USA, Phone:+44] never appeared in test inputs selected by AETG.

To identify them, AETG must select test inputs that cover them. Therefore, a testing

strength t = 2 can be used.

Alternatively, the three identified minimal non-conforming schemata can be added

to the RIPM as error-constraints and the process for automated generation of error-con-

straints can be executed again with t = 1. The details how minimal non-conforming

schemata can be transformed into error-constraints is discussed in the next section.

Although the appearance of [Country:USA, Phone:+44] or [Country:UK,
Phone:+1] cannot be guaranteed when testing with t = 1, the probability may increase

because of the generated error-constraints.

10.2. Identifying Non-Conforming Schemata 195

In this example, a test input selected by AETG covers [Country:USA,
Phone:+44] which is then identified as non-conforming. After adding it to the RIPM

as a fourth error-constraint, [Country:UK, Phone:+1] is identified in a third iter-

ation of the process.

196 Chapter 10. Automatic Generation of Error-Constraints

10.3. Generating New Error-Constraints

After a FCA identified one or more MFCSs that represent truly-minimal invalid schemata, the

next step is to generate error-constraints in order to align the RIPM and the other system. The

generated error-constraints can then be used to update the RIPM such that the RIPM classifies the

truly-minimal invalid schemata as invalid. In this section, we discuss how identified MFCSs are

grouped and translated into logical expressions to generate separate error-constraints. Updating

the RIPM is a simple activity that does not require further discussion.

A simple strategy is to create a separate error-constraint for each identified MFCS. But then

no a-wise combinatorics are possible and all proposed test adequacy criteria (Chapter 7, Page

119 and following) are equivalent. Another simple strategy is to create one error-constraint

that contains all identified MFCSs. But since the parameters of all identified MFCSs are not

necessarily identical, additional schemata may be locally-specified (See Chapter 6, Page 111

and following). This is because the computation relies on a Cartesian product that is build of

the value domains of all parameters. As a consequence, test input selection can result in too

many test inputs and some EH may be tested redundantly or it can result in too few test inputs

and some EH may remain untested. A third simple strategy is to group MFCSs according to the

parameters they cover. Thereby, the computation of additional schemata is reduced but some

EH may remain untested when only a subset of schemata is selected for testing.

Running Example Continuing with the previous example and its five identified non-

conforming schemata, the next step is to group them according to the aforementioned

strategies. Therefore, we introduce keys and map the schemata to them.

The first simple strategy to generate separate error-constraints uses a distinct key for

each schema.

1 �→ [Packages:123]

2 �→ [Country:123]

3 �→ [Phone:123]

4 �→ [Country:UK, Phone:+1]

5 �→ [Country:USA, Phone:+44]

The second simple strategy to generate one error-constraint for all schemata relies on

one key for all schemata.

1 �→ [Packages:123]

1 �→ [Country:123]

1 �→ [Phone:123]

1 �→ [Country:UK, Phone:+1]

1 �→ [Country:USA, Phone:+44]

The third simple strategy uses the same key for the last two schemata because they

10.3. Generating New Error-Constraints 197

share the same set of parameters.

1 �→ [Packages:123]

2 �→ [Country:123]

3 �→ [Phone:123]

4 �→ [Country:UK, Phone:+1]

4 �→ [Country:USA, Phone:+44]

To ensure that each EH is tested, we rely on strategies that rely on the other system’s re-

sponse rather than structural properties of the identified MFCSs. In particular, we introduce the

following two strategies.

The Maximum Count Strategy For each MFCS, the maximum count strategy iterates over

all executed test inputs that cover the MFCS to identify the most frequent response, e.g. the most

frequent error code, of the other system. After the most frequent response is identified for each

MFCS, all MFCSs with the same most frequent response are grouped together.

The Isolation Strategy For each MFCS, the isolation strategy searches for a test input that

covers only the MFCS but no other MFCSs. Then, the response of the other system is attached

to the MFCS. After a response is attached to each MFCS, all MFCSs with the same attached

response are grouped together. An isolating test input is a test input that covers exactly one

MFCS. Since the MFCS represent non-conforming truly-minimal invalid schemata, an isolating

test input represents a truly-strong invalid test input. To find isolating test inputs, additional test

inputs may be necessary unless a FCA like MixTgTe [AGR19] is used that already searches for

isolating test inputs as part of the identification of MFCSs.

Running Example When using either the maximum count strategy or the isolation

strategy, the schemata are mapped to the error codes that each schema triggers in the

other system.

INV_PACKAGES �→ [Packages:123]

INV_COUNTRY �→ [Country:123]

INV_PHONE �→ [Phone:123]

INV_CODE �→ [Country:UK, Phone:+1]

INV_CODE �→ [Country:USA, Phone:+44]

After the identified MFCSs are grouped, error-constraints can be generated for one group at a

time. Therefore, let Gi denote a group of MFCSs with index i. To generate error-constraint ci,
the translate-schema(s) function translates each MFCS s ∈ Gi into a logical expression.

First, each parameter-value pair π = (p, v) ∈ s of the MFCS s is translated into a proposition

(p = v). Then, all propositions are combined via logical conjunction and the conjunction is

198 Chapter 10. Automatic Generation of Error-Constraints

negated.

translate-schema(s) = ¬
(∧

(p,v)∈s
(p = v)

)

Furthermore, all translated schemata of one group Gi are combined via logical conjunction as

described by the translate-group(G) function.

ci = translate-group(Gi) =
∧
s∈G

translate-schema(s)

Thereby, the error-constraint ci is not satisfied by each test input that covers at least one

schemata s of the group Gi. But error-constraint ci is satisfied by each test input that covers no

schemata of group Gi.

Running Example For instance, [Country:UK, Phone:+1] is translated into the

following error-constraint when using the first simple strategy.

¬(Country = UK ∧ Phone = +1)

When using either the maximum count strategy or the isolation strategy, [Coun-
try:UK, Phone:+1] and [Country:USA, Phone:+44] are grouped together

and translated into the following error-constraint.

¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = USA ∧ Phone = +44)

After all groups are translated, the RIPM can be updated to reflect the new conformance. We

neglect further details of updating the RIPM because we consider it to be a simple activity. When

updating the RIPM manually, the process execution terminates after all groups are translated.

The tester then adds the generated error-constraints to the stored representation of the RIPM.

Afterwards, the next iteration of the process for automatic generation of error-constraints is

started and the updated RIPM is used.

When updating the RIPM automatically, the generated error-constraints are added to the in-

memory representation of the RIPM and the next iteration of the process for automatic genera-

tion of error-constraints automatically uses the updated RIPM.

In this chapter, a process for automatic generation of error-constraints is introduced. Further-

more, the details of identifying non-conforming schemata and the details of generating error-

constraints are discussed. With this information, the idealized process for automatic generation

of error-constraints can be operationalized and executed. Thereby, the effort of modeling error-

constraints is reduced and becomes comparable to the effort of CT.

In the corresponding evaluation (Chapter 15, Page 259 and following), the general feasibility

of the process for automatic generation of error-constraints is demonstrated. Further on, the

suitability of FC and FCAs is further analyzed.

Chapter 11.

A Framework for Automated
Combinatorial Robustness Testing

Contents

11.1. Orchestrated Process . 199

11.2. Framework Architecture . 203

11.3. Implementation of coffee4j . 205

The advantages of CRT only become apparent through a high level of automation. Therefore,

the test selection strategies and supportive techniques presented in this work must be opera-

tionalized by appropriate tools and automation. This is not only important for the acceptance

and adoption of CRT in practice but also for the evaluation of this work.

In this chapter, we, therefore, present a process, an architecture and an implementation of a

tool that automates the test selection strategies and supportive techniques presented in this work.

The tool is designed as a reusable and extensible framework. First, the process of the framework

is illustrated. Afterwards, an architecture and an implementation are presented.

11.1. Orchestrated Process

The effort to model a RIPM is relatively low when compared to the manual design of test inputs.

Moreover, techniques like FC, the detection and repair of over-constrained RIPMs, or the auto-

matic generation of error-constraints can further support the test process and reduce the effort of

modeling RIPMs.

If, on the other hand, test selection strategies and supportive techniques have to be carried out

manually, the advantages of CRT are greatly reduced or do not even come into play as manually

following the algorithmic instructions is very tedious and cumbersome. Although the number

of test inputs is reduced by combinatorics, the number of test inputs is often still too high to be

executed manually. Therefore, it is important to not only automate the test selection strategies

and supportive techniques but also to automate the test execution and to integrate all activities

into a fully automated test process.

As already mentioned, the tool is designed as a reusable and extensible framework. In general,

frameworks define the control-flow and mostly act as orchestrators of configurable extension
points, for which a user can either choose between a selection of framework-provided options or

custom options [JF88].

200 Chapter 11. A Framework for Automated Combinatorial Robustness Testing

Figure 11.1.: Process of the Test Automation Framework

Frameworks play an important role in test automation. Because the orchestration is similar

from test project to test project, test selection strategies and supportive techniques can be ex-

tracted into a framework. The testers can then register their RIPMs, test scripts, and further

configurations via defined extension points and the framework orchestrates test selection, test

execution, and all other activities.

Figure 11.1 (Page 200) depicts the process that the framework implements. In the following,

the activities of the process are discussed. The first three activities are manual activities which

must be performed by the tester. They are highlighted in the figure by a gray background.

Model RIPM To automate test selection strategies and supportive techniques, it is necessary

to provide a meta-model structure that enables modeling of RIPMs with parameters, values,

exclusion--constraints, and error-constraints. The RIPMs must be available in later activities.

Define Parameterized Test Script To integrate all activities into a fully automated pro-

cess, it is of vital importance to automate the test execution. A test script encodes the sequences

of steps used to stimulate the SUT and to observe its behavior [UL07]. In the context of CRT,

we expect the same sequence of steps to be executed again and again with varying test inputs.

Therefore, we rely on parameterized test scripts which are test scripts with placeholders (vari-

ables) to represent variation points.

11.1. Orchestrated Process 201

Besides observing the behavior of a SUT for a test input, it is important to determine whether

the behavior is as expected or a failure. We assume the presence of an automated test oracle

which labels a test input as passing or failing. The test scripts must be available and executable

in later activities.

Configure the Process An important of this framework is its reusability and extensibility.

Although, processes are similar from test project to test project, there are subtle differences.

Hence, it is necessary to configure the framework for each test project and a corresponding

meta-model structure is required to describe configurations. Examples of configurations are

different test selection strategies shall be used during test input selection, the testing strength

that test suites shall satisfy, or the implementation of constraint handling that shall be used.

With these three manual activities, the framework can be configured and tailored to specific tst

projects and processes. Next, the activities that must be automated and integrated are discussed.

Detect and Repair of Over-Constrained RIPMs When enabled, the first automated ac-

tivity is to detect, explain, and repair conflicts among error-constraints. Therefore, the algo-

rithms for detection and semi-automatic repair of over-constrained RIPMs must be automated.

The input required is a RIPM as well as the configuration that defines which strategies for con-

flict detection and conflict diagnosis should be used. The results of this activity are identified

MISs, conflict sets, and minimal diagnosis hitting sets.

Depending on the configuration, the process can either be cancelled when MISs are detected,

or the process can continue with the information being used by the constraint solver (soft-con-

straint handling strategies) during test input selection.

Select Test Inputs To automate the selection of test inputs, an automated test selection strat-

egy is necessary. The input required is a RIPM as well as the configuration that defines which

test selection strategy to use and which testing strength to satisfy are required. Furthermore, the

configuration defines the constraint solver that should be used. In the case of soft-constraint han-

dling strategies, the information computed by the previous activity is also used. After executing

the automated test selection strategy, the output of this activity is a set of test inputs.

Execute Parameterized Test Script To automate the test execution, the parameterized

test script and the test suite of the previous activity are required. The parameterized test script is

instantiated for each test input of the test suite and executed. As the result of this activity, each

test input is labeled with pass or fail.

Characterize Faults When one or more test inputs fail, FC supports the tester in diagnosing

to identify the failure causes. Often, not the test inputs but covered MFCSs are responsible for

causing the failure. FC and its FCAs can automatically search for MFCSs.

Therefore, an automated FCA is necessary. As input, a FCA requires the IPM or RIPM, the

selected test inputs, and its results. Then, either MFCSs are computed when the available in-

formation is sufficient. Otherwise, additional test inputs are selected to increase the informative

202 Chapter 11. A Framework for Automated Combinatorial Robustness Testing

value. To label the additional test inputs with pass or fail, this activity must be able to trigger

the automated test execution for them. The result of this activity is a set of MFCSs.

Generate Error-Constraints As already discussed, CRT requires the additional effort of

modeling error-constraints. To also support the initial modeling of error-constraints, an automat-

able technique is introduced in this work. The technique utilizes the automated test execution

and the fault characterization to identify schemata that should be modeled by error-constraints

Therefore, the test oracle in the parameterized test script is not used to reveal failures of the

SUT. Instead, the SUT is considered to be correct and the test oracle is used to reveal noncon-

formity between the RIPM and the SUT. The identified minimal non-conforming schemata are

then translated into error-constraints.

Due to the conceptual difference between testing with FC, where faults in the SUT are ex-

pected, and the error-constraint generation, where errors in the system are ruled out, the activ-

ities are mutually exclusive. Either a SUT is tested and FC supports the diagnosis of failures

or error-constraints are generated and FC supports the identification of minimal non-conforming

schemata. For this it is important that the configuration and the test oracle in the test script match

either to test a SUT or to generate error-constraints.

It is important not only to automate the individual activities but also to automate the integra-

tion and orchestration of the entire process across individual activities. In the following chapter,

we therefore show an architecture that implements and integrates these activities.

11.2. Framework Architecture 203

Figure 11.2.: Architecture Overview of the Test Automation Framework

11.2. Framework Architecture

An overview of the architecture is shown in Figure 11.2 (Page 203). The architecture is based

on three layers. Thereby, the manual activities of modeling RIPMs, defining parameterized

test scripts, and configuring the process are decoupled from those automated activities that are

orchestrated by the framework. Further on, the details of the orchestration are decoupled from

algorithmic details.

The top layer is said to be platform-dependent while the other two layers are said to be plat-

form-independent. The top layer platform-specific orchestration is the interface to the tester.

This layer is platform-specific, because decisions such as the format of the user interface (graphi-

cal, textual, etc.) and the type of software (standalone, web, embedded in another test automation

framework, etc.) must be made at this level. The other two layers are platform-independent and

can be reused with different user interfaces and in different types of software.

In the following, the three layers are discussed in more detail.

The lowest layer platform-independent algorithmic contains implementations of four separate

automated activities for conflict detection and repair, test input selection, FC, and error-con-

straint generation. The fifth activity to instantiate a parameterized test script and to execute it for

a test input is not included in this layer because it is very technology-dependent.

These four automated activities can be further customized by choosing different algorithms.

Algorithms can be provided by the implementation of the framework or they can be added by the

tester. The algorithms only need to implement the appropriate interface and be selected in the

configuration. Then, the top layer will arrange the dependencies according to the configuration.

204 Chapter 11. A Framework for Automated Combinatorial Robustness Testing

Configurations and the management of dependencies will be explained in more detail in the

context of the top layer.

At the lowest layer, the four activities are realized. However, they are independent of each

other and not integrated. Therefore, there is the middle layer which is responsible for the or-

chestration of the activities.

The process orchestrator is the central concept of the middle layer. A concrete variant of

the orchestration represents a specific flow through the process which executes some of the four

automated activities and exchanges information between them. For instance, the sequential test
process orchestrator represents the ordinary test process to test a SUT with successive activities

for test input selection, test input execution, and FC. In contrast, the interleaving error-constraint
generator represents the process to generate error-constraints with the activities of test input

selection and identification of non-conforming schemata being interleaved.

Further implementations of the process orchestration are also possible. This allows new pro-

cess flows to be described and further activities to be integrated. For this purpose, only the

interface for process orchestration must be implemented and the configuration must refer to the

new implementation.

Besides orchestrating the activities of the lower layer, reporting and test input execution are

two important activities of the middle layer. The reporter activity is about communicating the

current status of the process such as test results, identified MFCSs or generated error constraints

to the user. Test input execution refers to the activity of instantiating the parameterized test script

for a test input, executing it, and returning a label pass or fail for the test input.

Since both reporting and execution are platform-specific, there are only interfaces for them

on the middle layer. The top layer must implement these interfaces and transfer instances to the

process orchestration via the management of dependencies.

The top layer represents the user interface to the tester, where testers provides their inputs for

the test, e.g. modeling RIPMs, defining parameterized test scripts, and providing configurations

for the processes. Furthermore, the tester is also informed about the current status of the process,

e.g. the currently executed activity, results of test input executions, or identified MFCSs.

Furthermore, the top layer acts as a trigger for the automatic activities when the 3 manual

activities are completed and the tester wants the other activities to start. After the trigger, the

platform-specific test engine is executed, which first reads the RIPM, the parameterized test

script and the configuration. Based on the configuration, a process orchestrator is then instan-

tiated and further dependencies such as the parameterized test script, the reporter and specific

algorithms for the four activities are arranged. Then, the process orchestrator is started, which

executes the process and its activities.

By the division into three layers, the different concerns can be strictly separated and the indi-

vidual concepts of each layer also remain interchangeable and reusable.

The process and architecture only describe the conceptual design of the framework. In order

to actually use the framework in practice and for evaluation, it must also be implemented. This

is described in the next section.

11.3. Implementation of coffee4j 205

11.3. Implementation of coffee4j

The process and architecture concepts shown above represent only a part of what is imple-

mented. With the support of 6 bachelor and master theses (cf. [Bon18]; [Kir19]; [Fri19];

[Ber19]; [Maß20]; [Bon20]), the framework is implemented using the Java1 programming lan-

guage and integrated into the JUnit2 platform for test automation. The implementation is called

coffee4j (combinatorial test and fault characterization framework for java) and published as

open-source3.

To introduce the coffee4j implementation, Listing 11.1 (Page 207) depicts a test for the

ordering web service example (Listing 2.1, Page 14). The example contains all three inputs that

are required from the tester: the RIPM (lines 3 to 32), the parameterized test script (lines 36 to

45), and the configuration (lines 34 and 35).

The configuration is the central link and the annotation @CombinatorialTest is manda-

tory for a combinatorial test to be recognised. Once the RIPM, the parameterized test script, and

the configuration are ready, JUnit is started, which recognises the @CombinatorialTest
annotation and thereby initiates our platform-specific test engine of coffee4j. As soon as

the platform-specific test engine is started, further configurations are evaluated and the RIPM is

retrieved. Depending on the configuration, the next step is to initialise a process orchestrator and

start the execution of the process.

The inputParameterModel = "model" attribute (line 34) of the @Combinatori-
alTest annotation provides a reference to the RIPM. Furthermore, @EnableGeneration
is used to select the sequential test process orchestrator. If another process orchestrator is to

be used, for instance the interleaving orchestrator, there are alternative annotations like @En-
ableInterleavingConstraintGeneration. Attributes such as algorithms = {
Ipog.class, IpogNeg.class} (line 35) can be used to further configure which algo-

rithms should be used in the automated activities.

The configuration is always attached to a parameterized test script. Therefore, no additional

reference is required. The parameterized test script is realized as a Java method with arguments

linked to the parameters of the RIPM. The link is established by another annotation @Input-
Parameter (lines 36 to 39). The realisation as Java methods allows describing the instructions

of parameterized test scripts with Java expressions and statements. Furthermore, all Java-based

objects and classes are supported by the arguments. Thereby, Java-based components can be

tested directly without the need to implement additional adapters and translators.

The referenced RIPM describes the parameters in the same way, whereby the types of the

parameters must match the types of the arguments. The RIPM is implemented as an object graph

and consists of a set of parameters with assigned values as well as a set for exclusion-constraints

and a set for error-constraints. To model a RIPM, there is a fluent API that matches the object

graph and improves the readability. To model a RIPM, other approaches are also possible, such

as reading files or interpreting other internal APIs, as long as this can be described within a static

method.

1See https://java.com (Last access on 1st December 2020).
2See https://junit.org (Last access on 1st December 2020).
3See https://coffee4j.github.io (Last access on 1st December 2020).

206 Chapter 11. A Framework for Automated Combinatorial Robustness Testing

As proposed by SHERWOOD [She14]; [She15]; [She16]; [She17], constraints are also realized

as methods with arguments rather than as expressions based on propositional logic. Although,

to work with the constraints in conflict detection or conflict diagnosis algorithms as well as in

test selection strategies, they are translated into schemata or logical expressions internally. Here,

the arguments of the methods are again linked to the parameters and the argument types must

also the parameter match. Constraints also have an optional name to reference them later, e.g.

as part of a test oracle.

The example shows the most important concepts of the coffee4j framework. Besides the

already mentioned process orchestrators sequential test process orchestrator and interleaving
error-constraint generator, the following algorithms are integrated into coffee4j for the fol-

lowing evaluation.

As test selection strategies, AETG [Coh+94]; [Coh+97], IPOG-C [Lei+07]; [Yu+13a]; [Yu+15],

and ROBUSTA with the entire IPOG-NEG〈∗, ∗〉 family of test selection strategies are imple-

mented. All test selection strategies are based on the suggestions by KLEINE & SIMOS [KS18].

Furthermore, the choco-solver4 library that provides a solver for CSPs and the fastutil5

library that provides fast collections for Java are particularly noteworthy.

For the detection and repair of over-constrained RIPMs, QuickXPlain [Jun04] is used as

a conflict detection algorithm and HS-Tree [Rei87]; [Fel+14] is used as a conflict diagnosis

algorithm.

Furthermore, FC and the automatic generation of error-constraints are based on FCAs. There-

fore, four FCAs are implemented: IDD [LNL12], OFOT [Niu+18], TRT [Niu+13], and MixTgTe
[AGR19].

With this, the concept consisting of a fault model, the RIPM structure, test adequacy criteria,

test selection strategies, and supporting techniques is completely operationalised and can be used

in practice as well as in the subsequent evaluation.

4See https://choco-solver.org (Last access 1st December 2020).
5See http://fastutil.di.unimi.it (Last access 1st December 2020).

11.3. Implementation of coffee4j 207

1 public class OrderingWebServiceTest {
2
3 private static InputParameterModel model() {
4 return inputParameterModel("ordering-web-service-model")
5 .parameters(
6 parameter("Packages").values(1, 3, null),
7 parameter("Country").values("UK", "USA", null),
8 parameter("Phone").values("+44", "+1", null),
9 parameter("Shipping").values(Standard, Express)

10).errorConstraints(
11 constrain("Packages")
12 .withName("INV_PACKAGES")
13 .by((Integer packages) -> packages != null),
14 constrain("Country")
15 .withName("INV_COUNTRY")
16 .by((String country) -> country != null),
17 constrain("Phone")
18 .withName("INV_PHONE")
19 .by((String phone) -> phone != null),
20 constrain("Country", "Phone")
21 .withName("INV_CODE")
22 .by((String country, String phone) -> {
23 if("UK".equals(country) && "+1".equals(phone))
24 return false;
25 if("USA".equals(country) && "+44".equals(phone))
26 return false;
27
28 return true;
29 }
30)
31).build();
32 }
33
34 @CombinatorialTest(inputParameterModel = "model")
35 @EnableGeneration(algorithms = { Ipog.class, IpogNeg.class })
36 void test(@InputParameter("Packages") Integer packages,
37 @InputParameter("Country") String country,
38 @InputParameter("Phone") String phone,
39 @InputParameter("Shipping") ShippingType shipping) {
40 final String result
41 = processOrder(packages, country, phone, shipping;
42 final String expectedResult = ...;
43
44 assertEquals(expectedResult, result);
45 }
46 }

Listing 11.1: Example of an Ordering Web Service Test

Part IV.

Evaluation and Conclusion

Chapter 12.

Overview of Evaluation

The research in this work is concerned with a design problem [Wie14], i.e. improving the

way how test inputs are selected by introducing a new test method and additional supporting

techniques. Design problems are in general a “call for a change in the real world and require an

analysis of actual or hypothetical stakeholder goals” [Wie14]. In this work, the design problem is

the invalid input masking effect caused by EH and the stakeholder goal is to minimize potential

causes by avoiding the invalid input masking effect.

A solution to a design problem is a design [Wie14]. An important characteristic of design

problems and their solutions is that many different solutions can exist. In this work, a newly

introduced CRT test method is a design. Although, it is only one design besides already existing

CRT test methods (See related work, Chapter 4, Page 55 and following). Since many designs

can exist for a single design problem, there is not only one correct and best design [Wie14].

Instead, designs must be evaluated by their utility with respect to the stakeholder goals.

In the following, our research questions and our evaluation approaches to conclusively answer

the research questions are discussed.

The first research question (Chapter 1, Page 7 and following) is a knowledge question about

the context of a design problem [Wie14], i.e. SUTs with EH that causes invalid input masking.

Research Question 1 How effective is CT and what are its shortcomings in detecting faults

when invalid input masking is present?

The answer to the knowledge question motivates the design problem as it explicates the prob-

lem of invalid input masking. The question is addressed by a controlled experiment (Section

5.1, Page 74 and following).

Evaluating Combinatorial Robustness Test Selection Strategies The remaining

five research questions target the design problem. The first two research questions target the

CRT test method directly while the remaining three research questions target supporting tech-

niques.

Research Question 2 How can the t-factor fault model be refined such that it explicitly de-

scribes robustness faults and the inherent invalid input masking effect?

Research Question 3 How can a CRT test method capture and utilize the additional infor-

mation for annotating invalid values and invalid value combinations to select test suites

that activate faults in the presence of invalid input masking?

212 Chapter 12. Overview of Evaluation

Research Question 3.1 How can the structure of IPMs be extended such that IPMs capture

semantic information that annotate invalid values and invalid value combinations?

Research Question 3.2 How can test adequacy criteria be defined such that their satisfaction

ensures the activation of faults as described by the refined t-factor fault model?

Research Question 3.3 How can test selection strategies be defined such that they select

small test suites that satisfy the test adequacy criteria?

These research questions provide a fine-grained structure to design a CRT test method. Be-

sides the design of our CRT test method which is discussed in the particular chapters, it is

important to demonstrate and evaluate that our CRT test method is more useful than previously

existing CRT and CT test methods.

In this regard, we evaluate our CRT test method as a whole by applying the developed test

selection strategies and do not compare individual parts of it. This is because the fault model

is based on a classification of robustness fault characteristics which is already assessed by the

case study on MFCSs. The developed test adequacy criteria are argumentatively distinguished

from existing test adequacy criteria and the relationships of test adequacy criteria among each

other are already discussed using the subsumption relation. Moreover, test adequacy criteria are

indirectly assessed through the test selection strategies that are designed such that they satisfy

test adequacy criteria while minimizing the number of required test inputs.

Since our CRT test method is already compared to existing CRT test methods in the related

work (Chapter 4, Page 55 and following), we focus on comparing our CRT test method to CT

test methods. Therefore, we first provide a theoretical discussion of worst-case space and time

complexity that allows comparing the developed test selection strategies with already existing

and commonly used test selection strategies.

The development of the CRT test method is motivated by an initial controlled experiment

that assesses weaknesses of the CT test method in the presence of invalid input masking. Con-

sequently, the question is raised whether the developed CRT test method performs better than

the existing CT test method. Therefore, we use another controlled experiment with comparable

settings to evaluate and compare the performance of CRT with the performance of CT in the

presence of invalid input masking. This controlled experiment requires an implementation of

the RIPM structure and of a test selection strategy which are then applied to select test inputs

according to one of the test adequacy criteria. Therefore, the controlled experiment evaluates

not only test selection strategies but the CRT test method as a whole.

A case study with an industry partner further allows evaluating the practical applicability of

the CRT test method and provides another way to compare the CRT test method with the CT test

method.

Evaluating Detection and Repair of Over-constrained RIPMs The first of the three

remaining research questions is concerned with over-constrained RIPMs which we experienced

while applying our CRT test method.

Research Question 4 How can inconsistent annotations of invalid values and invalid value

combinations be detected, identified, and resolved?

213

The CRT test method requires additional effort in modeling error-constraints. We further

acknowledge that it is easy to create over-constraints RIPMs resulting in incorrect partitions of

valid and strong invalid schemata. To support the repair of over-constrained RIPMs, techniques

to detect and repair conflicts are proposed. Further on, alternative and fully-automatable SCH

strategies are proposed to postpone the repair of over-constrained RIPMs.

Since no comparable approaches for the CRT test method exist yet, we cannot compare our

techniques with them. Therefore, we use benchmark RIPMs to conduct further experiments to

evaluate the general feasibility of our techniques and to make comparisons between them.

Evaluating Automatic Generation of Error-Constraints The automatic generation of

error-constraint is another approach to further reduce the effort of modeling error-constraints.

Research Question 5 How can values and value combinations that trigger EH of a SUT be

identified during testing and annotated as invalid?

As a constructive solution to this research question, we proposed a process that is based on

FC and we further proposed the usage of FCAs to identify schemata that trigger EH. Since again

no comparable approaches for the CRT test method exist yet, we cannot compare our techniques

with them. Instead, we evaluate the feasibility of the approach in general and the feasibility of

FCAs in terms of preciseness and completeness.

All research questions and all of the evaluations have now been discussed. The evaluations

are now being carried out in the following.

Chapter 13.

Evaluating Combinatorial Robustness
Test Selection Strategies

Contents

13.1. Theoretical Evaluation . 215

13.2. Experimental Evaluation . 219

13.2.1. Motivation . 219

13.2.2. Experiment Design . 219

13.2.3. Experiment Setup . 220

13.2.4. Experiment Scenarios . 221

13.2.5. Results and Discussion . 223

13.2.6. Threats to Validity . 226

13.3. Case Study-based Evaluation . 227

13.3.1. Motivation . 227

13.3.2. Case Study Design . 228

13.3.3. Results and Discussion . 230

13.3.4. Threats to Validity . 242

To compare the CRT test method with the CT test method, test selection strategies of each

method are applied and compared.

We first provide a theoretical evaluation regarding the worst-case time and space complexity.

Afterwards, we motivate and conduct a controlled experiment to assess differences in effective-

ness and efficiency. Finally, we conduct a case study and apply CRT as well as CT to real SUTs

from one of our industry partners to gather more information regarding the practicality of CRT.

13.1. Theoretical Evaluation

When directly comparing the ROBUSTA test selection strategy with other CT test selection

strategies, it becomes apparent that ROBUSTA has an additional indirection, i.e. the while-

loop, which separates the selections of test inputs for individual error-constraints and delegates

the selections to test selection strategies of the IPOG-NEG〈∗, ∗〉 family. Since IPOG-NEG〈∗, ∗〉
test selection strategies are based on IPOG-C, we can compare the complexity of ROBUSTA and

the IPOG-NEG〈∗, ∗〉 test selection strategies with IPOG-C.

Therefore, let t refer to the testing strength, let v refer to the largest domain size |Vi| ∈ V , and

let n refer to the number of parameters |P̃ |.

216 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

The space complexity of IPOG-C is dominated by the storage of t-sized schemata that must

be covered by the final test suite [Lei+07]; [Lei+08]. Every time the initial test suite is extended

by another parameter, at most
(
n−1
t−1

)
interactions among parameters exist which is in O(nt−1)

[Lei+07]; [Lei+08]. Further on, each interaction of parameters relates to at most vt schemata.

Therefore, the space complexity is in O(vt × nt−1).
Since the IPOG-NEG〈∗, ∗〉 test selection strategies are invoked sequentially and the schema

storage is not changed, the space complexity of IPOG-NEG〈∗, ∗〉 is also in O(vt × nt−1).
Because of the additional indirection, the worst-case time complexity of ROBUSTA is ap-

proximately the worst-case time complexity of IPOG-C and |Cerr|-times the worst-case time

complexity of IPOG-NEG〈∗, ∗〉.
To classify the time complexity more precisely, we first discuss the worst-case time complex-

ity IPOG-C. Afterwards, we transfer it to ROBUSTA and the IPOG-NEG〈∗, ∗〉 family of test

selection strategies.

As discussed by LEI et al. [Lei+07]; [Lei+08], the time complexity of IPOG (which does not

support constraint checking) is in O(vt+1 × nt−1 × log n). It is argued that the time complexity

of IPOG is dominated by the horizontal extension and the derivation is based on four pillars.

First, it takes O(1) to determine whether a t-sized schema is already covered by an existing

schema. Second, it takes O(nt−1) to determine the number of combinations covered by an

existing schema. Third, for v values, it takes O(v × nt−1) to determine the number of yet

uncovered t-sized schemata that are covered by an existing schema extended with a new value.

Fourth, the number of test inputs selected by algorithms like IPOG is in O(vt×log n) [Coh+97];

[KKL13]. Therefore, the overall time complexity is in O(v × nt−1 × vt × log n) which can be

shortened to O(vt+1 × nt−1 × log n).
In other words, the main operation this analysis is based on is the operation to find the new

value which covers most of the yet uncovered t-sized schemata when combining the new value

with an existing schema, i.e. O(v × nt−1).
The time complexity of IPOG-C comprises the time complexity of IPOG plus the time com-

plexity of the additional constraint checking. With IPOG-C, constraint checking is involved

every time a schema is extended with a new value to count the number of newly covered t-sized

schemata. CSPs are commonly solved by searching for a solution, for instance via backtracking
[RN10]. In the worst-case, backtracking has to check each possible schema in the solution space

and the number of checks is in O(vn). Assuming each check can be performed in constant time,

the time complexity of the main operation is in O(vn × v × nt−1).
The resulting time complexity of IPOG-C is in O(vn × v× nt−1 × vt × log n) which can be

shortened as follows.

O(vt+1+n × nt−1 × log n)

In the following, we discuss how the worst-case time complexity of IPOG-C can be trans-

ferred to the IPOG-NEG〈∗, ∗〉 family of test selection strategies. Since the IPOG-NEG〈∗, ∗〉
test selection strategies are based on IPOC-C, they only differ in the way how the interactions

of the initial test suite are computed and how the follow-up interactions between the initial test

suite and the remaining parameters are computed.

Therefore, we discuss how the time complexity with the focus on horizontal extension changes

for the different IPOG-NEG〈∗, ∗〉 test selection strategies.

13.1. Theoretical Evaluation 217

The value of the first variable a of IPOG-NEG〈a, ∗〉 determines the size of the initial test

suite. For IPOG-NEG〈∀, ∗〉, the value of variable a is equal to the number of parameters of

error-constraint ci, i.e. a = Indices(ci). For IPOG-NEG〈∃, ∗〉, the initial test suite consists of

exactly one schema.

The value of the second variable b of IPOG-NEG〈∗, b〉 determines the complexity of the

horizontal extension because the existing schemata are extended to cover all b-sized schemata

computed for the new parameter.. For b = 0, the horizontal extension as well as the horizontal

extension can be skipped. Although for technical reasons, the horizontal extension adds “do not

care” values to extend the initial schemata to cover n parameters. But the main operation of

counting yet uncovered schemata is not required.

For the three test selection strategies IPOG-NEG〈∀, b〉, 〈a, b〉, and 〈∃, b〉 with b-wise robust-

ness interactions (b > 0), the time complexity is similar to the time complexity of IPOG-C.

Although, the size of schemata that must be covered and consequently the size of the final test

suite are determined by b instead of t.

O(vb+1+n × nb−1 × log n)

For the three test selection strategies IPOG-NEG〈∀, 0〉, 〈a, 0〉, and 〈∃, 0〉 with no robustness

interactions (b = 0), the time complexity of horizontal extension would be linear without con-

straint checking. The time complexity growths with the number of parameters n instead of

v × nt−1 because during horizontal extension only “do not care” values are stored. But because

of the constraint checking, the time complexity is not linear, i.e. vn × n.

Further on, the size of the test suite is not in O(vt× log n) but in O(va) since it is determined

by the initial test suite. For IPOG-NEG〈∃, 0〉, the test suite size is more precisely one and in

O(1). Therefore, the time complexity of IPOG-NEG〈∀, 0〉 and IPOG-NEG〈a, 0〉 is as follows.

O(vn × n× va)

While for IPOG-NEG〈∃, 0〉, the time complexity is in O(vn × n× 1).

The complexity of IPOG-NEG〈∗, ∗〉 test selection strategies are individual for one particular

error-constraint. Therefore, IPOG-C should also be compared with ROBUSTA that selects valid

test inputs and strong invalid test inputs for all error-constraints.

To take the additional indirection of ROBUSTA as the dominant factor into account, we first

argue that the worst-case time complexities of all IPOG-NEG〈∗, ∗〉 test selection strategies are

in O(vb+1+n×nb−1× log n) because the IPOG-NEG〈∗, ∗〉 test selection strategies with robust-

ness interactions clearly subsume the ones with no robustness interactions. This results in the

following time complexity of ROBUSTA.

O(|Cerr| × vb+1+n × nb−1 × log n)

Again, the time complexity of IPOG-C is as follows.

O(vt+1+n × nt−1 × log n)

A comparison of IPOG-C and ROBUSTA is difficult because different values of testing strength

t and robustness interaction degree b are used to solve the same test problem. In general, it can

218 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

be seen that both test selection strategies grow exponentially in terms of t and b. Although RO-
BUSTA relies on error-constraints, increasing the number of error-constraints results only in a

linear growth of the time complexity.

While a faster selection of test inputs is preferable, longer times are usually acceptable since

the test inputs only have to be selected once. Therefore we empirically compare the strategies in

the following and focus on the number of executed test inputs and the number of detected faults.

13.2. Experimental Evaluation 219

13.2. Experimental Evaluation

13.2.1. Motivation

To assess whether a CRT test method was necessary in the first place, we conducted a controlled

experiment (Section 5.1, Page 74 and following) to evaluate how effective CT is in the presence

of invalid input masking.

To briefly summarize the findings, invalid input masking negatively affects the effectiveness of

the CT test methods and the effectiveness deteriorates with an increasing number of parameters

involved in EH. In order to mitigate the negative effects of invalid input masking, higher testing

strengths and larger test suites are required. Although, increasing the testing strengths is not

always sufficient because testing strengths beyond t ≥ 6 are generally considered impractical.

Based on these findings, the CRT test method is motivated and designed to avoid invalid input

masking based on separating valid and strong invalid test inputs.

Consequently, the objective of this evaluation is to compare the proposed CRT test method

with the CT test method. In particular, we aim to determine scenarios in which CRT and CT

perform equally and to determine scenarios when the negative effects of invalid input masking

cause CRT to perform better than CT.

Therefore, we conduct another controlled experiment where we select test inputs using RO-
BUSTA with the IPOG-NEG〈∀, b〉 test selection strategy. Further on, we use the IPOG-C test

selection strategy as a representative test selection strategy of the CT test method and compare

its results with the results of ROBUSTA.

The IPOG-C test selection strategy is chosen over the NIST Covering Array Tables that

we used in the first controlled experiment because it is more flexible in terms of number of

parameters and values.

The IPOG-NEG〈∀, b〉 test selection strategy is chosen because it subsumes the IPOG-NEG〈∗, ∗〉
family of test selection strategies. Thereby, it promises the highest effectiveness and also re-

quires the largest test suites among the IPOG-NEG〈∀, b〉 family of test selection strategies.

When IPOG-C is more effective than IPOG-NEG〈∀, b〉, we know that IPOG-C is also more

effective than the other IPOG-NEG〈∗, ∗〉 test selection strategies. In contrast, when IPOG-C is

less efficient than IPOG-NEG〈∀, b〉, we know that IPOG-C is also less efficient than the other

IPOG-NEG〈∗, ∗〉 test selection strategies.

13.2.2. Experiment Design

A common way for evaluating and comparing different test methods is to measure the number of

detected faults [Gri+06]. We measure it by means of fault detection effectiveness (FDE) [Pet15]

which allows us to compare test methods in terms of their effectiveness and efficiency.

FDE(T, SC) =
no. of faults detected by T

no. of all faults in TS

Please note in contrast to the first controlled experiment, we place several faults into one test

scenario. Therefore, the FDE is defined slightly different as the ratio of the number of faults

detected by test suite T and the number of faults in test scenario SC.

220 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

Further on, we consider the same SUT characteristics that affect the FDE of test suites which

are again discussed below.

Number of Parameters The more parameters a SUT has, the larger the exhaustive input

space is. Thus, a smaller proportion of the input space is covered by a test suite that satisfies

t-wise coverage. For n parameters with v values, the exhaustive input space is of size vn while

the size of a t-wise test suite is roughly vt log n [Coh+97]; [KKL13].

Number of Values With an increasing number of values, the exhaustive input space of a

SUT increases as well and a smaller proportion is covered by a t-wise test suite.

Degree of Invalid Input Masking The degree of invalid input masking is determined by

the number of parameters involved in an exception condition and by the number of values per

parameter that are involved in an exception condition.

For instance, a SUT with three parameters A, B and C each with two values has an exhaustive

input space of size 23 = 8. An exception condition A = 1 would initiate EH for four out of

eight possible inputs. Therefore, a 1-factor ordinary fault C = 2 covered by four possible inputs

would only be reached by two test inputs that do not contain A = 1.

If the three parameters consisted of three values each, the fault would be covered by nine

possible test inputs and only three of them would lead to EH. Thus, the reachability increases

from 2/4 to 6/9. If the exception condition of the original example with two values was extended

from A = 1 to A = 1 ∧ B = 1, EH would only be initiated for two inputs and the reachability

would increase from 2/4 to 3/4.

If the exception condition A = 1 ∧ B = 1 and the fault A = 2 ∧ B = 2 share the same

parameters, EH and fault detection are mutually exclusive. Then, increasing the number of

values does not change reachability.

Size of Faults The more parameter values are required to activate a fault, the harder it is

to detect it. The 1-factor fault C = 2 is covered by four out of eight possible test inputs. In

contrast, a 2-factor fault B = 2∧C = 2 is only covered by two out of eight possible test inputs.

13.2.3. Experiment Setup

There are three problems with experimentation to evaluate testing approaches [Off+01]: Choos-

ing a representative set of SUTs, choosing a representative set of faults, and choosing a repre-

sentative set of tests.

To reach the faults, it is important for the IPM or RIPM to contain all necessary parameters

and values. The reached faults must propagate to failures and the test oracle must reveal the

failures [LO17]. Otherwise, the comparison is less reliable.

For an experiment, it is important to control the influencing factors. Therefore, we create ar-

tificial test scenarios to (1) completely control the size of the input space, (2) completely control

the completeness and correctness of the IPMs and RIPMs, (3) completely control the number

13.2. Experimental Evaluation 221

and characteristics of faults, and (4) completely control reachability, infection and propagation

of faults to failures.

The test scenarios are described in terms of the aforementioned characteristics. Irrelevant

schemata are not considered in this experiment. Since they were excluded by both approaches,

we assume that it would only complicate the experiment but not affect the results.

For a given test scenario, one test suite is selected by IPOG-C using an IPM and additional

test suites are selected by ROBUSTA with different IPOG-NEG〈∗, ∗〉 test selection strategies

using a RIPM. The run method is executed for all test inputs and the FDE is based on the faults

detected by each test suite.

1 void run(int a1, ..., a5, boolean b1, ..., b5){
2 if(a1 == 1) { // exit without failure
3 } else if(a2 == 1) { // exit without failure
4 } else if(a3 == 1) { // exit without failure
5 } else if(a4 == 1) { fail("f1");
6 } else if(a5 == 1) { if(b1) { fail("f2"); }
7 } else {
8 if(a3 == 2 && a4 == 2) {
9 fail("f3");

10 }
11 }
12 }

Listing 13.1: Illustration of a Test Scenario Implementation

For further illustration, Listing 13.1 (Page 221) depicts an implementation of a test scenario.

Suppose we have five input parameters with five values each implemented as integer variables,

five binary configuration parameters implemented as boolean variables, and five exception con-

ditions consisting of one value each. The separation of normal and exception control-flows is

realized using if statements. The exception control-flows and different exception conditions

are implemented by if and else if statements whereas the normal control-flow resides in

the else statement. A fault is activated when the SUT is stimulated with the corresponding

schema and when the location of the fault is reached which is modeled by fail().

The illustration contains a 2-factor fault in the normal control-flow f3, a (1, 0)-factor config-

uration-independent robustness fault f1 and a (1, 1)-factor configuration-dependent robustness

fault f2 which is only reachable when configuration b1 is enabled.

The error-constraints are ignored by IPOG-C but considered by ROBUSTA to separate valid

from strong invalid test inputs. A corresponding IPM is depicted in Listing 13.1 and a corre-

sponding RIPM is depicted in Listing 13.2 (Page 222).

13.2.4. Experiment Scenarios

In this experiment, we use two base scenarios. To observe their impact on the FDE, they are

extended according to the aforementioned characteristics.

222 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

Parameters:

p1 : a1 V1 = {1, 2, 3, 4, 5}
p2 : a2 V2 = {1, 2, 3, 4, 5}
p4 : a2 V3 = {1, 2, 3, 4, 5}
p3 : a2 V4 = {1, 2, 3, 4, 5}
p5 : a5 V5 = {1, 2, 3, 4, 5}
p6 : b1 V6 = {1, 2}
p7 : b2 V7 = {1, 2}
p8 : b3 V8 = {1, 2}
p9 : b4 V9 = {1, 2}
p10 : b5 V10 = {1, 2}

Figure 13.1.: IPM for the Test Scenario

Parameters:

p1 : a1 V1 = {1, 2, 3, 4, 5}
p2 : a2 V2 = {1, 2, 3, 4, 5}
p4 : a2 V3 = {1, 2, 3, 4, 5}
p3 : a2 V4 = {1, 2, 3, 4, 5}
p5 : a5 V5 = {1, 2, 3, 4, 5}
p6 : b1 V6 = {1, 2}
p7 : b2 V7 = {1, 2}
p8 : b3 V8 = {1, 2}
p9 : b4 V9 = {1, 2}
p10 : b5 V10 = {1, 2}

Error-Constraints:

c1 : a1 �= 1
c2 : a2 �= 1
c3 : a3 �= 1
c4 : a4 �= 1
c5 : a5 �= 1

Figure 13.2.: RIPM for the Test Scenario

Base scenario 1 consists of five input parameters and five configuration parameters. It includes

five exception conditions of which each condition is unary and checks a separate input parameter.

The faults are activated by values of the same five input parameters. Thus, there is a mutual

exclusion between exception detection and fault detection.

Base scenario 2 consists of ten input parameters and five configuration parameters. It also

includes the same five exception conditions of which each condition is unary and checks a sepa-

rate input parameter. However, the included faults are triggered by values of the other five input

parameters that are not checked by exception conditions. Thereby, we can observe whether

the relationship between parameters involved in exception detection and parameters involved in

t-factor faults has an impact on the FDE.

Both scenarios have a fixed set of t-factor ordinary faults with factors of one to four because

these are the most common factors identified in empirical studies [KKL16]. In addition, they

also contain a fixed set of (a, b)-factor robustness faults. They have to be defined relative to the

exception conditions. A (a, 0)-factor robustness fault is always reached when the corresponding

exception condition is satisfied. In contrast, a (a, 2)-factor robustness fault is only reached

when the exception condition is satisfied and the fault-activating configuration is activated. The

robustness interaction degrees b range from zero to three.

The base scenarios are then extended such that (a) the number of values per parameter in-

creases and (b) the number of parameters increases. Further scenarios are then derived from

each extended scenario by increasing the number of parameters involved in the exception condi-

tions. The scenarios start with five unary conditions of which each checks a separate parameter.

The conditions are extended to check two values, e.g. a1 = 1 is extended to a1 = 1 ∧ a2 = 2,

three and four values, e.g. a1 = 1 ∧ a2 = 2 ∧ a3 = 3 ∧ a4 = 4.

13.2. Experimental Evaluation 223

Test

Scenarios
Descriptions

Parameters

& Values

t-factor

Ordinary Faults

(a, b)-factor

Robustness Faults

Exception

Conditions

1-1-1 Base Scenario 1

2555 15253545

(1, 0)5(1, 1)5(1, 2)5(1, 3)5 15

1-1-2 * Increase Size of Conditions (2, 0)5(2, 1)5(2, 2)5(2, 3)5 25

1-1-3 * Increase Size of Conditions (3, 0)5(3, 1)5(3, 2)5(3, 3)5 35

1-1-4 * Increase Size of Conditions (4, 0)5(4, 1)5(4, 2)5(4, 3)5 45

1-2-1 Increase No. of Values

3575 15253545

(1, 0)5(1, 1)5(1, 2)5(1, 3)5 15

1-2-2 * Increase Size of Conditions (2, 0)5(2, 1)5(2, 2)5(2, 3)5 25

1-2-3 * Increase Size of Conditions (3, 0)5(3, 1)5(3, 2)5(3, 3)5 35

1-2-4 * Increase Size of Conditions (4, 0)5(4, 1)5(4, 2)5(4, 3)5 45

1-3-1 Increase No. of Parameters

210510 15253545

(1, 0)5(1, 1)5(1, 2)5(1, 3)5 15

1-3-2 * Increase Size of Conditions (2, 0)5(2, 1)5(2, 2)5(2, 3)5 25

1-3-3 * Increase Size of Conditions (3, 0)5(3, 1)5(3, 2)5(3, 3)5 35

1-3-4 * Increase Size of Conditions (4, 0)5(4, 1)5(4, 2)5(4, 3)5 45

1-4-1 Increase No. of Param. & Values

310710 15253545

(1, 0)5(1, 1)5(1, 2)5(1, 3)5 15

1-4-2 * Increase Size of Conditions (2, 0)5(2, 1)5(2, 2)5(2, 3)5 25

1-4-3 * Increase Size of Conditions (3, 0)5(3, 1)5(3, 2)5(3, 3)5 35

1-4-4 * Increase Size of Conditions (4, 0)5(4, 1)5(4, 2)5(4, 3)5 45

2-1-1 Base Scenario 2

210510 15253545

(1, 0)5(1, 1)5(1, 2)5(1, 3)5 15

2-1-2 * Increase Size of Conditions (2, 0)5(2, 1)5(2, 2)5(2, 3)5 25

2-1-3 * Increase Size of Conditions (3, 0)5(3, 1)5(3, 2)5(3, 3)5 35

2-1-4 * Increase Size of Conditions (4, 0)5(4, 1)5(4, 2)5(4, 3)5 45

2-2-1 Increase No. of Values

310710 15253545

(1, 0)5(1, 1)5(1, 2)5(1, 3)5 15

2-2-2 * Increase Size of Conditions (2, 0)5(2, 1)5(2, 2)5(2, 3)5 25

2-2-3 * Increase Size of Conditions (3, 0)5(3, 1)5(3, 2)5(3, 3)5 35

2-2-4 * Increase Size of Conditions (4, 0)5(4, 1)5(4, 2)5(4, 3)5 45

Table 13.3.: Test Scenarios used in the Evaluation

To reduce the effect of accidentally discovered faults, e.g. a 3-factor fault is detected by a

2-wise test suite, and to break the symmetry of the SUT and IPM or RIPM, i.e. the faults and

the parameter values are ordered the same way, the parameters and values are randomly shuffled

and the execution is repeated ten times.

Table 13.3 (Page 223) depicts all test scenarios used in the evaluation. It uses an exponential

notation where xy refers to y parameters consisting of x values, y t-factor ordinary faults of fac-

tor x, and y exception conditions with x parameters. For (a, b)y-factor robustness faults, a refers

to the number of involved input parameters that form an invalid schema which is always simi-

lar to the parameters involved in exception conditions. b refers to the number of configuration

parameters necessary to make the fault reachable and y depicts the number of faults.

13.2.5. Results and Discussion

To compare IPOG-C and ROBUSTA, test inputs are selected with different testing strengths. For

IPOG-C, the testing strengths range from one to five. For ROBUSTA, the testing strengths range

from 1-0 to 4-3 where the first number represents the testing strength t used to select valid test

inputs and the second number represents the robustness interaction degree b.

All 24 scenarios are evaluated by IPOG-C with five different testing strengths and by RO-
BUSTAwith 16 different testing strengths. Each triple of test scenario, test selection strategy and

testing strength is computed ten times with randomly shuffled parameters and values. A subset

of the resulting 5040 computations is listed in Table 13.4 (Page 224). All data is available in

224 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

Strategy IPOG-C ROBUSTA

Strength 3 4 5 3-2 3-3 4-0 4-1 4-2 4-3

Scenario Size Eff. Size Eff. Size Eff. Size Eff. Size Eff. Size Eff. Size Eff. Size Eff. Size Eff.

1-1-1 199 0.88 923 0.99 3434 1.00 220 0.93 544 0.95 402 0.74 417 0.86 513 0.98 837 1

1-1-2 199 0.84 923 0.99 3433 1.00 344 0.94 814 0.95 845 0.74 865 0.86 989 0.99 1460 1

1-1-3 199 0.74 923 0.92 3433 0.99 335 0.93 508 0.95 916 0.74 936 0.86 1043 0.98 1216 1

1-1-4 199 0.55 923 0.76 3433 0.90 255 0.93 375 0.95 923 0.74 943 0.86 973 0.98 1092 1

1-2-1 552 0.86 3619 0.99 19428 1.00 603 0.89 1873 0.93 2041 0.69 2066 0.82 2278 0.96 3548 1

1-2-2 552 0.78 3619 0.97 19437 1.00 827 0.88 2326 0.92 3462 0.69 3493 0.82 3742 0.96 5242 1

1-2-3 552 0.63 3619 0.85 19437 0.97 809 0.88 1505 0.92 3617 0.69 3647 0.82 3867 0.97 4563 1

1-2-4 552 0.45 3619 0.69 19440 0.83 676 0.88 1044 0.92 3615 0.69 3645 0.82 3735 0.97 4103 1

1-3-1 324 0.91 1953 1.00 10737 1.00 473 0.96 1493 0.97 1367 0.72 1387 0.84 1580 0.99 2600 1

1-3-2 324 0.88 1949 1.00 10738 1.00 559 0.96 1757 0.96 1950 0.72 1970 0.84 2179 0.99 3378 1

1-3-3 324 0.77 1952 0.96 10740 1.00 547 0.95 1651 0.96 1962 0.72 1982 0.84 2180 0.99 3284 1

1-3-4 324 0.58 1954 0.84 10740 0.94 533 0.93 1515 0.95 1957 0.72 1977 0.84 2162 0.98 3144 1

1-4-1 881 0.90 7572 1.00 58759 1.00 1162 0.93 4379 0.96 5895 0.69 5925 0.81 6308 0.97 9525 1

1-4-2 881 0.82 7553 0.99 58723 1.00 1319 0.93 4839 0.95 7536 0.69 7567 0.81 7969 0.98 11490 1

1-4-3 881 0.67 7571 0.89 58724 0.99 1300 0.92 4579 0.94 7589 0.69 7619 0.81 8004 0.97 11283 1

1-4-4 881 0.50 7565 0.74 58715 0.90 1279 0.92 4272 0.94 7578 0.69 7608 0.81 7971 0.98 10964 1

2-1-1 324 0.85 1949 0.98 10741 1.00 473 0.94 1493 0.95 1369 0.72 1389 0.84 1582 0.99 2602 1

2-1-2 324 0.87 1950 1.00 10747 1.00 559 0.96 1757 0.96 1945 0.72 1965 0.84 2174 0.99 3373 1

2-1-3 324 0.78 1952 0.94 10747 0.99 547 0.94 1651 0.96 1966 0.72 1986 0.84 2184 0.99 3288 1

2-1-4 324 0.58 1949 0.82 10741 0.96 533 0.94 1515 0.96 1956 0.72 1976 0.84 2160 0.98 3143 1

2-2-1 881 0.85 7557 1.00 58725 1.00 1162 0.91 4378 0.94 5899 0.69 5929 0.81 6312 0.97 9528 1

2-2-2 881 0.80 7563 0.98 58728 1.00 1319 0.92 4839 0.93 7543 0.69 7573 0.81 7976 0.98 11497 1

2-2-3 882 0.66 7561 0.89 58768 0.99 1300 0.92 4579 0.94 7587 0.69 7617 0.81 8001 0.97 11280 1

2-2-4 882 0.49 7562 0.73 58715 0.91 1279 0.91 4272 0.93 7561 0.69 7591 0.81 7953 0.98 10946 1

Table 13.4.: Fault Detection Effectiveness and Test Suite Sizes for the Test Scenarios (Excerpt)

Appendix B (Page 335 and following). The presented sizes of test suites and computed degrees

of FDE are average numbers of the ten randomized executions.

ROBUSTA with a testing strength of 4-3 activates all faults. The result can be expected

because the seeded faults are at most 4-factor ordinary faults and (4, 3)-factor robustness faults.

But it also demonstrates the correctness of the test adequacy criteria and test selection strategies.

Lower testing strength are not sufficient. With a lower positive testing strength like 3-3, not all

4-factor ordinary faults in the normal control-flow are activated. With a lower negative testing

strength like 4-2, not all (4, 3)-factor robustness faults are activated.

In comparison, IPOG-C with t ≤ 5 does not activate all faults in all test scenarios. For the

test scenarios with unary exception conditions (1-1-1, 1-2-1, 1-3-1, ...), IPOG-C with a

testing strength of four activates almost all faults. The small deviations in FDE, e.g. 0.98 and

0.99 for test scenarios 1-1-1, 1-2-1, and 2-1-1, can be explained by invalid input masking.

It performs as well as ROBUSTA if you compare the sizes of test suites. If you consider the

additional effort to model error-constraints, IPOG-C is actually preferable because it requires

less work than ROBUSTA.

Test scenarios with exception conditions that consist of two or more parameters require higher

testing strengths. For a given testing strength, the FDE of IPOG-C decreases when the number

of parameters involved in exception detection increases because a (1, 3)-factor robustness fault

becomes a (4, 3)-factor robustness fault. As an example, the FDE decreases for a testing strength

of four from an average of 0.993 (39.7 of 40 faults are activated) for scenarios with unary condi-

tions to an average of 0.763 (30.5 of 40 faults are activated) for scenarios with 4-wise conditions.

On average, the FDE decreases by 0.22 percentage points which equates to roughly 9 faults that

13.2. Experimental Evaluation 225

remain undetected.

This phenomenon can be explained by considering (a, b)-factor robustness faults as a special

kind of t-factor faults (See Section 5.4, Page 109). Again, a (a, b)-factor robustness fault encom-

passes of a parameters that are involved in the exception sub-condition and b other parameters

that are involved in the configuration sub-condition which is also necessary to activate the fault.

When describing the same fault as a t-factor fault, the exception and configuration sub-condi-

tions are summarized as the activation sub-condition. Since a t-factor fault does not consider any

semantic information, an additional effective prevention sub-condition must be satisfied to pre-

vent any invalid input masking. As a consequence, a (4, 3)-factor robustness fault translates into

a t-factor fault of at least t ≥ 4 + 3. Depending on the parameters involved in the effective pre-

vention sub-condition, even more parameters may be involved. To reliably detect a (4, 3)-factor

robustness fault with IPOG-C, a testing strength of at least t = 7 would be necessary.

Since the test scenarios with unary exception conditions (1-1-1, 1-2-1, 1-3-1, ...) contain

at most 4-factor ordinary faults in the normal control-flow and at most (1, 3)-factor robustness

faults, test suites that satisfy 4-wise coverage detect almost all of them.

In that sense, test suites that satisfy 5-wise coverage are at least required for test scenarios with

binary exception conditions because (2, 3)-factor robustness faults must be activated. But even

though a 5-wise test suite improves the FDE, the time required for selection as well as the size of

the resulting test suite grow strongly. For every test scenario, ROBUSTA with IPOG-NEG〈∀, b〉
produces a smaller test suite which is at least as effective as (or better than) the test suite selected

by IPOG-C with a testing strength of t = 5.

This finding can be transferred to lower strengths as well. For instance, IPOG-C with a

testing strength of t = 3 generates a test suite that detects almost all t-factor faults with t ≤ 3
and almost all (a, b)-factor robustness faults with a + b ≤ 3. However, IPOG-C with a higher

testing strength is required for (a, b)-factor robustness faults with a + b > 3. Then, ROBUSTA
produces a result with fewer test inputs which is at least as effective as (or better than) IPOG-C.

Therefore, increasing the testing strength of IPOG-C is not always the best option. The

results indicate that IPOG-C with a testing strength of t is as effective as ROBUSTA as long

as the (a, b)-factor robustness faults can be considered a special kind of t-factor faults. When

(a, b)-factor robustness faults require a higher strength for IPOG-C, i.e. a+ b > t1, ROBUSTA
requires fewer test inputs and is more effective in terms of fault detection.

To summarize this experiment, the results indicate that IPOG-C with a testing strength of

t is effective in detecting - t1-factor faults with t1 ≤ t and all (a, b)-factor robustness faults

with a + b ≤ t. In contrast, ROBUSTA has the same or higher FDE and comparable or smaller

test suite sizes but requires additional work to model error-constraints. But for higher testing

strength, ROBUSTA is favorable because the test suites are much smaller and provide the same

or higher FDE.

The CRT test method with ROBUSTA is preferable over the CT test method for SUTs with EH

that involves many parameters and complex exception conditions. For less complex exception

conditions, the CRT test method performs as well as the CT test method. But additional effort

to model error-constraints is required.

In the following section, a case study is conducted to assess CRT and CT using real-world test

scenarios. Thereby, we also demonstrate how to reuse error-constraints as a test oracle which

226 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

further relativizes the effort to model them.

13.2.6. Threats to Validity

We compared the FDE of ROBUSTA with IPOG-NEG〈∀, b〉 and IPOG-C. Since the compari-

son is based on actual test input selection and execution, our results might depend on the im-

plementation of the test selection strategies as well as the implementation and design of the test

scenarios.

To ensure unbiased implementations of the test selection strategies, we follow the suggestions

for efficient implementations by KLEINE & SIMOS [KS18].

The test scenarios used for testing are artificial and do not necessarily represent real-world

scenarios. However, we explicitly stated the considered characteristics and measured the impli-

cations in the controlled experiment. Therefore, the findings can be used to decide between the

two alternatives in real-world scenarios.

To prevent faults being discovered by accident or because of symmetries between the IPM

or RIPMs and the parameter values of the SUT, the scenarios are randomized and executed ten

times. The presented numbers are average numbers.

To allow and support reproducibility of the experiment, all data is available in Appendix B

(Page 335 and following). Further on, the source code of the test selection strategies is published

as well (Section 11.3, Page 205 and following).

13.3. Case Study-based Evaluation 227

13.3. Case Study-based Evaluation

13.3.1. Motivation

In the previous section, a controlled experiment is conducted to assess the FDEs of CRT and CT.

The results show CRT to be as good as CT for SUTs with little EH and CRT to be more effective

and efficient than CT for SUTs with complex EH. However, the assessment is solely based on

artificial test scenarios. Since artificial test scenarios allow to design test scenarios with desired

properties, it remains unclear if these desired properties are equally important in real-world test

scenarios.

Therefore, we further compare CRT with CT guided by the following two research objectives.

Research Objective 1 Is the CRT test method applicable in real-world test scenarios?

Research Objective 2 How does the CRT test method compare with CT in real-world test

scenarios?

Furthermore, we hypothesize that error-constraints cannot only be used to guide the selection

of test inputs and to separate valid from strong invalid test inputs. We hypothesize that error-

constraints can further be used as a test oracle to decide whether or not a SUT correctly follows

the standard or exception behavior. This raises the following additional research objective.

Research Objective 3 How effective are test oracles that are based on error-constraints?

To demonstrate the applicability of CRT in real-world test scenarios and to compare CRT

with CT in real-world test scenarios, we conduct a case study. According to KITCHENHAM et

al. [KPP95], a case study helps to evaluate the benefits of methods and tools in industrial settings

and a case study provides a cost-effective way to ensure that process changes achieve the desired

results. When applied to compare methods and tools, a case study is of explanatory nature

“seeking an explanation of a situation or a problem” which “involves the testing of existing

theories in confirmatory studies” [RH09].

As RUNESON & HÖST state, a case study “will never provide conclusions with statistical sig-

nificance” [RH09]. However, it can provide sufficient information to help you judge if specific

technologies will benefit your own organization or project” [KPP95]. Since a case study has

by definition a higher degree of realism than a controlled experiment [RH09], a case study that

compares CRT with CT can provide additional insights that complement and extend the findings

of the previously conducted controlled experiment.

We again follow the guidelines for conducting and reporting case study research in software

engineering [RH09]. The guidelines consist of five steps and suggest defining the objectives and

planing the case study first. Second, procedures and protocols for data collection are defined.

Third, the case study is executed and data is collected. Fourth, the collected data is analyzed and

finally reported.

In the following subsection, we discuss the cases units under analysis as well as the data

collection procedure. Afterwards, the results are presented and discussed.

228 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

13.3.2. Case Study Design

Case under Analysis

Because only a small number of cases are analyzed in a case study, the cases should be selected

intentionally [RH09]. But unfortunately, when conducting case studies in industrial settings,

cases cannot be chosen freely. In fact, cases are often selected based on availability and depends

on the will of the industry partner and the availability of the industry partner’s resources [RH09].

In this case study, we have access to a case which we can use to compare CRT with CT. The

case is a software development project from an IT service provider of an insurance company.

It is concerned with the validation of data according to a set of validation rules and with the

storage or forwarding of data when it satisfies the validation rules. The case is from a project to

develop a new software to manage the life-cycle of life insurance contracts. It is the same project

which we analyzed in our previous case study (Section 5.3.2, Page 98 and following). While the

previous case study had a project-wide scope, this case study only focuses on a sub-system that

ensures applications for life insurances to be valid.

An application for a life insurance is passed to the sub-system in a hierarchical extensible

markup language (XML) format and it is checked if the insurance application satisfies a set

of validation rules. The order of the validation rules is predefined and the validation rules are

iterated for each insurance application. Whenever a validation rule is not satisfied by an insur-

ance application, a corresponding error code is returned and the remaining validation rules are

skipped (fail fast principle). If all validation rules are satisfied, the sub-system returns SUC-
CESS and the insurance application is further processed. Although, the further processing is out

of scope for this case study.

The validation rules are specified in a domain-specific language (DSL). They are automati-

cally transformed into source code that can be executed to verify an application. The automatic

transformation does not require testing in this context as it is based on an off-the-shelf framework

which is customized and extended. But to test the validation rules, no independent specification

exists since the validation rules and the source code are semantically equivalent.

Therefore, we consider the current set of validation rules as correct and treat the current im-

plementation as the specification. We use it as a specification to test earlier versions of the

validation rules. By browsing the source code repository, we could identify 13 changes that

have been made to the validation rules in order to correct them. Based on these 13 changes, 13

implementations can be reconstructed of which all deviate from the current set of validation rules

and of which each reconstruction contains a fault. Each change is a previously-existing fault that

is fixed in the current implementation. Since the software project is still under development, all

13 faults are fixed prior to release.

The case contains a set of 51 validation rules that are used to check incoming insurance

applications. Each validation rule is specified in a DSL which requires the validation rule to

be build as an implication that consists of two parts, i.e. isApplicable(application) ⇒
isValid(application). The first part, i.e. isApplicable(application), determines whether

the validation rule is applicable to the insurance application. Although, some validation rules are

always applicable. If the validation rule is applicable, the insurance application must be valid,

i.e. isValid(application). If not, the validation rule is ignored.

13.3. Case Study-based Evaluation 229

Because details of the case are confidential, a generic example is given to provide further il-

lustration of validation rules. The example depicts two validation rules to define maximum sums

that can be insured depending on the permissions of the insurance agents. The first validation

rule is applicable to all applications created by insurance agents with the highest level of permis-

sion. The second validation rule is applicable to all applications that are created by insurance

agents with lower permission level.

The distinction between the two validation rules is made by the first part of the implication:

Rule 1: isApplicable(application) :

application.agent.permission = highest_level

Rule 2: isApplicable(application) :

application.agent.permission �= highest_level

The second part of the implication is used to enforce the maximum insured sum. As an

application may consist of several partial contracts, the individual insured sums of all partial

contracts are collected first. Afterwards, it is checked whether the total sum exceeds the thresh-

old. While the structure of both rule’s isValid() parts is the same, different values for the

maximum_insured_sum constant are used:

isValid(application) :

total_sum =
∑

partial∈application
partial.insured_sum

total_sum ≤ maximum_insured_sum

This example shows that many parameters may be involved in a validation rule, that interme-

diate calculations may be required, and that intermediate calculations may be reused in different

validation rules. Therefore, the validation rules should be tested thoroughly.

Since not all validation rules for all types of life insurances are modeled yet, we focus on risk-

based life insurances which are already modeled. A subset of 31 validation rules is applicable

for risk-based life insurances. The remaining subset of 20 validation rules are not applicable to

risk-based life insurances and are therefore not further considered. All 13 faults can be detected

by testing with applications for risk-based life insurances.

Because of the direct access to the validation rules, we cannot only test the case with its fail
fast principle. But we can also iterate through all validation rules and collect all validation rules

that are not satisfied by an insurance application (we refer to this as the validate all principle).

Although this is a manipulation of the case, we use the validate all version besides the fail fast
version to further assess the impact of invalid input masking.

Data Collection Procedure

In this case study, data collection refers to the measurement and calculation of metric values

from modeled RIPMs and IPMs as well as from executed tests. The resources available from

the software development project are not directly analyzed and compared. Instead, they are used

230 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

to model RIPMs and IPMs that represent variations of insurance applications and to reconstruct

implementations for test execution.

In order to not consume too many resources of the industry partner, the RIPMs and IPMs

are solely developed by us. The tests are also executed solely by us. However, the models and

results are presented to the industry partner to receive feedback.

Based on RIPMs and IPMs, test inputs are selected using CT and CRT. Then, the test inputs

are executed to assess the effectiveness of identifying faults in the 13 reconstructed implementa-

tions. To reduce the effect of accidental fault detection that is caused by ordering, the parameters

and values of a test suite are randomly reordered and 20 different variants of each test suite are

generated.

Below, the definition of FDE is repeated [GOA05]; [Pet15]. A test suite T is denoted as

failing for a test scenario SC if at least one of the test inputs τ ∈ T detects the fault in SC and

the test suite consequently fails.

failing(T, SC) =

{
1 if ∃τ ∈ T that fails for SC
0 otherwise

Using the failing function, FDE is defined as the ratio between the number of test suites

T ∈ T ∗ of a family that fail for a test scenario SC and the number of all test suites in a family

T ∗ that is used to test SC. In this case study, a family of test suites contains 20 different variants.

In other words, the FDE is based on 20 randomized variants of a test suite that all satisfy the

same test adequacy criterion. They all are used to test the same test scenario.

FDE(T ∗, SC) =

∑
T∈T ∗ failing(T, SC)

|T ∗|

Further on, the AFDE denotes the average FDE over a family of test scenarios SC∗. Here,

the family of test scenarios SC∗ = {SC1, ..., SC13} consists of the 13 reconstructed implemen-

tations. AFDE represents the average effectiveness of CRT and CT equally distributed over the

13 faults.

AFDE(T ∗, SC∗) =
∑

SC∈SC∗ FDE(T ∗, SC)

|SC∗|
Based on the procedure and metrics described above, the case study is executed and its results

are reported and discussed in the following.

13.3.3. Results and Discussion

Modeling of IPM and RIPM

The data collection procedure requires IPMs and RIPMs of the sub-system to produce vary-

ing insurance applications that can be used to exercise all 31 validation rules. Since the FDE

and AFDE metrics highly depend on the quality of IPMs and RIPMs, a systematic modeling ap-

proach is necessary. Therefore, the IPM is modeled first and later extended with error-constraints

to model a RIPM.

13.3. Case Study-based Evaluation 231

The IPM is modeled iteratively for one validation rule at a time. In each iteration, parameters

and values are added to ensure that test inputs with the following three characteristics can be

selected:

(1) test inputs that are not applicable:

¬isApplicable(application)
(2) test inputs that are applicable and valid:

isApplicable(application) ∧ isValid(application)

(3) test inputs that are applicable but not valid:

isApplicable(application) ∧ ¬isValid(application)

In addition, some exclusion-constraints are introduced to ensure syntactic correctness of se-

lected test inputs. For instance, a test input should not cover information about a second in-

surance product when the insurance application only contains one sub-part. This cannot be

described in the SUT’s XML format and is therefore also not validated by the validation rules.

In testing, code coverage is an important metric to measure and describe the degree to which

source code is covered by a test suite (cf. [CMH16]). The three cases of test inputs with different

characteristics relate to function coverage, i.e. each validation rule has been called, and to branch

coverage, i.e. each branch of each validation rule has been called. By ensuring that a test suite

satisfies function and branch coverage of all validation rules, it can be assured that test inputs

for all three cases are selectable.

The IPM is considered as complete once the IPM contains all parameters and values necessary

to satisfy function and branch coverage. This is checked in every iteration by selection test inputs

for the IPM with IPOG-C and by stimulating the SUT following the validate all principle.

For the RIPM, error-constraints are required for an additional separation of valid and strong

invalid test inputs. Since we consider the current implementation of the sub-system as correct,

SUCCESS is returned for each truly-valid test input while an error code is returned for each truly-

strong invalid test input. The error-constraints are modeled iteratively and we add new or update

existing error-constraints until the separation of valid and strong invalid test inputs is equivalent

to the separation of truly-valid and truly-strong invalid test inputs. Therefore, we select valid and

strong invalid test inputs using ROBUSTA and again test the sub-system following the validate
all principle. The error-constraints are considered complete when (1) test suites selected by

ROBUSTA satisfy function and branch coverage, (2) the separation of valid and strong invalid

test inputs is correct, and (3) the RIPM is consistent and not over-constrained.

The complete IPM and RIPM are described below in exponential notation. For parameters

and values, xy refers to y parameters with x values. For exclusion- and error-constraints, xy

refers to y constraints with x parameters.

Parameters & Values: 9162514838212

Exclusion-Constraints: 23

Error-Constraints: 523628115

232 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

Selecting and Executing Test Inputs

After modeling the IPM and RIPM, both models are used to select sets of test inputs. Since

we compare CRT with CT, two different test selection strategies are used. ROBUSTA is used to

select test inputs for the RIPM and IPOG-C is used to select test inputs for the IPM.

To compare the FDE and AFDE of CRT with CT, test suites that satisfy different test adequacy

criteria are used. Therefore, we apply IPOG-C to select test suites that satisfy t-wise relevant

coverage for t ∈ {1, ..., 5}. Furthermore, we apply ROBUSTA to select test suites that satisfy t-
wise valid coverage with t ∈ {1, ..., 3} and that satisfy variations of the 〈∗, ∗〉-wise strong invalid

coverage. All six variants of the 〈∗, ∗〉-wise strong invalid coverage are used to select test inputs

that cover all strong invalid schemata (∀), some strong invalid schemata (∃), and a-wise strong

invalid schemata with a ∈ {1, 2, 3}. Since we do not expect configuration-dependent robustness

faults, zero robustness interactions and a low degree of robustness interactions b ∈ {0, 1} are

considered.

To reduce the effect of accidental fault detection caused by ordering, the order of parameters

and values is randomly reordered and 20 different variants are used to select test suites for each

test adequacy criteria. Table 13.5 (Page 233) depicts the average sizes of test suites that satisfy

the different test adequacy criteria. Since ROBUSTA encompasses two test adequacy criteria (t-
wise valid coverage and 〈∗, ∗〉-wise strong invalid coverage), the test suites are listed separately

and combined.

The largest test suite is selected by IPOG-C which is required to satisfy t-wise relevant cover-

age with t = 5 (15023.70 test inputs). The second-largest test suite is also selected by IPOG-C
to satisfy t-wise relevant coverage with t = 4 (2813.45 test inputs). The third-largest test suite

is selected by ROBUSTA and satisfies t-wise valid coverage with t = 3 and 〈∀, 1〉-wise strong

invalid coverage (2224.30 test inputs).

When comparing the test suite sizes of t-wise relevant coverage of IPOG-C with t-wise valid

coverage of ROBUSTA, it can be seen that the error-constraints drastically reduce the number of

valid schemata and consequently also the number of test inputs. Furthermore, it can be seen that

the different options of all (∀), some (∃), or a-wise strong invalid schemata have a much smaller

effect than the option for robustness interactions (b = 0 or b = 1). This is because strong invalid

coverage with the 〈∀, ∗〉 option is equivalent to the 〈∃, ∗〉 option for all error-constraints that

only specify one strong invalid schema. In addition, the 〈a, ∗〉 option is also equivalent to the

〈∀, ∗〉 option for all error-constraints with a or fewer parameters.

After test input selection, the test suites are used to stimulate the SUT in 13 different versions.

The current implementation is tested and no failing tests are expected to ensure no false positives.

In addition, the current implementation is tested following the validate all principle to further

illustrate the impact of invalid input masking. Moreover, the 13 reconstructed implementations

of which each contains one injected faults are tested to determine which test suites are able to

detect which faults.

Robustness Fault Characteristics

Now, the IPM and the RIPM are modeled, test suites that satisfy different test adequacy criteria

are selected, and different versions of the SUT are tested. Before analyzing the results of the

13.3. Case Study-based Evaluation 233

Test Adequacy Criteria t a b Size Test Adequacy Criteria t a b Size

t-wise relevant 1 - - 9.00 t-wise valid coverage 1 ∃ 0 36.00

coverage 2 - - 68.10 and 〈∗, ∗〉-wise 1 ∃ 1 208.30

3 - - 480.10 strong invalid coverage 2 ∃ 0 77.30

4 - - 2813.45 (continued) 2 ∃ 1 249.60

5 - - 15023.70 3 ∃ 0 296.95

t-wise valid 1 - - 7.00 3 ∃ 1 469.25

coverage 2 - - 48.30 1 1 0 74.60

3 - - 267.95 1 1 1 446.10

〈∗, ∗〉-wise - ∀ 0 301.00 2 1 0 115.90

strong invalid coverage - ∀ 1 1956.35 2 1 1 487.40

- ∃ 0 29.00 3 1 0 335.55

- ∃ 1 201.30 3 1 1 707.05

- 1 0 67.60 1 2 0 130.50

- 1 1 439.10 1 2 1 800.80

- 2 0 123.50 2 2 0 171.80

- 2 1 793.80 2 2 1 842.10

- 3 0 177.45 3 2 0 391.45

- 3 1 1121.65 3 2 1 1061.75

t-wise valid coverage 1 ∀ 0 308.00 1 3 0 184.45

and 〈∗, ∗〉-wise 1 ∀ 1 1963.35 1 3 1 1128.65

strong invalid coverage 2 ∀ 0 349.30 2 3 0 225.75

2 ∀ 1 2004.65 2 3 1 1169.95

3 ∀ 0 568.95 3 3 0 445.40

3 ∀ 1 2224.30 3 3 1 1389.60

Table 13.5.: Sizes of Test Suites that satisfy different Test Adequacy Criteria

testing, i.e. the FDE values per test suite family, the 13 faults are discussed first.

All 13 faults can be detected by test suites that are based on the IPM or RIPM. Five faults

can only be detected by invalid test inputs, while eight faults can be detected by both valid and

invalid test inputs.

The faults can also be classified according to our classification of robustness fault characteris-

tics (Section 5.2, Page 91 and following). We classify the five faults that can only be detected by

invalid test inputs first. Two faults can be classified as faults in exception propagation. In order

to reveal them, invalid test inputs must trigger EH which responds with an incorrect error code.

Three faults can be classified as faults in exception detection. The exception conditions are too

weak and do not detect invalid test inputs. Hence, the SUT does not reject the invalid test inputs

and incorrectly proceeds with their processing.

The remaining eight faults that can all be detected by both valid and invalid test inputs. They

are faults in exception detection. Four faults have exception conditions that are too strong and

therefore incorrectly detect exception occurrences for valid test inputs. The other four faults

have characteristics of being too weak and too strict at the same time because wrong parameters

with similar characteristics are used in the exception condition. As a consequence, a minimal

invalid schema may not violate the exception condition (too weak) while a valid schema may

not satisfy the exception condition (too strong).

234 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

Running Example Since concrete details of the specification and sub-system of the in-

dustry partner may not be published, we use the running example for illustration. There-

fore, let’s consider a validation rule of the example implementation (Listing 2.1, Page

14).

1 if(isInvalidNumberOfPackages(packages)) return "INV_PACKAGES";

Let’s assume this validation rule uses a wrong parameter in its exception condition, e.g.

Country instead of Packages.

1 if(isInvalidNumberOfPackages(country)) return "INV_PACKAGES";

This may cause minimal invalid schemata that cover an incorrect number of packages,

e.g. [Packages:123], not to be detected because the value for Packages is not

checked. Furthermore, this may cause valid schemata that cover a correct country code,

e.g. [Country:UK], to be incorrectly detected. Therefore, this fault can be detected

by both valid and invalid test inputs.

Although, there is another scenario in which this fault cannot be detected when both

schemata are accidentally combined, e.g. [Packages:123] and [Country:UK]
always appear together in the same invalid test inputs. Then, the exception behavior that

is expected for the minimal invalid schema is accidentally triggered by the combined

valid schema.

To reliably detect this type of fault with valid test inputs, it is necessary to simply test with

valid schemata that violate the incorrect exception condition. To reliably detect this type of fault

with invalid test inputs, it is important to combine the minimal invalid schema with different

valid schemata to prevent an accidental combination of the minimal invalid schema that should

trigger EH and the valid schema that incorrectly triggers the EH.

The remaining classes of robustness fault characteristics, i.e. fault in exception handler selec-

tion, fault in exception recovery, and fault in exception continuation, cannot appear in this case

study for technical reasons.

Fault Detection Effectiveness

Table 13.6 (Page 243) lists the FDE values for test suites that satisfy different test adequacy

criteria. For better readability, + is used to indicate an FDE value of 1.00. The faults Nos. 1 to

8 are the faults that can all be detected by both valid and invalid test inputs. The faults Nos. 9 to

13 are the faults that can only be detected by invalid test inputs.

Again, the FDE value is an average value for one test suite family with 20 different test suites

that are created by randomizing the order of parameters and values before selecting test inputs.

As an example, in the first row for fault no. 3, an FDE value of 0.75 means that 15 out of 20 test

suites detected the fault at least once per test suite.

The t-wise relevant coverage is listed twice. To provide a reference, the test suites are ad-

ditionally executed on SUT versions that follow the validate all principle. The validate all
principle allows discussing validation rules and their FDE values individually without consider-

ing the invalid input masking effect. The FDE values show that t = 3 is sufficient to detect all

13.3. Case Study-based Evaluation 235

faults individually if no prior validation rule causes invalid input masking. It further shows that

all parameters and values necessary to detect all faults are modeled in the IPM and RIPM.

With a testing strength of t = 2, t-wise relevant coverage is almost sufficient to detect all

faults. Only fault no. 5 has a FDE value of 0.95 which means that 19 out of 20 test suites are

able to detect the fault.

This result is in line with another observation. Overall, fault no. 5 is not reliably detected

by 18 test suite families which is the highest count among all faults. Although fault no. 12 is

also not reliably detected by 18 test suite families, the comparison is unfair because fault no.

12 cannot be detected by test suites for t-wise valid coverage. Therefore, fault no. 5 can be

considered as the fault that is the toughest to detect.

The strong impact of the invalid input masking effect becomes obvious when comparing the

results of t-wise relevant coverage for the validate all principle with t-wise relevant coverage

for the fail fast principle. Following the fail fast principle, t-wise relevant coverage with t = 3
is no longer able to detect all faults reliably. Instead only for three faults, a FDE value of 1.00

is computed and two faults are never detected (FDE value of 0.00). In general, the FDE values

increase when the testing strength t grows. But even with t = 5 (15023.70 test inputs), only 7

faults are detected reliably (FDE value of 1.00) and one fault is still never detected (FDE value

of 0.00).

The CRT test adequacy criteria are characterized by avoiding the invalid input masking effect.

Since all invalid schemata are excluded by t-wise valid coverage, the faults Nos. 9 to 13 cannot

be detected. But for all other faults, t-wise valid coverage has higher FDE values for the same

testing strength t when comparing it with t-wise relevant coverage. Because invalid input mask-

ing is avoided, a testing strength of t = 2 is sufficient to detect faults Nos. 1 to 8 reliably (FDE

values of 1.00).

The family of 〈∗, ∗〉-wise strong invalid coverage test adequacy criteria is able to detect faults

Nos. 9 to 13 reliably since strong invalid schemata must be covered to satisfy them. It can be

discussed in the two dimensions of robustness degree (∀, ∃, a) and robustness interaction degree

(b = 0, b > 0). Except for 〈∃, ∗〉 and 〈1, 0〉, the faults Nos. 9 to 13 are detected by all test

suites that satisfy 〈∗, ∗〉-wise strong invalid coverage. In general, the 〈∀, ∗〉 has the highest FDE

values when comparing it with 〈∃, ∗〉 and 〈a, ∗〉. With 〈∀, 0〉, 11 out of 13 faults can already be

detected reliably and the two remaining faults have high FDE values of 0.9 and 0.8. The option

〈∀, ∗〉 is directly followed by 〈a, ∗〉 with a = 3 and the FDE values decrease with decreasing a
values. 〈∃, ∗〉 performs the worst in this comparison

The effect of robustness interactions (b > 0) is even higher than different robustness degree

options. Except for 〈∃, 1〉 and 〈1, 1〉, test suites that cover robustness interactions detect almost

all faults reliably. Three faults cannot be detected reliably with 〈∃, 1〉, while only 1 fault cannot

be detected reliably with 〈1, 1〉.
Two faults (Nos. 7 and 8) require robustness interaction to be detected reliably. In fact, they

are the only two faults that are never reliably detected without robustness interactions. These are

two faults where the exception condition uses incorrect parameters. But also without robustness

interactions, the FDE values are high (0.90, 0.80, and 0.75 in one case). In these cases, we could

observe that the strong invalid schemata are accidentally combined with valid schemata that are

able to detect the fault.

236 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

Moreover, four faults that have too strong exception conditions and that actually require valid

test inputs to be detected are also reliably detected by 〈∀, ∗〉, 〈2, 1〉, and 〈3, 1〉. We could observe

that a strong invalid test input that is expected to violate the exception condition of the l-th vali-

dation rule is also expected to satisfy all prior validation rules from 1 to l− 1. Therefore, strong

invalid test inputs can be considered as “partially-valid” test inputs that are able to accidentally

detect faults that require valid schemata. This effect is strengthened by robustness interactions

because more test inputs are selected and more interactions are covered by them.

Typically, t-wise valid coverage and 〈∗, ∗〉-wise strong invalid coverage are combined by

ROBUSTA and the FDE values show that test suites for both test adequacy criteria complement

each other. Since valid and strong invalid test inputs are able to detect faults Nos. 1 to 8, the

FDE values are complemented by the combination of both test suites. Although the FDE values

of combined test suites are never worse than the FDE values of single test suites, the FDE values

of combined test suites are also not the sum of the FDE values of single test suites. This is due

to the fact that both test suites detect the same faults and the the FDE of both test suites overlaps.

For faults Nos. 9 to 13, the FDE values are not complemented by the combination of both

test suites. This is because test suites that only satisfy t-wise valid coverage cannot detect these

faults. Therefore, the FDE values of the combined test suites are the same as the FDE values of

the test suites that satisfy 〈∗, ∗〉-wise strong invalid coverage.

In order to detect all faults reliably, the 〈∗, ∗〉-wise strong invalid coverage must be selected

to detect faults Nos. 9 to 13 reliably. Further on, t-wise valid coverage and 〈∗, ∗〉-wise strong

invalid coverage must be selected to jointly detect faults Nos. 1 to 8 reliably.

Therefore, all combinations of t = 2 or t = 3 with 〈∀, ∗〉, 〈1, 1〉, 〈2, ∗〉, and 〈3, ∗〉 detect

all faults reliably. The options 〈∃, ∗〉 and 〈1, 0〉 cannot be used because they do not reliably

detect fault no. 12. Even though t = 1 is only sufficient to detect three of the first eight faults

reliably, the combination with 〈∗, ∗〉 improves the FDE. All faults can be detected reliably when

combining t = 1 with 〈∀, ∗〉, 〈2, 1〉, or 〈3, 1〉.
The discussion of the FDE shows which test adequacy criteria are appropriate to reliably

detect different types of faults. In the following, we now discussion the average FDE over all 13

faults (AFDE).

Average Fault Detection Effectiveness

Because AFDE values are average values over a set of faults, it allows making general statements

about the effectiveness of test adequacy criteria and it also allows making general statements

about the efficiency of test adequacy criteria. First, we discuss the effectiveness in terms of

AFDE values of different test adequacy criteria. Table 13.7 (Page 244) lists the AFDE values

for test suites that satisfy different test adequacy criteria. Afterwards, we discuss the efficiency

in terms of AFDE values in relation to test suite sizes as listed in Table 13.5 (Page 233).

The AFDE values reflect what we discussed before since they aggregate FDE values. Because

of the invalid input masking effect, test suites that satisfy t-wise relevant coverage only reach an

AFDE value of 0.62.

In direct comparison, test suites that satisfy t-wise valid coverage reach a maximum AFDE

value of 0.62 as well. The same AFDE value can be reached because they prevent invalid

input masking. However, the AFDE value cannot be further improved by increasing the testing

13.3. Case Study-based Evaluation 237

strength because faults Nos. 1 to 8 are already detected reliably and faults Nos. 9 to 13 cannot be

detected by valid test inputs. Comparing the two test adequacy criteria for each testing strength

individually shows that the AFDE value of t-wise valid coverage is always higher than the AFDE

value of t-wise relevant coverage.

For different configurations of 〈∗, ∗〉-wise strong invalid coverage, the lowest AFDE value

is 0.68 which is always higher than the AFDE values of t-wise relevant and valid coverage.

Furthermore, three (30%) different configurations have an AFDE value of 1 and therefore detect

all faults reliably. Seven (70%) different configurations have an AFDE value of 0.92 or higher

and therefore detect at least 12 of the 13 faults.

Overall, the combination of t-wise valid coverage and 〈∗, ∗〉-wise strong invalid coverage

performs the best. In the worst case, the AFDE value is 0.85 for the combination of t = 1 and

〈∃, 0〉. 18 different combinations have an AFDE value of 1.00 and detect all faults reliably. 27

different combinations have an AFDE value of 0.92 or higher and therefore detect at least 12 out

of the 13 faults.

When putting the AFDE values in relation to test suite sizes, it can be noted that t-wise

relevant coverage has the worst efficiency as it requires 15023.70 test inputs for an AFDE value

of 0.62. In contrast, t-wise valid coverage only requires 48.30 test inputs for an AFDE value

of 0.62. The best efficiency is offered by the combination of t = 2-wise valid coverage and

〈2, 0〉- wise strong invalid coverage which requires 171.80 test inputs for an AFDE value of

1.00. When using an AFDE value of 0.92 as a lower boundary (12 out of 13 faults), 〈2, 0〉-wise

strong invalid coverage requires only 123.50 test inputs for an AFDE value of 0.94.

This discussion about efficiency is, of course, influenced by the characteristics of the 13 faults

and cannot be generalized. But as more general statements, it can be observed that t-wise rel-

evant coverage requires more test inputs to reach a similar AFDE value than t-wise valid cov-

erage, 〈∗, ∗〉-wise strong invalid coverage, or the combination of both. At the same time, the

combination of t-wise valid coverage and 〈∗, ∗〉-wise strong invalid coverage has an AFDE

value of at least 0.85 while at most 2224.30 test inputs are used.

Therefore, we draw the conclusion that t-wise valid coverage, 〈∗, ∗〉-wise strong invalid cov-

erage, and the combination of both perform as well as or better than t-wise relevant coverage in

terms of effectiveness and efficiency. Although the findings are only derived from one particular

case. Therefore, we do not consider this to be true for all SUTs but for SUTs with many valida-

tion rules. This finding is also consistent with our experimental evaluation (Section 13.2, Page

219 and following).

Effectiveness of Error-Constraint-based Test Oracle

In addition to the IPM and RIPM, a test oracle is required to reveal failures that are caused by

faults activated by the selected test inputs. Since the current implementation of the sub-system

functions as the specification, it can also be used as a test oracle. Then, a failure is revealed

whenever the output of a previous implementation deviates from the output of the current imple-

mentation. However, having an implementation that can function as a test oracle is not always

the case in practice. Therefore, we construct a test oracle that is based on the error-constraints.

Error-constraints partition relevant inputs into valid and strong invalid test inputs. Valid in-

puts are expected to stimulate standard behavior while invalid inputs are expected to stimulate

238 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

exception behavior. From this, a test oracle can be derived to check that EH is not initiated for

valid test inputs but is always initiated for invalid test inputs. For each relevant test input that

satisfies all error-constraints, some standard behavior is expected. For each relevant test input

for which at least one error-constraint remains unsatisfied, some exception behavior is expected.

For invalid test inputs, the exception behavior can be specified more precisely by distinguish-

ing different exception behaviors for different error-constraints. For instance, a label that en-

codes an exception representation can be assigned to each error-constraint. Then, a strong in-

valid test input that does not satisfy a particular error-constraint is expected to induce exception

behavior that matches the assigned label.

Running Example Since concrete details of the specification and sub-system of the

industry partner may not be published, we use the running example to illustrate the test

oracle construction. The RIPM of Figure 6.1 (Page 113) contains four error-constraints

to which the following labels can be attached.

c1 �→ INV_PACKAGES

c2 �→ INV_COUNTRY

c3 �→ INV_PHONE

c4 �→ INV_CODE

The error-constraints correspond to the four validation rules of the example imple-

mentation (Listing 2.1, Page 14) and the attached labels have a one-to-one mapping to

the error codes of the example implementation.

1 if(isInvalidNumberOfPackages(packages)) return "INV_PACKAGES";
2 if(isInvalidCountry(country)) return "INV_COUNTRY";
3 if(isInvalidPhoneNumber(phone)) return "INV_PHONE";
4 if(isInvalidCountryCode(country, phone)) return "INV_CODE";

As an example, the strong invalid test input [Packages:123, Country:UK,
Phone:+44, Shipping:Standard] does not satisfy error-constraint c1. There-

fore, the SUT is expected to return the error code INV_PACKAGES.

When selecting test inputs ROBUSTA, only valid and strong invalid test inputs are selected

and the test oracle can be used as describe beforehand. In this case study, the test oracle is

able to reveal all faults for all valid and strong invalid test inputs. The partitioning of error-

constraints is as powerful as the current implementation. Especially because the output of the

current implementation is either SUCCESS or an error code.

If the output of the current implementation was more detailed, the current implementation

would be able to reveal more failures beyond the simple partitioning of standard and exception

behavior. Hence, the test oracle based on error-constraints is especially useful when testing

validation rules. But the test oracle based on error-constraints can also be useful as an additional

test oracle. This is especially true because the construction does not require much effort when

the corresponding RIPM and its error-constraints already exist.

If the RIPM and its error-constraints do not exist yet, error-constraints and the test oracle can

13.3. Case Study-based Evaluation 239

be modeled iteratively. Therefore, parameters and values are modeled such that the exception

conditions can be satisfied and validated. Then, error-constraints are modeled one at a time and

refined until test inputs that satisfy the error-constraint also satisfy the exception condition and

until test inputs that do not satisfy the error-constraint also violate the exception condition. The

modeling can be considered complete when the partitioning is correct for all validation rules and

its exception conditions.

In this case study, the IPM and RIPM are modeled depending on an implementation that is

considered to be correct rather than on a non-executable specification. Therefore, the complete-

ness of the RIPM and the test oracle can also be checked by selecting test inputs with ROBUSTA
and by measuring its code coverage.

When no explicit specification exists, the RIPM and its error-constraints can be modeled de-

pending on the SUT. When the error-constraints are modeled such that they reflect the partition-

ing of the SUT, the tester can decide in each iteration if the partitioning of the SUT is consistent

and correctly reflects the intended behavior.

We follow this approach when modeling the error-constraints for this case study and we could

identify three inconsistent exception conditions. One inconsistency is concerned with incor-

rect positions of parentheses, e.g. an inconsistent formula ((a ⇒ b) ∨ c) is used instead of

(a ⇒ (b ∨ c)). The other two inconsistencies are concerned with subparts of insurance appli-

cations. One insurance application may encompass one to several sub-applications of different

insurance products. Two validation rules check whether one subpart satisfies a certain precon-

dition and then enforce satisfaction of a second condition in all subparts. However, it seems

more reasonable to enforce the satisfaction of the second condition only in those subparts that

also satisfy the precondition. Let sp ∈ SP denote a subpart, let P (a) denote the precondi-

tion as a predicate, and let Q(a) denote the second condition. Then, an inconsistent formula

(∃sp ∈ SP, P (sp)) ⇒ (∀sp ∈ SP,Q(sp)) is used instead of ∀sp ∈ SP, P (sp) ⇒ Q(sp).

Although, we did not receive detailed feedback on the three inconsistencies and cannot con-

firm that they are actual faults. But nevertheless the identification of inconsistencies demon-

strates that faults can already be detected while modeling error-constraints.

At this point, one can conclude that test oracles based on error-constraints are effective during

testing and also able to reveal faults during the modeling of error-constraints. However, two

more observations are made while modeling the error-constraints in this case study.

First, when using the test oracle with ROBUSTA, all selected test inputs are valid or strong

invalid which makes the expected error code unambiguous. Since ROBUSTA is compared with

IPOG-C during this case study, the test oracle is also used for test inputs selected by IPOG-C.

These test inputs are valid or invalid but not necessarily strong invalid.

This has implications for the test oracle because a test input that does not satisfy two or more

error-constraints is still expected to return only one error code. But the error code depends on

the particular ordering of the validation rules because the first violated validation rule determines

the error code.

The test oracle can be adjusted in two ways. Either the order of validation rules can be

encoded in the test oracle such that the first unsatisfied error-constraint determines the expected

error code. With this adjustment, the test oracle is implementation-specific and a SUT passes

the test only if the order of validation rules is equal to the order of error-constraints. Or the test

240 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

oracle can be extended such that it computes a set of expected error codes and a SUT passes the

test if With this adjustment, the test oracle becomes imprecise because a SUT passes the test if

the actual error code equals to one of several expected error codes.

Both adjustments are a consequence of the invalid input masking effect which can be mitigated

by using strong invalid test inputs. Especially because this test oracle requires the existence of

error-constraints and the previous discussion indicates that ROBUSTA is more efficient than

IPOG-C. The advantage of IPOG-C not requiring the effort to model error-constraints is void

when using a test oracle based on error-constraints. Therefore, we believe the combination of

IPOG-C and a test oracle based on error-constraints is a special case that is only relevant for

comparative studies and not relevant for practical use.

Running Example A not-strong invalid test input like [Packages:1, Coun-
try:123, Phone:123, Shipping:Standard] for the RIPM of Figure 6.1

(Page 113) does not satisfy two error-constraints c2 and c3.

When considering the order of error-constraints, the expected error code INV_-
COUNTRY of error-constraint c2 must be returned by the SUT. This is true for the ex-

ample implementation (Listing 2.1, Page 14). But it is not true for a different order of

validation rules as illustrated below. Here, the order of validation rules Nos. 2 and 3 is

changed and the SUT would return INV_PHONE instead.

1 if(isInvalidNumberOfPackages(packages)) return "INV_PACKAGES";
2 if(isInvalidPhoneNumber(phone)) return "INV_PHONE";
3 if(isInvalidCountry(country)) return "INV_COUNTRY";
4 if(isInvalidCountryCode(country, phone)) return "INV_CODE";

When accepting some imprecision, the test oracle may accept one of several expected

error codes. In this case, the SUT is expected to either return the error code INV_-
COUNTRY or INV_PHONE and both ordering are considered valid.

Second, validation rules may be overlapping in practice and promote over-constrained RIPMs.

Although, the over-constrained RIPMs can still be used for a test oracle in combination with

IPOG-C. Or the over-constrained RIPMs can be repaired to function for ROBUSTA and for a

test oracle.

Running Example Since concrete details of the specification and sub-system of the

industry partner may not be published, we again use the running example for the illustra-

tion. Again, imagine a different order of validation rules for the example implementation

(Listing 2.1, Page 14).

1 if(isInvalidCountryCode(country, phone)) return "INV_CODE";
2 if(isInvalidNumberOfPackages(packages)) return "INV_PACKAGES";
3 if(isInvalidCountry(country)) return "INV_COUNTRY";
4 if(isInvalidPhoneNumber(phone)) return "INV_PHONE";

In addition, imagine that isInvalidCountryCode(country, phone) not

only returns false for invalid combinations like [Country:UK, Phone:+1] but

also for the combination of two invalid values [Country:123, Phone:123].

13.3. Case Study-based Evaluation 241

Then, a not-strong invalid test input that is selected by IPOG-C and that covers

[Country:123, Phone:123] would stimulate the SUT to return INV_CODE in-

stead of either INV_COUNTRY or INV_PHONE. Consequently, the test would fail.

Strong invalid test inputs that are selected by ROBUSTA would either cover [Coun-
try:123] or [Phone:123]. Consequently, INV_CODE would never be returned for

the invalid values and the test would not fail. Although, this part of the validation rule

would remain untested.

For not-strong invalid test inputs, the error-constraint c4 could be extended to c′4 as

follows. Because c2 and c3 already define [Country:123] and [Phone:123] as

invalid, this extension results in an over-constrained RIPM with conflicts between c′4, c2,

and c3.

c2 :Country �= 123

c3 :Phone �= 123

c4 :¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = USA ∧ Phone = +44)

c′4 :¬(Country = UK ∧ Phone = +1) ∧ ¬(Country = USA ∧ Phone = +44)

∧ ¬(Country = 123 ∧ Phone = 123)

Using an over-constrained RIPM as a test oracle is not a problem because for a test

input that covers a schema like [Country:123, Phone:123], either INV_CODE,

INV_COUNTRY, or INV_PHONE are expected.

However, the over-constrained RIPM should not be used for test selection and as a

test oracle because no strong invalid test inputs could be selected that cover [Coun-
try:123, Phone:123]. As a solution, the error-constraints c2 and c3 could be

relaxed such that they do not conflict with c′4. When using the semi-automated repair

technique (Section 9.2, Page 169 and following), the relaxed error-constraints are as fol-

lows.

c′2 :Country �= 123 ∨ (Country = 123 ∧ Phone = 123)

c′3 :Phone �= 123 ∨ (Country = 123 ∧ Phone = 123)

They can also be rewritten to the following expressions which emphasize the invalid

schemata they model.

c′2 :¬(Country = 123 ∧ Phone = +1) ∧ ¬(Country = 123 ∧ Phone = +44)

c′3 :¬(Country = UK ∧ Phone = 123) ∧ ¬(Country = USA ∧ Phone = 123)

Instead of defining [Country:123] and [Phone:123] as invalid, invalid

schemata that cover Country and Phone are used to separate schemata for which

INV_COUNTRY or INV_PHONE is expected from the schemata for which INV_CODE
is expected.

To conclude this comparison of the CRT test method with the CT test method, t-wise valid

242 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

coverage, 〈∗, ∗〉-wise strong invalid coverage and the combination of both performs as well as

or better than t-wise relevant coverage in terms of effectiveness and efficiency.

The t-wise valid coverage avoids invalid input masking and performs better than t-wise rele-

vant coverage for faults that an be detected by valid test inputs. The 〈∗, ∗〉-wise strong invalid

coverage performs better than t-wise relevant coverage and the combination of both has the best

performance.

When considering different configurations of 〈∗, ∗〉-wise strong invalid coverage, 〈∀, ∗〉 and

〈a, ∗〉 with a with higher values should be considered as they detect all faults almost always. In

contrast, 〈∃, ∗〉 and 〈a, ∗〉 with a = 1 require the smallest test suites for their satisfaction but

also provide the lowest AFDE values.

Accidental combinations of strong invalid schemata and valid schemata are able to detect

faults that actually require robustness interactions. When selecting test inputs with robustness

interaction, the effectiveness is further improved but substantially more test inputs are required.

Moreover, strong invalid test inputs can be considered as “partially-valid” test inputs that can

also detect faults similar to valid test inputs selected by t-wise valid coverage.

When a test oracle is already available, the CT test method has the advantage of less modeling

effort because error-constraints are not needed. Then, the decision whether to choose CRT or

CT is a trade-off between additional effort in modeling error-constraints or additional effort in

execution more test inputs.

When a test oracle not yet available, it is demonstrated that error-constraints can be used to

construct effective test oracles. Then, the CRT test method should be used because the effort of

modeling error-constraints is distributed while still fewer test inputs are required when compar-

ing it with the CT test method.

13.3.4. Threats to Validity

We compared the effectiveness of the CRT test method using an implementation of the RO-
BUSTA test selection strategy with the CT test method using an implementation of the IPOG-C
test selection strategy. Therefore, test inputs are selected to satisfy different test adequacy cri-

teria. To ensure an unbiased implementation, both implementations follow the guidelines of

KLEINE & SIMOS [KS18].

The effectiveness of CRT and CT highly depend upon the IPM and RIPM. To avoid any bias,

both the IPM and RIPM are modeled systematically and share the same set of parameters and

values. To prevent falsified results due to accidental fault triggering, the orders of parameters and

values are randomized and 20 different variants are used in test input selection. All presented

FDE values are average values.

Since this is a case study with only one case, it is difficult to generalize the findings [RH09].

Further on, it has to be noted that the archival data of this case study is only a snapshot and the

ground truth, i.e. the existing and previously-existing faults, is unknown. Hence, the data can be

biased towards simpler faults that are easier to detect. To prevent too far-reaching conclusions,

we describe the characteristics of the SUT and also limit our conclusions to similar systems with

many exception conditions.

13.3. Case Study-based Evaluation 243

Test Adequacy Faults

Criteria t a b 1 2 3 4 5 6 7 8 9 10 11 12 13

t-wise relevant 1 - - + + 0.75 0.75 0.20 0.15 + 0.75 0.90 0.45 + + 0.85

coverage and the 2 - - + + + + 0.95 + + + + + + + +

validate all 3 - - + + + + + + + + + + + + +

principle 4 - - + + + + + + + + + + + + +

5 - - + + + + + + + + + + + + +

t-wise relevant 1 - - 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.05 0.00

coverage and the 2 - - 0.10 0.10 0.45 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.65 0.20 0.00

fail fast 3 - - 0.75 0.75 + + 0.65 0.05 0.10 0.05 0.05 0.00 + 0.65 0.00

principle 4 - - + + + + + 0.15 0.10 0.05 0.00 0.00 + + 0.00

5 - - + + + + + 0.50 0.35 0.15 0.05 0.00 + + 0.05

t-wise valid 1 - - 0.75 0.75 + + 0.50 0.50 + 0.80 0.00 0.00 0.00 0.00 0.00

coverage 2 - - + + + + + + + + 0.00 0.00 0.00 0.00 0.00

3 - - + + + + + + + + 0.00 0.00 0.00 0.00 0.00

〈∗, ∗〉-wise - ∀ 0 + + + + + + 0.90 0.80 + + + + +

strong invalid - ∀ 1 + + + + + + + + + + + + +

coverage - ∃ 0 0.55 0.60 0.80 0.45 0.25 0.15 0.90 0.75 + + + 0.35 +

- ∃ 1 + + + + 0.60 0.85 + + + + + 0.35 +

- 1 0 0.85 0.90 + 0.60 0.30 0.35 0.90 0.80 + + + 0.80 +

- 1 1 + + + + 0.80 + + + + + + + +

- 2 0 + + + 0.95 0.55 + 0.90 0.80 + + + + +

- 2 1 + + + + + + + + + + + + +

- 3 0 + + + + 0.80 + 0.90 0.80 + + + + +

- 3 1 + + + + + + + + + + + + +

t-wise valid 1 ∀ 0 + + + + + + + + + + + + +

coverage and 1 ∀ 1 + + + + + + + + + + + + +

〈∗, ∗〉-wise 2 ∀ 0 + + + + + + + + + + + + +

strong invalid 2 ∀ 1 + + + + + + + + + + + + +

coverage 3 ∀ 0 + + + + + + + + + + + + +

3 ∀ 1 + + + + + + + + + + + + +

1 ∃ 0 0.85 0.85 + + 0.50 0.50 + + + + + 0.35 +

1 ∃ 1 + + + + 0.60 0.85 + + + + + 0.35 +

2 ∃ 0 + + + + + + + + + + + 0.35 +

2 ∃ 1 + + + + + + + + + + + 0.35 +

3 ∃ 0 + + + + + + + + + + + 0.35 +

3 ∃ 1 + + + + + + + + + + + 0.35 +

1 1 0 0.90 0.90 + + 0.55 0.65 + + + + + 0.80 +

1 1 1 + + + + 0.80 + + + + + + + +

2 1 0 + + + + + + + + + + + 0.80 +

2 1 1 + + + + + + + + + + + + +

3 1 0 + + + + + + + + + + + 0.80 +

3 1 1 + + + + + + + + + + + + +

1 2 0 + + + + 0.70 + + + + + + + +

1 2 1 + + + + + + + + + + + + +

2 2 0 + + + + + + + + + + + + +

2 2 1 + + + + + + + + + + + + +

3 2 0 + + + + + + + + + + + + +

3 2 1 + + + + + + + + + + + + +

1 3 0 + + + + 0.85 + + + + + + + +

1 3 1 + + + + + + + + + + + + +

2 3 0 + + + + + + + + + + + + +

2 3 1 + + + + + + + + + + + + +

3 3 0 + + + + + + + + + + + + +

3 3 1 + + + + + + + + + + + + +

Table 13.6.: FDE Values for Different Test Adequacy Criteria

244 Chapter 13. Evaluating Combinatorial Robustness Test Selection Strategies

Test Adequacy Criteria t a b AFDE Test Adequacy Criteria t a b AFDE

t-wise relevant 1 - - 0.03 t-wise valid coverage 1 ∃ 0 0.85

coverage 2 - - 0.14 and 〈∗, ∗〉-wise 1 ∃ 1 0.91

3 - - 0.47 strong invalid coverage 2 ∃ 0 0.95

4 - - 0.56 (continued) 2 ∃ 1 0.95

5 - - 0.62 3 ∃ 0 0.95

t-wise valid 1 - - 0.48 3 ∃ 1 0.95

coverage 2 - - 0.62 1 1 0 0.91

3 - - 0.62 1 1 1 0.98

〈∗, ∗〉-wise - ∀ 0 0.98 2 1 0 0.98

strong invalid coverage - ∀ 1 + 2 1 1 +

- ∃ 0 0.68 3 1 0 0.98

- ∃ 1 0.91 3 1 1 +

- 1 0 0.81 1 2 0 0.98

- 1 1 0.98 1 2 1 +

- 2 0 0.94 2 2 0 +

- 2 1 + 2 2 1 +

- 3 0 0.96 3 2 0 +

- 3 1 + 3 2 1 +

t-wise valid coverage 1 ∀ 0 + 1 3 0 0.99

and 〈∗, ∗〉-wise 1 ∀ 1 + 1 3 1 +

strong invalid coverage 2 ∀ 0 + 2 3 0 +

2 ∀ 1 + 2 3 1 +

3 ∀ 0 + 3 3 0 +

3 ∀ 1 + 3 3 1 +

Table 13.7.: AFDE Values for Different Test Adequacy Criteria

Chapter 14.

Evaluating Detection and Repair of
Over-constrained RIPMs

Contents

14.1. Evaluating the Detection and Manual Repair of Over-Constrained RIPMs . . 245

14.1.1. Experiment Design and Setup 245

14.1.2. Results and Discussion . 246

14.1.3. Threats to Validity . 248

14.2. Evaluating Semi-Automatic Repair of Over-Constrained RIPMs 249

14.2.1. Experiment Design and Setup 249

14.2.2. Results and Discussion . 249

14.2.3. Threats to Validity . 251

14.3. Evaluating Strong Invalid Test Input Selection from Over-Constrained RIPMs 253

14.3.1. Experiment Design and Setup 253

14.3.2. Results and Discussion . 254

14.3.3. Threats to Validity . 258

As can be seen in the previous chapter about evaluating the test selection strategies, error-

constraints play a crucial role in distinguishing valid from strong invalid schemata. But error-

constraints are not only used in test selection strategies but can also be used in test oracle.

Unfortunately, error-constraints can be modeled too strict resulting in over-constrained RIPMs.

Therefore, we develop three techniques (1) to identify conflicts and manually repair over-con-

strained RIPMs, (2) to semi-automatically repair over-constrained RIPMs, and (3) to deal with

conflicts automatically during test input selection. In this chapter, the applicability of all three

techniques is evaluated.

14.1. Evaluating the Detection and Manual Repair of

Over-Constrained RIPMs

14.1.1. Experiment Design and Setup

The techniques to detect and explain over-constrained RIPMs with MISs and minimal conflict

sets is based on already existing conflict detection algorithms. Therefore, the objective of this

evaluation is not to assess the correctness of the proposed techniques. Instead, the objective

246 Chapter 14. Evaluating Detection and Repair of Over-constrained RIPMs

Name P & V Cerr Invalid Missing

Example-1 3321 2213 5 0

Example-2 3321 2213 7 3

Registration 61443129 21116 41 11

Banking-1 4134 51 112 0

Banking-1 +10 4134 52 122 20

Banking-1 +50 4134 52 162 100

Banking-2 41214 21 3 0

Banking-2 +1 41214 22 4 2

Banking-2 +1 +1 41214 23 5 4

HealthCare-3 61514536216 210 31 0

HealthCare-3 +3 +4 +5 61514536216 213 43 24

HealthCare-4 71615246312213 27 22 0

HealthCare-4 +3 +4 71615246312213 29 29 7

Table 14.1.: Benchmark RIPMs used for the Experiments

of this evaluation is to assess the feasibility of the proposed conflict detection and explanation

techniques.

We conduct another controlled experiment where we select test inputs and measure the over-

head by comparing the test input selection with conflict explanation enabled versus test input

selection with conflict explanation disabled. Therefore, the aforementioned prototype cof-
fee4j also includes the techniques for detection and explanation of conflicts.

Table 14.1 lists the used benchmark RIPMs. Example-1 and Example-2 are the correct

and over-constrained examples used when discussing the technique (Section 9.1.1, Page 160 and

following). Registration is a real-world RIPM from one of our industry partners. The other

RIPMs are modified IPMs that originate from SEGALL et al. [STF11] and are often used to com-

pare test selection strategies. For these experiments, they are modified such that all constraints

are error-constraints. The identifier A +n indicates that RIPM A is extended by an error-con-

straint that specifies n MISs. For instance, two error-constraints are added to Banking-2 +1
+1. Each one specifies one invalid value that is already specified for Banking-2. The P & V
column describes the parameter values in exponential notation; xy refers to y parameters with

x values. Cerr uses exponential notation to describe error-constraints. Here, xy refers to y er-

ror-constraints for x parameters. The Invalid column states the number of locally-specified

schemata of all error-constraints and Missing states the subset of MISs for which no strong

invalid test inputs are selected.

The experiments are carried out with an Intel i5 2.20 Ghz CPU and 12GB of memory. The

experiments are repeated for the 〈∀, 0〉-wise and 〈∀, 1〉-wise strong invalid coverage.

14.1.2. Results and Discussion

The results for the conflict detection and explanation are summarized in Table 14.2.

The b column refers to the robustness interaction degree and Size refers to the sizes of test

14.1. Evaluating the Detection and Manual Repair of Over-Constrained RIPMs 247

Name b Size Enabled Disabled Diff.

Example-1 0 5 1.47 0.73 0.74

1 10 2.97 2.77 0.20

Example-2 0 4 5.23 1.00 4.23

1 8 6.20 3.17 3.03

Registration 0 30 201.63 105.87 95.76

1 105 1068.63 971.10 97.53

Banking-1 0 112 372.57 229.83 142.74

1 112 368.50 228.27 140.23

Banking-1 +10 0 102 3056.93 483.60 2573.33

1 102 3053.23 484.67 2568.56

Banking-1 +50 0 62 20190.10 695.93 19494.17

1 62 20149.87 691.07 19458.80

Banking-2 0 3 2.17 1.17 1.00

1 6 7.33 7.03 0.30

Banking-2 +1 0 2 2.60 1.00 1.60

1 4 11.53 10.07 1.46

Banking-2 +1 +1 0 1 4.50 1.50 3.00

1 2 17.10 13.50 3.60

HealthCare-3 0 31 205.50 191.77 13.73

1 214 2960.87 2945.93 14.94

HealthCare-3 +3 +4 +5 0 19 618.83 169.73 449.10

1 139 3781.07 3332.67 448.40

HealthCare-4 0 22 133.00 128.10 4.90

1 154 2184.80 2181.37 3.43

HealthCare-4 +3 +4 +5 0 15 275.63 113.40 162.23

1 105 2536.97 2379.53 157.44

Table 14.2.: Results of the Experiments

suites. The columns Enabled and Disabled list the measured times in milliseconds for test

input selection with conflict explanation disabled and enabled, respectively.

The experiments reveal a small overhead in time for test input selection which is caused

by the additional constraint solving for identification and explanation of minimal conflict sets.

On average, the measured overhead, i.e. the absolute difference between test input selection

times with and without explanation, is 1,763 milliseconds. For experiments with correct RIPMs

without any conflicts, the average overhead is only 32 milliseconds. In contrast, the average of

all experiments with over-constrained RIPMs is 2,845 milliseconds.

Two experiments (Banking-1 +10 and Banking-1 +50) are significantly slower than

the other experiments with the highest measured overhead of 19,494 and 2,573 milliseconds,

respectively. They are slower because more MISs (10 and 50) must be identified and explained.

In addition, the constraints involve five parameters whereas all other scenarios only have con-

straints that involve two parameters. Therefore, more explanations must be computed and the

248 Chapter 14. Evaluating Detection and Repair of Over-constrained RIPMs

search space is much larger.

In relative terms, enabling identification and explanation increases the generation time by

40.53% on average. The two slow experiments have a relative overhead ranging from 84.13%

up to 96.57%. Ignoring the slower experiments results in an overhead of only 31.87% for the

remaining experiments.

In six cases, the differences between time measured for the generation with explanation and

without explanation is less than 5 milliseconds. Differences within a few milliseconds can be

caused by environmental noise because the execution cannot be completely controlled. Al-

though, the small differences highlight that the additional overhead can be neglected in many

cases.

The experiments further emphasize that the identification and explanation are independent

from the specified testing strength. Increasing the testing strength from one to two increases the

generation time on average by 854 milliseconds. But practically no difference between enabled

and disabled identification could be measured. On average, the difference is -3 milliseconds

which can be explained by noise.

The experiments indicate that the additional computations for identification of MISs and ex-

planation with minimal conflict sets is feasible and applicable to real world scenarios. In most

cases, the measured overhead is very small. But even for cases with larger overhead, we believe

that the manual tasks benefit from knowing why invalid schemata are missing and the additional

time is worth it.

14.1.3. Threats to Validity

We compared test input selection with conflict explanation enabled versus conflict explanation

disabled. Since the comparison is based on actual test input selection, our results might depend

on the implementation of the algorithms and on the design of the test scenarios. To ensure an

unbiased implementation, we follow the suggestions for an efficient implementation of test se-

lection strategies by KLEINE & SIMOS [KS18]. Further on, the source code of the test selection

strategies is published1.

The test scenarios are based on existing benchmark IPMs. During execution of experiments,

resource consumption of other applications may have distorted the results. Therefore, the mea-

surements are based on 30 repetitions.

1See Section 11.3 (Page 205 and following) for more information.

14.2. Evaluating Semi-Automatic Repair of Over-Constrained RIPMs 249

Correct RIPMs Modifications

Name P & V Inv. Schemata Added Inv. Schemata MISs

Example-1 3321 2213 22 3

Registration 61443129 21719 212 11

Banking-1 4134 5112 3221 28

Banking-2 41214 23 3211 4

HealthCare-1 61513226 31823 12 7

HealthCare-2 413625 5183621 4631 4

HealthCare-3 61514536216 231 3211 12

HealthCare-4 71615246312213 222 2111 13

Table 14.3.: Benchmark RIPMs used for the Experiments

14.2. Evaluating Semi-Automatic Repair of Over-Constrained

RIPMs

14.2.1. Experiment Design and Setup

In Section 9.2 (Page 169 and following), we propose a semi-automatic technique to repair over-

constrained RIPMs. Since no comparable work exists yet, the objective of this experiment is to

evaluate the general feasibility and applicability of this technique. Therefore, this technique is

implemented in our prototype coffee4j2 and applied it to different over-constrained RIPMs.

The semi-automatic repair technique is evaluated in two dimensions. We measured the com-

putational overhead when applying the technique and we compared the computed minimal di-

agnosis hitting sets and evaluated the resulting test inputs.

The experiments are based on 8 benchmark RIPM. Again, Example-1 is the correct running

example used when discussing the technique (Section 9.1.1, Page 160 and following). Reg-
istration is a real-world RIPM from one of our industry partners. The other RIPMs are

modified IPMs that originate from SEGALL et al. [STF11] and are often used to compare test

selection strategies. For these experiments, they are modified such that all constraints are er-

ror-constraints. All test models are listed in Table 14.3 (Page 249). The first two columns

describe the correct RIPM. The P & V column describes the parameter values in exponential

notation where vp refers to p parameters with v values. Inv. Schemata describes the in-

valid schemata as specified by the error-constraints. Here, xy refers to y invalid schemata for

x parameters. As the correct RIPMs are not over-constrained, we added additional error-con-

straints to artificially create conflicts. Column 3 describes the additional invalid schemata and

the fourth column describes the number of MISs.

14.2.2. Results and Discussion

Table 14.4 (Page 250) depicts the execution times for the RIPMs in milliseconds where the

repair technique is applied to both correct and modified versions. The execution times show that

2See Section 11.3 (Page 205 and following) for more information.

250 Chapter 14. Evaluating Detection and Repair of Over-constrained RIPMs

Min. Diagnosis

Hitting Sets

Execution Times

Name Correct RIPMs Modified RIPMs

Example-1 2 0.00 ms 1.02 ms

Registration 32 6.90 ms 62.14 ms

Banking-1 16 236.66 ms 6166.74 ms

Banking-2 4 0.00 ms 2.04 ms

HealthCare-1 4 4.68 ms 29.04 ms

HealthCare-2 8 11.44 ms 54.24 ms

HealthCare-3 10 12.2 ms 127.94 ms

HealthCare-4 16 6.1 ms 206.54 ms

Table 14.4.: Overview of Results

the repair technique is a feasible extension with no noteworthy computation overhead, i.e. on

average the overhead is 34.75 ms. for the correct RIPMs and 831.21 ms for the modified RIPMs.

Banking-1 caused the longest execution times because it specifies 112 invalid schemata

that cover all five parameters whereas all other RIPMs specify fewer invalid schemata that cover

fewer parameters. The noticeable differences in execution times between correct and modified

RIPMs is caused by the additional computations of conflict and diagnosis sets which is exclusive

to over-constrained RIPMs.

To evaluate the computed 92 minimal diagnosis hitting sets, they are applied to the modified

RIPMs. Then, the resulting repaired RIPMs are used to generate test inputs which are compared

to test inputs from the correct RIPMs. To make sure that all invalid schemata should appear in

some strong invalid test input, the selected test suites are selected to satisfy 〈∀, 0〉-wise strong

invalid coverage. The results are illustrated in Table 14.5 (Page 251) which shows a subset of

minimal diagnosis hitting sets for HealthCare-3. All results are available in Appendix C

(Page 341 and following). Each row of the table relates to another minimal diagnosis hitting set

and to the generated test inputs of the repaired RIPMs.

The metric not present invalid schemata (NIS) counts the number of invalid schemata that are

not generated by the repaired RIPM but are specified by the correct RIPM. For instance, applying

�HS = {c4,2, c5,2} to the over-constrained example RIPM (Figure 9.1, Page 161) removes the

invalid value combinations [Country:USA, Phone:123] and [Country:UK, Phone:
123] while the value [Phone:123] remains invalid. Then, the resulting test suite likely con-

tains only one strong invalid test input with [Phone:123]. When the correct RIPM specifies

both invalid value combinations, then at least one is not present in the test suite.

The metric duplicate invalid schemata (DIS) measures the number of invalid schemata that

appear more than once. For instance, applying �HS = {c3,1} to the example RIPM re-

moves [Phone:123]. The resulting test suite likely contains two strong invalid test inputs

with [Country:USA, Phone:123] and [Country:UK, Phone:123]. If the correct

RIPM specifies only one invalid value, then at least one invalid value combination is redundant.

The metric not valid test input (NVTI) counts the number of valid test inputs generated from

the repaired RIPM that contain invalid schemata as specified by the correct RIPM.

The metric not strong invalid test input (NSITI) counts the invalid test inputs generated from

14.2. Evaluating Semi-Automatic Repair of Over-Constrained RIPMs 251

�HS Test Suite Size NIS DIS NVTI NSITI

1 36 0 1 6 2

2 37 0 0 0 0

3 36 0 1 6 2

4 28 8 1 2 0

5 28 8 1 2 0

6 30 6 2 4 1

...

Table 14.5.: Results for HealthCare-3 RIPM (Excerpt)

the repaired RIPM that contain more than one invalid schema as specified by the correct RIPMs.

The applications of minimal diagnosis hitting sets show that they always result in repaired

RIPMs which are not over-constrained anymore. However, not all repaired RIPMs are equivalent

to the correct RIPMs since the generated test inputs do not cover invalid schemata and do not

exclude invalid schemata as specified by the correct RIPMs. For each modified RIPM, exactly

one minimal diagnosis hitting set is found that leads to a RIPM equivalent to the correct RIPM.

Except for HealthCare-2 where four out of eight minimal diagnosis hitting sets lead to

equivalent test models.

The differences between the minimal diagnosis hitting sets can be explained by a relation

between the constraint that belongs to the correct RIPM and the constraint that is used in the

repaired RIPM. For instance, error-constraint c3 of the example model locally-specifies one in-

valid schema, i.e. Lc3 = {[Phone:123]}. At the same time, it forbids the appearance of

one invalid schema in all other valid and strong invalid test inputs. In comparison, c4 with

Lc4 = {s1 = [Country:UK, Phone:+1], s2 = [Country:UK, Phone:123]} lo-

cally-specifies two invalid schemata. It forbids the appearance of two invalid schemata in all

other valid and invalid test inputs. Using c3 when c4 is correct can lead to invalid schemata that

are not present. Using c4 when c3 is correct can lead to duplicate invalid schemata as well as to

not valid and not strong invalid test inputs. Having another error-constraint c6 equal to c3 leads

to a conflict where [Phone:123] is specified twice but cannot appear in any invalid test input.

The relaxation of either c3 or c6 is equivalent and both diagnosis hitting sets result in a repaired

RIPM equivalent to the correct RIPM.

Since the correct RIPM is unknown, an oracle is required to decide which minimal diagnosis

hitting sets result in an equivalent RIPM. As long as no automated oracle exists, some human

effort is still required for the selection.

14.2.3. Threats to Validity

The results of the comparison might depend on the implementation of the algorithms. To ensure

an unbiased implementation of the test input selection, we followed the suggestions for an effi-

cient implementation by KLEINE & SIMOS [KS18]. For the conflict detection and diagnosis, we

explicitly named the used algorithms (QuickXplain[Jun04] and HS-Tree [Rei87]). Further

252 Chapter 14. Evaluating Detection and Repair of Over-constrained RIPMs

on, the source code of the test selection strategies is published3.

The artificial RIPMs do not represent real-world scenarios. However, we based our evaluation

on existing benchmark RIPMs, explicitly stated the characteristics and modifications to measure

the implications in a controlled environment.

The experiments are carried out with an Intel i5 2.20 Ghz CPU and 12 GB of memory. Dur-

ing the execution, resource consumption of other applications may have distorted the results.

Therefore, time measurements are based on 50 repetitions.

3See Section 11.3 (Page 205) for more information.

14.3. Evaluating Strong Invalid Test Input Selection from Over-Constrained RIPMs 253

Correct RIPMs Modifications

Name P & V Inv. Schemata Added Inv. Schemata MISs

Example-1 3321 2213 22 3

Registration 61443129 21719 212 11

Banking-1 4134 5112 3221 28

Banking-2 41214 23 3211 4

HealthCare-1 61513226 31823 12 7

HealthCare-2 413625 5183621 4631 4

HealthCare-3 61514536216 231 3211 12

HealthCare-4 71615246312213 222 2111 13

Table 14.6.: Benchmark RIPMs used for the Experiments

14.3. Evaluating Strong Invalid Test Input Selection from

Over-Constrained RIPMs

14.3.1. Experiment Design and Setup

In Section 9.3 (Page 178 and following), we propose alternative constraint handling strategies

to use in CRT with over-constrained RIPMs when manual or semi-automatic repair is rejected.

The objective of this experiment is to compare the alternative strategies with the default strategy

HCH and the semi-automatic repair techniques of Section 9.2 (Page 169 and following). The

constraint handling strategies are implemented in our prototype coffee4j4 and applied it to

different over-constrained RIPMs.

We evaluate the strategies in two dimensions. First, we measure the computational overhead

for test input generation and compared the default HCH strategy with B-SCH and D-SCH. Sec-

ond, we analyze characteristics of test suites selected by HCH, B-SCH, and D-SCH and also

compare them with the semi-automatic repair technique.

Eight benchmark RIPMs are used for the experiments. They are the same RIPMs as used in

the last evaluation (Section 14.2, Page 249 and following). Example-1 is the running example

used throughout this paper. Registration is a real-world RIPM from an industry partner.

The other RIPMs originate from SEGALL et al. [STF11] and are often used to compare test

selection strategies. For these experiments, they are modified such that all constraints are error-

constraints. All RIPMs are listed in Table 14.6 (Page 253). The first two columns describe

the original test models. The P & V column describes the parameter values in exponential

notation where vp refers to p parameters with v values. Invalid Schemata describes the

invalid schemata as specified by the error-constraints. Here, xy refers to y invalid schemata for

x parameters.

As the original RIPMs are not over-constrained, additional error-constraints are added to ar-

tificially create conflicts. Column 3 describes the additional invalid schemata and the fourth

column describes the number of missing invalid schemata.

4See Section 11.3 (Page 205) for more information.

254 Chapter 14. Evaluating Detection and Repair of Over-constrained RIPMs

Constraint Handling Strategies

Name HCH B-SCH D-SCH

Example-1 6.84 9.46 11.94

Registration 1002.90 1638.72 1372.02

Banking-1 615.90 6361.56 6948.76

Banking-2 26.14 38.80 42.40

HealthCare-1 201.60 300.62 489.44

HealthCare-2 3882.10 3487.20 3583.56

HealthCare-3 3432.92 4540.62 4402.14

HealthCare-4 1851.46 3575.70 3522.18

Table 14.7.: Times for Test Input Selection

14.3.2. Results and Discussion

Computational Overhead

Table 14.7 (Page 254) depicts the measured times for test input selection in milliseconds using

the different constraint handling strategies. The RIPMs include the modifications to make them

over-constrained. Because otherwise, the soft-constraint handling strategies are almost equal to

HCH. Overall, the test input selection times show that the alternative constraint handling strate-

gies are feasible extensions with acceptable overhead. HCH is the fastest constraint handling

strategy in seven out of eight times. The absolute difference between the slowest and fastest

strategy is on average 1313.09 milliseconds and the relative difference is on average 188.49%.

Banking-1 performs significantly worse than all other RIPMs. The difference between

the slowest and fastest strategy is 6332.86 milliseconds (1028.23%). It requires long test input

selection times because it specifies 112 invalid schemata that cover all five parameters of the

RIPM. Using B-SCH or D-SCH involves a check of all 112 invalid schemata for MISs. Without

Banking-1, the absolute difference is 595.98 milliseconds (68.52%). Since the measured

times range from milliseconds to a few seconds, a slowdown by 68.52% or even 188.49% on

average makes the strategies still feasible for application. This is especially true when compared

to the manual work of repairing RIPMs.

There is only one test model (HealthCare-2) for which HCH is slower than B-SCH and D-

SCH. But the differences are only 394.90 milliseconds (11.32 %) which is the lowest difference

measured among all RIPMs. Therefore, we assume this is caused by distortions from other

applications or operating system services.

When comparing the computation overhead of B-SCH with D-SCH, the difference is the

additional computation of minimal diagnosis sets in the case of D-SCH. In total, the differences

between them are very small being 183.38 milliseconds (18.98%) on average. Banking-1
is the RIPM that performed the worst with an overhead of 587.20 milliseconds (62.81%) for

D-SCH. Without Banking-1, the differences are even smaller (107.14 milliseconds, 17.88%).

14.3. Evaluating Strong Invalid Test Input Selection from Over-Constrained RIPMs 255

Name

Test Suite

Size

Correct

�HS

All

�HS

Example-1 5 1 2

Registration 26 1 32

Banking-1 112 1 16

Banking-2 3 1 4

HealthCare-1 21 1 4

HealthCare-2 25 4 8

HealthCare-3 31 1 10

HealthCare-4 22 1 16

Table 14.8.: Characteristics of Repaired RIPMs

Characteristics of Generated Test Inputs

Selecting test inputs from over-constrained RIPMs with the default HCH strategy results in

MISs. When repairing an over-constrained RIPM, the repaired RIPM can be used to select test

inputs. But the repaired RIPM is not necessarily equivalent to the hypothetical correct RIPM.

Some MISs may still not appear, some may appear more than once and some may even appear in

one test input simultaneously. Therefore, we use the following metrics to analyze and compare

test inputs which result from either the over-constrained or repaired RIPMs. We compare them

with test inputs which result from the hypothetical correct RIPM.

The metric not present invalid schemata (NIS) counts the number of invalid schemata that do

not appear in any test input despite being modeled by the correct RIPM.

This metric should not be confused with the concept of MISs. A MIS is a schema s ∈ Lci

that is locally-specified by an error-constraint ci of a RIPM. But due to some conflicts with other

constraints, the MIS is not a strong invalid schema, i.e. s /∈ Ici .

In contrast, a NIS is a strong invalid schema that is specified by an error-constraint ci of the

correct RIPM. But the schema is not a strong invalid schema of another modified (incorrect)

RIPM. NISs describe relations between correct and incorrect RIPMs.

This is also the reason why the metric values for MIS and NIS differ. For an incorrect RIPM,

a schema that is not present accounts for one NIS in relation to the correct RIPM. Although,

the schema is not present for a reason because it contradicts with some other schemata and

all these schemata account for MISs. For instance, the over-constrained example RIPM (Fig-

ure 9.1, Page 161) specifies the three schemata [Country:USA, Phone:123], [Coun-
try:UK, Phone:123], and [Phone:123]. While the correct example RIPM only speci-

fies [Phone:123].

For the over-constrained example RIPM, there is one NIS, i.e. [Phone:123] but there

are three MIS, i.e. [Country:USA, Phone:123], [Country:UK, Phone:123], and

[Phone:123].

The metric duplicate invalid schemata (DIS) counts the number of invalid schemata that do

appear in at least two test inputs.

While the NIS metric is concerned with the effectiveness that may deteriorate because of

256 Chapter 14. Evaluating Detection and Repair of Over-constrained RIPMs

Name Constraint Handling Strategy Test Suite Size # NIS # DIS # NSITI

Example-1 HCH 4 1 0 0

B-SCH 7 0 1.67 (1-3) 0.97 (0-3)

D-SCH 7 0 1.37 (1-2) 0.37 (0-1)

Repair 5.50 (5-6) 0 0.50 (0-1) 0.17 (0-1)

Registration HCH 30 0 0 0

B-SCH 41 0 6.73 (6-9) 6.37 (1-7)

D-SCH 41 0 5 0

Repair 32.97 (30-36) 0.02 (0-1) 2.01 (0-4) 14 (0-32)

Banking-1 HCH 88 28 0 0

B-SCH 116 0 0 0

D-SCH 116 0 0 0

Repair 100 (88-112) 13.14 (0-28) 0 0

Banking-2 HCH 2 2 0 0

B-SCH 6 0 1 0

D-SCH 6 0 1 0

Repair 3.66 (3-4) 0.19 (0-2) 0.66 (0-1) 0

HealthCare-1 HCH 16 7 0 0

B-SCH 23 0 0.5 (0-1) 6 (0-12)

D-SCH 23 0 0 0

Repair 18.50 (16-21) 3.10 (0-7) 0 0

HealthCare-2 HCH 28 2 0 0

B-SCH 32 0 2.93 (0-2) 0

D-SCH 32 0 2 0

Repair 28 (25-29) 0.88 (0-2) 0.03 (0-1) 0.03 (0-1)

HealthCare-3 HCH 22 10 0 0

B-SCH 34 0 6.27 (4-9) 11.17 (5-13)

D-SCH 34 0 3 3.60 (2-5)

Repair 25.50 (22-31) 4.35 (0-9) 1.14 (0-3) 5.84 (0-24)

HealthCare-4 HCH 11 11 0 0

B-SCH 24 0 3.07 (1-5) 8.77 (3-12)

D-SCH 24 0 2.23 (0-3) 5.27 (0-6)

Repair 18.88 (12-22) 2.50 (0-10) 0.92 (0-2) 6.19 (0-11)

Table 14.9.: Characteristics of Selected Test Inputs

untested schemata, the DIS metric is rather concerned with the efficiency.

The metric not strong invalid test input (NSITI) (Not Strong Invalid Test Input) counts the

number of test inputs that contain more than one invalid schema.

The not strong invalid test input (NSITI) metric is again concerned with the effectiveness that

may deteriorate because of potential invalid input masking.

Table 14.8 depicts characteristics of repaired RIPMs, i.e. the test suite size of the correct

RIPM, the number of diagnosis hitting sets that lead to a correct RIPM and the total number of

computed diagnosis hitting sets. The characteristics derived from test input selection are shown

in Table 14.9 (Page 256). For each metric, three numbers are presented as a (b - c) where a
is the average number calculated from 30 repetitions with randomly shuffled RIPMs, b denotes

the minimum and c denotes the maximum number if they differ from the average number.

For the Example-1 RIPM, four test inputs are selected using the HCH strategy and one

14.3. Evaluating Strong Invalid Test Input Selection from Over-Constrained RIPMs 257

invalid schema is not present. B-SCH and D-SCH result in seven test inputs that include all

invalid schemata as specified by the correct RIPM. However, both SCH strategies lead to some

duplicate invalid schemata and to some not-strong invalid test inputs. Although, D-SCH has

lower DIS and NSITI values. When comparing the SCH strategies with the semi-automatic

repair strategy, two diagnosis hitting sets are computed of which one must be selected (See Table

14.8, Page 255). One of the two diagnosis hitting sets leads to a correct RIPM with which five

test inputs are selected. In comparison with B-SCH and D-SCH, both repaired RIPMs require

fewer test inputs. Both have no NIS, fewer DISs and also on average fewer NSITIs.

Although, Example-1 is the only RIPM for which all metric values are equal or better than

the metric values for D-SCH. We believe this is because in total only two minimal diagnosis

hitting sets are computed. Hence, the chance that a repair results in an equivalent RIPM is 50%.

Except for Example-1, these characteristics can be observed among all RIPMs. While the

semi-automatic repair technique leads to smaller test suite sizes on average and equal or lower

DIS values, it requires the selection of the correct RIPM to ensure zero NIS and zero NSITI.

Otherwise, some invalid schemata may remain missing. In contrast, B-SCH and D-SCH have

larger test suite sizes and DIS values. But the test suites have always zero NIS values which

tackles the problem of over-constrained RIPMs and MISs. In direct comparison, D-SCH leads

to fewer DISs and fewer NSITIs than B-SCH which also increases the chance of detecting faults.

For the HCH strategy, the test suite size is always smaller compared to the two SCH strategies

and also compared to the repair technique. This is simply because some invalid schemata are

not present.

Except for Registration, this is true for all other RIPMs. In the case of Registration,

the RIPM is over-constrained but all MISs are not specified by the correct RIPMs. Therefore,

the conflict prevents some schemata to appear but it has no impact on the FDE because all

originally-specified strong invalid schemata are present.

To conclude these experiments to evaluate the feasibility of the detection and repair of over-

constrained RIPMs, it can be stated that all three approaches, i.e. the manual and semi-automatic

repair as well as the alternative constraint handling strategies, are feasible when applying them

to benchmark RIPMs. Conflicts can be identified, explained and based on that information,

minimal diagnosis hitting sets can be computed to repair over-constrained RIPMs.

The experiments further indicate that repair is desirable to prevent NISs. Although the exper-

iments also show the limits of the semi-automatic repair technique since an oracle is required to

select the right minimal diagnosis hitting set.

When an oracle is not available, the D-SCH strategy is the best choice among the three strate-

gies HCH, B-SCH, and D-SCH. Compared with B-SCH, D-SCH has lower DIS and NSITI

values which improves efficiency and reduces effects of the invalid input masking effect. Com-

pared with HCH, D-SCH has fewer NISs which improves the efficiency. Using SCH strategies

reduces the efficiency compared to the HCH strategy because the CSPs for the SCH strategies

are more complex as they require more variables and more constraints. Further on, test suites

selected with SCH strategies contain more test inputs than test suites selected with the HCH

strategy.

But as these experiments show, the SCH strategies are still feasible when using them with

benchmark RIPMs. In contrast to the HCH strategy, no schemata are NIS and fewer test inputs

258 Chapter 14. Evaluating Detection and Repair of Over-constrained RIPMs

are not-strong invalid. Therefore, they reduce the main concern of over-constrained RIPMs

without the need of immediately repairing them.

14.3.3. Threats to Validity

B-SCH and D-SCH are compared with HCH and with the semi-automatic repair technique. The

measured times depend on the implementation of the techniques. Therefore, the constraint han-

dling strategies are integrated into the coffee4j prototype which also includes HCH strategy

and the semi-automatic repair technique. The source code of the test selection strategies is pub-

lished5.

The RIPMs do not represent real-world scenarios. But they are derived from existing bench-

mark RIPMs and the characteristics as well as modifications are public.

The experiments are carried out with an Intel i5 2.20 Ghz CPU and 12 GB of memory. Re-

source consumption of other applications may have distorted the results. To prevent results that

are caused by symmetries between RIPM and test selection strategy, we repeated each experi-

ment 30 times with randomly shuffled RIPMs.

5See Section 11.3 (Page 205 and following) for more information.

Chapter 15.

Evaluating Automatic Generation of
Error-Constraints

Contents

15.1. Experiment Design and Setup . 259

15.1.1. Fault Characterization Algorithms 260

15.1.2. Scenarios . 260

15.1.3. Experiments . 261

15.1.4. Data Collection Procedure . 262

15.2. Results and Discussion . 263

15.2.1. Experiment 1 . 263

15.2.2. Experiment 2 . 264

15.2.3. Experiment 3 . 265

15.2.4. Experiment 4 . 265

15.2.5. Summary . 267

15.3. Threats to Validity . 269

The additional effort of modeling error-constraints can be perceived as an obstacle when

adopting our CRT test method. To overcome this obstacle, we introduce a process for auto-

matic generation of error-constraints that is based on FC and utilizes existing FCAs.

In this chapter, the general feasibility of the process for automatic generation of error-con-

straints is demonstrated. Further on, we conduct another controlled experiment to analyze the

suitability of FC and FCAs.

15.1. Experiment Design and Setup

Since no comparable approaches for the CRT test method exist yet, we cannot compare our

techniques with them. Instead, we evaluate the feasibility of the approach and the feasibility of

FCAs in terms of preciseness and completeness. Therefore, we conduct a controlled experiment

to answer the following two research objectives.

Research Objective 1 Is the process for automatic generation of error-constraints feasible?

Research Objective 2 Is FC a suitable technique to identify minimal non-conforming schemata?

260 Chapter 15. Evaluating Automatic Generation of Error-Constraints

We execute the process to generate error-constraints for different test scenarios. The cof-
fee4j prototype also includes the process for automatic generation of error-constraints, FCAs

to identify minimal non-conforming schemata, and strategies that group schemata and gener-

ate error-constraints. The implementations and experiments are developed in the context of a

master thesis (cf. [Maß20]) which I defined and supervised. In the following, the details of the

controlled experiment are introduced. Afterwards, the results are presented and discussed.

15.1.1. Fault Characterization Algorithms

As already mentioned, FCAs only compute approximate solutions because an exact solution is

often infeasible. Therefore, a variety of FCAs exist. Each FCA has its own advantages and

its computation of approximate solutions is based on assumptions. For instance, some FCAs

assume that no constraints exist and all parameters are independent (cf. [Zhe+16]). Some FCAs

require the presence of safe values and assume that at least one test input passes (cf. [Niu+18]).

When using FCAs to identify truly-minimal invalid schemata, it is likely that numerous as-

sumptions do not hold. For instance, constraints exist in CRT. Otherwise, CRT would not be

necessary. Safe values also exist for each parameter. Otherwise, the RIPM cannot be conflict-

free and strong invalid test inputs cannot be selected. The selection of FCAs that can be used in

this context is restricted and our evaluation is concerned with the suitability of FCAs.

Four different FCAs are used in this experiment. IDD (Improved Delta Debugging) [LNL12]

is a sequential FCA which requires a test selection strategy like IPOG-C to provide the initial

test suite. IDD is chosen because previous results indicate very good performance in compari-

son to other sequential FCAs1. The other three FCAs are interleaving FCAs: OFOT (One Factor

One Time) [Niu+18], TRT (Tuple Relationship Tree) [Niu+13], and MixTgTe [AGR19]. They

are chosen because interleaving FCAs promise to be advantageous over sequential FCAs since

identified MFCSs can be excluded from further test selection and execution. They do not require

initial test suites but they require a test selection strategy that selects “one test input at a time”

[Niu+18]. Therefore, the test selection strategy AETG [Coh+94]; [Coh+97] is used in combi-

nation with OFOT and TRT. In contrast, MixTgTe does not require an additional test selection

strategy because it already integrates test selection.

IDD and OFOT are expected to be fast because they are have a simple design that is based

on two assumptions: First, they assume that each failing test input contains only one MFCS.

Second, they assume that additional test inputs for the identification of the MFCS do not fail

because of another MFCS. In contrast, TRT and MixTgTe are expected to be slower but to

provide a higher precision. Their design is more complex because they are able to identify

multiple MFCSs that are covered by one test input and they are also able to identify MFCSs that

overlapping, i.e. MFCSs that share common parameter values.

15.1.2. Scenarios

A scenario consists of a RIPM without error-constraints since they shall be generated during the

experiment. In addition, another system represents the authoritative specification and partitions

1See our publication by FRIEDRICHS, FÖGEN, and LICHTER [FFL20] for a comparison of FCAs.

15.1. Experiment Design and Setup 261

Name Parameters & Values Strong Invalid Schemata

Example-1 3321 2213

Delivery 9161513121 226

BibTeX 1514636 33244

Banking-1 4134 5112

Banking-2 41214 23

HealthCare-1 61513226 31823

HealthCare-2 413625 5183621

HealthCare-3 61514536216 231

Table 15.1.: RIPMs used for the Experiments

test inputs into truly-valid and truly-invalid.

Table 15.1 (Page 261) lists the benchmark RIPMs. For each RIPM, the column Parameters
& Values describes number of parameters and values in exponential notation where xy refers

to y parameters with x values. The column Strong Invalid Schemata describes the

number of strong invalid schemata that should be identified for the RIPM in exponential notation

where xy refers to y strong invalid schemata with x parameter-value pairs. Example-1 refers

to the incomplete example (Figure 10.4, Page 193) with no error-constraints modeled yet as

discussed in Chapter 10 (Page 187 and following). The RIPMs Delivery and BibTeX are

based on the pricelist of a parcel delivery company and BibTeX entry types. The other RIPMs

originate from SEGALL et al. [STF11] and are often used to compare test selection strategies.

For these experiments, they are modified such that all constraints are considered as expected
error-constraints. The initial RIPMs have an empty set of error-constraints. But the purpose of

this controlled experiment is to identify and generate the expected error-constraints. Therefore,

the partition of the other system is congruent with the partition of the expected error-|constraints.

15.1.3. Experiments

The scenarios are executed using the four different FCAs to search for minimal non-conforming

schemata and to generate error-constraints as illustrated by the example in Chapter 10 (Page 187

and following). They are further structured into four experiments that are defined to evaluate the

performance of FCAs in different contexts.

Experiment 1 In the first experiment, we execute the process for automatic generation of

error-constraints with all four FCAs on all eight scenarios. Therefore, we use a testing strength

of t = 2 and stop after the first iteration.

Experiment 2 In the next experiment, we again execute the process for automatic generation

of error-constraints with all four FCAs on all eight scenarios. This time, we use the isolat-

ing strategy to group non-conforming schemata. Since additional search is required to isolate

schemata, we expected an increase in precision.

262 Chapter 15. Evaluating Automatic Generation of Error-Constraints

Experiment 3 In the next experiment, we again use the isolating strategy to group non-

conforming schemata. This time, the testing strength is increased to t = 3. We expect an

increase in test suite size and test execution time. But we also expect increasing precision and

recall.

Experiment 4 Since the TRT FCA provides the best performance in the previous experi-

ments, we use TRT to execute several iterations of the process for automatic generation of er-

ror-constraints. The goal is to generate all expected error-constraints. Since this experiment is

labour-intensive, we focus on the two scenarios with the worst performance of TRT.

15.1.4. Data Collection Procedure

In this controlled experiment, the FCAs are executed in the context of the process for automatic

generation of error-constraints. Therefore, eight different scenarios are used in five different

experiments. To systematically measure the performance of FCAs and to make comparisons

among them, the following metrics are introduced.

The precision and recall metrics are used to compare the effectiveness of the FCAs. Therefore,

the identified non-conforming schemata are compared to the non-conforming schemata that are

specified by the test scenario.

Precision When using a FCA to identify minimal non-conforming schemata, it is important

that the identification is correct. Therefore, precision is defined as the ratio between the cor-

rectly identified non-conforming schemata and the total number of identified non-conforming

schemata.

precision =
|identified ∩ specified|

|identified|

Recall In addition, it is important that a FCA is able to identify many if not all existing non-

conforming schemata. In that sense, this metric is a notion of completeness. Recall is defined as

the ratio between the correctly identified non-conforming schemata and the total number of all

specified non-conforming schemata.

recall =
|identified ∩ specified|

|specified|
Further on, the metrics test suite size and the test execution time are used to compare the ef-

ficiency of the FCAs. We view test suite size as a good measure to compare the efficiency among

FCAs. In contrast, the test execution time is a good indicator to demonstrate the general feasi-

bility. However, the test execution time is less suitable for comparisons because implementation

detail can have a huge impact. For instance, the implementation of the IPOG-C test selection

strategy relies on performance optimizations (cf. [KS18]) whereas no comparable performance

optimizations exist for AETG.

15.2. Results and Discussion 263

15.2. Results and Discussion

In the following, the results of the experiments are presented and discussed for one type of

experiment at a time. At the end, a summary concludes the controlled experiment.

15.2.1. Experiment 1

Algorithm Test Suite Size Execution Time Precision Recall

OFOT 194.900 3.389 0.471 0.194

TRT 13735.125 1336.871 0.932 0.705

IDD 42.425 0.007 0.161 0.117

MixTgTe 126.075 538.566 0.520 0.341

Table 15.2.: Aggregated Average Values for Experiment 1

For experiment 1, each combination of scenario and FCA is executed ten times. The average

metric values of all four FCAs for all scenarios are depicted in Table D.1 (Page 346). Table 15.2

(Page 263) depicts the aggregated average values of the four FCAs among all scenarios. The

execution times are depicted in seconds.

Considered individually, using IDD results in the lowest test suite sizes and the lowest execu-

tion times. But at the same time, using IDD results in the lowest values for precision and recall.

IDD never achieves a precision or recall value of 1.

In contrast, using TRT produces the largest test suite sizes and requires the longest execution

times. But it achieves the highest precision and recall values. TRT is the only FCA that has a

precision value of 0.475 and a recall value of 0.873 for HealthCare-3 while the precision

and recall values of the other three FCAs are zero.

MixTgTe performs second best. It requires fewer test inputs and less execution time com-

pared to TRT and has the second best values for precision and recall. OFOT has slightly worse

values for precision and recall but requires more test inputs than MixTgTe.

Apart from Banking-1 and HealthCare-2, MixTgTe has higher precision and recall

values than OFOT. Those two scenarios are difficult for MixTgTe because MixTgTe guar-

antees the detection of non-conforming schemata with degrees smaller or equal to the testing

strength [AGR19] which is t = 2 in this experiment. But for the two scenarios, many non-con-

forming schemata have a degree of 5 and cannot be detected by MixTgTe.

Overall, IDD and OFOT have the fastest execution times and the small test suite sizes because

their approach is simpler and relies on more assumptions than TRT and MixTgTe. We be-

lieve the assumptions are responsible for the low precision and recall values of IDD and OFOT.

In these scenarios, non-conforming test inputs may contain multiple non-conforming schemata

which may even be overlapping. Further on, each scenario contains more than one non-con-

forming schema. Therefore, additional non-conforming schemata may be discovered during the

identification of one non-conforming schema. Thereby, the precision and recall values of IDD
and OFOT may fluctuate as a random factor is introduced by the violated assumptions.

264 Chapter 15. Evaluating Automatic Generation of Error-Constraints

15.2.2. Experiment 2

Algorithm Test Suite Size Execution Time Precision Recall

OFOT 200.850 4.216 0.594 0.201

TRT 13953.675 1493.343 0.996 0.620

IDD 42.975 0.057 0.186 0.118

MixTgTe 128.425 1082.440 0.594 0.378

Table 15.3.: Aggregated Average Values for Experiment 2

For the second experiment, the isolating strategy is used to group non-conforming schemata.

Each combination of scenario and FCA is again executed ten times. The average metric values

of all four FCAs for all scenarios are depicted in Table D.2 (Page 347). Table 15.3 (Page 264)

depicts the aggregated average values of the four FCAs among all scenarios. The execution

times are again depicted in seconds.

As expected, the test suite sizes and execution times increase for all FCAs in comparison to

experiment 1. In general, the test suite sizes and execution times only increase slightly indicating

a minor overhead of the isolating strategy.

But there are exceptions for the HealthCare-2 and HealthCare-3 scenarios. Both

scenarios contain non-conforming schemata that are overlapping, which make the identification

and classification of truly-minimal invalid schemata difficult. As a result, there are increases in

execution times in three cases – both in absolute and in relative terms. The execution times of

MixTgTe for the HealthCare-3 scenario doubled (+4369 seconds). The execution times of

TRT almost quadrupled for the HealthCare-2 scenario (+103 seconds) and almost increases

six-fold for the HealthCare-3 scenario (+955 seconds).

The precision values improve because of the isolating strategy. But two exceptions exist. The

TRT FCA has a decreased precision value of 0.971 instead of 0.98 for Delivery. The raw

data reveals that the lowest precision value among the ten executions is increased from 0.905

to 0.929. This indicates that a slightly higher precision value can be expected when using the

isolating strategy. But it also indicates that a precision value of 1.0 is achieved less often. Further

on, the OFOT FCA has a decreased precision value of 0.072 instead of 0.094 for BibTeX. In

this case, the lowest precision value among the ten executions also decreased from 0.333 to 0.25.

Although we believe this is mainly caused by the random effects of violated assumptions.

The recall value is worse in seven out of 32 cases. Although, the deviations are rather small.

The biggest change can be observed for HealthCare-3 and the TRT FCA. The recall value

for this combination decreases from 0.873 to 0.420. Although at the same time, the precision

value increases from 0.475 to 1.0. We suspect the higher precision is responsible for the lower

recall. After a non-conforming schema is identified, this non-conforming schema is excluded

from further test input selection. Due to the the higher precision values, a better conformance

is established which causes some non-conforming schemata to not be triggered by conventional

test inputs. Consequently, TRT does not attempt to identify them.

Overall, the isolating strategy improves the precision. To improve the recall as well, we

attempt to increase the testing strength in the next experiment.

15.2. Results and Discussion 265

15.2.3. Experiment 3

Algorithm Test Suite Size Execution Time Precision Recall

OFOT 272.475 95.739 0.550 0.254

TRT 15442.138 2111.939 1.000 0.716

IDD 149.938 2.911 0.100 0.077

MixTgTe 313.257 1037.827 0.804 0.633

Table 15.4.: Aggregated Average Values for Experiment 3

The third experiment uses a testing strength of t = 3 instead of t = 2. The isolating strat-

egy is used again. In the last experiment, MixTgTe was already the slowest FCA for the

HealthCare-3 scenario. With t = 3, executing MixTgTe on HealthCare-3 did not

terminate within six hours. Therefore, we consider it as timed out. As a consequence, the

aggregated values for MixTgTe are not comparable to the first experiment.

The average metric values of all four FCAs for all scenarios are depicted in Table D.3 (Page

348). Table 15.4 (Page 265) depicts the aggregated average values of the four FCAs among all

scenarios. The execution times are again depicted in seconds.

As expected, the test suite sizes and execution times increase in all cases. We also expected

improved recall values. While this is true for TRT and MixTgTe, it is not true for IDD and

OFOT. In three out of 31 cases, the recall values of IDD and OFOT decrease in comparison to

the second experiment. For instance, the recall value of OFOT decreases from 0.162 to 0.115

for the Delivery scenario. We again suspect that this is caused by random effects due to

violations of assumptions. Especially because the involved recall values are already rather low

for experiment no. 2.

The recall values for TRT improve because more test inputs are required to satisfy t-wise valid

coverage with t = 3. Consequently, more non-conforming test inputs are executed. The recall

values for MixTgTe improve for the same reason. But in addition, MixTgTe can identify non-

conforming schemata of degree d = 3 which explains the improvement for the HealthCare-2
scenario. Since the Banking-1 scenario would require a testing strength of t = 5, the recall

value of MixTgTe is still zero.

The precision values also improved for TRT and MixTgTe but worsened for IDD and OFOT.

In six out of 31 cases, the precision values of IDD and OFOT worsened.

With t = 3, TRT achieves a precision value of 1 for all scenarios. For MixTgTe, the precision

value improved from 0.678 to 0.804 which again can be explained by the guarantee of detecting

non-conforming schemata that involve t or fewer parameters.

15.2.4. Experiment 4

In the previous experiments, the TRT FCA always achieves the highest values for precision and

recall. While a precision value of 1 can be achieved with a testing strength of t = 3, the recall

value often remains on a rather low level. In particular, the recall value of TRT is the lowest for

Banking-1 (0.032) and HealthCare-2 (0.098).

266 Chapter 15. Evaluating Automatic Generation of Error-Constraints

Iteration Non-conforming Schemata Execution Time

1 8 1.225

2 11 1.330

3 15 1.416

4 11 1.279

5 12 1.370

6 8 1.239

7 7 1.292

8 7 1.655

9 6 1.274

10 4 1.142

11 3 1.759

12 5 1.186

13 3 1.656

14 4 2.330

15 2 2.180

16 2 2.323

17 1 0.933

18 2 2.744

19 1 2.441

SUM 112 30.783

Table 15.5.: Iterations for TRT and Banking-1

In this experiment, several iterations of the process for automatic generation of error-con-

straints are executed to check whether the iterative approach can improve the recall. Therefore,

the process for automatic generation of error-constraints is executed with TRT for Banking-1
and HealthCare-2. After each iteration, the RIPM is updated and the identified minimal

non-conforming schemata are added as error-constraints.

Table 15.5 (Page 266) depicts the iterations for Banking-1. The column Non-conform-
ing Schemata depicts the number of non-conforming schemata that are identified in one

iteration. The column Execution Time depicts the execution time in seconds.

In total, 19 iterations with a testing strength of t = 2 are necessary to detect all minimal

non-conforming schemata. Although, the term minimal is misleading in this context because

Banking-1 is a special case where all non-conforming schemata are exhaustive, i.e. the

schemata encompass five parameters and the RIPM also encompasses five parameters.

Test inputs are selected to satisfy t-wise valid coverage and some selected test inputs are non-

conforming. After identifying the non-conforming schemata and updating the error-constraints,

a different set of test inputs is selected to satisfy the t-wise valid coverage in the next iteration.

Again, some test inputs are non-conforming and the RIPM is again updated. This iterative

approach works very well until all 112 schemata are identified after 19 iterations. We suspect

the iterative approach works very well for Banking-1 because of the exhaustive nature of the

non-conforming schemata.

15.2. Results and Discussion 267

Iteration Non-conforming Schemata Execution Time

1 15 52.913

2 5 25.223

3 2 13.519

4 1 9.958

5 1 89.000

SUM 24 190.613

Table 15.6.: Iterations for TRT and HealthCare-2

For the second scenario, the non-conforming schemata are not exhaustive. Table 15.6 (Page

267) depicts the iterations for HealthCare-2. Since only 25 non-conforming schemata can be

identified for HealthCare-2, fewer iterations are required. The first four iterations are again

based on t-wise valid coverage with a testing strength of t = 2. But after the four iterations,

all selected test inputs conform to the other system and no further non-conforming schemata

can be identified. Therefore, we executed iteration five with a testing strength of t = 3 to

identify another non-conforming schema. Then, again all selected test inputs conform to the

other system. Although one non-conforming schema is still not identified. Either testing with a

higher testing strength or more randomness in the selection of test inputs is required to select a

test input that is non-conforming.

The second scenario highlights an inherent problem of the process for automatic generation of

error-constraints. The iterative approach is able to establish conformance between a RIPM and

another system. However, the conformance should not be confused with complete conformance

for every test input of the exhaustive test suite. The conformance should rather be understood as

an equilibrium between a RIPM, its test selection strategy and another system.

As long as the RIPM and its test selection strategy select remain unchanged and determin-

istically select test inputs, the established conformance can be used in regular testing. But if

the selected test inputs change because the test selection strategy or the RIPM are changed,

the process for automatic generation of error-constraints must be executed again to restore the

equilibrium. This is because a complete conformance can only be achieved by checking all test

inputs of the exhaustive test input which is usually infeasible.

15.2.5. Summary

To summarize the four experiments, we briefly answer the two research objectives.

Research Objective 1 Is the process for automatic generation of error-constraints feasible?

The four experiments indicate that the process for automatic generation of error-constraints

is feasible in general. The test suite sizes that are required for the identification as well as the

execution times for test input selection and test execution are within reasonable limits. Further

on, the precision value is 1 when an appropriate FCA is selected for the identification of non-

conforming schemata.

268 Chapter 15. Evaluating Automatic Generation of Error-Constraints

The recall value is on a relatively low level after one iteration of the process. But as the fourth

experiment shows, an iterative approach allows finding more non-conforming schemata and it

allows finding an equilibrium between the RIPM, the test selection strategy and the other system.

The equilibrium describes a state where the current set of error-constraints is sufficient to select a

set of test inputs of which all test inputs are truly-valid. The level of conformance can be further

increased when additional test inputs are checked for conformance – either because the test se-

lection is randomized or the testing strength is increased. But to achieve complete conformance,

it would be necessary to check the exhaustive test suite which is usually impractical.

Nevertheless, as long as the the RIPM and the test selection strategy do not change, the test

suite conforms to the other system and can be used for further testing activities. If the RIPM or

the test selection strategy, the process for automatic generation of error-constraints can be used

to find another equilibrium.

Research Objective 2 Is FC a suitable technique to identify minimal non-conforming schemata?

While the four experiments demonstrate a general feasibility of the process for automatic

generation of error-constraints, they are not sufficient for a detailed analysis of individual FCAs.

However, the four experiments emphasize the importance of choosing an appropriate FCA.

When FCAs are used to identify minimal non-conforming schemata, many assumptions that are

typically considered by FCAs do not hold. It is important to acknowledge that more than one

non-conforming schema exists. Further on, a non-conforming test input may cover two or more

non-conforming schemata that can even be overlapping.

It is shown that FCAs like IDD or OFOT are rather simple but also efficient because they

rely on assumptions. However, since these assumptions do not hold in the four experiments, the

precision and recall values are on a relatively low level. At the same time, test suite sizes and

execution times highlight their efficiency.

In contrast, MixTgTe and TRT rely on fewer assumptions but require a more complicated

design. As a consequence, they are less efficient than IDD or OFOT in terms of test suite sizes

and test execution times. At the same time, the precision and recall values are on a high level.

Especially after several iterations of the process for automatic generation of error-constraints.

Among the considered FCAs, TRT performs best in terms of precision and recall because it

relies on fewest assumptions and is also able to identify non-conforming schemata that are larger

than the testing strength.

15.3. Threats to Validity 269

15.3. Threats to Validity

We compared precision and recall values for different FCAs and different scenarios. The sce-

narios and its RIPMs do not represent real-world scenarios. Although, they are derived from

existing benchmark RIPMs and the characteristics as well as modifications are explicit. The

selection of scenarios may have an impact on the results. Therefore, only general conclusions

are drawn from the experiments.

Implementations details of the test selection strategies or FCAs may have an impact on the

results as well. To allow and support reproducibility of the experiments, the source code of the

test selection strategies and FCAs is published (Section 11.3, Page 205).

The experiments are carried out with an Intel i5 3.5 Ghz CPU running Manjaro 19.0.2. Re-

source consumption of other applications may have distorted the results. To reduce the potential

impact of distortions, each experiment is executed 10 times.

Chapter 16.

Conclusion

At this point, all the research questions are answered by our developed solutions and their eval-

uation. We conclude this work with a summary and look ahead to future work.

16.1. Summary

Robustness failures can cause many problems such as unavailable programs, operating system

crashes, or security breaches [Koo+97]; [Avi+04]; [BE11]. To prevent robustness failures, de-

fensively developed programs mistrust all influences that are external to the program’s boundary

[Mey92]; [BF04]; [MSB11]. External faults are anticipated and programs contain computer in-

structions to detect errors in the program’s state and further computer instructions to recover the

state by eliminating the error.

Exceptions represent errors in the program’s state and EH is used to detect exceptions and to

recover from them [DG94]; [MT97]; [LS98]; [Gar+01]. Although, EH is intended to support

the development of robust programs, it is itself a significant source of robustness faults and

robustness failures [MT97]; [Mar11]; [SAW12]. Consequently, it is not only important to check

that a program realizes its standard functions. It is also important to check the behavior of a

program in exceptional situations.

CT is a specification-based test method and various studies demonstrate its effectiveness

[Gri+06]. Unfortunately, the effectiveness of CT deteriorates in the presence of irrelevant schemata.

The input masking effect causes schemata that only appear in an irrelevant test input to remain

untested and faults may remain undetected [Yil+14a]; [Wu+19b]. As a countermeasure, con-

straint handling and exclusion-constraints are introduced to exclude irrelevant schemata and to

only select relevant test inputs.

The phenomenon of input masking is not limited to irrelevant schemata and EH can also

cause input masking. Test inputs with invalid schemata are expected to trigger EH. Instead of

the normal control flow path, an exceptional control flow path for recovery is exercised through

the SUT. As a consequence, schemata may remain untested and faults may remain undetected

for schemata only appear in an invalid test input. Avoidance is not an option because invalid

schemata are necessary to check the behavior in exceptional situations.

This difficulty is already acknowledged in some research (cf. [She94]; [Coh+94]; [Coh+97];

[GOA05]; [Cze06]). It led to extensions of CT that we called CRT which separates valid and

strong invalid test inputs such that all schemata can be tested as expected.

In this work, we further expanded the idea of CRT. We started by establishing a taxonomy with

272 Chapter 16. Conclusion

a precise description and clear distinction of robustness and related concepts and by discussing

shortcomings of related work.

Moreover, we argued that CRT is still insufficiently researched. It was not clear if the existing

CRT test methods are necessary at all or if CT test methods are already appropriate. Prior to our

work, only qualitative argumentation and examples but no quantitative assessment existed.

For this, we asked the following research question.

Research Question 1 How effective is CT and what are its shortcomings in detecting faults

when invalid input masking is present?

To answer the research question, we conducted a controlled experiment in which we assessed

the FDE of CT. The controlled experiment shows that CT can be effective in detecting robustness

faults. Although, not all robustness faults can be detected reliably. Depending on the number

of EH and the distribution of valid and invalid values, a high testing strength is necessary which

requires the execution of large test suites.

In conclusion, extensions like CRT are useful additions worth investigating. Further on, the

controlled experiment indicated that the generality of the t-factor fault model can be a disadvan-

tage as it does not allow further information to be modeled. As a step forward, we identified a

refinement of the t-factor fault model that incorporates robustness faults and the inherent invalid

input masking effect. Therefore, the second research questions was as follows.

Research Question 2 How can the t-factor fault model be refined such that it explicitly de-

scribes robustness faults and the inherent invalid input masking effect?

To answer this research question, we identified issues related to EH and derived a classification

of robustness fault characteristics. Afterwards, we used this information to create a refined t-
factor fault model.

With the refined t-factor fault model, CRT could be adapted so that the additional information

is taken into account. This was expressed by the following research question.

Research Question 3 How can a CRT test method capture and utilize the additional infor-

mation for annotating invalid values and invalid value combinations to select test suites

that activate faults in the presence of invalid input masking?

To answer the research question, a new CRT test method was developed, which consists of an

extended input structure (the RIPM with error-constraints), new test adequacy criteria (t-wise

valid coverage and the family of 〈∗, ∗〉-wise strong invalid coverage), and new test selection

strategies (ROBUSTA and IPOG-NEG〈∗, ∗〉).
The corresponding evaluation consists of a theoretical examination, a controlled experiment

and an industrial case study. Even though the theoretical examination revealed disadvantages in

the time complexity of ROBUSTA compared to IPOG-C, the selection of test inputs is often a

non-recurring activity. Therefore, we consider the FDE to be more important as long as the run-

time of ROBUSTA remains within reasonable limits. When comparing the number of executed

test inputs and the number of detected faults, CRT has been shown to be at least as good as CT

16.1. Summary 273

or better. With CRT, fewer test inputs are needed than with CT to achieve the same or a greater

FDE. The industrial case study also showed that larger RIPMs can also be modeled and used for

testing with CRT.

The error-constraints allow a more advantageous selection of test inputs by CRT. But error-

constraints are also the main disadvantage of CRT, because they have to be modeled in addition

to parameters, values, and exclusion-constraints. To mitigate this disadvantage, we developed

two supporting techniques to partially automate the activity of error-constraint modeling.

First, we acknowledged that the activity of error-constraint modeling is prone to errors and

it is likely to create over-constrained RIPMs. This was expressed by the following research

question.

Research Question 4 How can inconsistent annotations of invalid values and invalid value

combinations be detected, identified, and resolved?

To answer this research question, we utilized ideas from the research on CSP to detect and

repair inconsistencies among error-constraints. Further on, we utilized the ideas to create new

SCH strategies that allow postponing the repair of inconsistent error-constraints.

The corresponding evaluation showed that over-constrained RIPMs can be detected reliably.

Although, a complete automation of the repair could not be realized because an oracle is required

to select a minimal diagnosis hitting set. When an oracle is not available, SCH is a feasible

alternative to select test inputs despite the existence of inconsistent error-constraints.

Second, we proposed a technique for the initial modeling of error-constraints. This was ex-

pressed by the following research question.

Research Question 5 How can values and value combinations that trigger EH of a SUT be

identified during testing and annotated as invalid?

To answer this research question, we designed a process for the automatic generation of error-

constraints that utilized ideas of FC to search for test inputs that trigger EH and to identify

minimal non-conforming schemata.

The corresponding evaluation showed the designed solution works in general. However, its

effectiveness and efficiency depends largely on the chosen FCA.

Last but not least, the objective of this work was to operationalize the conceptual solutions so

that not only can the evaluation be carried out, but the solutions can also be applied in practice.

For this purpose we designed a framework with an associated process and architecture that

includes all previously discussed concepts and algorithms. Further on, we implemented the

framework based on the Java programming language and the JUnit 5 test automation framework.

With this, our work is now finally complete. Nevertheless, our work has raised further ques-

tions, which should also be addressed in order to further pursue the idea of the CRT. These are

discussed subsequently.

274 Chapter 16. Conclusion

16.2. Future Work

The idea of CRT can be further pursued in different areas. Some possible extensions to this

work are discussed below. Since error-constraints are introduced as a new concept in this work,

there is unexploited potential to support and ensure the completeness and correctness of error-

constraints.

Develop Visual Aid for Modeling Error-Constraints As already mentioned, error-con-

straints require additional effort in modeling. To reduce this effort, further support in modeling

is imaginable. For instance, SEGALL et al. [STF11] introduce a Cartesian product view of

IPMs. Users select any set of parameters and the Cartesian product view displays a list of all

schemata among the value domains of the selected parameters. The view utilizes different col-

ors to indicate whether a schema is irrelevant, relevant, or partially-relevant. By reviewing the

listed schemata, users may identify schemata that have been mistakenly classified as relevant

or irrelevant. Furthermore, users may update exclusion-constraints and immediately review the

updated classification. According to SEGALL et al., the Cartesian product view is “very effective

in helping the user to avoid omissions. The user is faced with the Cartesian product of a set of

parameters, thus reducing the risk of value combinations being left unnoticed.”

This idea could also be transferred and extended to CRT and RIPMs with error-constraints

where not only relevance but also validness would be displayed. Users could distinguish between

strong invalid schemata, invalid schemata and valid schemata. Further on, they could update

error-constraints whenever they identify incorrect classifications.

Further on, this idea could also be beneficial to visualize conflicts among error-constraints in

over-constrained RIPMs and to support their explanation and repair.

Improve Detection and Repair of Over-Constrained RIPMs The manual or semi-au-

tomatic repair activities of over-constrained RIPMs cannot only be improved by the aforemen-

tioned visual aid.

The satisfiability function SAT : C∗ × A → Bool has already been recognised as a perfor-

mance bottleneck within test selection strategies (cf. [Wu+19b]; [Wu+19a]). Instead of explic-

itly enumerating all schemata that should be excluded or transforming the RIPM into a CSP, YU

et al. [Yu+15] introduced an approach to deal with constraints based on the notion of “minimal

forbidden tuples”, i.e. minimal irrelevant schemata, which delivers a better performance in most

cases. This approach can be directly transferred to error-constraints and the selection of strong

invalid test inputs. In fact, our coffee4j framework contains interchangeable constraint checking

implementations that are based on CSPs and minimal irrelevant schemata.

It is to be expected that the performance of conflict detection techniques, conflict diagnosis

techniques, and soft constraint handling strategies would also improve when an approach based

on minimal irrelevant schemata rather than CSPs were used.

Another potential improvement is concerned with the automatic relaxation of conflicting con-

straints. In Section 9.2.2 (Page 174 and following), our Exclude(ci, sj) function denotes a

simple strategy to relax constraint ci by excluding sj via logical disjunction. Unfortunately, re-

peated automatic relaxation may result in an error-constraint c′i = ci ∨ sj1 ∨ sj2 ∨ sj3 ∨ . . . that

16.2. Future Work 275

is difficult to comprehend. More sophisticated functions to relax constraints may improve the

comprehensibility.

Extend Automatic Generation of Error-Constraints Our technique to automatically

generate error-constraints starts with an empty set of error-constraints and assumes that the

RIPMs may be under-constrained but never over-constrained.

This assumption could be relaxed. Similar to GARGANTINI et al. [Gar+16]; [GPR17], our

technique could be extended to not only identify and generate error-constraints for non-conform-

ing schemata that indicate under-constrained error-constraints. The identification could be ex-

panded to search for non-conforming schemata that indicate over-constrained error-constraints.

Furthermore, the generation could be expanded to relax over-constrained error-constraints.

This extension would require a change in the search strategy, similar to the search strategies

proposed by GARGANTINI et al. [Gar+16]. Instead of only selecting valid test inputs and

checking whether they are truly-valid, as it is currently the case, strong invalid test inputs must

also be selected and checked if they are truly-strong invalid.

Besides the completeness and correctness of error-constraints, further ideas are concerned

with the utilization of error-constraints. They are discussed below.

Increase Collateral Strong Invalid Coverage Testing with t-wise coverage involves so-

called collateral coverage. The concept of collateral coverage describes the effect that not only

schemata with degrees d ≤ t also some schemata with degrees d > t can be detected by t-
wise coverage [CZ11]; [Pet+15]. This is because a test suite that satisfies t-wise coverage does

not only cover all schemata with degrees d ≤ t but also covers some schemata with degrees

d = (t+ k) with k > 0 and d ≤ n. Therefore, there is also a probability to detect faults that are

represented by MFCSs with degrees d > t.

For CT and t-wise coverage already exists research to intentionally increase collateral cover-

age. For instance, CHEN & ZHANG [CZ11] propose to replace “do not care” values with values

that cover as many yet uncovered schemata with degree t + 1. CHOI et al. [Cho+16] introduce

a test selection strategy that increases collateral coverage by maximizing the distance between

test inputs.

These ideas can be directly transferred to t-wise valid coverage. But transferring them to

strong invalid coverage test adequacy criteria requires additional work. Since it can be deduced

from the case study (Section 13.3, Page 227 and following) that collateral coverage can improve

the FDE, we believe the transfer would be desirable. We could observe that strong invalid test

inputs that violate the l-th exception condition behave as “partially valid” test inputs for the

prior l− 1 validation rules. Although the robustness interaction (b > 0) is originally designed to

detect configuration-dependent robustness faults, further faults can be detected by the increased

number of test inputs and its collateral coverage. Without robustness interaction (b = 0), the

effect cannot be achieved because the IPOG-NEG〈∗, 0〉 test selection strategies assign replace

the “do not care” values randomly.

But the “do not care” values are often not only replaced randomly but also similarly, as the

same test selection strategy is iteratively applied to select strong invalid test inputs for several

276 Chapter 16. Conclusion

error-constraints. Here an iteration-spanning optimization of the “do not care” values would be

desirable in order to increase the FDE via collateral coverage without enlarging test suites.

Evaluate Test Oracles based on Error-Constraint Selecting adequate test inputs is not

the only challenge in testing. In addition, a correct and accurate test oracle is required to not only

trigger failures but also to reveal failures [Wey82]; [AL85]; [Bar+15]; [LO17]. The existence

of a test oracle is often assumed. Following WEYUKER [Wey82], “the belief that the tester is

routinely able to determine whether or not the test output is correct is the oracle assumption”. In

practice, test oracles seldom exist just like that but must be developed in addition to test models

and test scripts increasing the costs of testing (cf. [Bar+15]).

In the case study (Section 13.3, Page 227 and following), we could not only observe that the

specified error-constraints improve the selection of test inputs. Additionally, we could observe

that the partitioning of valid and strong invalid schemata as defined by the error-constraints

can also be used to define test oracles. Therefore, error-constraints can be beneficial in both

dimensions. The benefits are especially true for test projects where a test oracle is not yet

available. To further pursue the idea of test oracles based on error-constraints, further case

studies and further constructions of test oracles are necessary.

Part V.

Appendix

Appendix A.

Data of FDE in the Presence of Invalid
Input Masking

This is the appendix to Section 5.1 (Page 74 and following) which contains all FDE values for

all test scenario families used in the experiment.

280 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-1-6 12-1-1-6 18-1-1-6 24-1-1-6 30-1-1-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 57 51 51 44 57

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 32 28 26 26 29

3 2 67 75 84 85 86

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 15 8 10 15 12

4 2 42 45 51 49 60

4 3 74 83 90 89 87

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 10 8 8 0 10

5 2 14 28 24 32 31

5 3 32 46 62 63 73

5 4 78 96 95 96 97

5 5 100 100 100 100 100

6 1 2 5 5 3 4

6 2 9 12 15 13 14

6 3 25 31 33 32 46

6 4 42 69 69 73 78

6 5 70 87 98 100 99

Table A.1.: FDE for Test Scenario Families with six EHs, one valid value and one invalid value

per parameter

281

l t 6-1-2-6 12-1-2-6 18-1-2-6 24-1-2-6 30-1-2-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 68 63 64 65 69

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 19 18 23 20 29

3 2 76 94 88 91 96

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 9 8 8 8 6

4 2 28 48 41 44 49

4 3 77 88 96 95 96

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 2 3 1 5 3

5 2 14 14 17 17 19

5 3 40 46 60 55 69

5 4 86 95 98 99 100

5 5 100 100 100 100 100

6 1 1 1 1 2 0

6 2 5 8 7 7 6

6 3 12 15 22 16 36

6 4 34 60 67 69 80

6 5 76 96 100 99 99

Table A.2.: FDE for Test Scenario Families with six EHs, one valid value and two invalid values

per parameter

282 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-3-6 12-1-3-6 18-1-3-6 24-1-3-6 30-1-3-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 83 73 79 77 79

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 15 13 16 14 14

3 2 83 87 94 96 93

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 8 3 4 6 6

4 2 26 39 36 41 37

4 3 90 96 95 97 99

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 3 0 1 1 0

5 2 8 15 11 8 11

5 3 36 38 54 51 56

5 4 83 94 99 99 100

5 5 100 100 100 100 100

6 1 0 0 0 0 0

6 2 1 3 1 4 2

6 3 14 12 15 17 19

6 4 36 49 66 67 61

6 5 78 99 100 100 100

Table A.3.: FDE for Test Scenario Families with six EHs, one valid value and three invalid values

per parameter

283

l t 6-1-4-6 12-1-4-6 18-1-4-6 24-1-4-6 30-1-4-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 85 81 82 80 76

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 18 13 15 16 23

3 2 92 93 95 97 93

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 1 3 0 4 3

4 2 24 30 31 34 38

4 3 90 95 98 98 99

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 1 1 0 1 1

5 2 4 4 12 12 10

5 3 30 45 42 49 47

5 4 90 100 100 100 99

5 5 100 100 100 100 100

6 1 0 0 0 0 0

6 2 0 1 2 1 2

6 3 5 10 4 7 16

6 4 22 46 53 49 49

6 5 84 96 100 100 100

Table A.4.: FDE for Test Scenario Families with six EHs, one valid value and four invalid values

per parameter

284 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-5-6 12-1-5-6 18-1-5-6 24-1-5-6 30-1-5-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 86 86 89 76 82

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 16 15 10 16 10

3 2 92 93 93 97 96

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 1 2 5 4 1

4 2 21 33 23 31 38

4 3 97 93 99 97 94

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 0 1 0 0 1

5 2 1 9 4 5 5

5 3 24 30 38 43 37

5 4 91 97 100 100 100

5 5 100 100 100 100 100

6 1 0 0 0 0 0

6 2 0 1 1 0 1

6 3 3 5 6 10 4

6 4 27 36 43 51 58

6 5 90 100 100 100 100

Table A.5.: FDE for Test Scenario Families with six EHs, one valid value and five invalid values

per parameter

285

l t 6-2-2-6 12-2-2-6 18-2-2-6 24-2-2-6 30-2-2-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 86 86 78 84 91

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 51 49 36 57 44

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 26 27 32 20 22

4 2 86 93 96 97 93

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 16 11 10 12 14

5 2 62 65 70 76 76

5 3 100 99 99 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 6 6 7 4 4

6 2 29 49 50 42 40

6 3 88 97 98 98 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

Table A.6.: FDE for Test Scenario Families with six EHs, two valid values and two invalid values

per parameter

286 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-3-3-6 12-3-3-6 18-3-3-6 24-3-3-6 30-3-3-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 96 97 90 94 96

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 66 74 61 67 56

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 35 45 39 35 36

4 2 100 100 99 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 13 22 20 15 12

5 2 90 88 97 91 98

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 10 7 3 3 10

6 2 78 69 71 74 72

6 3 99 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

Table A.7.: FDE for Test Scenario Families with six EHs, three valid values and three invalid

values per parameter

287

l t 6-2-1-6 12-2-1-6 18-2-1-6 24-2-1-6 30-2-1-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 63 74 65 66 70

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 43 34 38 35 52

3 2 98 99 100 99 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 30 35 33 29 31

4 2 90 96 95 95 99

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 22 22 20 19 27

5 2 72 82 84 85 91

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 12 14 11 13 18

6 2 61 61 69 63 69

6 3 95 99 100 100 99

6 4 100 100 100 100 100

6 5 100 100 100 100 100

Table A.8.: FDE for Test Scenario Families with six EHs, two valid values and one invalid value

per parameter

288 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-3-1-6 12-3-1-6 18-3-1-6 24-3-1-6 30-3-1-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 71 72 76 70 72

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 59 60 57 57 53

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 34 51 52 44 43

4 2 100 100 100 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 30 27 37 29 34

5 2 97 100 98 100 98

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 24 25 20 22 23

6 2 85 94 87 90 95

6 3 100 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

Table A.9.: FDE for Test Scenario Families with six EHs, three valid values and one invalid

value per parameter

289

l t 6-4-1-6 12-4-1-6 18-4-1-6 24-4-1-6 30-4-1-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 77 85 76 76 85

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 65 54 60 62 55

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 59 65 46 50 51

4 2 100 100 100 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 46 41 33 40 33

5 2 100 100 100 100 100

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 33 39 35 34 41

6 2 97 98 100 100 100

6 3 100 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

Table A.10.: FDE for Test Scenario Families with six EHs, four valid values and one invalid

value per parameter

290 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-5-1-6 12-5-1-6 18-5-1-6 24-5-1-6 30-5-1-6

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 80 83 86 86 89

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 61 74 61 70 73

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 63 62 60 53 52

4 2 100 100 100 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 46 47 47 46 56

5 2 100 100 100 100 100

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 45 39 41 44 45

6 2 99 100 100 100 100

6 3 100 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

Table A.11.: FDE for Test Scenario Families with six EHs, five valid values and one invalid

value per parameter

291

l t 6-1-1-6 12-1-1-12 18-1-1-18 24-1-1-24 30-1-1-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 57 53 46 41 42

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 32 28 25 27 24

3 2 67 63 83 85 80

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 15 15 14 16 6

4 2 42 43 50 51 56

4 3 74 86 91 90 90

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 10 3 5 7 4

5 2 14 23 26 33 34

5 3 32 50 53 68 70

5 4 78 89 95 96 97

5 5 100 100 100 100 100

6 1 2 3 4 5 7

6 2 9 10 21 12 14

6 3 25 29 34 30 41

6 4 42 64 73 76 76

6 5 70 94 99 97 98

7 1 2 1 0 3

7 2 8 7 7 11

7 3 17 20 19 19

7 4 31 36 46 55

7 5 64 63 89 87

8 1 0 1 1 0

8 2 6 6 1 6

8 3 12 8 11 16

8 4 23 19 28 30

8 5 39 51 56 51

Table A.12.: FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (1/4)

292 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-1-6 12-1-1-12 18-1-1-18 24-1-1-24 30-1-1-30

9 1 0 1 0 2

9 2 1 3 5 2

9 3 4 6 5 2

9 4 7 13 12 17

9 5 21 31 34 35

10 1 0 1 0 0

10 2 0 4 0 2

10 3 2 1 3 2

10 4 5 9 6 9

10 5 6 13 19 21

11 1 0 0 1 0

11 2 0 1 0 1

11 3 2 1 1 0

11 4 3 7 2 4

11 5 10 6 9 13

12 1 0 0 0 1

12 2 0 0 1 1

12 3 1 1 2 0

12 4 2 2 1 1

12 5 2 3 7 5

13 1 0 0 0

13 2 1 0 0

13 3 0 0 0

13 4 1 0 2

13 5 0 3 2

14 1 0 0 0

14 2 0 0 0

14 3 0 0 0

14 4 0 0 2

14 5 1 0 1

15 1 0 0 0

15 2 0 0 0

15 3 0 1 0

15 4 0 1 0

15 5 1 0 1

16 1 0 0 0

16 2 0 0 0

16 3 0 0 1

16 4 0 0 0

16 5 0 0 0

Table A.13.: FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (2/4)

293

l t 6-1-1-6 12-1-1-12 18-1-1-18 24-1-1-24 30-1-1-30

17 1 0 0 0

17 2 0 0 0

17 3 0 0 0

17 4 0 0 0

17 5 0 0 0

18 1 0 0 0

18 2 0 0 0

18 3 0 0 0

18 4 0 0 0

18 5 0 0 0

19 1 0 0

19 2 0 0

19 3 0 0

19 4 0 0

19 5 0 0

20 1 0 0

20 2 0 0

20 3 0 0

20 4 0 0

20 5 0 0

21 1 0 0

21 2 0 0

21 3 0 0

21 4 0 0

21 5 0 0

22 1 0 0

22 2 0 0

22 3 0 0

22 4 0 0

22 5 0 0

23 1 0 0

23 2 0 0

23 3 0 0

23 4 0 0

23 5 0 0

24 1 0 0

24 2 0 0

24 3 0 0

24 4 0 0

24 5 0 0

Table A.14.: FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (3/4)

294 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-1-6 12-1-1-12 18-1-1-18 24-1-1-24 30-1-1-30

25 1 0 0

25 2 0

25 3 0

25 4 0

25 5 0

26 1 0

26 2 0

26 3 0

26 4 0

26 5 0

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

28 1 0

28 2 0

28 3 0

28 4 0

28 5 0

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.15.: FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (4/4)

295

l t 6-1-2-6 12-1-2-12 18-1-2-18 24-1-2-24 30-1-2-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 68 68 70 68 72

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 19 13 19 15 19

3 2 76 88 83 88 93

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 9 8 8 14 12

4 2 28 42 46 45 45

4 3 77 95 98 95 97

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 2 2 3 2 4

5 2 14 22 19 16 19

5 3 40 52 63 50 62

5 4 86 92 98 99 98

5 5 100 100 100 100 100

6 1 1 1 1 2 0

6 2 5 7 6 7 3

6 3 12 18 19 14 31

6 4 34 57 64 74 72

6 5 76 96 100 100 100

7 1 0 0 0 0

7 2 1 0 2 3

7 3 5 10 9 9

7 4 33 31 38 35

7 5 61 73 82 76

8 1 0 0 0 1

8 2 0 0 0 0

8 3 3 6 3 0

8 4 8 11 13 11

8 5 23 31 48 46

Table A.16.: FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (1/4)

296 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-2-6 12-1-2-12 18-1-2-18 24-1-2-24 30-1-2-30

9 1 0 0 0 0

9 2 0 0 0 0

9 3 0 1 1 1

9 4 2 3 10 4

9 5 9 12 10 23

10 1 0 0 0 0

10 2 0 1 1 0

10 3 1 2 0 0

10 4 0 1 3 2

10 5 4 4 9 2

11 1 0 0 0 0

11 2 0 0 0 0

11 3 0 0 0 0

11 4 2 1 0 1

11 5 1 2 0 1

12 1 0 0 0 0

12 2 0 0 0 0

12 3 0 0 0 0

12 4 0 0 0 0

12 5 0 0 0 0

13 1 0 0 0

13 2 0 0 0

13 3 0 0 0

13 4 0 0 0

13 5 0 0 1

14 1 0 0 0

14 2 0 0 0

14 3 0 0 0

14 4 0 0 0

14 5 0 0 0

15 1 0 0 0

15 2 0 0 0

15 3 0 0 0

15 4 0 0 0

15 5 0 0 0

16 1 0 0 0

16 2 0 0 0

16 3 0 0 0

16 4 0 0 0

16 5 0 0 0

Table A.17.: FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (2/4)

297

l t 6-1-2-6 12-1-2-12 18-1-2-18 24-1-2-24 30-1-2-30

17 1 0 0 0

17 2 0 0 0

17 3 0 0 0

17 4 0 0 0

17 5 0 0 0

18 1 0 0 0

18 2 0 0 0

18 3 0 0 0

18 4 0 0 0

18 5 0 0 0

19 1 0 0

19 2 0 0

19 3 0 0

19 4 0 0

19 5 0 0

20 1 0 0

20 2 0 0

20 3 0 0

20 4 0 0

20 5 0 0

21 1 0 0

21 2 0 0

21 3 0 0

21 4 0 0

21 5 0 0

22 1 0 0

22 2 0 0

22 3 0 0

22 4 0 0

22 5 0 0

23 1 0 0

23 2 0 0

23 3 0 0

23 4 0 0

23 5 0 0

24 1 0 0

24 2 0 0

24 3 0 0

24 4 0 0

24 5 0 0

Table A.18.: FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (3/4)

298 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-2-6 12-1-2-12 18-1-2-18 24-1-2-24 30-1-2-30

25 1 0 0

25 2 0

25 3 0

25 4 0

25 5 0

26 1 0

26 2 0

26 3 0

26 4 0

26 5 0

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

28 1 0

28 2 0

28 3 0

28 4 0

28 5 0

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.19.: FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (4/4)

299

l t 6-1-3-6 12-1-3-12 18-1-3-18 24-1-3-24 30-1-3-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 83 75 77 76 69

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 15 15 16 19 14

3 2 83 90 94 92 93

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 8 6 10 4 6

4 2 26 34 41 35 43

4 3 90 91 95 96 96

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 3 3 0 3 0

5 2 8 8 11 9 15

5 3 36 51 50 52 52

5 4 83 94 99 100 99

5 5 100 100 100 100 100

6 1 0 0 0 1 0

6 2 1 0 1 2 1

6 3 14 11 13 20 12

6 4 36 54 54 64 72

6 5 78 97 99 99 99

7 1 0 0 0 0

7 2 2 0 0 1

7 3 4 7 8 6

7 4 12 21 19 16

7 5 47 71 72 80

8 1 0 0 0 0

8 2 0 0 0 1

8 3 0 3 1 2

8 4 1 8 8 6

8 5 14 18 25 25

Table A.20.: FDE for Test Scenario Families one valid value per parameter, three invalid values

per parameter, and an equal number of EHs (1/4)

300 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-3-6 12-1-3-12 18-1-3-18 24-1-3-24 30-1-3-30

9 1 0 0 0 0

9 2 0 0 0 0

9 3 0 0 0 0

9 4 1 2 1 0

9 5 4 5 4 5

10 1 0 0 0 0

10 2 0 0 0 0

10 3 0 0 0 0

10 4 0 0 1 0

10 5 2 3 0 1

11 1 0 0 0 0

11 2 0 0 0 0

11 3 0 0 0 0

11 4 0 0 0 0

11 5 0 1 0 0

12 1 0 0 0 0

12 2 0 0 0 0

12 3 0 0 0 0

12 4 0 0 0 0

12 5 0 0 0 0

13 1 0 0 0

13 2 0 0 0

13 3 0 0 0

13 4 0 0 0

13 5 0 1 0

14 1 0 0 0

14 2 0 0 0

14 3 0 0 0

14 4 0 0 0

14 5 0 0 0

15 1 0 0 0

15 2 0 0 0

15 3 0 0 0

15 4 0 0 0

15 5 0 0 0

16 1 0 0 0

16 2 0 0 0

16 3 0 0 0

16 4 0 0 0

16 5 0 0 0

Table A.21.: FDE for Test Scenario Families one valid value per parameter, three invalid values

per parameter, and an equal number of EHs (2/4)

301

l t 6-1-3-6 12-1-3-12 18-1-3-18 24-1-3-24 30-1-3-30

17 1 0 0 0

17 2 0 0 0

17 3 0 0 0

17 4 0 0 0

17 5 0 0 0

18 1 0 0 0

18 2 0 0 0

18 3 0 0 0

18 4 0 0 0

18 5 0 0 0

19 1 0 0

19 2 0 0

19 3 0 0

19 4 0 0

19 5 0 0

20 1 0 0

20 2 0 0

20 3 0 0

20 4 0 0

20 5 0 0

21 1 0 0

21 2 0 0

21 3 0 0

21 4 0 0

21 5 0 0

22 1 0 0

22 2 0 0

22 3 0 0

22 4 0 0

22 5 0 0

23 1 0 0

23 2 0 0

23 3 0 0

23 4 0 0

23 5 0 0

24 1 0 0

24 2 0 0

24 3 0 0

24 4 0 0

24 5 0 0

Table A.22.: FDE for Test Scenario Families one valid value per parameter, three invalid values

per parameter, and an equal number of EHs (3/4)

302 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-3-6 12-1-3-12 18-1-3-18 24-1-3-24 30-1-3-30

25 1 0 0

25 2 0

25 3 0

25 4 0

25 5 0

26 1 0

26 2 0

26 3 0

26 4 0

26 5 0

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

28 1 0

28 2 0

28 3 0

28 4 0

28 5 0

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.23.: FDE for Test Scenario Families one valid value per parameter, three invalid values

per parameter, and an equal number of EHs (4/4)

303

l t 6-1-4-6 12-1-4-12 18-1-4-18 24-1-4-24 30-1-4-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 85 87 76 76 72

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 18 8 17 13 18

3 2 92 89 93 100 94

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 1 1 4 3 3

4 2 24 25 35 39 42

4 3 90 92 99 97 98

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 1 1 1 1 0

5 2 4 7 4 9 6

5 3 30 37 38 51 58

5 4 90 94 100 100 100

5 5 100 100 100 100 100

6 1 0 1 0 0 1

6 2 0 1 1 2 2

6 3 5 11 9 11 15

6 4 22 40 45 64 60

6 5 84 99 100 100 100

7 1 0 0 0 0

7 2 0 0 0 0

7 3 1 1 2 1

7 4 10 9 13 12

7 5 46 54 63 71

8 1 0 0 0 0

8 2 0 0 0 0

8 3 0 0 0 0

8 4 4 4 7 7

8 5 14 18 23 18

Table A.24.: FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (1/4)

304 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-4-6 12-1-4-12 18-1-4-18 24-1-4-24 30-1-4-30

9 1 0 0 0 0

9 2 0 0 0 0

9 3 0 0 2 0

9 4 0 0 1 0

9 5 2 4 3 1

10 1 0 0 0 0

10 2 0 0 0 0

10 3 0 0 0 0

10 4 0 0 0 0

10 5 0 0 2 2

11 1 0 0 0 0

11 2 0 0 0 0

11 3 0 0 0 0

11 4 0 0 0 0

11 5 0 0 0 0

12 1 0 0 0 0

12 2 0 0 0 0

12 3 0 0 0 0

12 4 0 0 0 0

12 5 0 0 0 0

13 1 0 0 0

13 2 0 0 0

13 3 0 0 0

13 4 0 0 0

13 5 0 0 0

14 1 0 0 0

14 2 0 0 0

14 3 0 0 0

14 4 0 0 0

14 5 0 0 0

15 1 0 0 0

15 2 0 0 0

15 3 0 0 0

15 4 0 0 0

15 5 0 0 0

16 1 0 0 0

16 2 0 0 0

16 3 0 0 0

16 4 0 0 0

16 5 0 0 0

Table A.25.: FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (2/4)

305

l t 6-1-4-6 12-1-4-12 18-1-4-18 24-1-4-24 30-1-4-30

17 1 0 0 0

17 2 0 0 0

17 3 0 0 0

17 4 0 0 0

17 5 0 0 0

18 1 0 0 0

18 2 0 0 0

18 3 0 0 0

18 4 0 0 0

18 5 0 0 0

19 1 0 0

19 2 0 0

19 3 0 0

19 4 0 0

19 5 0 0

20 1 0 0

20 2 0 0

20 3 0 0

20 4 0 0

20 5 0 0

21 1 0 0

21 2 0 0

21 3 0 0

21 4 0 0

21 5 0 0

22 1 0 0

22 2 0 0

22 3 0 0

22 4 0 0

22 5 0 0

23 1 0 0

23 2 0 0

23 3 0 0

23 4 0 0

23 5 0 0

24 1 0 0

24 2 0 0

24 3 0 0

24 4 0 0

24 5 0 0

Table A.26.: FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (3/4)

306 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-4-6 12-1-4-12 18-1-4-18 24-1-4-24 30-1-4-30

25 1 0 0

25 2 0

25 3 0

25 4 0

25 5 0

26 1 0

26 2 0

26 3 0

26 4 0

26 5 0

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

28 1 0

28 2 0

28 3 0

28 4 0

28 5 0

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.27.: FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (4/4)

307

l t 6-1-5-6 12-1-5-12 18-1-5-18 24-1-5-24 30-1-5-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 86 84 81 84 87

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 16 16 10 17 16

3 2 92 91 92 93 97

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 1 0 2 5 2

4 2 21 25 18 32 29

4 3 97 97 95 98 99

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 0 0 0 1 0

5 2 1 5 5 5 2

5 3 24 28 37 51 43

5 4 91 96 99 99 100

5 5 100 100 100 100 100

6 1 0 0 0 0 0

6 2 0 2 0 0 0

6 3 3 7 3 7 7

6 4 27 36 44 52 59

6 5 90 99 100 100 100

7 1 0 0 0 0

7 2 0 0 0 0

7 3 1 0 1 3

7 4 9 10 13 10

7 5 45 51 62 68

8 1 0 0 0 0

8 2 0 0 0 0

8 3 0 0 2 0

8 4 1 2 3 1

8 5 9 4 16 15

Table A.28.: FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (1/4)

308 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-5-6 12-1-5-12 18-1-5-18 24-1-5-24 30-1-5-30

9 1 0 0 0 0

9 2 0 0 0 0

9 3 0 1 0 0

9 4 0 0 1 1

9 5 3 3 3 0

10 1 0 0 0 0

10 2 0 0 0 0

10 3 0 0 0 0

10 4 0 0 0 0

10 5 1 0 2 1

11 1 0 0 0 0

11 2 0 0 0 0

11 3 0 0 0 0

11 4 0 0 0 0

11 5 0 0 0 0

12 1 0 0 0 0

12 2 0 0 0 0

12 3 0 0 0 0

12 4 0 0 0 0

12 5 0 0 0 0

13 1 0 0 0

13 2 0 0 0

13 3 0 0 0

13 4 0 0 0

13 5 0 0 0

14 1 0 0 0

14 2 0 0 0

14 3 0 0 0

14 4 0 0 0

14 5 0 0 0

15 1 0 0 0

15 2 0 0 0

15 3 0 0 0

15 4 0 0 0

15 5 0 0 0

16 1 0 0 0

16 2 0 0 0

16 3 0 0 0

16 4 0 0 0

16 5 0 0 0

Table A.29.: FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (2/4)

309

l t 6-1-5-6 12-1-5-12 18-1-5-18 24-1-5-24 30-1-5-30

17 1 0 0 0

17 2 0 0 0

17 3 0 0 0

17 4 0 0 0

17 5 0 0 0

18 1 0 0 0

18 2 0 0 0

18 3 0 0 0

18 4 0 0 0

18 5 0 0 0

19 1 0 0

19 2 0 0

19 3 0 0

19 4 0 0

19 5 0 0

20 1 0 0

20 2 0 0

20 3 0 0

20 4 0 0

20 5 0 0

21 1 0 0

21 2 0 0

21 3 0 0

21 4 0 0

21 5 0 0

22 1 0 0

22 2 0 0

22 3 0 0

22 4 0 0

22 5 0 0

23 1 0 0

23 2 0 0

23 3 0 0

23 4 0 0

23 5 0 0

24 1 0 0

24 2 0 0

24 3 0 0

24 4 0 0

24 5 0 0

Table A.30.: FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (3/4)

310 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-1-5-6 12-1-5-12 18-1-5-18 24-1-5-24 30-1-5-30

25 1 0 0

25 2 0

25 3 0

25 4 0

25 5 0

26 1 0

26 2 0

26 3 0

26 4 0

26 5 0

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

28 1 0

28 2 0

28 3 0

28 4 0

28 5 0

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.31.: FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (4/4)

311

l t 6-2-2-6 12-2-2-12 18-2-2-18 24-2-2-24 30-2-2-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 86 87 83 88 83

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 51 45 46 46 49

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 26 24 25 24 19

4 2 86 98 89 95 97

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 16 8 18 13 12

5 2 62 67 77 72 77

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 6 7 6 7 6

6 2 29 44 45 41 60

6 3 88 97 100 98 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

7 1 3 2 3 1

7 2 23 26 22 21

7 3 80 75 89 85

7 4 99 100 100 100

7 5 100 100 100 100

8 1 0 2 1 1

8 2 14 23 14 9

8 3 50 55 59 68

8 4 98 99 99 100

8 5 100 100 100 100

Table A.32.: FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (1/4)

312 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-2-2-6 12-2-2-12 18-2-2-18 24-2-2-24 30-2-2-30

9 1 2 0 0 1

9 2 9 8 8 5

9 3 25 33 33 41

9 4 82 91 96 94

9 5 100 100 100 100

10 1 1 1 0 0

10 2 2 3 2 7

10 3 12 26 21 20

10 4 53 71 72 77

10 5 99 97 100 100

11 1 0 1 1 0

11 2 1 1 1 3

11 3 9 9 11 9

11 4 30 40 52 44

11 5 82 97 95 99

12 1 0 0 0 0

12 2 1 1 2 5

12 3 6 3 6 4

12 4 15 19 30 29

12 5 55 66 80 90

13 1 0 0 0

13 2 0 0 0

13 3 3 5 5

13 4 19 13 12

13 5 53 54 68

14 1 0 0 0

14 2 0 0 1

14 3 2 5 1

14 4 8 7 8

14 5 27 34 25

15 1 0 0 0

15 2 0 2 0

15 3 0 0 1

15 4 3 7 5

15 5 11 18 28

16 1 0 0 0

16 2 0 0 0

16 3 0 0 0

16 4 2 1 0

16 5 9 9 5

Table A.33.: FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (2/4)

313

l t 6-2-2-6 12-2-2-12 18-2-2-18 24-2-2-24 30-2-2-30

17 1 0 0 0

17 2 0 0 0

17 3 0 0 0

17 4 2 1 2

17 5 4 5 10

18 1 0 0 0

18 2 0 0 0

18 3 0 0 0

18 4 0 0 1

18 5 1 1 2

19 1 0 0

19 2 0 0

19 3 0 0

19 4 0 1

19 5 2 2

20 1 0 0

20 2 0 1

20 3 0 0

20 4 0 0

20 5 1 0

21 1 0 0

21 2 0 0

21 3 0 0

21 4 0 0

21 5 0 0

22 1 0 0

22 2 0 0

22 3 0 0

22 4 0 0

22 5 0 0

23 1 0 0

23 2 0 0

23 3 0 0

23 4 0 0

23 5 0 0

24 1 0 0

24 2 0 0

24 3 0 0

24 4 0 0

24 5 0 0

Table A.34.: FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (3/4)

314 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-2-2-6 12-2-2-12 18-2-2-18 24-2-2-24 30-2-2-30

25 1 0 0

25 2 0

25 3 0

25 4 0

25 5 0

26 1 0

26 2 0

26 3 0

26 4 0

26 5 0

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

28 1 0

28 2 0

28 3 0

28 4 0

28 5 0

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.35.: FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (4/4)

315

l t 6-3-3-6 12-3-3-12 18-3-3-18 24-3-3-24 30-3-3-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 96 97 96 93 96

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 66 61 71 55 65

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 35 32 33 34 37

4 2 100 100 100 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 13 13 14 24 11

5 2 90 91 96 95 96

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 10 6 8 7 4

6 2 78 74 75 80 74

6 3 99 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

7 1 4 6 6 4

7 2 40 43 54 54

7 3 98 100 100 100

7 4 100 100 100 100

7 5 100 100 100 100

8 1 1 3 0 4

8 2 20 23 43 21

8 3 91 96 96 99

8 4 100 100 100 100

8 5 100 100 100 100

Table A.36.: FDE for Test Scenario Families with three valid values per parameter, three invalid

values per parameter, and an equal number of EHs (1/4)

316 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-3-3-6 12-3-3-12 18-3-3-18 24-3-3-24 30-3-3-30

9 1 0 2 1 3

9 2 11 11 17 15

9 3 69 81 81 83

9 4 100 100 100 100

9 5 100 100 100 100

10 1 1 0 0 0

10 2 11 5 6 9

10 3 45 49 48 60

10 4 98 100 100 100

10 5 100 100 100 100

11 1 0 0 0 0

11 2 1 5 5 7

11 3 24 22 31 39

11 4 92 96 97 99

11 5 100 100 100 100

12 1 1 2 1 0

12 2 2 1 1 0

12 3 13 19 16 20

12 4 71 72 76 85

12 5 100 100 100 100

13 1 0 0 0

13 2 0 1 0

13 3 11 11 12

13 4 49 53 62

13 5 98 100 99

14 1 0 0 0

14 2 1 0 0

14 3 6 1 4

14 4 28 31 40

14 5 92 96 97

15 1 0 0 0

15 2 0 0 0

15 3 2 2 7

15 4 22 11 16

15 5 76 81 83

16 1 0 0 0

16 2 0 0 0

16 3 0 0 0

16 4 7 9 13

16 5 44 51 57

Table A.37.: FDE for Test Scenario Families with three valid values per parameter, three invalid

values per parameter, and an equal number of EHs (2/4)

317

l t 6-3-3-6 12-3-3-12 18-3-3-18 24-3-3-24 30-3-3-30

17 1 0 0 0

17 2 0 0 0

17 3 0 1 1

17 4 2 2 4

17 5 33 32 30

18 1 0 0 0

18 2 0 0 0

18 3 0 0 0

18 4 1 0 0

18 5 14 25 24

19 1 0 0

19 2 0 0

19 3 0 0

19 4 2 0

19 5 7 7

20 1 0 0

20 2 0 0

20 3 0 0

20 4 0 0

20 5 6 5

21 1 0 0

21 2 0 0

21 3 0 0

21 4 1 1

21 5 2 1

22 1 0 0

22 2 0 0

22 3 0 0

22 4 0 0

22 5 2 4

23 1 0 0

23 2 0 0

23 3 0 0

23 4 0 0

23 5 1 1

24 1 0 0

24 2 0 0

24 3 0 0

24 4 0 0

24 5 0 1

Table A.38.: FDE for Test Scenario Families with three valid values per parameter, three invalid

values per parameter, and an equal number of EHs (3/4)

318 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-3-3-6 12-3-3-12 18-3-3-18 24-3-3-24 30-3-3-30

25 1 0 0

25 2 0

25 3 0

25 4 0

25 5 0

26 1 0

26 2 0

26 3 0

26 4 0

26 5 2

27 1 0

27 2 0

27 3 0

27 4 0

27 5 0

28 1 0

28 2 0

28 3 0

28 4 0

28 5 0

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.39.: FDE for Test Scenario Families with three valid values per parameter, three invalid

values per parameter, and an equal number of EHs (4/4)

319

l t 6-2-1-6 12-2-1-12 18-2-1-18 24-2-1-24 30-2-1-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 63 63 66 77 66

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 43 48 55 39 49

3 2 98 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 30 34 27 25 32

4 2 90 86 92 97 95

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 22 22 20 15 23

5 2 72 81 79 81 85

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 12 12 11 3 17

6 2 61 63 67 69 66

6 3 95 98 100 99 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

7 1 8 7 4 9

7 2 40 53 52 45

7 3 92 94 99 97

7 4 100 100 100 100

7 5 100 100 100 100

8 1 5 6 8 3

8 2 27 34 32 35

8 3 78 86 91 87

8 4 100 100 100 100

8 5 100 100 100 100

Table A.40.: FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (1/4)

320 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-2-1-6 12-2-1-12 18-2-1-18 24-2-1-24 30-2-1-30

9 1 6 3 5 5

9 2 22 28 36 21

9 3 69 73 70 72

9 4 100 99 100 100

9 5 100 100 100 100

10 1 2 4 2 0

10 2 13 17 17 17

10 3 52 52 61 55

10 4 95 96 98 99

10 5 100 100 100 100

11 1 4 4 2 1

11 2 10 11 11 7

11 3 33 47 52 56

11 4 85 84 94 97

11 5 100 100 100 100

12 1 1 2 1 2

12 2 7 5 12 8

12 3 34 29 30 34

12 4 67 78 88 83

12 5 99 100 100 100

13 1 2 0 1

13 2 7 4 6

13 3 17 22 28

13 4 52 51 70

13 5 97 99 100

14 1 1 0 0

14 2 3 5 8

14 3 23 12 18

14 4 50 50 47

14 5 91 95 97

15 1 0 0 0

15 2 4 1 3

15 3 15 11 12

15 4 31 37 39

15 5 80 91 85

16 1 0 0 0

16 2 1 3 4

16 3 6 9 5

16 4 20 23 26

16 5 69 68 77

Table A.41.: FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (2/4)

321

l t 6-2-1-6 12-2-1-12 18-2-1-18 24-2-1-24 30-2-1-30

17 1 0 0 0

17 2 2 2 2

17 3 2 8 8

17 4 15 18 18

17 5 48 52 61

18 1 0 0 1

18 2 3 0 2

18 3 2 2 2

18 4 13 16 16

18 5 38 36 44

19 1 0 0

19 2 0 1

19 3 2 2

19 4 14 10

19 5 29 34

20 1 0 0

20 2 0 0

20 3 1 2

20 4 10 6

20 5 19 19

21 1 0 0

21 2 1 0

21 3 2 3

21 4 5 3

21 5 12 14

22 1 0 0

22 2 1 0

22 3 0 0

22 4 2 3

22 5 11 8

23 1 0 0

23 2 0 1

23 3 0 0

23 4 1 2

23 5 4 8

24 1 0 0

24 2 0 0

24 3 0 2

24 4 2 2

24 5 3 5

Table A.42.: FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (3/4)

322 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-2-1-6 12-2-1-12 18-2-1-18 24-2-1-24 30-2-1-30

25 1 0 0

25 2 0

25 3 0

25 4 1

25 5 2

26 1 0

26 2 0

26 3 2

26 4 1

26 5 2

27 1 0

27 2 0

27 3 0

27 4 1

27 5 0

28 1 0

28 2 1

28 3 0

28 4 0

28 5 1

29 1 0

29 2 0

29 3 0

29 4 0

29 5 0

30 1 0

30 2 0

30 3 0

30 4 0

30 5 0

Table A.43.: FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (4/4)

323

l t 6-3-1-6 12-3-1-12 18-3-1-18 24-3-1-24 30-3-1-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 71 69 83 81 72

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 59 50 58 54 68

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 34 51 48 48 47

4 2 100 99 100 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 30 37 40 21 31

5 2 97 97 99 99 100

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 24 18 26 24 21

6 2 85 90 95 94 96

6 3 100 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

7 1 18 22 16 20

7 2 80 86 86 85

7 3 100 100 100 100

7 4 100 100 100 100

7 5 100 100 100 100

8 1 17 10 16 9

8 2 72 76 80 72

8 3 100 100 100 100

8 4 100 100 100 100

8 5 100 100 100 100

Table A.44.: FDE for Test Scenario Families with three valid values per parameter, one invalid

value per parameter, and an equal number of EHs (1/4)

324 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-3-1-6 12-3-1-12 18-3-1-18 24-3-1-24 30-3-1-30

9 1 9 8 17 13

9 2 54 75 65 65

9 3 99 100 100 100

9 4 100 100 100 100

9 5 100 100 100 100

10 1 7 4 6 5

10 2 53 49 57 54

10 3 99 99 100 100

10 4 100 100 100 100

10 5 100 100 100 100

11 1 5 3 4 4

11 2 31 47 45 52

11 3 95 99 100 100

11 4 100 100 100 100

11 5 100 100 100 100

12 1 4 1 3 3

12 2 21 38 49 34

12 3 86 92 95 98

12 4 100 100 100 100

12 5 100 100 100 100

13 1 10 4 2

13 2 27 20 29

13 3 81 85 94

13 4 100 100 100

13 5 100 100 100

14 1 2 1 2

14 2 22 25 18

14 3 67 78 77

14 4 100 100 100

14 5 100 100 100

15 1 3 2 2

15 2 18 20 21

15 3 56 63 85

15 4 100 100 100

15 5 100 100 100

16 1 0 1 2

16 2 11 14 12

16 3 54 67 62

16 4 94 100 98

16 5 100 100 100

Table A.45.: FDE for Test Scenario Families with three valid values per parameter, one invalid

value per parameter, and an equal number of EHs (2/4)

325

l t 6-3-1-6 12-3-1-12 18-3-1-18 24-3-1-24 30-3-1-30

17 1 0 0 0

17 2 10 10 9

17 3 42 49 50

17 4 94 94 97

17 5 100 100 100

18 1 0 0 0

18 2 8 13 2

18 3 32 30 38

18 4 85 93 95

18 5 100 100 100

19 1 1 1

19 2 6 7

19 3 31 29

19 4 88 86

19 5 100 100

20 1 0 1

20 2 6 6

20 3 32 25

20 4 75 74

20 5 100 100

21 1 0 0

21 2 4 3

21 3 16 16

21 4 74 74

21 5 100 100

22 1 0 1

22 2 7 2

22 3 9 12

22 4 63 51

22 5 98 99

23 1 0 0

23 2 0 1

23 3 14 13

23 4 35 48

23 5 95 98

24 1 0 0

24 2 0 0

24 3 8 13

24 4 37 33

24 5 88 91

Table A.46.: FDE for Test Scenario Families with three valid values per parameter, one invalid

value per parameter, and an equal number of EHs (3/4)

326 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-3-1-6 12-3-1-12 18-3-1-18 24-3-1-24 30-3-1-30

25 1 0 0

25 2 1

25 3 5

25 4 31

25 5 89

26 1 1

26 2 0

26 3 6

26 4 23

26 5 82

27 1 0

27 2 1

27 3 4

27 4 11

27 5 63

28 1 0

28 2 1

28 3 5

28 4 15

28 5 53

29 1 0

29 2 0

29 3 2

29 4 13

29 5 48

30 1 0

30 2 1

30 3 2

30 4 7

30 5 33

Table A.47.: FDE for Test Scenario Families with three valid values per parameter, one invalid

value per parameter, and an equal number of EHs (4/4)

327

l t 6-4-1-6 12-4-1-12 18-4-1-18 24-4-1-24 30-4-1-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 77 80 83 79 87

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 65 61 57 68 61

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 59 55 49 54 54

4 2 100 100 100 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 46 45 43 34 46

5 2 100 100 99 100 100

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 33 31 36 35 28

6 2 97 100 99 100 99

6 3 100 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

7 1 25 26 31 27

7 2 98 99 98 99

7 3 100 100 100 100

7 4 100 100 100 100

7 5 100 100 100 100

8 1 27 25 13 17

8 2 91 94 96 95

8 3 100 100 100 100

8 4 100 100 100 100

8 5 100 100 100 100

Table A.48.: FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (1/4)

328 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-4-1-6 12-4-1-12 18-4-1-18 24-4-1-24 30-4-1-30

9 1 13 22 23 21

9 2 87 91 95 92

9 3 100 100 100 100

9 4 100 100 100 100

9 5 100 100 100 100

10 1 8 15 15 12

10 2 77 82 77 82

10 3 100 100 100 100

10 4 100 100 100 100

10 5 100 100 100 100

11 1 13 10 11 16

11 2 68 57 82 70

11 3 100 100 100 100

11 4 100 100 100 100

11 5 100 100 100 100

12 1 7 13 8 7

12 2 54 69 70 70

12 3 100 100 100 100

12 4 100 100 100 100

12 5 100 100 100 100

13 1 10 9 8

13 2 53 50 66

13 3 100 100 100

13 4 100 100 100

13 5 100 100 100

14 1 3 5 6

14 2 47 47 55

14 3 100 100 100

14 4 100 100 100

14 5 100 100 100

15 1 3 6 6

15 2 46 40 42

15 3 98 99 98

15 4 100 100 100

15 5 100 100 100

16 1 2 5 1

16 2 27 30 37

16 3 97 97 98

16 4 100 100 100

16 5 100 100 100

Table A.49.: FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (2/4)

329

l t 6-4-1-6 12-4-1-12 18-4-1-18 24-4-1-24 30-4-1-30

17 1 3 0 1

17 2 23 28 36

17 3 93 96 89

17 4 100 100 100

17 5 100 100 100

18 1 3 0 5

18 2 22 21 32

18 3 90 89 96

18 4 100 100 100

18 5 100 100 100

19 1 1 1

19 2 21 11

19 3 85 84

19 4 100 100

19 5 100 100

20 1 0 1

20 2 16 25

20 3 77 78

20 4 100 100

20 5 100 100

21 1 1 1

21 2 14 9

21 3 63 77

21 4 100 100

21 5 100 100

22 1 1 0

22 2 6 9

22 3 55 62

22 4 99 100

22 5 100 100

23 1 0 1

23 2 9 12

23 3 57 60

23 4 100 100

23 5 100 100

24 1 0 0

24 2 6 7

24 3 34 32

24 4 98 99

24 5 100 100

Table A.50.: FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (3/4)

330 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-4-1-6 12-4-1-12 18-4-1-18 24-4-1-24 30-4-1-30

25 1 0 0

25 2 6

25 3 41

25 4 96

25 5 100

26 1 1

26 2 3

26 3 35

26 4 92

26 5 100

27 1 0

27 2 4

27 3 29

27 4 88

27 5 100

28 1 2

28 2 1

28 3 18

28 4 79

28 5 100

29 1 0

29 2 3

29 3 18

29 4 78

29 5 100

30 1 0

30 2 1

30 3 11

30 4 66

30 5 100

Table A.51.: FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (4/4)

331

l t 6-5-1-6 12-5-1-12 18-5-1-18 24-5-1-24 30-5-1-30

1 1 100 100 100 100 100

1 2 100 100 100 100 100

1 3 100 100 100 100 100

1 4 100 100 100 100 100

1 5 100 100 100 100 100

2 1 80 85 89 87 86

2 2 100 100 100 100 100

2 3 100 100 100 100 100

2 4 100 100 100 100 100

2 5 100 100 100 100 100

3 1 61 67 66 59 65

3 2 100 100 100 100 100

3 3 100 100 100 100 100

3 4 100 100 100 100 100

3 5 100 100 100 100 100

4 1 63 51 58 60 55

4 2 100 100 100 100 100

4 3 100 100 100 100 100

4 4 100 100 100 100 100

4 5 100 100 100 100 100

5 1 46 48 53 54 49

5 2 100 100 100 100 100

5 3 100 100 100 100 100

5 4 100 100 100 100 100

5 5 100 100 100 100 100

6 1 45 39 40 42 46

6 2 99 100 100 100 100

6 3 100 100 100 100 100

6 4 100 100 100 100 100

6 5 100 100 100 100 100

7 1 39 42 33 33

7 2 99 100 100 100

7 3 100 100 100 100

7 4 100 100 100 100

7 5 100 100 100 100

8 1 26 26 28 27

8 2 98 98 99 100

8 3 100 100 100 100

8 4 100 100 100 100

8 5 100 100 100 100

Table A.52.: FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (1/4)

332 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-5-1-6 12-5-1-12 18-5-1-18 24-5-1-24 30-5-1-30

9 1 23 24 20 27

9 2 96 99 99 100

9 3 100 100 100 100

9 4 100 100 100 100

9 5 100 100 100 100

10 1 24 21 20 19

10 2 90 93 96 96

10 3 100 100 100 100

10 4 100 100 100 100

10 5 100 100 100 100

11 1 16 18 19 10

11 2 86 93 97 96

11 3 100 100 100 100

11 4 100 100 100 100

11 5 100 100 100 100

12 1 16 14 15 12

12 2 81 85 90 90

12 3 100 100 100 100

12 4 100 100 100 100

12 5 100 100 100 100

13 1 15 10 13

13 2 85 80 78

13 3 100 100 100

13 4 100 100 100

13 5 100 100 100

14 1 7 7 8

14 2 70 69 66

14 3 100 100 100

14 4 100 100 100

14 5 100 100 100

15 1 6 3 9

15 2 68 68 67

15 3 100 100 100

15 4 100 100 100

15 5 100 100 100

16 1 7 11 3

16 2 56 73 51

16 3 100 100 100

16 4 100 100 100

16 5 100 100 100

Table A.53.: FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (2/4)

333

l t 6-5-1-6 12-5-1-12 18-5-1-18 24-5-1-24 30-5-1-30

17 1 2 1 6

17 2 50 58 59

17 3 99 100 100

17 4 100 100 100

17 5 100 100 100

18 1 2 8 5

18 2 28 46 57

18 3 98 99 100

18 4 100 100 100

18 5 100 100 100

19 1 1 2

19 2 37 49

19 3 100 100

19 4 100 100

19 5 100 100

20 1 3 3

20 2 36 35

20 3 97 100

20 4 100 100

20 5 100 100

21 1 2 4

21 2 32 37

21 3 96 98

21 4 100 100

21 5 100 100

22 1 3 4

22 2 31 28

22 3 98 98

22 4 100 100

22 5 100 100

23 1 0 1

23 2 28 23

23 3 90 94

23 4 100 100

23 5 100 100

24 1 1 2

24 2 20 17

24 3 92 88

24 4 100 100

24 5 100 100

Table A.54.: FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (3/4)

334 Appendix A. Data of FDE in the Presence of Invalid Input Masking

l t 6-5-1-6 12-5-1-12 18-5-1-18 24-5-1-24 30-5-1-30

25 1 0 1

25 2 14

25 3 83

25 4 100

25 5 100

26 1 1

26 2 13

26 3 84

26 4 100

26 5 100

27 1 1

27 2 10

27 3 70

27 4 100

27 5 100

28 1 0

28 2 10

28 3 65

28 4 100

28 5 100

29 1 0

29 2 9

29 3 59

29 4 100

29 5 100

30 1 0

30 2 10

30 3 49

30 4 100

30 5 100

Table A.55.: FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (4/4)

Appendix B.

Data of Evaluating Combinatorial
Robustness Test Selection Strategies

This is the appendix to Section 13.2 (Page 219 and following) which contains FDE values and

test suites sizes for all test scenario used in the experiment.

Strategy IPOG-C

Strength 1 2 3 4 5

Scenario Size Eff. Size Eff. Size Eff. Size Eff. Size Eff.

1-1-1 5.00 0.27 36.60 0.59 199.00 0.88 922.80 0.99 3433.50 1.00

1-1-2 5.00 0.22 36.60 0.53 199.00 0.84 922.80 0.99 3433.20 1.00

1-1-3 5.00 0.20 36.60 0.39 199.00 0.74 922.80 0.92 3433.20 0.99

1-1-4 5.00 0.19 36.60 0.34 199.00 0.55 922.80 0.76 3433.40 0.90

1-2-1 7.00 0.23 70.00 0.55 552.00 0.86 3618.80 0.99 19427.60 1.00

1-2-2 7.00 0.17 70.00 0.47 552.00 0.78 3618.80 0.97 19436.80 1.00

1-2-3 7.00 0.15 70.00 0.34 552.00 0.63 3618.80 0.85 19437.30 0.97

1-2-4 7.00 0.15 70.00 0.30 552.00 0.45 3618.80 0.69 19440.00 0.83

1-3-1 5.00 0.23 50.20 0.61 324.10 0.91 1952.80 1.00 10736.70 1.00

1-3-2 5.00 0.20 50.20 0.56 324.10 0.88 1949.00 1.00 10738.10 1.00

1-3-3 5.00 0.16 50.20 0.42 324.10 0.77 1952.00 0.96 10739.70 1.00

1-3-4 5.00 0.16 50.20 0.35 324.10 0.58 1954.30 0.84 10740.10 0.94

1-4-1 7.00 0.23 93.40 0.58 881.30 0.90 7572.30 1.00 58758.60 1.00

1-4-2 7.00 0.16 93.40 0.51 881.30 0.82 7553.00 0.99 58723.40 1.00

1-4-3 7.00 0.15 93.40 0.32 881.20 0.67 7571.40 0.89 58724.00 0.99

1-4-4 7.00 0.15 93.40 0.29 881.20 0.50 7565.10 0.74 58715.10 0.90

2-1-1 5.00 0.24 50.20 0.55 324.10 0.85 1948.60 0.98 10740.50 1.00

2-1-2 5.00 0.20 50.20 0.54 324.10 0.87 1950.30 1.00 10746.80 1.00

2-1-3 5.00 0.17 50.20 0.40 324.10 0.78 1951.80 0.94 10746.90 0.99

2-1-4 5.00 0.17 50.20 0.34 324.10 0.58 1948.70 0.82 10740.60 0.96

2-2-1 7.00 0.20 93.40 0.55 881.30 0.85 7556.90 1.00 58725.40 1.00

2-2-2 7.00 0.16 93.40 0.52 881.30 0.80 7563.00 0.98 58728.30 1.00

2-2-3 7.00 0.15 93.40 0.34 881.50 0.66 7560.50 0.89 58767.50 0.99

2-2-4 7.00 0.15 93.40 0.31 881.60 0.49 7562.30 0.73 58715.30 0.91

Table B.1.: FDE and Test Suite Sizes for all Test Scenarios by IPOG-C

336 Appendix B. Data of Evaluating Combinatorial Robustness Test Selection Strategies

Strategy ROBUSTA

Strength 1-0 1-1 1-2 1-3

Scenario Size Eff. Size Eff. Size Eff. Size Eff.

1-1-1 9.00 0.43 24.00 0.54 119.60 0.67 443.80 0.69

1-1-2 10.20 0.42 30.60 0.53 154.60 0.67 625.50 0.68

1-1-3 10.10 0.43 30.10 0.54 137.20 0.67 310.00 0.68

1-1-4 10.00 0.43 30.00 0.54 60.00 0.67 179.40 0.68

1-2-1 11.00 0.33 36.00 0.46 248.90 0.60 1518.70 0.64

1-2-2 12.20 0.34 42.80 0.46 292.20 0.60 1791.80 0.65

1-2-3 12.20 0.33 42.20 0.46 262.50 0.61 957.80 0.64

1-2-4 12.10 0.33 42.10 0.46 131.70 0.61 499.90 0.64

1-3-1 10.00 0.39 30.00 0.51 223.50 0.66 1243.40 0.67

1-3-2 10.30 0.38 30.90 0.50 239.70 0.65 1438.20 0.66

1-3-3 10.00 0.38 30.00 0.50 228.20 0.65 1332.10 0.66

1-3-4 10.00 0.38 30.00 0.50 214.90 0.65 1197.20 0.66

1-4-1 12.00 0.35 42.00 0.47 425.00 0.63 3641.70 0.66

1-4-2 12.20 0.35 42.60 0.46 445.50 0.64 3965.90 0.66

1-4-3 12.00 0.35 42.00 0.46 426.40 0.63 3705.50 0.66

1-4-4 12.00 0.35 42.00 0.46 404.30 0.63 3397.50 0.66

2-1-1 10.00 0.39 30.00 0.51 223.50 0.66 1243.40 0.67

2-1-2 10.30 0.39 30.90 0.51 239.70 0.66 1438.20 0.67

2-1-3 10.00 0.39 30.00 0.51 228.20 0.66 1332.10 0.67

2-1-4 10.00 0.39 30.00 0.51 214.90 0.66 1197.20 0.67

2-2-1 12.00 0.34 42.00 0.45 425.00 0.62 3641.70 0.65

2-2-2 12.20 0.34 42.60 0.45 445.50 0.63 3965.90 0.65

2-2-3 12.00 0.34 42.00 0.45 426.40 0.62 3705.50 0.65

2-2-4 12.00 0.34 42.00 0.45 404.30 0.62 3397.50 0.65

Table B.2.: FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 1

337

Strategy ROBUSTA

Strength 2-0 2-1 2-2 2-3

Scenario Size Eff. Size Eff. Size Eff. Size Eff.

1-1-1 30.40 0.57 45.40 0.68 141.00 0.81 465.20 0.82

1-1-2 41.60 0.58 62.00 0.69 186.00 0.82 656.90 0.83

1-1-3 42.00 0.57 62.00 0.68 169.10 0.81 341.90 0.82

1-1-4 41.70 0.57 61.70 0.68 91.70 0.80 211.10 0.82

1-2-1 58.40 0.48 83.40 0.61 296.30 0.75 1566.10 0.79

1-2-2 73.90 0.48 104.50 0.61 353.90 0.75 1853.50 0.79

1-2-3 74.70 0.48 104.70 0.61 325.00 0.76 1020.30 0.80

1-2-4 75.20 0.48 105.20 0.61 194.80 0.76 563.00 0.79

1-3-1 49.30 0.58 69.30 0.71 262.80 0.86 1282.70 0.87

1-3-2 56.30 0.55 76.90 0.68 285.70 0.83 1484.20 0.84

1-3-3 55.50 0.56 75.50 0.68 273.70 0.83 1377.60 0.84

1-3-4 55.60 0.56 75.60 0.68 260.50 0.83 1242.80 0.84

1-4-1 89.80 0.51 119.80 0.62 502.80 0.78 3719.50 0.82

1-4-2 98.30 0.50 128.70 0.61 531.60 0.79 4052.00 0.81

1-4-3 99.10 0.48 129.10 0.59 513.50 0.76 3792.60 0.79

1-4-4 98.40 0.48 128.40 0.59 490.70 0.77 3483.90 0.79

2-1-1 49.30 0.54 69.30 0.66 262.80 0.81 1282.70 0.82

2-1-2 56.30 0.54 76.90 0.66 285.70 0.82 1484.20 0.82

2-1-3 55.50 0.53 75.50 0.66 273.70 0.81 1377.60 0.82

2-1-4 55.60 0.54 75.60 0.67 260.50 0.81 1242.80 0.82

2-2-1 89.80 0.49 119.80 0.60 502.80 0.77 3719.50 0.80

2-2-2 98.30 0.50 128.70 0.61 531.60 0.79 4052.00 0.81

2-2-3 99.10 0.51 129.10 0.62 513.50 0.79 3792.60 0.81

2-2-4 98.40 0.50 128.40 0.61 490.70 0.78 3483.90 0.81

Table B.3.: FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 2

338 Appendix B. Data of Evaluating Combinatorial Robustness Test Selection Strategies

Strategy ROBUSTA

Strength 3-0 3-1 3-2 3-3

Scenario Size Eff. Size Eff. Size Eff. Size Eff.

1-1-1 109.40 0.69 124.40 0.80 220.00 0.93 544.20 0.95

1-1-2 199.10 0.70 219.50 0.81 343.50 0.94 814.40 0.95

1-1-3 208.10 0.69 228.10 0.80 335.20 0.93 508.00 0.95

1-1-4 205.20 0.70 225.20 0.81 255.20 0.93 374.60 0.95

1-2-1 365.20 0.62 390.20 0.75 603.10 0.89 1872.90 0.93

1-2-2 546.70 0.61 577.30 0.74 826.70 0.88 2326.30 0.92

1-2-3 559.00 0.61 589.00 0.73 809.30 0.88 1504.60 0.92

1-2-4 556.20 0.61 586.20 0.73 675.80 0.88 1044.00 0.92

1-3-1 259.50 0.68 279.50 0.81 473.00 0.96 1492.90 0.97

1-3-2 329.40 0.68 350.00 0.80 558.80 0.96 1757.30 0.96

1-3-3 328.80 0.68 348.80 0.80 547.00 0.95 1650.90 0.96

1-3-4 327.70 0.67 347.70 0.79 532.60 0.93 1514.90 0.95

1-4-1 748.90 0.66 778.90 0.77 1161.90 0.93 4378.60 0.96

1-4-2 885.50 0.64 915.90 0.76 1318.80 0.93 4839.20 0.95

1-4-3 885.80 0.64 915.80 0.75 1300.20 0.92 4579.30 0.94

1-4-4 886.40 0.63 916.40 0.74 1278.70 0.92 4271.90 0.94

2-1-1 259.50 0.67 279.50 0.79 473.00 0.94 1492.90 0.95

2-1-2 329.40 0.68 350.00 0.80 558.80 0.96 1757.30 0.96

2-1-3 328.80 0.67 348.80 0.80 547.00 0.94 1650.90 0.96

2-1-4 327.70 0.68 347.70 0.80 532.60 0.94 1514.90 0.96

2-2-1 748.60 0.63 778.60 0.74 1161.60 0.91 4378.30 0.94

2-2-2 885.40 0.62 915.80 0.74 1318.70 0.92 4839.10 0.93

2-2-3 885.90 0.64 915.90 0.75 1300.30 0.92 4579.40 0.94

2-2-4 886.60 0.63 916.60 0.74 1278.90 0.91 4272.10 0.93

Table B.4.: FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 3

339

Strategy ROBUSTA

Strength 4-0 4-1 4-2 4-3

Scenario Size Eff. Size Eff. Size Eff. Size Eff.

1-1-1 402.30 0.74 417.30 0.86 512.90 0.98 837.10 1.00

1-1-2 844.70 0.74 865.10 0.86 989.10 0.99 1460.00 1.00

1-1-3 916.20 0.74 936.20 0.86 1043.30 0.98 1216.10 1.00

1-1-4 922.90 0.74 942.90 0.86 972.90 0.98 1092.30 1.00

1-2-1 2040.50 0.69 2065.50 0.82 2278.40 0.96 3548.20 1.00

1-2-2 3461.90 0.69 3492.50 0.82 3741.90 0.96 5241.50 1.00

1-2-3 3617.10 0.69 3647.10 0.82 3867.40 0.97 4562.70 1.00

1-2-4 3615.10 0.69 3645.10 0.82 3734.70 0.97 4102.90 1.00

1-3-1 1366.50 0.72 1386.50 0.84 1580.00 0.99 2599.90 1.00

1-3-2 1949.60 0.72 1970.20 0.84 2179.00 0.99 3377.50 1.00

1-3-3 1961.90 0.72 1981.90 0.84 2180.10 0.99 3284.00 1.00

1-3-4 1957.20 0.72 1977.20 0.84 2162.10 0.98 3144.40 1.00

1-4-1 5894.80 0.69 5924.80 0.81 6307.80 0.97 9524.50 1.00

1-4-2 7536.10 0.69 7566.50 0.81 7969.40 0.98 11489.80 1.00

1-4-3 7589.40 0.69 7619.40 0.81 8003.80 0.97 11282.90 1.00

1-4-4 7578.30 0.69 7608.30 0.81 7970.60 0.98 10963.80 1.00

2-1-1 1368.60 0.72 1388.60 0.84 1582.10 0.99 2602.00 1.00

2-1-2 1944.60 0.72 1965.20 0.84 2174.00 0.99 3372.50 1.00

2-1-3 1965.60 0.72 1985.60 0.84 2183.80 0.99 3287.70 1.00

2-1-4 1955.50 0.72 1975.50 0.84 2160.40 0.98 3142.70 1.00

2-2-1 5898.50 0.69 5928.50 0.81 6311.50 0.97 9528.20 1.00

2-2-2 7542.90 0.69 7573.30 0.81 7976.20 0.98 11496.60 1.00

2-2-3 7586.60 0.69 7616.60 0.81 8001.00 0.97 11280.10 1.00

2-2-4 7560.70 0.69 7590.70 0.81 7953.00 0.98 10946.20 1.00

Table B.5.: FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 4

Appendix C.

Data of Evaluating Semi-Automatic Repair
of Over-Constrained RIPMs

This is the appendix to Section 14.2 (Page 249 and following) which contains all results for all

RIPMs used in the experiment.

�HS Test Suite Size NIS DIS NVTI NSITI

1 8 0 1 0 0

2 7 0 0 0 0

Table C.1.: Results for Example-1 RIPM

�HS Test Suite Size NIS DIS NVTI NSITI

1 29 0 1 1 5

2 29 0 1 1 5

3 25 4 1 0 7

4 29 0 1 1 7

5 30 0 1 1 7

6 29 0 0 0 0

7 30 0 1 1 7

8 30 0 1 1 7

9 30 0 1 1 5

10 23 4 1 1 6

11 23 4 1 2 7

12 23 4 1 1 6

13 23 4 1 2 7

14 19 9 1 0 4

15 24 4 1 1 6

16 24 4 1 1 6

Table C.2.: Results for HealthCare-4 RIPM

342 Appendix C. Data of Evaluating Semi-Automatic Repair of Over-Constrained RIPMs

�HS Test Suite Size NIS DIS NVTI NSITI

1 39 0 2 3 0

2 42 0 3 4 0

3 36 1 1 3 0

4 39 0 2 3 0

5 36 0 1 2 0

6 39 0 2 3 0

7 34 0 0 1 0

8 36 0 1 2 0

9 39 0 2 4 0

10 42 0 3 5 0

11 36 0 1 3 0

12 39 0 2 4 0

13 36 0 1 3 0

14 39 0 2 4 0

15 34 0 0 2 0

16 36 0 1 3 0

17 39 0 2 2 0

18 42 0 2 2 0

19 36 0 1 1 0

20 39 0 2 2 0

21 36 0 1 1 0

22 39 0 2 2 0

23 34 0 0 0 0

24 36 0 1 1 0

25 39 0 2 3 0

26 42 0 3 4 0

27 36 0 1 2 0

28 39 0 2 3 0

29 36 0 1 2 0

30 39 0 2 3 0

31 34 0 0 1 0

32 36 0 1 2 0

Table C.3.: Results for Registration RIPM

343

�HS Test Suite Size NIS DIS NVTI NSITI

1 110 8 0 0 0

2 95 24 0 0 0

3 113 4 0 0 0

4 98 20 0 0 0

5 113 4 0 0 0

6 98 20 0 0 0

7 116 0 0 0 0

8 101 16 0 0 0

9 107 12 0 0 0

10 92 28 0 0 0

11 110 8 0 0 0

12 95 24 0 0 0

13 110 8 0 0 0

14 95 24 0 0 0

15 113 4 0 0 0

16 98 20 0 0 0

Table C.4.: Results for Banking-1 RIPM

�HS Test Suite Size NIS DIS NVTI NSITI

1 9 0 1 0 0

2 8 1 1 0 0

3 8 0 0 0 0

4 7 1 0 0 0

Table C.5.: Results for Banking-2 RIPM

344 Appendix C. Data of Evaluating Semi-Automatic Repair of Over-Constrained RIPMs

�HS Test Suite Size NIS DIS NVTI NSITI

1 27 0 0 0 0

2 22 6 0 0 0

3 27 1 0 0 0

4 22 7 0 0 0

Table C.6.: Results for HealthCare-1 RIPM

�HS Test Suite Size NIS DIS NVTI NSITI

1 33 0 0 0 0

2 33 0 0 0 0

3 33 0 0 0 0

4 29 0 0 0 0

5 32 2 0 0 0

6 32 2 0 0 0

7 32 2 0 0 0

8 32 2 0 0 0

Table C.7.: Results for HealthCare-2 RIPM

�HS Test Suite Size NIS DIS NVTI NSITI

1 36 0 1 2 6

2 37 0 0 0 0

3 36 0 1 2 6

4 28 8 1 0 2

5 28 8 1 0 2

6 30 6 2 1 4

7 30 6 2 1 4

8 30 6 2 1 4

9 30 6 1 1 3

10 30 6 1 1 3

Table C.8.: Results for HealthCare-3 RIPM

Appendix D.

Data of Evaluating Automatic Generation
of Error-Constraints

This is the appendix to Section 15 (Page 259 and following) which contains test suites sizes,

execution times, precision, and recall for all test scenarios used in the experiment.

346 Appendix D. Data of Evaluating Automatic Generation of Error-Constraints

Scenario Algorithm Test Suite Size Execution Time Precision Recall

Example-1 OFOT 22.700 0.270 0.350 0.180

TRT 27.000 0.095 1.000 1.000

IDD 13.000 0.003 0.750 0.600

MixTgTe 19.300 0.007 0.823 0.840

Delivery OFOT 252.400 1.474 0.581 0.162

TRT 863.800 1.317 0.980 0.923

IDD 67.000 0.007 0.000 0.000

MixTgTe 172.600 0.165 0.894 0.392

BibTeX OFOT 711.700 15.420 0.094 0.028

TRT 15722.400 10463.000 1.000 0.957

IDD 73.000 0.012 0.038 0.006

MixTgTe 226.000 122.000 0.706 0.213

Banking-1 OFOT 49.400 0.277 1.000 0.033

TRT 39.000 0.141 1.000 0.032

IDD 33.000 0.006 0.000 0.000

MixTgTe 28.000 0.010 0.000 0.000

Banking-2 OFOT 121.700 1.167 1.000 1.000

TRT 4141.800 15.137 1.000 1.000

IDD 34.000 0.005 0.500 0.333

MixTgTe 35.000 0.075 1.000 1.000

HealthCare-1 OFOT 172.400 2.870 0.307 0.114

TRT 2348.700 3.995 1.000 0.757

IDD 45.200 0.005 0.000 0.000

MixTgTe 122.500 1.753 0.583 0.271

HealthCare-2 OFOT 174.600 2.133 0.436 0.032

TRT 1633.900 38.283 1.000 0.098

IDD 28.200 0.004 0.000 0.000

MixTgTe 63.900 0.519 0.152 0.015

HealthCare-3 OFOT 54.300 3.501 0.000 0.000

TRT 85104.400 173.000 0.475 0.873

IDD 46.000 0.012 0.00 0.000

MixTgTe 341.300 4184.000 0.00 0.000

Table D.1.: Average Values for Experiment 1

347

Scenario Algorithm Test Suite Size Execution Time Precision Recall

Example-1 OFOT 23.200 0.166 0.700 0.220

TRT 27.000 0.089 1.000 1.000

IDD 13.000 0.004 0.850 0.600

MixTgTe 20.600 0.0081 1.000 1.000

Delivery OFOT 273.300 1.670 0.678 0.162

TRT 825.500 1.332 0.971 0.800

IDD 67.000 0.007 0.000 0.000

MixTgTe 182.600 0.199 0.940 0.450

BibTeX OFOT 682.900 15.164 0.072 0.011

TRT 16019.700 10655.000 1.000 0.978

IDD 76.200 0.385 0.091 0.011

MixTgTe 224.700 103.000 0.729 0.209

Banking-1 OFOT 48.200 0.255 1.000 0.031

TRT 40.300 0.146 1.000 0.034

IDD 33.000 0.035 0.000 0.000

MixTgTe 31.200 0.012 0.000 0.000

Banking-2 OFOT 127.100 1.194 1.000 1.000

TRT 4127.400 15.364 1.000 1.000

IDD 34.000 0.006 0.550 0.333

MixTgTe 32.900 0.064 1.000 1.000

HealthCare-1 OFOT 203.100 2.360 0.779 0.143

TRT 2133.100 4.810 1.000 0.621

IDD 45.200 0.007 0.000 0.000

MixTgTe 122.300 1.579 0.765 0.350

HealthCare-2 OFOT 185.500 2.806 0.522 0.037

TRT 1844.200 142.000 1.000 0.108

IDD 29.400 0.005 0.000 0.000

MixTgTe 67.100 1.143 0.314 0.017

HealthCare-3 OFOT 63.500 10.116 0.000 0.000

TRT 86612.200 1128.000 1.000 0.420

IDD 46.000 0.008 0.000 0.000

MixTgTe 346.000 8553.515 0.000 0.000

Table D.2.: Average Values for Experiment 2

348 Appendix D. Data of Evaluating Automatic Generation of Error-Constraints

Scenario Algorithm Test Suite Size Execution Time Precision Recall

Example-1 OFOT 24.800 0.163 0.600 0.400

TRT 27.000 0.091 1.000 1.000

IDD 27.000 0.006 0.600 0.600

MixTgTe 27.000 0.021 1.000 1.000

Delivery OFOT 360.800 13.255 0.500 0.115

TRT 991.400 12.766 1.000 1.000

IDD 287.000 0.108 0.000 0.000

MixTgTe 446.800 4.018 0.985 0.761

BibTeX OFOT 789.300 257.000 0.219 0.066

TRT 15838.300 10124.000 1.000 1.000

IDD 262.000 2.793 0.000 0.000

MixTgTe 906.000 7180.000 0.995 0.921

Banking-1 OFOT 125.000 1.139 1.000 0.095

TRT 108.000 0.645 1.000 0.096

IDD 70.700 0.062 0.000 0.000

MixTgTe 89.400 0.091 0.000 0.000

Banking-2 OFOT 146.900 19.204 1.000 1.000

TRT 4141.500 18.838 1.000 1.000

IDD 51.000 0.058 0.000 0.000

MixTgTe 95.900 3.147 1.000 1.000

HealthCare-1 OFOT 273.200 40.419 0.550 0.294

TRT 2682.800 18.174 1.000 0.929

IDD 128.300 19.979 0.000 0.000

MixTgTe 384.200 45.725 0.954 0.657

HealthCare-2 OFOT 376.800 59.734 0.432 0.058

TRT 4537.900 218.000 1.000 0.253

IDD 130.500 0.250 0.202 0.014

MixTgTe 243.500 31.784 0.694 0.095

HealthCare-3 OFOT 83.000 375.000 0.100 0.002

TRT 95210.200 6503.000 1.000 0.447

IDD 243.000 0.028 0.000 0.000

MixTgTe - - - -

Table D.3.: Average Values for Experiment 3

349

Abbreviations

A

AFDE average fault detection effectiveness

API application programming interface

B

B-SCH basic soft constraint handling

BVT boundary value testing

C

CRT combinatorial robustness testing

CSP constraint satisfaction problem

CT combinatorial testing

D

D-SCH diagnostic soft constraint handling

DIS duplicate invalid schemata

DOE design of experiments

DSL domain-specific language

E

ECT equivalence class testing

EH exception handling

EHM exception handling mechanism

F

FC fault characterization

FCA fault characterization algorithm

FDE fault detection effectiveness

H

HCH hard constraint handling

HS-tree hitting set tree

352 Abbreviations

I

IDE integrated development environment

IPM input parameter model

IPO input parameter order

L

LNCS Springer Lecture Notes in Computer Science

M

MFCS minimal failure-causing schema

MIS missing invalid schema

N

NIS not present invalid schemata

NSITI not strong invalid test input

NVTI not valid test input

R

RIPM robustness input parameter model

S

SCH soft constraint handling

SUT system under test

T

TSE IEEE Transactions on Software Engineering

X

XML extensible markup language

Symbols and Functions

A

α assignment of a CSP

a robustness degree

A set of all schemata

AI ⊆ I anticipated input domain

AllInteractions(ci, b) function to compute the sets of parameter indices with b-wise ro-

bustness interaction for ci
AllSubsets(d) function to compute all d-sized subsets of parameter indices for φn

B

b robustness interaction degree

B background constraints

C

c constraint

ci,j schema-level constraint for sj ∈ Lci

C set of relaxable constraints

C ∈ C∗ set of constraints

C∗ set of all possible constraint sets

Cex set of exclusion-constraints

Cerr set of error-constraints

Complement(φ) function to compute the complement of φd relative to φn

D

d = |τ | degree of schema τ

Degree(ci) function to compute the number of parameters involved in the con-

dition of error-constraint

�ci,j diagnosis set for MIS sj ∈ Mci

�all
ci,j

set of all minimal diagnosis sets for MIS sj ∈ Mci

�all Cartesian product of all sets of all minimal diagnosis sets

�HS diagnosis hitting set

E

354 Symbols and Functions

η threshold for the utility of soft-constraints

e ∈ �all tuple with one minimal diagnosis set for each MIS

E ⊆ I exhaustive test suite

EI ⊂ AI exception input domain

ES exception specification

Exclude(ci, sj) function to exclude schema sj ∈ Lci from constraint ci

H

H set of hard-constraints

I

I input domain

Ici set of all strong invalid schemata specified by error-constraint ci
IPM = 〈P̃ , V, Cex〉 input parameter model

Indices(ci) function to compute the set of parameter indices φ for parameters

involved in the condition of error-constraint ci
Interactions(ci, a, b) function to compute the a- and b-wise parameter index interactions

for error-constraint ci
IsInvalid(s) predicate to check if schema s is invalid

IsMinimalInvalid(s) predicate to check if schema s is minimal invalid

IsRelevant(s) predicate to check if schema s is relevant

IsStrongInvalid(s) predicate to check if schema s is strong invalid

IsStrongInvalid(s, ci) predicate to check if schema s is strong invalid for error-constraint

ci
IsValid(s) predicate to check if schema s is valid

L

l location of an incorrect EH

Lci set of invalid schemata locally specified by error-constraint ci

M

mi number of values modeled by Vi

Mci ⊆ Lci set of missing invalid schemata for error-constraint ci

N

n number of parameters modeled by an IPM

O

o ∈ O output

Oci,j conflict set for MIS sj ∈ Lci

O output domain

Symbols and Functions 355

OK(τ, P (τ)) passing test input τ
¬OK(τ, P (τ)) failure-causing test input

P

π = (pi, vj) parameter-value pair π with vj ∈ Vi for parameter pi parameter

value pair

φ = {r1, ..., rd} set of d = |φ| parameter indices

φn = {r1 = 1, ..., rn = n} set of all n parameter indices

Φd set of d-sized parameter index sets

pi ∈ P̃ parameter with label i (0 ≤ i ≤ n)

P̃ = {p1, ..., pn} set of all parameters modeled by an IPM

P : I → O program

P (τ) execution of program P
Pairs(r) function to compute all parameter-value pairs of parameter with

index r

R

r ∈ [1, n] parameter index

R ⊂ C relaxation

RIPM = 〈P̃ , V, Cex, Cerr〉 input parameter model

RemainingSubsets(ci, b) function to compute the set of all sets of b-sized remaining param-

eter indices

S

SAT : C∗ ×A → Bool satisfiability function

s = {(pi, vj), ...} schema (alternative symbol)

S set of soft-constraints

(τ, o) ∈ S specified output o ∈ O for truly-relevant input τ ∈ AI
S ⊆ I ×O specification

SC test scenario

SC∗ test scenario family

SI ⊆ AI standard input domain

STS standard specification

SpecifiedSubsets(ci, a) function to compute the set of all sets of a-sized parameter indices

for Indices(ci)
Subsets(φ, d) function to compute all d-sized subsets of parameter indices for φ

T

τ = {(pi, vj), ...} schema

τ ∈ AI truly-relevant input

τ ∈ E test input

τ ∈ EI truly-invalid input

356 Symbols and Functions

τ ∈ I input

τ ∈ SI truly-valid input

τ ∈ UI truly-irrelevant input

τa ⊆ τb coverage relation between two schemata

t testing strength

T ⊆ E test suite

T ∗ test suite family

U

U(α) function to compute the utility of soft-constraints

UI ⊂ I unanticipated input domain

V

vj ∈ Vi value with a unique index j of parameter pi
V = {V1, ..., Vn} set of all value domains of all parameters

Vi domain of values associated with parameter pi

X

Xinvalid
ci,a set of sets of all schemata Xinvalid

ci,φ
for all

φ ∈ SpecifiedSubsets(ci, a)
Xinvalid

ci,a,b
set of sets of all schemata Xinvalid

ci,φ
for all

φ ∈ Interactions(ci, a, b)
Xinvalid

ci,b
set of sets of all strong invalid schemata Xinvalid

ci,φ
for all

φ ∈ AllInteractions(ci, b)
XIndices(ci) set of all schemata defined by error-constraint ci
Xinvalid

ci,φ
set of all strong invalid schemata for parameters in φ and error-

constraint ci
Xd set of sets of all schemata Xφ for all φ ∈ AllSubsets(d)
Xrelevant

d set of sets of all relevant schemata Xrelevant
φ for all

φ ∈ AllSubsets(d)
Xvalid

d set of sets of all valid schemata Xvalid
φ for all φ ∈ AllSubsets(d)

Xφ set of all d-sized schemata of parameters indexed by φ
Xrelevant

φ set of all relevant d-sized schemata of parameters indexed by φ

Xvalid
φ set of all valid d-sized schemata of parameters indexed by φ

Xinvalid
s,b set of all strong invalid schemata for s ∈ Ici

Glossary

A

anticipated input domain

The anticipated input domain denotes a subset of the input domain for which some output

is defined by the specification. See Definition 18 on Page 23.

C

cardinality-minimal diagnosis hitting set

A diagnosis hitting set is cardinality-minimal if and only if there exists no diagnosis hitting

set that contains fewer constraints. See Definition 107 on Page 173.

combinatorial robustness testing (CRT)

Combinatorial robustness testing (CRT) is an extension of CT with the objective to sepa-

rate valid and invalid test inputs such that all values and value combinations are tested as

expected.

combinatorial testing (CT)

Combinatorial testing (CT) is a specification-based test method where the selection of test

inputs is based on an input parameter model.

conflict

A conflict is a contradiction between a negated error-constraint and some other error- or

exclusion-constraints. See Definition 98 on Page 162.

conflict set

A conflict set is a set of constraints that explains the absence of a missing invalid schema.

See Definition 101 on Page 167.

correct program

A program is a correct program if and only if its behavior is consistent with its standard

specification entire standard input domain. See Definition 59 on Page 40.

D

dependable program

A program is a dependable program if and only if its behavior is consistent with its speci-

fication. See Definition 17 on Page 22.

358 Glossary

diagnosis hitting set

A diagnosis hitting set is a set of constraints such that the relaxation of all its constraints

removes all conflicts of the RIPM. See Definition 105 on Page 172.

diagnosis set

A diagnosis set is a set of constraints such that relaxing all conflicts of a diagnosis set re-

moves all conflicts between an error-constraint and some other constraints. See Definition

103 on Page 170.

E

error-constraints

The set of error-constraints is a set of constraints to distinguish valid from invalid schemata.

See Definition 87 on Page 111.

exception

An exception is a characterization of abnormal or unexpected conditions that can appear

in a program’s state and may require extraordinary computation. See Definition 67 on

Page 43.

exception handling (EH)

Exception handling (EH) is an umbrella term that encompasses all activities of detecting

exception occurrences and providing appropriate responses for recovery. See Definition

70 on Page 44.

exception input domain

The exception input domain covers inputs and intended outputs for all external faults that

are anticipated by the exception specification. See Definition 56 on Page 40.

exception specification

The exception specification defines the functions of programs for exceptional situations

with external faults. See Definition 52 on Page 39.

exclusion-constraints

The set of exclusion-constraints is a set of constraints to distinguish relevant from irrele-

vant schemata. See Definition 45 on Page 32.

F

failure-causing input

A truly-relevant input is a failure-causing input if and only if the output of the program

does not match the intended output of the specification.. See Definition 22 on Page 24.

Glossary 359

failure-causing schema

A truly-relevant schema is a failure-causing schema if and only if each truly-relevant input

that covers the schema is failure-causing. See Definition 39 on Page 30.

failure-causing test input

A test input for which the test oracle determines that the output of the program does not

conform to the specification is a failure-causing test input. Also refer to failure-causing
input.

fault detection effectiveness (FDE)

Fault detection effectiveness (FDE) is a common metric to evaluate test selection strate-

gies. It is defined as the ratio of the number of test suites that fail and the number of all

test suites.

fault model

A fault model is a description of hypothesized faults and how to activate them. See Defi-

nition 32 on Page 27.

H

hard constraint handling

Hard constraint handling is a strategy for transforming a RIPM and a schema into a CSP

in which all constraints must be satisfied.

I

input

An input is an abstraction that may encompass anything explicable that can actually stim-

ulate or affect the behavior of a program and anything explicable that can be expected to

stimulate or affect the behavior of a program. See Definition 13 on Page 21.

input domain

The input domain denotes the set of all possible inputs. See Definition 12 on Page 21.

input masking effect

The input masking effect is an effect that prevents a test input from testing all combina-

tions of input values, which the test input is normally expected to test. See Definition 42

on Page 31.

input parameter model (IPM)

An input parameter model (IPM) is a specification-based model of the input domain that

structures the input domain via parameters, associated value domains, and constraints.

See Definition 34 on Page 28.

360 Glossary

intended output

The intended output is the expected output as defined by a specification for a truly-relevant

input.

invalid schema

A relevant schema is an invalid schema if and only if all exclusion-constraints are satisfied

but at least one error-constraint is not satisfied. See Definition 90 on Page 112.

irrelevant schema

A schema is an irrelevant schema if and only if at least one exclusion-constraint is not

satisfied. See Definition 46 on Page 33.

L

locally-specified schema

A locally-specified schema is specified by an error-constraint, i.e. it satisfies the error-

constraint and covers a parameter-value pair for each parameter of the error-constraint.

M

minimal conflict set

A conflict set is minimal if and only if no proper subset is a conflict set. See Definition

102 on Page 167.

minimal diagnosis hitting set

A diagnosis hitting set is minimal if and only if no proper subset is a diagnosis hitting set.

See Definition 106 on Page 173.

minimal diagnosis set

A diagnosis set is minimal if and only if no proper subset is a diagnosis set. See Definition

104 on Page 170.

minimal failure-causing schema (MFCS)

A failure-causing schema is a MFCS if and only if no proper subset schema exists that is

itself a failure-causing schema. See Definition 40 on Page 30.

minimal invalid schema

A strong invalid schema is a minimal invalid schema if and only if no proper subset schema

exists that is itself an invalid schema. See Definition 92 on Page 113.

missing invalid schema (MIS)

A locally-specified schema for an error-constraint is a MIS if a conflict with some other

constraints prevents it from appearing in any strong invalid test input. See Definition 99

on Page 162.

Glossary 361

O

output

An output encompasses anything explicable that can be actually observed after a program

has been stimulated and anything explicable that can be expected to be observed after a

program has been stimulated. See Definition 15 on Page 21.

output domain

The output domain denotes the set of all possible outputs. See Definition 14 on Page 21.

P

program

A program is a combination of computer instructions and data definitions that enables

hardware to perform computational or control functions. See Definition 11 on Page 19.

R

relevant schema

A schema is a relevant schema if and only if it satisfies all exclusion-constraints. See

Definition 47 on Page 33.

robust program

A program is a robust program if and only if its behavior is consistent with its exception

specification for the entire exception input domain. See Definition 60 on Page 41.

robustness

Robustness is the degree to which a program behaves correctly in the presence of invalid

inputs or stressful environmental conditions.

robustness degree

The robustness degree of a minimal failure-causing truly-invalid schema is the number of

parameter-value pairs that constitute the truly-minimal invalid sub-schema. See Definition

85 on Page 107.

robustness input parameter model (RIPM)

The robustness input parameter model (RIPM) is an extension of the IPM structure which

includes the separate set of error-constraints. See Definition 88 on Page 111.

robustness interaction degree

The robustness interaction degree of a minimal failure-causing truly-invalid schema is

defined by the number of parameter-value pairs that do not constitute the truly-minimal

invalid sub-schema. See Definition 86 on Page 108.

362 Glossary

S

schema

A schema is a set of parameter-value pairs for d (1 ≤ d ≤ n) distinct parameters. See

Definition 36 on Page 29.

soft constraint handling

Soft constraint handling is a strategy for transforming a RIPM and a schema into a CSP

in which as many constraints as possible should be satisfied.

specification

A specification describes the functions that a program must realize and constraints its

development and execution. See Definition 16 on Page 22.

standard input domain

The standard input domain encompasses all inputs for which intended outputs are de-

scribed by the standard specification. See Definition 55 on Page 40.

standard specification

The standard specification defines the functions of programs for standard situations with-

out external faults. See Definition 51 on Page 39.

strong invalid schema

An invalid schema is a strong invalid schema if and only if exactly one error-constraint

remains unsatisfied. See Definition 91 on Page 113.

system under test (SUT)

Programs and sub-systems of programs are also called SUT when they are the subject

under investigation.

T

test adequacy criterion

A test adequacy criterion is a predicate that specifies conditions a test suite mist satisfy.

See Definition 31 on Page 27.

test input

A test input is a schema with degree d = n.

test oracle

A test oracle is a mechanism that checks the observed outputs of a test and decides whether

the outputs match the indented outputs. See Definition 30 on Page 26.

Glossary 363

test selection strategy

A test selection strategy is a technique that describes how to systematically select a test

suite such that one or more test adequacy criteria are satisfied. See Definition 33 on Page

28.

truly-invalid input

An truly-relevant input is truly-invalid if and only if it belongs to the exception input

domain. See Definition 58 on Page 40.

truly-invalid schema

A schema is truly-invalid if and only if no truly-valid input exists exist that covers the

schema and at least one truly-invalid test input exists that covers the schema. See Defini-

tion 74 on Page 50.

truly-irrelevant input

An input is truly-irrelevant if and only if it is not anticipated by the specification. See

Definition 21 on Page 24.

truly-irrelevant schema

A schema is truly-irrelevant if and only if no truly-relevant input exists that covers the

schema. See Definition 43 on Page 31.

truly-minimal invalid input

A truly-invalid schema is a truly-minimal invalid schema if and only if no proper subset

schema s′ ⊂ s exists that is itself a truly-invalid schema. See Definition 75 on Page 50.

truly-relevant input

An input is truly-relevant if and only if it is anticipated by the specification. See Definition

20 on Page 23.

truly-relevant schema

A schema is truly-relevant if and only if at least one truly-relevant input exists that covers

the schema. See Definition 44 on Page 31.

truly-strong invalid input

A truly-invalid schema is a truly-strong invalid schema if and only if it covers exactly one

truly-minimal invalid schema. See Definition 76 on Page 51.

truly-valid input

A truly-relevant input is truly-valid if and only if it belongs to the standard input domain.

See Definition 57 on Page 40.

364 Glossary

truly-valid schema

A schema is truly-valid if and only if at least one truly-valid input exist that covers the

schema. See Definition 73 on Page 50.

U

unanticipated input domain

The unanticipated input domain denotes a subset of the input domain for which no output

is defined by the specification. See Definition 19 on Page 23.

V

valid schema

A relevant schema is a valid schema if and only if it satisfies all exclusion- and error-

constraints. See Definition 89 on Page 112.

List of Figures

2.1. IPM for the Ordering Web Service Example 14

3.1. Input Domain Structure Diagram . 23

3.2. Idealized CT Test Process . 29

3.3. Key Concepts of Dependable Programs and its Relations 37

3.4. Extended Input Domain Structure Diagram 40

3.5. Fundamental Activities of Exception Handling 46

3.6. Exception Handling in Java . 49

3.7. Key Concepts of Robust Programs and its Relations 54

5.6. Illustration of Configuration-dependent Robustness Fault 95

6.1. RIPM for the Ordering Web-Service Example 113

7.1. Subsumption Hierarchy of Existing Combinatorial Test Adequacy Criteria . . . 124

7.3. RIPM for the Ordering Web-Service Example 138

7.4. Subsumption Hierarchy extended with Combinatorial Test Adequacy Criteria

for Strong Invalid Test Inputs . 140

9.1. Over-Constrained RIPM for the Ordering Web-Service Example 161

9.2. Extended CRT Test Process with Detection and Manual Repair Activities (Excerpt)164

9.3. Internal Representation of Over-Constrained RIPM for the Ordering Web-Service

Example . 165

9.4. Example HS-tree . 170

9.5. HS-trees for MISs of the Over-constrained Example 171

10.2. Idealized CRT Process for Automatic Generation of Error-Constraints 189

10.4. Incomplete RIPM for the Ordering Web-Service Example 193

11.1. Process of the Test Automation Framework 200

11.2. Architecture Overview of the Test Automation Framework 203

13.1. IPM for the Test Scenario . 222

13.2. RIPM for the Test Scenario . 222

List of Listings

2.1. Implementation of the Ordering Web Service Example 14

5.1. Illustration of a Test Scenario Implementation 81

8.1. IPOG-C Test Selection Strategy . 144

8.2. ROBUSTA Test Selection Strategy . 147

8.3. IPOG-NEG-〈∀, 0〉 Test Selection Strategy . 148

8.4. IPOG-NEG-〈∀, b〉 Test Selection Strategy . 150

8.5. IPOG-NEG-〈∃, 0〉 Test Selection Strategy . 152

8.6. IPOG-NEG-〈a, 0〉 Test Selection Strategy . 153

8.7. IPOG-NEG-〈a, b〉 Test Selection Strategy . 156

11.1. Example of an Ordering Web Service Test . 207

13.1. Illustration of a Test Scenario Implementation 221

List of Tables

5.1. Test Suite Sizes used for the Experiment . 83

5.2. FDE of Test Scenario Families with Six to 30 Parameters and Six EHs (Excerpt) 85

5.3. FDE of Test Scenario Families with Six to 30 Parameters and an Equal Number

of EH (Excerpt) . 86

5.4. AFDE of all Test Scenario Families with Six EHs 87

5.5. AFDE of all Test Scenario Families with Increasing No. of EHs 88

5.7. Observed MFCS Degrees . 101

5.8. Cumulative Percentage of MFCS Degrees . 101

7.2. Strong Invalid Coverage Test Adequacy Criteria 130

9.6. Diagnosis Hitting Sets for the Over-Constrained Example 173

10.1. Conclusions for Conformance between a RIPM and another System 188

10.3. Conclusions for Conformance between a IPM and a SUT 192

13.3. Test Scenarios used in the Evaluation . 223

13.4. Fault Detection Effectiveness and Test Suite Sizes for the Test Scenarios (Excerpt)224

13.5. Sizes of Test Suites that satisfy different Test Adequacy Criteria 233

13.6. FDE Values for Different Test Adequacy Criteria 243

13.7. AFDE Values for Different Test Adequacy Criteria 244

14.1. Benchmark RIPMs used for the Experiments 246

14.2. Results of the Experiments . 247

14.3. Benchmark RIPMs used for the Experiments 249

14.4. Overview of Results . 250

14.5. Results for HealthCare-3 RIPM (Excerpt) . 251

14.6. Benchmark RIPMs used for the Experiments 253

14.7. Times for Test Input Selection . 254

14.8. Characteristics of Repaired RIPMs . 255

14.9. Characteristics of Selected Test Inputs . 256

15.1. RIPMs used for the Experiments . 261

15.2. Aggregated Average Values for Experiment 1 263

15.3. Aggregated Average Values for Experiment 2 264

15.4. Aggregated Average Values for Experiment 3 265

15.5. Iterations for TRT and Banking-1 . 266

15.6. Iterations for TRT and HealthCare-2 . 267

370 List of Tables

A.1. FDE for Test Scenario Families with six EHs, one valid value and one invalid

value per parameter . 280

A.2. FDE for Test Scenario Families with six EHs, one valid value and two invalid

values per parameter . 281

A.3. FDE for Test Scenario Families with six EHs, one valid value and three invalid

values per parameter . 282

A.4. FDE for Test Scenario Families with six EHs, one valid value and four invalid

values per parameter . 283

A.5. FDE for Test Scenario Families with six EHs, one valid value and five invalid

values per parameter . 284

A.6. FDE for Test Scenario Families with six EHs, two valid values and two invalid

values per parameter . 285

A.7. FDE for Test Scenario Families with six EHs, three valid values and three invalid

values per parameter . 286

A.8. FDE for Test Scenario Families with six EHs, two valid values and one invalid

value per parameter . 287

A.9. FDE for Test Scenario Families with six EHs, three valid values and one invalid

value per parameter . 288

A.10.FDE for Test Scenario Families with six EHs, four valid values and one invalid

value per parameter . 289

A.11.FDE for Test Scenario Families with six EHs, five valid values and one invalid

value per parameter . 290

A.12.FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (1/4) 291

A.13.FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (2/4) 292

A.14.FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (3/4) 293

A.15.FDE for Test Scenario Families with one valid value per parameter, one invalid

value per parameter, and an equal number of EHs (4/4) 294

A.16.FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (1/4) 295

A.17.FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (2/4) 296

A.18.FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (3/4) 297

A.19.FDE for Test Scenario Families with one valid value per parameter, two invalid

values per parameter, and an equal number of EHs (4/4) 298

A.20.FDE for Test Scenario Families one valid value per parameter, three invalid val-

ues per parameter, and an equal number of EHs (1/4) 299

A.21.FDE for Test Scenario Families one valid value per parameter, three invalid val-

ues per parameter, and an equal number of EHs (2/4) 300

List of Tables 371

A.22.FDE for Test Scenario Families one valid value per parameter, three invalid val-

ues per parameter, and an equal number of EHs (3/4) 301

A.23.FDE for Test Scenario Families one valid value per parameter, three invalid val-

ues per parameter, and an equal number of EHs (4/4) 302

A.24.FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (1/4) 303

A.25.FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (2/4) 304

A.26.FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (3/4) 305

A.27.FDE for Test Scenario Families with one valid value per parameter, four invalid

values per parameter, and an equal number of EHs (4/4) 306

A.28.FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (1/4) 307

A.29.FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (2/4) 308

A.30.FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (3/4) 309

A.31.FDE for Test Scenario Families with one valid value per parameter, five invalid

values per parameter, and an equal number of EHs (4/4) 310

A.32.FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (1/4) 311

A.33.FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (2/4) 312

A.34.FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (3/4) 313

A.35.FDE for Test Scenario Families with two valid values per parameter, two invalid

values per parameter, and an equal number of EHs (4/4) 314

A.36.FDE for Test Scenario Families with three valid values per parameter, three in-

valid values per parameter, and an equal number of EHs (1/4) 315

A.37.FDE for Test Scenario Families with three valid values per parameter, three in-

valid values per parameter, and an equal number of EHs (2/4) 316

A.38.FDE for Test Scenario Families with three valid values per parameter, three in-

valid values per parameter, and an equal number of EHs (3/4) 317

A.39.FDE for Test Scenario Families with three valid values per parameter, three in-

valid values per parameter, and an equal number of EHs (4/4) 318

A.40.FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (1/4) 319

A.41.FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (2/4) 320

A.42.FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (3/4) 321

372 List of Tables

A.43.FDE for Test Scenario Families with two valid values per parameter, one invalid

value per parameter, and an equal number of EHs (4/4) 322

A.44.FDE for Test Scenario Families with three valid values per parameter, one in-

valid value per parameter, and an equal number of EHs (1/4) 323

A.45.FDE for Test Scenario Families with three valid values per parameter, one in-

valid value per parameter, and an equal number of EHs (2/4) 324

A.46.FDE for Test Scenario Families with three valid values per parameter, one in-

valid value per parameter, and an equal number of EHs (3/4) 325

A.47.FDE for Test Scenario Families with three valid values per parameter, one in-

valid value per parameter, and an equal number of EHs (4/4) 326

A.48.FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (1/4) 327

A.49.FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (2/4) 328

A.50.FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (3/4) 329

A.51.FDE for Test Scenario Families with four valid values per parameter, one invalid

value per parameter, and an equal number of EHs (4/4) 330

A.52.FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (1/4) 331

A.53.FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (2/4) 332

A.54.FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (3/4) 333

A.55.FDE for Test Scenario Families with five valid values per parameter, one invalid

value per parameter, and an equal number of EH (4/4) 334

B.1. FDE and Test Suite Sizes for all Test Scenarios by IPOG-C 335

B.2. FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 1 336

B.3. FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 2 337

B.4. FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 3 338

B.5. FDE and Test Suite Sizes for all Test Scenarios by ROBUSTA with t = 4 339

C.1. Results for Example-1 RIPM . 341

C.2. Results for HealthCare-4 RIPM . 341

C.3. Results for Registration RIPM . 342

C.4. Results for Banking-1 RIPM . 343

C.5. Results for Banking-2 RIPM . 343

C.6. Results for HealthCare-1 RIPM . 344

C.7. Results for HealthCare-2 RIPM . 344

C.8. Results for HealthCare-3 RIPM . 344

D.1. Average Values for Experiment 1 . 346

D.2. Average Values for Experiment 2 . 347

List of Tables 373

D.3. Average Values for Experiment 3 . 348

Supervised Bachelor and Master Theses

[Eki16] Kübra Ekici. “Analysis of Metrics for outsourced Software Testing”. Bachelor

Thesis. RWTH Aachen University, May 2016.

[Lob16] Ekaterina Lobanova. “A Model-based Approach to Synthetic Test Data Genera-

tion”. Master Thesis. RWTH Aachen University, Sept. 2016.

[Sch17] Daniel Schiller. “Semi-automatic Domain Model-based Test Data Generation”.

Master Thesis. RWTH Aachen University, Feb. 2017.

[Ver17] Tatiana Vert. “A Domain Model-based Approach to Test Data Selection”. Master

Thesis. RWTH Aachen University, Mar. 2017.

[Man17] Andre Mann. “Domain Model-based Test Data Generation with Expected Values”.

Master Thesis. RWTH Aachen University, Sept. 2017.

[Wan17] Shuo Wang. “Domain Model Variants for Effective Test Data Design”. Master The-

sis. RWTH Aachen University, Oct. 2017.

[Fab18] Soosaithasan Fabian. “Reconstructing Input Parameter Models from Combinato-

rial Test Suites”. Bachelor Thesis. RWTH Aachen University, June 2018.

[Oss18] Stefan Ossendorf. “Model-based Test Script Generation”. Master Thesis. RWTH

Aachen University, June 2018.

[Bon18] Joshua Bonn. “Automated Fault Localization for Combinatorial Testing”. Bachelor

Thesis. RWTH Aachen University, Sept. 2018.

[Kir19] Ivan Kirchev. “Java-based Combinatorial Test Modeling”. Bachelor Thesis. RWTH

Aachen University, May 2019.

[Off19] Raoul Offizier. “State of the Art in Defensive Programming”. Bachelor Thesis.

RWTH Aachen University, Aug. 2019.

[Fri19] Torben Friedrichs. “A Benchmark Infrastructure for Fault Characterization in Com-

binatorial Testing”. Master Thesis. RWTH Aachen University, Sept. 2019.

[Pro19] Kateryna Prokhorova. “A Framework for Cost-aware Combinatorial Testing”. Mas-

ter Thesis. RWTH Aachen University, Sept. 2019.

[Ber19] Lukas Bernwald. “Development of an Automated Combinatorial Testing Frame-

work”. Bachelor Thesis. RWTH Aachen University, Dec. 2019.

[Maß20] Eric Maßelter. “Generating Error-Constraints for Combinatorial Robustness Test-

ing”. Master Thesis. RWTH Aachen University, Mar. 2020.

[Bur20] Semih Burak. “Constructing Input Parameter Models from Sample Data”. Bache-

lor Thesis. RWTH Aachen University, Apr. 2020.

376 Supervised Bachelor and Master Theses

[Hop20] Josef Hoppe. “An Infrastructure for Mutation-based Evaluation of Testing Strate-

gies”. Bachelor Thesis. RWTH Aachen University, Apr. 2020.

[Sch20] Alexander Schnackenberg. “Development of a Web-based Combinatorial Testing

Framework”. Master Thesis. RWTH Aachen University, Apr. 2020.

[Bon20] Joshua Bonn. “Test Case Prioritization for Combinatorial Testing”. Master Thesis.

RWTH Aachen University, Sept. 2020.

Bibliography

[AG01] Michalis Anastasopoules and Cristina Gacek. “Implementing product line variabil-

ities”. In: Proceedings of the ACM SIGSOFT Symposium on Software Reusability:
Putting Software Reuse in Context, SSR 2001, May 18-20, 2001, Toronto, Ontario,
Canada. 2001, pp. 109–117.

[AGR19] P. Arcaini, A. Gargantini, and M. Radavelli. “Efficient and Guaranteed Detection of

t-Way Failure-Inducing Combinations”. In: 2019 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). Apr. 2019,

pp. 200–209.

[AGV14] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. “Validation of Models and

Tests for Constrained Combinatorial Interaction Testing”. In: Seventh IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2014
Workshops Proceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA. 2014,

pp. 98–107.

[Ahm+17] Bestoun S. Ahmed, Kamal Z. Zamli, Wasif Afzal, and Miroslav Bures. “Con-

strained Interaction Testing: A Systematic Literature Study”. In: IEEE Access 5

(2017), pp. 25706–25730.

[AL85] T. Anderson and P. A. Lee. “Fault Tolerance Terminology Proposals”. In: Reliable
Computer Systems: Collected Papers of the Newcastle Reliability Project. Ed. by

Santosh Kumar Shrivastava. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985,

pp. 6–13.

[Alm+14] A. Almeida, E. Barreiros, J. Saraiva, F. Castor, and S. Soares. “Is Exception Han-

dling a Reusable Aspect?” In: 2014 Eighth Brazilian Symposium on Software Com-
ponents, Architectures and Reuse. Sept. 2014, pp. 32–41.

[AO16] Paul Ammann and Jeff Offutt. Introduction to Software Testing. 2nd. New York,

NY, USA: Cambridge University Press, 2016.

[AO94] Paul Ammann and Jeff Offutt. “Using formal methods to derive test frames in

category-partition testing”. In: Proceedings of COMPASS’94 - 1994 IEEE 9th An-
nual Conference on Computer Assurance. 1994, pp. 69–79.

[Avi+04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.

“Basic Concepts and Taxonomy of Dependable and Secure Computing”. In: IEEE
Trans. Dependable Sec. Comput. 1.1 (2004), pp. 11–33.

[Bai99] William Bail. “Exception handling design patterns”. In: Advances in Computers 49

(1999), pp. 191–238.

378 Bibliography

[Bal09] Helmut Balzert. Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements
Engineering. 3rd. Spektrum Akademischer Verlag, 2009.

[Bar+15] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.

“The Oracle Problem in Software Testing: A Survey”. In: IEEE Trans. Software
Eng. 41.5 (2015), pp. 507–525.

[Bar+16] E. A. Barbosa, A. Garcia, M. P. Robillard, and B. Jakobus. “Enforcing Exception

Handling Policies with a Domain-Specific Language”. In: IEEE Transactions on
Software Engineering 42.6 (June 2016), pp. 559–584.

[BAZ00] Margaret M. Burnett, Anurag Agrawal, and Pieter van Zee. “Exception Handling in

the Spreadsheet Paradigm”. In: IEEE Trans. Software Eng. 26.10 (2000), pp. 923–

942.

[BDT06] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. “Discovering Faults in

Idiom-based Exception Handling”. In: Proceedings of the 28th International Con-
ference on Software Engineering. ICSE ’06. Shanghai, China: ACM, 2006, pp. 242–

251.

[BE11] Matt Bishop and Chip Elliott. “Robust Programming by Example”. In: Informa-
tion Assurance and Security Education and Training - 8th IFIP WG 11.8 World
Conference on Information Security Education, WISE 8, Auckland, New Zealand,
July 8-10, 2013, Proceedings, WISE 7, Lucerne Switzerland, June 9-10, 2011, and
WISE 6, Bento Gonçalves, RS, Brazil, July 27-31, 2009, Revised Selected Papers.

2011, pp. 140–147.

[Ben01] Mordechai Ben-Ari. “The bug that destroyed a rocket”. In: ACM SIGCSE Bull.
33.2 (2001), pp. 58–59.

[Ber+08] Ivo Augusto Bertoncello, Marcelo Oliveira Dias, Patrick H. S. Brito, and Cecília

M. F. Rubira. “Explicit Exception Handling Variability in Component-based Prod-

uct Line Architectures”. In: Proceedings of the 4th International Workshop on Ex-
ception Handling. WEH ’08. Atlanta, Georgia: ACM, 2008, pp. 47–54.

[Ber+11] R. D. Bernardo, R. Sales Jr., F. Castor, R. Coelho, N. Cacho, and S. Soares. “Agile

Testing of Exceptional Behavior”. In: 2011 25th Brazilian Symposium on Software
Engineering. Sept. 2011, pp. 204–213.

[Bez+19] Vladymir L. Bezerra, Lincoln S. Rocha, João Bosco F. Filho, and Fernando A. M.

Trinta. “An Empirical Study on Inter-Component Exception Notification in An-

droid Platform”. In: XXXIII Brazilian Symposium on Software Engineering (SBES
2019), September 23–27, 2019, Salvador, Brazil. 2019, pp. 73–83.

[BF04] Matt Bishop and Deborah A. Frincke. “Teaching Robust Programming”. In: IEEE
Security & Privacy 2.2 (2004), pp. 54–57.

[BG18] E. A. Barbosa and A. Garcia. “Global-Aware Recommendations for Repairing Vi-

olations in Exception Handling”. In: IEEE Transactions on Software Engineering
44.9 (Sept. 2018), pp. 855–873.

Bibliography 379

[BGB14] E. A. Barbosa, A. Garcia, and S. D. J. Barbosa. “Categorizing Faults in Exception

Handling: A Study of Open Source Projects”. In: 2014 Brazilian Symposium on
Software Engineering. Sept. 2014, pp. 11–20.

[Bin00] Robert V. Binder. Testing Object Oriented Systems: Models, Patterns and Tools.

Addison Wesley, 2000.

[Bin94] Robert V. Binder. “Design for Testability in Object-Oriented Systems”. In: Com-
mun. ACM 37.9 (1994), pp. 87–101.

[Bla82] Andrew P. Black. “Exception Handling: The Case Against”. PhD thesis. Balliol

College, 1982.

[BM00] Peter A. Buhr and W.Y. Russell Mok. “Advanced Exception Handling Mecha-

nisms”. In: IEEE Trans. Software Eng. 26.9 (Sept. 2000).

[Bor+13] M. N. Borazjany, L. S. Ghandehari, Y. Lei, R. Kacker, and R. Kuhn. “An Input

Space Modeling Methodology for Combinatorial Testing”. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation Work-
shops. Mar. 2013, pp. 372–381.

[Bou85] Luc Bougé. “A Contribution to the Theory of Program Testing”. In: Theor. Comput.
Sci. 37 (1985), pp. 151–181.

[Bra+05] Christian Braun, Felix Wortmann, Martin Hafner, and Robert Winter. “Method

construction - a core approach to organizational engineering”. In: Proceedings of
the 2005 ACM Symposium on Applied Computing (SAC), Santa Fe, New Mexico,
USA, March 13-17, 2005. 2005, pp. 1295–1299.

[BV05] K. Z. Bell and M. A. Vouk. “On effectiveness of pairwise methodology for testing

network-centric software”. In: 2005 International Conference on Information and
Communication Technology. Dec. 2005, pp. 221–235.

[BVJ12] William Alton Ballance, Sergiy Vilkomir, and William Jenkins. “Effectiveness of

Pair-Wise Testing for Software with Boolean Inputs”. In: Fifth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2012, Montreal,
QC, Canada, April 17-21, 2012. Ed. by Giuliano Antoniol, Antonia Bertolino, and

Yvan Labiche. IEEE Computer Society, 2012, pp. 580–586.

[Cac+08] Nelio Cacho, Fernando Castor Filho, Alessandro Garcia, and Eduardo Figueiredo.

“EJFlow: Taming Exceptional Control Flows in Aspect-oriented Programming”.

In: Proceedings of the 7th International Conference on Aspect-oriented Software
Development. AOSD ’08. Brussels, Belgium: ACM, 2008, pp. 72–83.

[Cac+09] N. Cacho, F. Dantas, A. Garcia, and F. Castor. “Exception Flows Made Explicit: An

Exploratory Study”. In: 2009 XXIII Brazilian Symposium on Software Engineering.

Oct. 2009, pp. 43–53.

380 Bibliography

[Cac+14] Nélio Cacho, Thiago César, Thomas Filipe, Eliezio Soares, Arthur Cassio, Rafael

Souza, Israel García, Eiji Adachi Barbosa, and Alessandro Garcia. “Trading ro-

bustness for maintainability: an empirical study of evolving c# programs”. In: 36th
International Conference on Software Engineering, ICSE ’14, Hyderabad, India -
May 31 - June 07, 2014. 2014, pp. 584–595.

[Cau+13] Adnan Causevic, Rakesh Shukla, Sasikumar Punnekkat, and Daniel Sundmark.

“Effects of Negative Testing on TDD: An Industrial Experiment”. In: Agile Pro-
cesses in Software Engineering and Extreme Programming - 14th International
Conference, XP 2013, Vienna, Austria, June 3-7, 2013. Proceedings. 2013, pp. 91–

105.

[CC16] Byeong-Mo Chang and Kwanghoon Choi. “A review on exception analysis”. In:

Information & Software Technology 77 (2016), pp. 1–16.

[CDS07] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. “Interaction testing of

highly-configurable systems in the presence of constraints”. In: Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2007, London, UK, July 9-12, 2007. 2007, pp. 129–139.

[CDS08] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. “Constructing Interaction

Test Suites for Highly-Configurable Systems in the Presence of Constraints: A

Greedy Approach”. In: IEEE Trans. Software Eng. 34.5 (2008), pp. 633–650.

[Che+19] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. “Understanding

Exception-Related Bugs in Large-Scale Cloud Systems”. In: 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE 2019). 2019.

[Cho+16] Eun-Hye Choi, Cyrille Artho, Takashi Kitamura, Osamu Mizuno, and Akihisa Ya-

mada. “Distance-Integrated Combinatorial Testing”. In: 27th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada,
October 23-27, 2016. IEEE Computer Society, 2016, pp. 93–104.

[CM07] Bruno Cabral and Paulo Marques. “Exception Handling: A Field Study in Java

and .NET”. In: Proceedings of the 21st European Conference on Object-Oriented
Programming. ECOOP’07. Berlin, Germany: Springer-Verlag, 2007, pp. 151–175.

[CM08] Charles J. Colbourn and Daniel W. McClary. “Locating and detecting arrays for

interaction faults”. In: J. Comb. Optim. 15.1 (2008), pp. 17–48.

[CMH16] Eun-Hye Choi, Osamu Mizuno, and Yifan Hu. “Code Coverage Analysis of Com-

binatorial Testing”. In: Joint Proceedings of the 4th International Workshop on
Quantitative Approaches to Software Quality (QuASoQ 2016) and 1st Interna-
tional Workshop on Technical Debt Analytics (TDA 2016) co-located with the 23rd
Asia-Pacific Software Engineering Conference (APSEC 2016), Hamilton, New Zealand,
December 6, 2016. 2016, pp. 43–49.

Bibliography 381

[Coe+08a] Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Cutigi Ferrari, Nélio

Cacho, Uirá Kulesza, Arndt von Staa, and Carlos José Pereira de Lucena. “As-

sessing the Impact of Aspects on Exception Flows: An Exploratory Study”. In:

ECOOP 2008 - Object-Oriented Programming, 22nd European Conference, Pa-
phos, Cyprus, July 7-11, 2008, Proceedings. 2008, pp. 207–234.

[Coe+08b] Roberta Coelho, Awais Rashid, Arndt von Staa, James Noble, Uirá Kulesza, and

Carlos Lucena. “A Catalogue of Bug Patterns for Exception Handling in Aspect-

oriented Programs”. In: Proceedings of the 15th Conference on Pattern Languages
of Programs. PLoP ’08. Nashville, Tennessee, USA: ACM, 2008, 23:1–23:13.

[Coh+03] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, Charles J. Colbourn,

and James S. Collofello. “Variable Strength Interaction Testing of Components”.

In: 27th International Computer Software and Applications Conference (COMP-
SAC 2003): Design and Assessment of Trustworthy Software-Based Systems, 3-6
November 2003, Dallas, TX, USA, Proceedings. 2003, p. 413.

[Coh+94] David M. Cohen, Siddhartha R. Dalal, A. Kajla, and Gardner C. Patton. “The Auto-

matic Efficient Test Generator (AETG) system”. In: 5th International Symposium
on Software Reliability Engineering, ISSRE 1994, Monterey, CA, USA, November
6-9, 1994. 1994, pp. 303–309.

[Coh+97] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.

“The AETG System: An Approach to Testing Based on Combinatiorial Design”.

In: IEEE Trans. Software Eng. 23.7 (1997), pp. 437–444.

[Coo+17] Steve Cook, Conrad Bock, Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic, and

Doug Tolbert. Unified Modeling Language (UML) Version 2.5.1. Standard. Object

Management Group (OMG), Dec. 2017.

[Cot+16] Domenico Cotroneo, Roberto Pietrantuono, Stefano Russo, and Kishor S. Trivedi.

“How do bugs surface? A comprehensive study on the characteristics of software

bugs manifestation”. In: Journal of Systems and Software 113 (2016), pp. 27–43.

[Cri82] Flaviu Cristian. “Exception Handling and Software Fault Tolerance”. In: IEEE
Trans. Computers 31.6 (1982), pp. 531–540.

[Cri84] Flaviu Cristian. “Correct and Robust Programs”. In: IEEE Trans. Software Eng.
10.2 (1984), pp. 163–174.

[Cri89] Flaviu Cristian. “Exception Handling”. In: Dependability of Resilient Computers.

Ed. by T. Anderson. BSP Professional Books, 1989, pp. 68–97.

[CYZ10] Baiqiang Chen, Jun Yan, and Jian Zhang. “Combinatorial Testing with Shielding

Parameters”. In: 17th Asia Pacific Software Engineering Conference, APSEC 2010,
Sydney, Australia, November 30 - December 3, 2010. Ed. by Jun Han and Tran Dan

Thu. IEEE Computer Society, 2010, pp. 280–289.

382 Bibliography

[CZ11] Baiqiang Chen and Jian Zhang. “Tuple density: a new metric for combinatorial

test suites”. In: Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 2011,

pp. 876–879.

[Cza99] Krzysztof Czarnecki. “Generative programming - principles and techniques of soft-

ware engineering based on automated configuration and fragment-based compo-

nent models”. PhD thesis. Technische Universität Illmenau, Germany, 1999.

[Cze06] Jacek Czerwonka. “Pairwise testing in real world”. In: 24th Pacific Northwest Soft-
ware Quality Conference. Vol. 200. Citeseer. 2006.

[DG94] Steven J. Drew and K. John Gough. “Exception Handling: Expecting the Unexp-

tected”. In: Comput. Lang. 20.2 (1994), pp. 69–87.

[DM98] Siddhartha R. Dalal and Colin L. Mallows. “Factor-Covering Designs for Testing

Software”. In: Technometrics 40.3 (1998), pp. 234–243.

[Don+06] Christophe Dony, Jørgen Lindskov Knudsen, Alexander B. Romanovsky, and Anand

Tripathi, eds. Advanced Topics in Exception Handling Techniques (the book grow
out of ECOOP workshops). Vol. 4119. Lecture Notes in Computer Science. Springer,

2006.

[ECS15] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. “An exploratory study

on exception handling bugs in Java programs”. In: Journal of Systems and Software
106 (2015), pp. 82–101.

[Fel+14] Alexander Felfernig, Stefan Reiterer, Florian-Christoph Reinfrank, Gerald Ninaus,

and Michael Jeran. “Conflict Detection and Diagnosis in Configuration”. English.

In: Knowledge-based Configuration: From Research to Business Cases. 1st ed.

Netherlands: Elsevier B.V., 2014, pp. 73–87.

[FG10] Gordon Fraser and Angelo Gargantini. “Generating Minimal Fault Detecting Test

Suites for Boolean Expressions”. In: Third International Conference on Software
Testing, Verification and Validation, ICST 2010, Paris, France, April 7-9, 2010,
Workshops Proceedings. IEEE Computer Society, 2010, pp. 37–45.

[Fil+06] Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel Maranhão, Alessan-

dro Garcia, and Cecília M. F. Rubira. “Exceptions and aspects: the devil is in the

details”. In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2006, Portland, Oregon, USA, Novem-
ber 5-11, 2006. 2006, pp. 152–162.

[Fil+09] Fernando Castor Filho, Nélio Cacho, Eduardo Figueiredo, Alessandro Garcia, Cecília

M. F. Rubira, Jefferson Silva de Amorim, and Hítalo Oliveira da Silva. “On the

modularization and reuse of exception handling with aspects”. In: Softw., Pract.
Exper. 39.17 (2009), pp. 1377–1417.

Bibliography 383

[For+08] Michael Forbes, Jim Lawrence, Yu Lei, Raghu N Kacker, and Richard D Kuhn.

“Refining the In-Parameter-Order Strategy for Constructing Covering Arrays”. In:

Journal of Research of the National Institute of Standards and Technology 113.5

(Sept. 2008), pp. 287–297.

[FR07] C. Fu and B. G. Ryder. “Exception-Chain Analysis: Revealing Exception Handling

Architecture in Java Server Applications”. In: 29th International Conference on
Software Engineering (ICSE’07). May 2007, pp. 230–239.

[Fre91] Roy S. Freedman. “Testability of Software Components”. In: IEEE Trans. Software
Eng. 17.6 (1991), pp. 553–564.

[FW88] Phyllis G. Frankl and Elaine J. Weyuker. “An Applicable Family of Data Flow

Testing Criteria”. In: IEEE Trans. Software Eng. 14.10 (1988), pp. 1483–1498.

[FW92] Eugene C. Freuder and Richard J. Wallace. “Partial Constraint Satisfaction”. In:

Artif. Intell. 58.1-3 (1992), pp. 21–70.

[FW93a] Phyllis G. Frankl and Stewart N. Weiss. “An Experimental Comparison of the Ef-

fectiveness of Branch Testing and Data Flow Testing”. In: IEEE Trans. Software
Eng. 19.8 (1993), pp. 774–787.

[FW93b] Phyllis G. Frankl and Elaine J. Weyuker. “A Formal Analysis of the Fault-Detecting

Ability of Testing Methods”. In: IEEE Trans. Software Eng. 19.3 (1993), pp. 202–

213.

[Gao+14] Shiwei Gao, Jianghua Lv, Binglei Du, Yaruo Jiang, and Shilong Ma. “General

Optimization Strategies for Refining the In-Parameter-Order Algorithm”. In: 2014
14th International Conference on Quality Software, Allen, TX, USA, October 2-3,
2014. 2014, pp. 21–26.

[Gao+15] Shi-Wei Gao, Jiang-Hua Lv, Bing-Lei Du, Charles J. Colbourn, and Shi-Long

Ma. “Balancing Frequencies and Fault Detection in the In-Parameter-Order Al-

gorithm”. In: J. Comput. Sci. Technol. 30.5 (2015), pp. 957–968.

[Gar+01] Alessandro F. Garcia, Cecília M. F. Rubira, Alexander B. Romanovsky, and Jie Xu.

“A comparative study of exception handling mechanisms for building dependable

object-oriented software”. In: J. Syst. Softw. 59.2 (2001), pp. 197–222.

[Gar+16] Angelo Gargantini, Justyna Petke, Marco Radavelli, and Paolo Vavassori. “Valida-

tion of Constraints Among Configuration Parameters Using Search-Based Combi-

natorial Interaction Testing”. In: Search Based Software Engineering - 8th Interna-
tional Symposium, SSBSE 2016, Raleigh, NC, USA, October 8-10, 2016, Proceed-
ings. 2016, pp. 49–63.

[Gar11] Angelo Gargantini. “Dealing with Constraints in Boolean Expression Testing”. In:

Fourth IEEE International Conference on Software Testing, Verification and Vali-
dation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Proceedings.

IEEE Computer Society, 2011, pp. 322–327.

[Geh92] Narain H. Gehani. “Exceptional C or C with Exceptions”. In: Softw., Pract. Exper.
22.10 (1992), pp. 827–848.

384 Bibliography

[GG75] John B. Goodenough and Susan L. Gerhart. “Toward a Theory of Test Data Selec-

tion”. In: IEEE Trans. Software Eng. 1.2 (1975), pp. 156–173.

[GH05] Alexander Gruler and Christian Heinlein. “Exception Handling with Resumption:

Design and Implementation in Java”. In: Proceedings of The 2005 International
Conference on Programming Languages and Compilers, PLC 2005, Las Vegas,
Nevada, USA, June 27-30, 2005. 2005, pp. 165–171.

[Gha+12] Laleh Shikh Gholamhossein Ghandehari, Yu Lei, Tao Xie, D. Richard Kuhn, and

Raghu Kacker. “Identifying Failure-Inducing Combinations in a Combinatorial

Test Set”. In: Fifth IEEE International Conference on Software Testing, Verifica-
tion and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012. 2012,

pp. 370–379.

[GO07] Mats Grindal and Jeff Offutt. “Input Parameter Modeling for Combination Strate-

gies”. In: Proceedings of the 25th Conference on IASTED International Multi-
Conference: Software Engineering. SE’07. Innsbruck, Austria: ACTA Press, 2007,

pp. 255–260.

[GOA05] Mats Grindal, Jeff Offutt, and Sten F. Andler. “Combination testing strategies: a

survey”. In: Softw. Test., Verif. Reliab. 15.3 (2005), pp. 167–199.

[GOM07] Mats Grindal, Jeff Offutt, and Jonas Mellin. “Managing Conflicts When Using

Combination Strategies to Test Software”. In: 18th Australian Software Engineer-
ing Conference (ASWEC 2007), April 10-13, 2007, Melbourne, Australia. 2007,

pp. 255–264.

[Goo75a] John B. Goodenough. “Exception Handling Design Issues”. In: SIGPLAN Not.
10.7 (1975).

[Goo75b] John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In:

Commun. ACM 18.12 (1975), pp. 683–696.

[Goo75c] John B. Goodenough. “Structured Exception Handling”. In: Conference Record of
the Second ACM Symposium on Principles of Programming Languages, Palo Alto,
California, USA, January 1975. 1975, pp. 204–224.

[Gou83] John S. Gourlay. “A Mathematical Framework for the Investigation of Testing”.

In: IEEE Trans. Software Eng. 9.6 (1983), pp. 686–709.

[GPR17] A. Gargantini, J. Petke, and M. Radavelli. “Combinatorial Interaction Testing for

Automated Constraint Repair”. In: 2017 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). Mar. 2017, pp. 239–

248.

[Gri+03] Mats Grindal, Birgitta Lindström, Jeff Offutt, and Sten F Andler. An Evaluation
of Combination Strategies for Test Case Selection (Technical Report). Tech. rep.

HS-IDA-TR-03-001. University of Skövde, School of Humanities and Informatics,

2003.

Bibliography 385

[Gri+06] Mats Grindal, Birgitta Lindström, Jeff Offutt, and Sten F. Andler. “An evaluation of

combination strategies for test case selection”. In: Empirical Software Engineering
11.4 (2006), pp. 583–611.

[Hal+19] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,

and Benoit Baudry. “Test them all, is it worth it? Assessing configuration sampling

on the JHipster Web development stack”. In: Empirical Software Engineering 24.2

(2019), pp. 674–717.

[HCG15] Sylvain Hallé, Edmond La Chance, and Sébastien Gaboury. “Graph Methods for

Generating Test Cases with Universal and Existential Constraints”. In: Testing Soft-
ware and Systems - 27th IFIP WG 6.1 International Conference, ICTSS 2015, Shar-
jah and Dubai, United Arab Emirates, November 23-25, 2015, Proceedings. Ed. by

Khaled El-Fakih, Gerassimos D. Barlas, and Nina Yevtushenko. Vol. 9447. Lecture

Notes in Computer Science. Springer, 2015, pp. 55–70.

[Hie02] Robert M. Hierons. “Comparing test sets and criteria in the presence of test hy-

potheses and fault domains”. In: ACM Trans. Softw. Eng. Methodol. 11.4 (2002),

pp. 427–448.

[How76] William E. Howden. “Reliability of the Path Analysis Testing Strategy”. In: IEEE
Trans. Software Eng. 2.3 (1976), pp. 208–215.

[HP85] D. Harel and A. Pnueli. “On the Development of Reactive Systems”. In: Logics
and Models of Concurrent Systems. Ed. by Krzysztof R. Apt. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1985, pp. 477–498.

[IEE90a] IEEE. “IEEE Standard Glossary of Data Management Terminology”. In: IEEE Std
610.5-1990 (1990).

[IEE90b] IEEE. “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE
Std 610.12-1990 (Dec. 1990).

[Jak+15] B. Jakobus, E. A. Barbosa, A. Garcia, and C. J. P. de Lucena. “Contrasting ex-

ception handling code across languages: An experience report involving 50 open

source projects”. In: 2015 IEEE 26th International Symposium on Software Relia-
bility Engineering (ISSRE). Nov. 2015, pp. 183–193.

[JF88] Ralph E Johnson and Brian Foote. “Designing reusable classes”. In: J. Object Ori-
ented Program. 1.2 (1988), pp. 22–35.

[JG93] Guy L. Steele Jr. and Richard P. Gabriel. “The Evolution of Lisp”. In: History
of Programming Languages Conference (HOPL-II), Preprints, Cambridge, Mas-
sachusetts, USA, April 20-23, 1993. 1993, pp. 231–270.

[Jin+17] Jinyu Liu, Shanshan Li, Zhouyang Jia, Xiaodong Liu, Bin Lin, and Xiangke Liao.

“IdenEH: Identify error-handling code snippets in large-scale software”. In: 2017
17th International Conference on Computational Science and Its Applications (ICCSA).
July 2017, pp. 1–8.

386 Bibliography

[JK18] Rekha Jayaram and R. Krishnan. “Approaches to Fault Localization in Combina-

torial Testing: A Survey”. In: Smart Computing and Informatics. Ed. by Suresh

Chandra Satapathy, Vikrant Bhateja, and Swagatam Das. Singapore: Springer Sin-

gapore, 2018, pp. 533–540.

[Jo+04] Jang-Wu Jo, Byeong-Mo Chang, Kwangkeun Yi, and Kwang-Moo Choe. “An un-

caught exception analysis for Java”. In: Journal of Systems and Software 72.1

(2004), pp. 59–69.

[Jor14] Paul C. Jorgensen. Software testing - a craftsman’s approach (3. ed.) Taylor &

Francis, 2014.

[JSS15] Dietmar Jannach, Thomas Schmitz, and Kostyantyn M. Shchekotykhin. “Paral-

lelized Hitting Set Computation for Model-Based Diagnosis”. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. 2015, pp. 1503–1510.

[JST20] Hao Jin, Ce Shi, and Tatsuhiro Tsuchiya. “Constrained detecting arrays for fault

localization in combinatorial testing”. In: SAC ’20: The 35th ACM/SIGAPP Sym-
posium on Applied Computing, online event, [Brno, Czech Republic], March 30 -
April 3, 2020. Ed. by Chih-Cheng Hung, Tomás Cerný, Dongwan Shin, and Alessio

Bechini. ACM, 2020, pp. 1971–1978.

[JT20] Hao Jin and Tatsuhiro Tsuchiya. “Constrained locating arrays for combinatorial

interaction testing”. In: J. Syst. Softw. 170 (2020), p. 110771.

[Jun04] Ulrich Junker. “QUICKXPLAIN: Preferred Explanations and Relaxations for Over-

Constrained Problems”. In: Proceedings of the Nineteenth National Conference on
Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artifi-
cial Intelligence, July 25-29, 2004, San Jose, California, USA. 2004, pp. 167–172.

[KD00] Phil Koopman and John DeVale. “The Exception Handling Effectiveness of POSIX

Operating Systems”. In: IEEE Trans. Software Eng. 26.9 (2000), pp. 837–848.

[KJS98] Nathan P. Kropp, Philip J. Koopman Jr., and Daniel P. Siewiorek. “Automated

Robustness Testing of Off-the-Shelf Software Components”. In: Digest of Papers:
FTCS-28, The Twenty-Eigth Annual International Symposium on Fault-Tolerant
Computing, Munich, Germany, June 23-25, 1998. 1998, pp. 230–239.

[KKL13] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Introduction to Combinatorial
Testing. 1st. Chapman & Hall/CRC, 2013.

[KKL16] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. “Estimating t-Way Fault Profile

Evolution During Testing”. In: 40th IEEE Annual Computer Software and Appli-
cations Conference, COMPSAC Workshops 2016, Atlanta, GA, USA, June 10-14,
2016. 2016, pp. 596–597.

[KL14] Sunint Kaur Khalsa and Yvan Labiche. “An Orchestrated Survey of Available Al-

gorithms and Tools for Combinatorial Testing”. In: 25th IEEE International Sym-
posium on Software Reliability Engineering, ISSRE 2014, Naples, Italy, November
3-6, 2014. 2014, pp. 323–334.

Bibliography 387

[Knu87] Jørgen Lindskov Knudsen. “Better Exception-Handling in Block-Structured Sys-

tems”. In: IEEE Software 4.3 (1987), pp. 40–49.

[KO06] D. Richard Kuhn and Vadim Okun. “Pseudo-Exhaustive Testing for Software”. In:

30th Annual IEEE / NASA Software Engineering Workshop (SEW-30 2006), 25-28
April 2006, Loyola College Graduate Center, Columbia, MD, USA. 2006, pp. 153–

158.

[Koo+97] Philip Koopman, John Sung, Christopher P. Dingman, Daniel P. Siewiorek, and

Ted Marz. “Comparing Operating Systems Using Robustness Benchmarks”. In:

The Sixteenth Symposium on Reliable Distributed Systems, SRDS 1997, Durham,
North Carolina, USA, October 22-24, 1997, Proceedings. 1997, pp. 72–79.

[KPP95] Barbara A. Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger. “Case Stud-

ies for Method and Tool Evaluation”. In: IEEE Softw. 12.4 (1995), pp. 52–62.

[KR02] D. R. Kuhn and M. J. Reilly. “An investigation of the applicability of design of

experiments to software testing”. In: 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, 2002. Proceedings. Dec. 2002, pp. 91–95.

[KS18] Kristoffer Kleine and Dimitris E. Simos. “An Efficient Design and Implementation

of the In-Parameter-Order Algorithm”. In: Mathematics in Computer Science 12.1

(2018), pp. 51–67.

[KSS17] Maria Kechagia, Tushar Sharma, and Diomidis Spinellis. “Towards a context de-

pendent Java exceptions hierarchy”. In: Proceedings of the 39th International Con-
ference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017 - Companion Volume. 2017, pp. 347–349.

[Kuh+15] D. Richard Kuhn, Renée C. Bryce, Feng Duan, Laleh Shikh Gholamhossein Ghan-

dehari, Yu Lei, and Raghu N. Kacker. “Combinatorial Testing: Theory and Prac-

tice”. In: Advances in Computers 99 (2015), pp. 1–66.

[Kuh+20] Rick Kuhn, Raghu N. Kacker, Yu Lei, and Dimitris E. Simos. “Input Space Cover-

age Matters”. In: IEEE Computer 53.1 (2020), pp. 37–44.

[Kuh99] D. Richard Kuhn. “Fault classes and error detection capability of specification-

based testing”. In: ACM Trans. Softw. Eng. Methodol. 8.4 (1999), pp. 411–424.

[KWG04] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. “Software fault interactions and

implications for software testing”. In: IEEE Transactions on Software Engineering
30.6 (June 2004), pp. 418–421.

[Lan97] Gérard Le Lann. “An analysis of the Ariane 5 flight 501 failure-a system engineer-

ing perspective”. In: 1997 Workshop on Engineering of Computer-Based Systems
(ECBS ’97), March 24-28, 1997, Monterey, CA, USA. 1997, pp. 339–246.

[LCM19] Erin Lanus, Charles J. Colbourn, and Douglas C. Montgomery. “Partitioned Search

with Column Resampling for Locating Array Construction”. In: 2019 IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops,
ICST Workshops 2019, Xi’an, China, April 22-23, 2019. IEEE, 2019, pp. 214–223.

388 Bibliography

[Lee83] P. A. Lee. “Exception Handling in C Programs”. In: Softw., Pract. Exper. 13.5

(1983), pp. 389–405.

[Lei+07] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence.

“IPOG: A General Strategy for T-Way Software Testing”. In: 14th Annual IEEE
International Conference and Workshop on Engineering of Computer Based Sys-
tems (ECBS 2007), 26-29 March 2007, Tucson, Arizona, USA. 2007, pp. 549–556.

[Lei+08] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence.

“IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing”. In:

Softw. Test. Verification Reliab. 18.3 (2008), pp. 125–148.

[Lev+93] Laura M. Leventhal, Barbee Teasley, Diane S. Rohlman, and Keith Instone. “Pos-

itive Test Bias in Software Testing Among Professionals: A Review”. In: Human-
Computer Interaction, Third International Conference, EWHCI ’93, Moscow, Rus-
sia, August 3-7, 1993, Selected Papers. 1993, pp. 210–218.

[Li+18] Y. Li, S. Ying, X. Jia, Y. Xu, L. Zhao, G. Cheng, B. Wang, and J. Xuan. “EH-

Recommender: Recommending Exception Handling Strategies Based on Program

Context”. In: 2018 23rd International Conference on Engineering of Complex
Computer Systems (ICECCS). Dec. 2018, pp. 104–114.

[Lig09] Peter Liggesmeyer. Software-Qualität: Testen, Analysieren und Verifizieren von
Software. 2nd. Spektrum Akademischer Verlag, 2009.

[LL00] M. Lippert and C. V. Lopes. “A study on exception detection and handling using

aspect-oriented programming”. In: Proceedings of the 2000 International Con-
ference on Software Engineering. ICSE 2000 the New Millennium. June 2000,

pp. 418–427.

[LL13] Jochen Ludewig and Horst Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. 3rd. dpunkt.verlag, 2013.

[LNL12] J. Li, C. Nie, and Y. Lei. “Improved Delta Debugging Based on Combinatorial

Testing”. In: 2012 12th International Conference on Quality Software. Aug. 2012,

pp. 102–105.

[LO17] N. Li and J. Offutt. “Test Oracle Strategies for Model-Based Testing”. In: IEEE
Transactions on Software Engineering 43.4 (Apr. 2017), pp. 372–395.

[LS98] Jun Lang and David B. Stewart. “A Study of the Applicability of Existing Exception-

handling Techniques to Component-based Real-time Software Technology”. In:

ACM Trans. Program. Lang. Syst. 20.2 (Mar. 1998), pp. 274–301.

[LT98] Yu Lei and Kuo-Chung Tai. “In-Parameter-Order: A Test Generation Strategy for

Pairwise Testing”. In: 3rd IEEE International Symposium on High-Assurance Sys-
tems Engineering (HASE ’98), 13-14 November 1998, Washington, D.C, USA, Pro-
ceedings. 1998, pp. 254–261.

Bibliography 389

[Mar11] Cristina Marinescu. “Are the classes that use exceptions defect prone?” In: Pro-
ceedings of the 12th International Workshop on Principles of Software Evolution
and the 7th annual ERCIM Workshop on Software Evolution, EVOL/IWPSE 2011,
Szeged, Hungary, September 5-6, 2011. 2011, pp. 56–60.

[MCK12] H. Melo, R. Coelho, and U. Kulesza. “On a Feature-Oriented Characterization of

Exception Flows in Software Product Lines”. In: 2012 26th Brazilian Symposium
on Software Engineering. Sept. 2012, pp. 121–130.

[Mel+13] Hugo Melo, Roberta Coelho, Uirá Kulesza, and Demóstenes Sena. “In-depth char-

acterization of exception flows in software product lines: an empirical study”. In:

J. Software Eng. R&D 1 (2013), p. 3.

[Mey92] Bertrand Meyer. “Applying ”Design by Contract””. In: IEEE Computer 25.10

(1992), pp. 40–51.

[Mic+12] Zoltán Micskei, Henrique Madeira, Alberto Avritzer, István Majzik, Marco Vieira,

and Nuno Antunes. “Robustness Testing Techniques and Tools”. In: Resilience
Assessment and Evaluation of Computing Systems. Springer, 2012, pp. 323–339.

[Mit13] Jürgen Mittelstraß, ed. Enzyklopädie Philosophie und Wissenschaftstheorie. Vol. 2.

J.B. Metzler, 2013.

[Mon+18] Taiza Montenegro, Hugo Melo, Roberta Coelho, and Eiji Barbosa. “Improving de-

velopers awareness of the exception handling policy”. In: 25th International Con-
ference on Software Analysis, Evolution and Reengineering, SANER 2018, Cam-
pobasso, Italy, March 20-23, 2018. 2018, pp. 413–422.

[Mor90] Larry J. Morell. “A Theory of Fault-Based Testing”. In: IEEE Trans. Software Eng.
16.8 (1990), pp. 844–857.

[MPZ15] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. “Recent Advances in Auto-

matic Black-Box Testing”. In: Advances in Computers 99 (2015), pp. 157–193.

[MR77] P. M. Melliar-Smith and Brian Randell. “Software Reliability: The Role of Pro-

grammed Exception Handling”. In: Proceedings of an ACM Conference on Lan-
guage Design for Reliable Software (LDRS), Raleigh, North Carolina, USA, March
28-30, 1977. 1977, pp. 95–100.

[MSB11] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.

3rd. Wiley Publishing, 2011.

[MT97] Robert Miller and Anand R. Tripathi. “Issues with Exception Handling in Object-

Oriented Systems”. In: ECOOP’97 - Object-Oriented Programming, 11th Euro-
pean Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings. 1997, pp. 85–

103.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT

Press, 1990.

[Niu+13] X. Niu, C. Nie, Y. Lei, and A. T. S. Chan. “Identifying Failure-Inducing Combina-

tions Using Tuple Relationship”. In: 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation Workshops. Mar. 2013, pp. 271–280.

390 Bibliography

[Niu+18] X. Niu, n. changhai, H. K. N. Leung, Y. Lei, X. Wang, J. Xu, and Y. Wang. “An in-

terleaving approach to combinatorial testing and failure-inducing interaction iden-

tification”. In: IEEE Transactions on Software Engineering (2018), pp. 1–1.

[NL11a] Changhai Nie and Hareton Leung. “A survey of combinatorial testing”. In: ACM
Comput. Surv. 43.2 (2011), 11:1–11:29.

[NL11b] Changhai Nie and Hareton Leung. “The Minimal Failure-Causing Schema of Com-

binatorial Testing”. In: ACM Trans. Softw. Eng. Methodol. 20.4 (Sept. 2011), 15:1–

15:38.

[Off+01] Jeff Offutt, Roger T. Alexander, Ye Wu, Quansheng Xiao, and Chuck Hutchinson.

“A Fault Model for Subtype Inheritance and Polymorphism”. In: 12th International
Symposium on Software Reliability Engineering (ISSRE 2001), 27-30 November
2001, Hong Kong, China. 2001, pp. 84–95.

[Oli+16] Juliana Oliveira, Nélio Cacho, Deise Borges, Thaisa Silva, and Fernando Castor.

“An Exploratory Study of Exception Handling Behavior in Evolving Android and

Java Applications”. In: Proceedings of the 30th Brazilian Symposium on Software
Engineering, SBES 2016, Maringá, Brazil, September 19 - 23, 2016. 2016, pp. 23–

32.

[Oli+18] Juliana Oliveira, Deise Borges, Thaisa Silva, Nélio Cacho, and Fernando Castor.

“Do android developers neglect error handling? a maintenance-Centric study on the

relationship between android abstractions and uncaught exceptions”. In: Journal of
Systems and Software 136 (2018), pp. 1–18.

[Pan99] Jiantao Pan. “The Dimensionality of Failures - A Fault Model for Characterizing

Software Robustness”. In: Proceedings of FTCS’99, 15-18 June 1999, Madison,
Wisconsin. 1999.

[Par76] David Lorge Parnas. “On the Design and Development of Program Families”. In:

IEEE Trans. Software Eng. 2.1 (1976), pp. 1–9.

[PBL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line En-
gineering - Foundations, Principles, and Techniques. Springer, 2005.

[Pet+13] Justyna Petke, Shin Yoo, Myra B. Cohen, and Mark Harman. “Efficiency and early

fault detection with lower and higher strength combinatorial interaction testing”.

In: Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013. 2013, pp. 26–36.

[Pet+15] Justyna Petke, Myra B. Cohen, Mark Harman, and Shin Yoo. “Practical Combina-

torial Interaction Testing: Empirical Findings on Efficiency and Early Fault Detec-

tion”. In: IEEE Trans. Software Eng. 41.9 (2015), pp. 901–924.

[Pet15] Justyna Petke. “Constraints: The Future of Combinatorial Interaction Testing”. In:

8th IEEE/ACM International Workshop on Search-Based Software Testing, SBST
2015, Florence, Italy, May 18-19, 2015. 2015, pp. 17–18.

Bibliography 391

[PH18] Krishna Patel and Robert M. Hierons. “A mapping study on testing non-testable

systems”. In: Software Quality Journal 26.4 (2018), pp. 1373–1413.

[PKS99] J. Pan, P. Koopman, and D. Siewiorek. “A dimensionality model approach to test-

ing and improving software robustness”. In: 1999 IEEE AUTOTESTCON Proceed-
ings (Cat. No.99CH36323). Aug. 1999, pp. 493–501.

[Pre+13] Alexander Pretschner, Dominik Holling, Robert Eschbach, and Matthias Gemmar.

“A Generic Fault Model for Quality Assurance”. In: Model-Driven Engineering
Languages and Systems - 16th International Conference, MODELS 2013, Miami,
FL, USA, September 29 - October 4, 2013. Proceedings. 2013, pp. 87–103.

[PRT00a] Dewayne E. Perry, Alexander B. Romanovsky, and Anand Tripathi. “Guest Edi-

tors’ Introduction - Current Trends in Exception Handling”. In: IEEE Trans. Soft-
ware Eng. 26.10 (2000), pp. 921–922.

[PRT00b] Dewayne E. Perry, Alexander Romanovsky, and Anand R. Tripathi. “Guest Edi-

tors’ Introduction - Current Trends in Exception Handling”. In: IEEE Trans. Soft-
ware Eng. 26.9 (2000), pp. 817–819.

[PS17a] G. B. D. Pádua and W. Shang. “Studying the Prevalence of Exception Handling

Anti-Patterns”. In: 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC). May 2017, pp. 328–331.

[PS17b] G. B. d. Pádua and W. Shang. “Revisiting Exception Handling Practices with Ex-

ception Flow Analysis”. In: 2017 IEEE 17th International Working Conference on
Source Code Analysis and Manipulation (SCAM). Sept. 2017, pp. 11–20.

[PW17] Ingo Pill and Franz Wotawa. “Model-Based Diagnosis Meets Combinatorial Test-

ing For Generating an Abductive Diagnosis Model”. In: 28th International Work-
shop on Principles of Diagnosis (DX’17), Brescia, Italy, September 26-29, 2017.

Ed. by Marina Zanella, Ingo Pill, and Alessandro Cimatti. Vol. 4. Kalpa Publica-

tions in Computing. EasyChair, 2017, pp. 248–263.

[PW18] Ingo Pill and Franz Wotawa. “On Using an I/O Model for Creating an Abductive

Diagnosis Model via Combinatorial Exploration, Fault Injection, and Simulation”.

In: Proceedings of the 29th International Workshop on Principles of Diagnosis co-
located with 10th IFAC Symposium on Fault Detection, Supervision and Safety for
Technical Processes (SAFEPROCESS 2018), Warsaw, Poland, 27-30 August, 2018.

Ed. by Louise Travé-Massuyès and Anna Sztyber. Vol. 2289. CEUR Workshop

Proceedings. CEUR-WS.org, 2018.

[PW19] Ingo Pill and Franz Wotawa. “Exploiting Observations from Combinatorial Testing

for Diagnostic Reasoning”. In: Proceedings of the 30th International Workshop
on Principles of Diagnosis (DX’19), Klagenfurt, Austria, 11-13 November, 2019.

2019.

[PY08] Mauro Pezzè and Michal Young. Software Testing and Analysis: Process, Princi-
ples and Techniques. USA: John Wiley & Sons, Inc., 2008.

392 Bibliography

[Ran75] Brian Randell. “System Structure for Software Fault Tolerance”. In: IEEE Trans.
Software Eng. 1.2 (1975), pp. 221–232.

[Rat+16] Zachary B. Ratliff, D. Richard Kuhn, Raghu N. Kacker, Yu Lei, and Kishor S.

Trivedi. “The Relationship between Software Bug Type and Number of Factors

Involved in Failures”. In: 2016 IEEE International Symposium on Software Re-
liability Engineering Workshops, ISSRE Workshops 2016, Ottawa, ON, Canada,
October 23-27, 2016. 2016, pp. 119–124.

[Rei87] Raymond Reiter. “A Theory of Diagnosis from First Principles”. In: Artif. Intell.
32.1 (1987), pp. 57–95.

[RH09] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical Software Engineering 14.2 (2009),

pp. 131–164.

[RM00] Martin P. Robillard and Gail C. Murphy. “Designing Robust Java Programs with

Exceptions”. In: Proceedings of the 8th ACM SIGSOFT International Symposium
on Foundations of Software Engineering: Twenty-first Century Applications. SIG-

SOFT ’00/FSE-8. San Diego, California, USA: ACM, 2000, pp. 2–10.

[RM03] Martin P. Robillard and Gail C. Murphy. “Static Analysis to Support the Evolution

of Exception Structure in Object-oriented Systems”. In: ACM Trans. Softw. Eng.
Methodol. 12.2 (Apr. 2003), pp. 191–221.

[RM99] Martin P. Robillard and Gail C. Murphy. “Analyzing Exception Flow in Java Pro-

grams”. In: Proceedings of the 7th European Software Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. ESEC/FSE-7. Toulouse, France: Springer-Verlag,

1999, pp. 322–337.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall PTR, 2010.

[Rom+01] Alexander B. Romanovsky, Christophe Dony, Jørgen Lindskov Knudsen, and Anand

Tripathi, eds. Advances in Exception Handling Techniques (the book grow out of a
ECOOP 2000 workshop). Vol. 2022. Springer, 2001.

[SA16] P. Sawadpong and E. B. Allen. “Software Defect Prediction Using Exception Han-

dling Call Graphs: A Case Study”. In: 2016 IEEE 17th International Symposium
on High Assurance Systems Engineering (HASE). Jan. 2016, pp. 55–62.

[SAW12] P. Sawadpong, E. B. Allen, and B. J. Williams. “Exception Handling Defects: An

Empirical Study”. In: 2012 IEEE 14th International Symposium on High-Assurance
Systems Engineering. Oct. 2012, pp. 90–97.

[SCK16] Demóstenes Sena, Roberta Coelho, and Uirá Kulesza. “Integrated Analysis of Ex-

ception Flows and Handler Actions in Java Libraries: An Empirical Study”. In:

Proceedings of the 31st Annual ACM Symposium on Applied Computing. SAC ’16.

Pisa, Italy: ACM, 2016, pp. 1520–1526.

Bibliography 393

[SF13] Ali Shahrokni and Robert Feldt. “A systematic review of software robustness”. In:

Information & Software Technology 55.1 (2013), pp. 1–17.

[SGH10] H. Shah, C. Gorg, and M. J. Harrold. “Understanding Exception Handling: View-

points of Novices and Experts”. In: IEEE Transactions on Software Engineering
36.2 (Mar. 2010), pp. 150–161.

[SH00] Saurabh Sinha and Mary Jean Harrold. “Analysis and Testing of Programs with Ex-

ception Handling Constructs”. In: IEEE Trans. Software Eng. 26.9 (2000), pp. 849–

871.

[She14] George B. Sherwood. “Functional Dependence and Equivalence Class Factors in

Combinatorial Test Designs”. In: Seventh IEEE International Conference on Soft-
ware Testing, Verification and Validation, ICST 2014 Workshops Proceedings, March
31 - April 4, 2014, Cleveland, Ohio, USA. 2014, pp. 108–117.

[She15] George B. Sherwood. “Embedded functions in combinatorial test designs”. In:

Eighth IEEE International Conference on Software Testing, Verification and Vali-
dation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015. 2015, pp. 1–10.

[She16] George B. Sherwood. “Embedded Functions for Constraints and Variable Strength

in Combinatorial Testing”. In: Ninth IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICST Workshops 2016, Chicago,
IL, USA, April 11-15, 2016. 2016, pp. 65–74.

[She17] George B. Sherwood. “Embedded Functions for Test Design Automation”. In:

Hardware and Software: Verification and Testing - 13th International Haifa Verifi-
cation Conference, HVC 2017, Haifa, Israel, November 13-15, 2017, Proceedings.

2017, pp. 221–224.

[She94] George B. Sherwood. “Effective Testing of Factor Combinations”. In: Proceedings
of the Third International Conference on Software Testing, Analysis and Review,
Washington, DC. 1994, pp. 151–166.

[Sho04] Jim Shore. “Fail Fast”. In: IEEE Software 21.5 (2004), pp. 21–25.

[Sil13] Silva. “New Exception Interfaces for Java-like Languages”. In: 2013.

[SLM12] Suman Saha, Julia Lawall, and Gilles Muller. “Finding Resource-release Omission

Faults in Linux”. In: SIGOPS Oper. Syst. Rev. 45.3 (Jan. 2012), pp. 5–9.

[SNX05] Liang Shi, Changhai Nie, and Baowen Xu. “A Software Debugging Method Based

on Pairwise Testing”. In: Computational Science - ICCS 2005, 5th International
Conference, Atlanta, GA, USA, May 22-25, 2005, Proceedings, Part III. 2005,

pp. 1088–1091.

[Som16] Ian Sommerville. Software Engineering, Global Edition. 10th. Pearson, 2016.

[STF11] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. “Using binary decision diagrams

for combinatorial test design”. In: Proceedings of the 20th International Sympo-
sium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July
17-21, 2011. 2011, pp. 254–264.

394 Bibliography

[STZ12] Itai Segall, Rachel Tzoref-Brill, and Aviad Zlotnick. “Common Patterns in Com-

binatorial Models”. In: Fifth IEEE International Conference on Software Testing,
Verification and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012.

Ed. by Giuliano Antoniol, Antonia Bertolino, and Yvan Labiche. IEEE Computer

Society, 2012, pp. 624–629.

[TBL17] Joel Kamdem Teto, Ruth Bearden, and Dan Chia-Tien Lo. “The Impact of De-

fensive Programming on I/O Cybersecurity Attacks”. In: Proceedings of the 2017
ACM Southeast Regional Conference, Kennesaw, GA, USA, April 13-15, 2017.

2017, pp. 102–111.

[Tea+94] Barbee E Teasley, Laura Marie Leventhal, Clifford R Mynatt, and Diane S Rohlman.

“Why software testing is sometimes ineffective: Two applied studies of positive test

strategy.” In: Journal of Applied Psychology 79.1 (1994), p. 142.

[Teu99] Rolf Alexander Teubner. Organisations- und Informationssystem- gestaltung: The-
oretische Grundlagen und integrierte Methoden. Deutscher Universitätsverlag, Wies-

baden, 1999.

[TQ17] Wei-Tek Tsai and Guanqiu Qi. Combinatorial Testing in Cloud Computing. Springer

Briefs in Computer Science. Springer, 2017.

[Tzo19] Rachel Tzoref-Brill. “Chapter Two - Advances in Combinatorial Testing”. In: Ad-
vances in Computers 112 (2019), pp. 79–134.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Testing - A Tools Ap-
proach. Morgan Kaufmann, 2007.

[UQ17] Hiroshi Ukai and Xiao Qu. “Test Design as Code: JCUnit”. In: 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2017,
Tokyo, Japan, March 13-17, 2017. 2017, pp. 508–515.

[VA15] Sergiy Vilkomir and David Anderson. “Relationship between pair-wise and MC/DC

testing: Initial experimental results”. In: Eighth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2015 Workshops, Graz, Aus-
tria, April 13-17, 2015. IEEE Computer Society, 2015, pp. 1–4.

[Vil16] Sergiy Vilkomir. “Combinatorial Testing of Software with Binary Inputs: A State-

of-the-Art Review”. In: 2016 IEEE International Conference on Software Quality,
Reliability and Security, QRS 2016, Companion, Vienna, Austria, August 1-3, 2016.

IEEE, 2016, pp. 55–60.

[VSB13] Sergiy Vilkomir, Oleksii Starov, and Ranjan Bhambroo. “Evaluation of t-wise Ap-

proach for Testing Logical Expressions in Software”. In: Sixth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2013 Workshops
Proceedings, Luxembourg, Luxembourg, March 18-22, 2013. 2013, pp. 249–256.

[VTP94] Mladen A. Vouk, Kuo-Chung Tai, and Amit M. Paradkar. “Empirical studies of

predicate-based software testing”. In: 5th International Symposium on Software
Reliability Engineering, ISSRE 1994, Monterey, CA, USA, November 6-9, 1994.

1994, pp. 55–64.

Bibliography 395

[Wei89] S. N. Weiss. “Comparing Test Data Adequacy Criteria”. In: SIGSOFT Softw. Eng.
Notes 14.6 (Oct. 1989), pp. 42–49.

[Wei90] Stewart N. Weiss. “Methods of comparing test data adequacy criteria”. In: Proceed-
ings of the Fourteenth Annual International Computer Software and Applications
Conference, COMPSAC 1990, Chicago, IL, USA, October 31 1990 - November 2,
1990. 1990, pp. 1–6.

[Wey02] Elaine J Weyuker. “Thinking formally about testing without a formal specifica-

tion”. In: Proceedings of Formal Approaches to Testing of Software (FATES’02).
2002, pp. 1–10.

[Wey82] Elaine J. Weyuker. “On Testing Non-Testable Programs”. In: Comput. J. 25.4 (1982),

pp. 465–470.

[Wey86] Elaine J. Weyuker. “Axiomatizing Software Test Data Adequacy”. In: IEEE Trans.
Software Eng. 12.12 (1986), pp. 1128–1138.

[WGS94] Elaine J. Weyuker, Tarak Goradia, and Ashutosh Singh. “Automatically Generat-

ing Test Data from a Boolean Specification”. In: IEEE Trans. Software Eng. 20.5

(1994), pp. 353–363.

[Wie03] Roelf J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate and
the UML. Morgan Kaufmann Publishers, 2003.

[Wie14] Roel J. Wieringa. Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, 2014.

[WJ91] Elaine J. Weyuker and Bingchiang Jeng. “Analyzing Partition Testing Strategies”.

In: IEEE Trans. Software Eng. 17.7 (1991), pp. 703–711.

[WK01] Dolores R. Wallace and D. Richard Kuhn. “Failure Modes in Medical Device Soft-

ware: An Analysis of 15 Years of Recall Data”. In: International Journal of Relia-
bility, Quality and Safety Engineering 08.04 (2001), pp. 351–371.

[WN08] Westley Weimer and George C. Necula. “Exceptional Situations and Program Re-

liability”. In: ACM Trans. Program. Lang. Syst. 30.2 (Mar. 2008), 8:1–8:51.

[WO80] Elaine J. Weyuker and Thomas J. Ostrand. “Theories of Program Testing and the

the Application of Revealing Subdomains”. In: IEEE Trans. Software Eng. 6.3

(1980), pp. 236–246.

[WP01] A. W. Williams and R. L. Probert. “A measure for component interaction test cov-

erage”. In: Proceedings ACS/IEEE International Conference on Computer Systems
and Applications. June 2001, pp. 304–311.

[WQ15] Ziyuan Wang and Yuanchao Qi. “Why combinatorial testing works: Analyzing

minimal failure-causing schemas in logic expressions”. In: Eighth IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2015
Workshops, Graz, Austria, April 13-17, 2015. 2015, pp. 1–5.

396 Bibliography

[WT14] Paul Wojciak and Rachel Tzoref-Brill. “System Level Combinatorial Testing in

Practice - The Concurrent Maintenance Case Study”. In: Seventh IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA. 2014, pp. 103–112.

[Wu+19a] H. Wu, N. Changhai, J. Petke, Y. Jia, and M. Harman. “Comparative Analysis of

Constraint Handling Techniques for Constrained Combinatorial Testing”. In: IEEE
Transactions on Software Engineering (2019), pp. 1–1.

[Wu+19b] Huayao Wu, Changhai Nie, Justyna Petke, Yue Jia, and Mark Harman. “A Survey

of Constrained Combinatorial Testing”. In: CoRR abs/1908.02480 (2019).

[WWH91] Elaine J. Weyuker, Stewart N. Weiss, and Richard G. Hamlet. “Comparison of Pro-

gram Testing Strategies”. In: Proceedings of the Symposium on Testing, Analysis,
and Verification, TAV 1991, Victoria, British Columbia, Canada, October 8-10,
1991. 1991, pp. 1–10.

[Xu+16] Chiya Xu, Yuanchao Qi, Ziyuan Wang, and Weifeng Zhang. “Analyzing Minimal

Failure-Causing Schemas in Siemens Suite”. In: Ninth IEEE International Confer-
ence on Software Testing, Verification and Validation Workshops, ICST Workshops
2016, Chicago, IL, USA, April 11-15, 2016. 2016, pp. 35–38.

[YB85] Shaula Yemini and Daniel M. Berry. “A Modular Verifiable Exception-Handling

Mechanism”. In: ACM Trans. Program. Lang. Syst. 7.2 (1985), pp. 214–243.

[YCP06] C. Yilmaz, M. B. Cohen, and A. A. Porter. “Covering arrays for efficient fault char-

acterization in complex configuration spaces”. In: IEEE Transactions on Software
Engineering 32.1 (Jan. 2006), pp. 20–34.

[Yil+14a] Cemal Yilmaz, Emine Dumlu, Myra B. Cohen, and Adam A. Porter. “Reducing

Masking Effects in CombinatorialInteraction Testing: A Feedback DrivenAdaptive

Approach”. In: IEEE Trans. Software Eng. 40.1 (2014), pp. 43–66.

[Yil+14b] Cemal Yilmaz, Sandro Fouché, Myra B. Cohen, Adam A. Porter, Gülsen Demiröz,

and Ugur Koc. “Moving Forward with Combinatorial Interaction Testing”. In:

IEEE Computer 47.2 (2014), pp. 37–45.

[Yu+13a] Linbin Yu, Yu Lei, Mehra Nouroz Borazjany, Raghu Kacker, and D. Richard Kuhn.

“An Efficient Algorithm for Constraint Handling in Combinatorial Test Genera-

tion”. In: Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013. 2013,

pp. 242–251.

[Yu+13b] Linbin Yu, Yu Lei, Raghu Kacker, and D. Richard Kuhn. “ACTS: A Combinato-

rial Test Generation Tool”. In: Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg, March
18-22, 2013. 2013, pp. 370–375.

Bibliography 397

[Yu+15] Linbin Yu, Feng Duan, Yu Lei, Raghu N. Kacker, and D. Richard Kuhn. “Con-

straint handling in combinatorial test generation using forbidden tuples”. In: Eighth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2015 Workshops, Graz, Austria, April 13-17, 2015. 2015, pp. 1–9.

[Yu+18] Min Yu, Feiyan She, Yuanchao Qi, Ziyuan Wang, and Weifeng Zhang. “A Revisit

of Fault-Detecting Probability of Combinatorial Testing for Boolean-Specifications

(P)”. In: The 30th International Conference on Software Engineering and Knowl-
edge Engineering, Hotel Pullman, Redwood City, California, USA, July 1-3, 2018.

2018, pp. 711–710.

[Zhe+16] Wei Zheng, Xiaoxue Wu, Desheng Hu, and Qi-Hai Zhu. “Locating Minimal Fault

Interaction in Combinatorial Testing”. In: Adv. Software Engineering 2016 (2016),

2409521:1–2409521:10.

[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. “Software Unit Test Coverage

and Adequacy”. In: ACM Comput. Surv. 29.4 (1997), pp. 366–427.

[Zhu96] Hong Zhu. “A Formal Analysis of the Subsume Relation Between Software Test

Adequacy Criteria”. In: IEEE Trans. Software Eng. 22.4 (1996), pp. 248–255.

[ZZM14] Jian Zhang, Zhiqiang Zhang, and Feifei Ma. Automatic Generation of Combinato-
rial Test Data. Springer Briefs in Computer Science. Springer, 2014.

Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview on related work done at the SE Group, RWTH Aachen. More de-

tails can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The work presented

here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods for innova-
tive and efficient development of software and software-intensive systems, such that high-quality products

can be developed in a shorter period of time and with flexible integration of changing requirements. Fur-

thermore, we demonstrate the applicability of our results in various domains and potentially refine these

results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable,

yet abstract and multi-view modeling language for modeling, designing and programming still allows

to use an agile development process.”, [JWCR18] addresses the question how digital and organizational

techniques help to cope with physical distance of developers and [RRSW17] addresses how to teach

agile modeling. Modeling will increasingly be used in development projects, if the benefits become

evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example, we

concentrate on the integration of models and ordinary programming code. In [Rum12] and [Rum16],

the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is

defined. The language workbench MontiCore [GKR+06, GKR+08, HR17] is used to realize the UML/P

[Sch12]. Links to further research, e.g., include a general discussion of how to manage and evolve

models [LRSS10], a precise definition for model composition as well as model languages [HKR+09]

and refactoring in various modeling and programming languages [PR03]. In [FHR08] we describe a set

of general requirements for model quality. Finally, [KRV06] discusses the additional roles and activities

necessary in a DSL-based software development project. In [CEG+14] we discuss how to improve the

reliability of adaptivity through models at runtime, which will allow developers to delay design decisions

to runtime adaptation.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming process.

Managing the complexity, size, and number of the artifacts developed and used during a project together

with their complex relationships is not trivial [BGRW17]. To keep track of relevant structures, artifacts,

and their relations in order to be able e.g. to evolve or adapt models and their implementing code, the

artifact model [GHR17] was introduced. [BGRW18] explains its applicability in systems engineering

based on MDSE projects.

An artifact model basically is a meta-data structure that explains which kinds of artifacts, namely

code files, models, requirements files, etc. exist and how these artifacts are related to each other. The

artifact model therefore covers the wide range of human activities during the development down to fully

automated, repeatable build scripts. The artifact model can be used to optimize parallelization during the

development and building, but also to identify deviations of the real architecture and dependencies from

the desired, idealistic architecture, for cost estimations, for requirements and bug tracing, etc. Results can

be measured using metrics or visualized as graphs.

Related Interesting Work from the SE Group, RWTH Aachen

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the architec-

ture of (1) a neural network, (2) its training, and (3) the training data [KNP+19]. We have developed

a compositional technique to integrate neural networks into larger software architectures [KRRvW17]

as standardized machine learning components [KPRS19]. This enables the compiler to support the sys-

tems engineer by automating the lifecycle of such components including multiple learning approaches

such as supervised learning, reinforcement learning, or generative adversarial networks. According to

[MRR11g] the semantic difference between two models are the elements contained in the semantics of

the one model that are not elements in the semantics of the other model. A smart semantic differencing

operator is an automatic procedure for computing diff witnesses for two given models. Smart semantic

differencing operators have been defined for Activity Diagrams [MRR11a], Class Diagrams [MRR11d],

Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven Component and Connector

Architectures [BKRW17, BKRW19]. We also developed a modeling language-independent method for

determining syntactic changes that are responsible for the existence of semantic differences [KR18].

We apply logic, knowledge representation and intelligent reasoning to software engineering to perform

correctness proofs, execute symbolic tests or find counterexamples using a theorem prover. And we have

applied it to challenges in intelligent flight control systems and assistance systems for air or road traffic

management [KRRS19, HRR12] and based it on the core ideas of Broy’s Focus theory [RR11, BR07].

Intelligent testing strategies have been applied to automotive software engineering [EJK+19, DGH+19,

KMS+18], or more generally in systems engineering [DGH+18]. These methods are realized for a variant

of SysML Activity Diagrams and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy management

for buildings [FLP+11a, KLPR12] and city quarters [GLPR15] to optimize the operation efficiency and

prevent unneeded CO2 emissions or reduce costs. This creates a structural and behavioral system theoret-

ical view on cyber-physical systems understandable as essential parts of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound derivate

of the UML designed for product and test code generation. [Sch12] describes a flexible generator

for the UML/P based on the MontiCore language workbench [KRV10, GKR+06, GKR+08, HR17].

In [KRV06], we discuss additional roles necessary in a model-based software development project.

[GKRS06, GHK+15a] discuss mechanisms to keep generated and handwritten code separated. In [Wei12],

we demonstrate how to systematically derive a transformation language in concrete syntax. [HMSNRW16]

presents how to generate extensible and statically type-safe visitors. In [MSNRR16], we propose the use

of symbols for ensuring the validity of generated source code. [GMR+16] discusses product lines of

template-based code generators. We also developed an approach for engineering reusable language com-

ponents [HLMSN+15b, HLMSN+15a]. To understand the implications of executability for UML, we

discuss needs and advantages of executable modeling with UML in agile projects in [Rum04], how to

apply UML for testing in [Rum03], and the advantages and perils of using modeling languages for pro-

gramming in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99] many

of our contributions build on the UML/P variant, which is described in the books [Rum16, Rum17]

respectively [Rum12, Rum13] and is implemented in [Sch12]. Semantic variation points of the UML

are discussed in [GR11]. We discuss formal semantics for UML [BHP+98] and describe UML seman-

tics using the “System Model” [BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic variation

Related Interesting Work from the SE Group, RWTH Aachen

points have, e.g., been applied to define class diagram semantics [CGR08]. A precisely defined seman-

tics for variations is applied, when checking variants of class diagrams [MRR11c] and objects diagrams

[MRR11e] or the consistency of both kinds of diagrams [MRR11f]. We also apply these concepts to

activity diagrams [MRR11b] which allows us to check for semantic differences of activity diagrams

[MRR11a]. The basic semantics for ADs and their semantic variation points is given in [GRR10]. We

also discuss how to ensure and identify model quality [FHR08], how models, views and the system

under development correlate to each other [BGH+98], and how to use modeling in agile development

projects [Rum04], [Rum02]. The question how to adapt and extend the UML is discussed in [PFR02]

describing product line annotations for UML and more general discussions and insights on how to use

meta-modeling for defining and adapting the UML are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need

appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10, GKR+08, HR17]

allows the specification of an integrated abstract and concrete syntax format [KRV07b, HR17] for easy

development. New languages and tools can be defined in modular forms [KRV08, GKR+07, Völ11,

HLMSN+15b, HLMSN+15a, HRW18, BEK+18a, BEK+18b, BEK+19] and can, thus, easily be reused.

We discuss the roles in software development using domain specific languages in [KRV14]. [Wei12]

presents a tool that allows to create transformation rules tailored to an underlying DSL. Variability in

DSL definitions has been examined in [GR11, GMR+16]. [BDL+18] presents a method to derive inter-

nal DSLs from grammars. In [BJRW18], we discuss the translation from grammars to accurate meta-

models. Successful applications have been carried out in the Air Traffic Management [ZPK+11] and

television [DHH+20] domains. Based on the concepts described above, meta modeling, model analyses

and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], instruc-

tions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for

DSLs [KRV07a] complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language com-

ponents, we adopt an engineering viewpoint on these techniques. General ideas on how to engineer a

language can be found in the GeMoC initiative [CBCR15, CCF+15] and the concern-oriented language

development approach [CKM+18]. As said, the MontiCore language workbench provides techniques for

an integrated definition of languages [KRV07b, Kra10, KRV10, HR17, HRW18, BEK+19]. In [SRVK10]

we discuss the possibilities and the challenges using metamodels for language definition. Modular com-

position, however, is a core concept to reuse language components like in MontiCore for the frontend

[Völ11, KRV08, HLMSN+15b, HLMSN+15a, HMSNRW16, HR17, BEK+18a, BEK+18b, BEK+19]

and the backend [RRRW15, MSNRR16, GMR+16, HR17, BEK+18b]. In [GHK+15b, GHK+15a], we

discuss the integration of handwritten and generated object-oriented code. [KRV14] describes the roles in

software development using domain specific languages. Language derivation is to our believe a promising

technique to develop new languages for a specific purpose that rely on existing basic languages [HRW18].

How to automatically derive such a transformation language using concrete syntax of the base language

is described in [HRW15, Wei12] and successfully applied to various DSLs. We also applied the language

derivation technique to tagging languages that decorate a base language [GLRR15] and delta languages

[HHK+15a, HHK+13], where a delta language is derived from a base language to be able to construc-

tively describe differences between model variants usable to build feature sets. The derivation of internal

DSLs from grammars is discussd in [BDL+18] and a translation of grammars to accurate metamodels in

[BJRW18].

Related Interesting Work from the SE Group, RWTH Aachen

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of

telephone or video data, method invocation, or data structures passed between software services. We use

streams, statemachines and components [BR07] as well as expressive forms of composition and refine-

ment [PR99, RW18] for semantics. Furthermore, we built a concrete tooling infrastructure called Mon-

tiArc [HRR12] for architecture design and extensions for states [RRW13b]. In [RRW13a], we introduce

a code generation framework for MontiArc. MontiArc was extended to describe variability [HRR+11]

using deltas [HRRS11, HKR+11] and evolution on deltas [HRRS12]. Other extensions are concerned

with modeling cloud architectures [NPR13] and with the robotics domain [AHRW17a, AHRW17b].

[GHK+07] and [GHK+08a] close the gap between the requirements and the logical architecture and

[GKPR08] extends it to model variants. [MRR14b] provides a precise technique to verify consistency

of architectural views [Rin14, MRR13] against a complete architecture in order to increase reusabil-

ity. We discuss the synthesis problem for these views in [MRR14a]. Co-evolution of architecture

is discussed in [MMR10] and modeling techniques to describe dynamic architectures are shown in

[HRR98, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The

mechanisms for distributed systems are shown in [BR07, RW18] and algebraically underpinned in [HKR+07].

Semantic and methodical aspects of model composition [KRV08] led to the language workbench Monti-

Core [KRV10, HR17] that can even be used to develop modeling tools in a compositional form [HR17,

HLMSN+15b, HLMSN+15a, HMSNRW16, MSNRR16, HRW18, BEK+18a, BEK+18b, BEK+19]. A

set of DSL design guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11]

examines the composition of context conditions respectively the underlying infrastructure of the sym-

bol table. Modular editor generation is discussed in [KRV07a]. [RRRW15] applies compositionality to

Robotics control. [CBCR15] (published in [CCF+15]) summarizes our approach to composition and re-

maining challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of

decomposition of model information we have developed the concept of tagging languages in [GLRR15].

It allows to describe additional information for model elements in separated documents, facilitates reuse,

and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness

is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical

theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML

is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detailed

versions that are applied to class diagrams in [CGR08]. To better understand the effect of an evolved de-

sign, detection of semantic differencing as opposed to pure syntactical differences is needed [MRR10].

[MRR11a, MRR11b] encode a part of the semantics to handle semantic differences of activity diagrams

and [MRR11f, MRR11f] compare class and object diagrams with regard to their semantics. In [BR07],

a simplified mathematical model for distributed systems based on black-box behaviors of components

is defined. Meta-modeling semantics is discussed in [EFLR99]. [BGH+97] discusses potential mod-

eling languages for the description of an exemplary object interaction, today called sequence diagram.

[BGH+98] discusses the relationships between a system, a view and a complete model in the context of

the UML. [GR11] and [CGR09] discuss general requirements for a framework to describe semantic and

syntactic variations of a modeling language. We apply these on class and object diagrams in [MRR11f]

as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test

Related Interesting Work from the SE Group, RWTH Aachen

case generation, refactoring and evolution techniques. [LRSS10] discusses evolution and related issues

in greater detail. [RW18] discusses an elaborated theory for the modeling of underspecification, hierar-

chical composition, and refinement that can be practically applied for the development of CPS.

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code they are not initially correct

and need to be changed, evolved and maintained over time. Model transformation is therefore essential

to effectively deal with models. Many concrete model transformation problems are discussed: evolu-

tion [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], decomposition [PR99, KRW20],

synthesis [MRR14a], refactoring [Rum12, PR03], translating models from one language into another

[MRR11c, Rum12], and systematic model transformation language development [Wei12]. [Rum04]

describes how comprehensible sets of such transformations support software development and main-

tenance [LRSS10], technologies for evolving models within a language and across languages, and map-

ping architecture descriptions to their implementation [MMR10]. Automaton refinement is discussed in

[PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99]. Refactorings of models

are important for model driven engineering as discussed in [PR01, PR03, Rum12]. Translation between

languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing class diagrams on a

semantic level.

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer

develops several products with many similarities but also many variations. Variants are managed in a

Software Product Line (SPL) that captures product commonalities as well as differences. Feature dia-

grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08a] using 150%

models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom

up technique starting with a small, but complete base variant. Features are additive, but also can modify

the core. A set of commonly applicable deltas configures a system variant. We discuss the application

of this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas

can not only describe spacial variability but also temporal variability which allows for using them for

software product line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systemat-

ically derive delta languages. We also apply variability modeling languages in order to describe syntactic

and semantic variation points, e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Further-

more, we specified a systematic way to define variants of modeling languages [CGR09], leverage features

for compositional reuse [BEK+18b], and applied it as a semantic language refinement on Statecharts in

[GR11].

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical enti-

ties. In [RW18], we discuss how an elaborated theory can be practically applied for the development

of CPS. Contributions for individual aspects range from requirements [GRJA12], complete product lines

[HRRW12], the improvement of engineering for distributed automotive systems [HRR12], autonomous

driving [BR12a, KKR19], and digital twin development [BDH+20] to processes and tools to improve

the development as well as the product itself [BBR07]. In the aviation domain, a modeling language for

uncertainty and safety events was developed, which is of interest for the European airspace [ZPK+11]. A

component and connector architecture description language suitable for the specific challenges in robotics

Related Interesting Work from the SE Group, RWTH Aachen

is discussed in [RRW13b, RRW14]. In [RRW13a], we describe a code generation framework for this lan-

guage. Monitoring for smart and energy efficient buildings is developed as Energy Navigator toolset

[KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition on contributing

to systems engineering in automotive [GHK+08b], which culminated in a new comprehensive model-

driven development process for automotive software [KMS+18, DGH+19]. We leveraged SysML to

enable the integrated flow from requirements to implementation to integration. To facilitate modeling of

products, resources, and processes in the context of Industry 4.0, we also conceived a multi-level frame-

work for machining based on these concepts [BKL+18]. Research within the excellence cluster Internet

of Production considers fast decision making at production time with low latencies using contextual data

traces of production systems, also known as Digital Shadows (DS) [SHH+20]. We have investigated

how to derive Digital Twins (DTs) for injection molding [BDH+20], how to generate interfaces between

a cyber-physical system and its DT [KMR+20] and have proposed model-driven architectures for DT

cockpit engineering [DMR+20].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including Petri nets

or temporal logics. Software engineering is particularly interested in using statemachines for modeling

systems. Our contributions to state based modeling can currently be split into three parts: (1) understand-

ing how to model object-oriented and distributed software using statemachines resp. Statecharts [GKR96,

BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96, RW18] and

composition [GR95, GKR96, RW18] of statemachines, and (3) applying statemachines for modeling sys-

tems. In [Rum96, RW18] constructive transformation rules for refining automata behavior are given and

proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded in the com-

position and behavioral specification concepts of Focus [GKR96, BR07]. We apply these techniques,

e.g., in MontiArcAutomaton [RRW13a, RRW14, RRW13a, RW18] as well as in building management

systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support for human

behaviour (2) based on information from previously stored and real-time monitored structural context

and behaviour data (3) at the time the person needs or asks for it [HMR+19]. To create them, we follow

a model centered architecture approach [MMR+17] which defines systems as a compound of various

connected models. Used languages for their definition include DSLs for behavior and structure such as

the human cognitive modeling language [MM13], goal modeling languages [MRV20] or UML/P based

languages [MNRV19]. [MM15] describes a process how languages for assistive systems can be created.

We have designed a system included in a sensor floor able to monitor elderlies and analyze impact

patterns for emergency events [LMK+11]. We have investigated the modeling of human contexts for

the active assisted living and smart home domain [MS17] and user-centered privacy-driven systems in

the IoT domain in combination with process mining systems [MKM+19], differential privacy on event

logs of handling and treatment of patients at a hospital [MKB+19], the mark-up of online manuals

for devices [SM18] and websites [SM20], and solutions for privacy-aware environments for cloud ser-

vices [ELR+17] and in IoT manufacturing [MNRV19]. The user-centered view on the system design

Related Interesting Work from the SE Group, RWTH Aachen

allows to track who does what, when, why, where and how with personal data, makes information about

it available via information services and provides support using assistive services.

Modelling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-

ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics

applications requires composition and interaction of diverse distributed software modules. This usu-

ally leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensi-

ble, which hampers broad propagation of robotics applications. The MontiArcAutomaton language

[RRW13a] extends the ADL MontiArc and integrates various implemented behavior modeling languages

using MontiCore [RRW13b, RRW14, RRRW15, HR17] that perfectly fit robotic architectural modeling.

The LightRocks [THR+13] framework allows robotics experts and laymen to model robotic assembly

tasks. In [AHRW17a, AHRW17b], we define a modular architecture modeling method for translating

architecture models into modules compatible to different robotics middleware platforms.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems

as well as advanced active and passive safety-systems result in complex embedded systems. As these

feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct vari-

ants needs to be managed, developed and tested. A consistent requirements management that connects

requirements with features in all phases of the development for the automotive domain is described in

[GRJA12]. The conceptual gap between requirements and the logical architecture of a car is closed

in [GHK+07, GHK+08a]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].

[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and

paste variants. [RSW+15] describes an approach to use model checking techniques to identify behav-

ioral differences of Simulink models. In [KKR19], we introduce a framework for modeling the dynamic

reconfiguration of component and connector architectures and apply it to the domain of cooperating ve-

hicles. Quality assurance, especially of safety-related functions, is a highly important task. In the Carolo

project [BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-based func-

tions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup in develop-

ment and evolution of autonomous car functionality, and thus enables us to develop software in an agile

way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and evolution

on a more general level by considering any kind of critical system that relies on architectural descriptions.

As tooling infrastructure, the SSElab storage, versioning and management services [HKR12] are essential

for many projects.

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is

an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes

equally important to efficiently use the generated energy. Within several research projects, we developed

methodologies and solutions for integrating heterogeneous systems at different scales. During the design

phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-

nical specification of building services already. We adapted the well-known concept of statemachines to

be able to describe different states of a facility and to validate it against the monitored values [FLP+11b].

We show how our data model, the constraint rules, and the evaluation approach to compare sensor data

can be applied [KLPR12].

Related Interesting Work from the SE Group, RWTH Aachen

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based

application and service architectures with high complexity, criticality, and new application domains. It

promises to enable new business models, to lower the barrier for web-based innovations and to increase

the efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-

Physical Systems and their privacy [HHK+14, HHK+15b], Big Data, App, and Service Ecosystems bring

attention to aspects like responsiveness, privacy and open platforms. Regardless of the application do-

main, developers of such systems are in need for robust methods and efficient, easy-to-use languages and

tools [KRS12]. We tackle these challenges by perusing a model-based, generative approach [NPR13].

The core of this approach are different modeling languages that describe different aspects of a cloud-

based system in a concise and technology-agnostic way. Software architecture and infrastructure models

describe the system and its physical distribution on a large scale. We apply cloud technology for the

services we develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also

for our tool demonstrators and our own development platforms. New services, e.g., collecting data from

temperature, cars etc. can now easily be developed.

Model-Driven Engineering of Information Systems

Information Systems provide information to different user groups as main system goal. Using our experi-

ences in the model-based generation of code with MontiCore [KRV10, HR17], we developed several gen-

erators for such data-centric information systems. MontiGem [AMN+20] is a specific generator frame-

work for data-centric business applications that uses standard models from UML/P optionally extended

by GUI description models as sources [GMN+20]. While the standard semantics of these modeling lan-

guages remains untouched, the generator produces a lot of additional functionality around these models.

The generator is designed flexible, modular and incremental, handwritten and generated code pieces are

well integrated [GHK+15a], tagging of existing models is possible [GLRR15], e.g., for the definition of

roles and rights or for testing [DGH+18].

Bibliography Related Interesting Work from the SE Group, RWTH Aachen

[AHRW17a] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Engineering

Robotics Software Architectures with Exchangeable Model Transformations. In Interna-
tional Conference on Robotic Computing (IRC’17), pages 172–179. IEEE, April 2017.

[AHRW17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Modeling

Robotics Software Architectures with Modular Model Transformations. Journal of Soft-
ware Engineering for Robotics (JOSER), 8(1):3–16, 2017.

[AMN+20] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Enterprise

Information Systems in Academia and Practice: Lessons learned from a MBSE Project. In

40 Years EMISA: Digital Ecosystems of the Future: Methodology, Techniques and Applica-
tions (EMISA’19), LNI P-304, pages 59–66. Gesellschaft für Informatik e.V., May 2020.

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems Engineer-

ing Process and Tools for the Development of Autonomous Driving Intelligence. Journal of
Aerospace Computing, Information, and Communication (JACIC), 4(12):1158–1174, 2007.

[BCGR09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Consider-

ations and Rationale for a UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 43–61. John Wiley & Sons, November 2009.

[BCGR09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Definition

of the UML System Model. In K. Lano, editor, UML 2 Semantics and Applications, pages

63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model

for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU Munich, Germany,

February 2007.

[BCR07b] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model

for UML. Part 3: The State Machine Model. Technical Report TUM-I0711, TU Munich,

Germany, February 2007.

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bernhard Rumpe, David

Schmalzing, Mauritius Schmitz, and Andreas Wortmann. Model-Driven Development of

a Digital Twin for Injection Molding. In Schahram Dustdar, Eric Yu, Camille Salinesi,

Dominique Rieu, and Vik Pant, editors, International Conference on Advanced Information
Systems Engineering (CAiSE’20), Lecture Notes in Computer Science 12127, pages 85–

100. Springer International Publishing, June 2020.

[BDL+18] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and Andreas Wort-

mann. Deriving Fluent Internal Domain-specific Languages from Grammars. In Inter-
national Conference on Software Language Engineering (SLE’18), pages 187–199. ACM,

2018.

[BEK+18a] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.

Controlled and Extensible Variability of Concrete and Abstract Syntax with Independent

Language Features. In Proceedings of the 12th International Workshop on Variability Mod-
elling of Software-Intensive Systems (VAMOS’18), pages 75–82. ACM, January 2018.

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.

Modeling Language Variability with Reusable Language Components. In International
Conference on Systems and Software Product Line (SPLC’18). ACM, September 2018.

Related Interesting Work from the SE Group, RWTH Aachen Bibliography

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.

Systematic Composition of Independent Language Features. Journal of Systems and Soft-
ware, 152:50–69, June 2019.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bernhard

Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete Object In-

teraction Descriptions. In Object-oriented Behavioral Semantics Workshop (OOPSLA’97),
Technical Report TUM-I9737, Germany, 1997. TU Munich.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Systems,

Views and Models of UML. In Proceedings of the Unified Modeling Language, Technical
Aspects and Applications, pages 93–109. Physica Verlag, Heidelberg, Germany, 1998.

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann. Taming the

Complexity of Model-Driven Systems Engineering Projects. Part of the Grand Challenges

in Modeling (GRAND’17) Workshop, July 2017.

[BGRW18] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann. On the Need

for Artifact Models in Model-Driven Systems Engineering Projects. In Martina Seidl and

Steffen Zschaler, editors, Software Technologies: Applications and Foundations, LNCS

10748, pages 146–153. Springer, January 2018.

[BHK+17] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe, and An-

dreas Wortmann. A Classification of Dynamic Reconfiguration in Component and Con-

nector Architecture Description Languages. In Proceedings of MODELS 2017. Workshop
ModComp, CEUR 2019, September 2017.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies. Soft-

ware and System Modeling Based on a Unified Formal Semantics. In Workshop on Require-
ments Targeting Software and Systems Engineering (RTSE’97), LNCS 1526, pages 43–68.

Springer, 1998.

[BJRW18] Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann. Translating Gram-

mars to Accurate Metamodels. In International Conference on Software Language Engi-
neering (SLE’18), pages 174–186. ACM, 2018.

[BKL+18] Christian Brecher, Evgeny Kusmenko, Achim Lindt, Bernhard Rumpe, Simon Storms,

Stephan Wein, Michael von Wenckstern, and Andreas Wortmann. Multi-Level Model-

ing Framework for Machine as a Service Applications Based on Product Process Resource

Models. In Proceedings of the 2nd International Symposium on Computer Science and
Intelligent Control (ISCSIC’18). ACM, September 2018.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Semantic Dif-

ferencing for Message-Driven Component & Connector Architectures. In International
Conference on Software Architecture (ICSA’17), pages 145–154. IEEE, April 2017.

[BKRW19] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Continuously

Analyzing Finite, Message-Driven, Time-Synchronous Component & Connector Systems

During Architecture Evolution. Journal of Systems and Software, 149:437–461, March

2019.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als Grundlage

der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–18, Februar 2007.

Bibliography Related Interesting Work from the SE Group, RWTH Aachen

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban

Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Automotive Software
Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software. In

C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge, pages

243–271. Springer, Germany, 2012.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. Concep-

tual Model of the Globalization for Domain-Specific Languages. In Globalizing Domain-
Specific Languages, LNCS 9400, pages 7–20. Springer, 2015.

[CCF+15] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, and Bern-

hard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS 9400. Springer,

2015.

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi Müller,

Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe, Daniel Schneider,

Frank Trollmann, and Norha Villegas. Using Models at Runtime to Address Assurance

for Self-Adaptive Systems. In Models@run.time, LNCS 8378, pages 101–136. Springer,

Germany, 2014.

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics

of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Germany, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within Mod-

eling Language Definitions. In Conference on Model Driven Engineering Languages and
Systems (MODELS’09), LNCS 5795, pages 670–684. Springer, 2009.

[CKM+18] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan Bousse, Wal-

ter Cazzola, Philippe Collet, Thomas Degueule, Robert Heinrich, Jean-Marc Jézéquel,

Manuel Leduc, Tanja Mayerhofer, Sébastien Mosser, Matthias Schöttle, Misha Strittmat-

ter, and Andreas Wortmann. Concern-Oriented Language Development (COLD): Fostering

Reuse in Language Engineering. Computer Languages, Systems & Structures, 54:139 –

155, 2018.

[DEKR19] Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe. Semantic Differenc-

ing of Statecharts for Object-oriented Systems. In Slimane Hammoudi, Luis Ferreira Pires,

and Bran Selić, editors, Proceedings of the 7th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD’19), pages 274–282. SciTePress,

February 2019.

[DGH+18] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Matthias Mark-

thaler, Bernhard Rumpe, and Andreas Wortmann. Model-Based Testing of Software-Based

System Functions. In Conference on Software Engineering and Advanced Applications
(SEAA’18), pages 146–153, August 2018.

[DGH+19] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny Kusmenko,

Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes Richenhagen, Bernhard

Rumpe, Christoph Schulze, Michael Wenckstern, and Andreas Wortmann. SMArDT mod-

eling for automotive software testing. Software: Practice and Experience, 49(2):301–328,

February 2019.

Related Interesting Work from the SE Group, RWTH Aachen Bibliography

[DHH+20] Imke Drave, Timo Henrich, Katrin Hölldobler, Oliver Kautz, Judith Michael, and Bern-

hard Rumpe. Modellierung, Verifikation und Synthese von validen Planungszuständen für

Fernsehausstrahlungen. In Dominik Bork, Dimitris Karagiannis, and Heinrich C. Mayr, ed-

itors, Modellierung 2020, pages 173–188. Gesellschaft für Informatik e.V., February 2020.

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Semantic Evolution Anal-

ysis of Feature Models. In Thorsten Berger, Philippe Collet, Laurence Duchien, Thomas

Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia Montalvillo,

Camille Salinesi, Xhevahire Tërnava, Thomas Thüm, and Tewfik Ziadi, editors, Interna-
tional Systems and Software Product Line Conference (SPLC’19), pages 245–255. ACM,

September 2019.

[DMR+20] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas Wortmann.

Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits. In Gillian

Dobbie, Ulrich Frank, Gerti Kappel, Stephen W. Liddle, and Heinrich C. Mayr, editors,

Conceptual Modeling, pages 377–387. Springer International Publishing, October 2020.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling Semantics

of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 45–60. Kluver Academic Publisher, 1999.

[EJK+19] Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Benjamin Pruenster, Bern-

hard Rumpe, and Karin Samira Salman. Applying Product Line Testing for the Electric

Drive System. In Thorsten Berger, Philippe Collet, Laurence Duchien, Thomas Fogdal,

Patrick Heymans, Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia Montalvillo, Camille

Salinesi, Xhevahire Tërnava, Thomas Thüm, and Tewfik Ziadi, editors, International Sys-
tems and Software Product Line Conference (SPLC’19), pages 14–24. ACM, September

2019.

[ELR+17] Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe, and Andreas Wort-

mann. Architecting Cloud Services for the Digital me in a Privacy-Aware Environment. In

Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, and Bruce Maxim, editors, Software
Architecture for Big Data and the Cloud, chapter 12, pages 207–226. Elsevier Science &

Technology, June 2017.

[FELR98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a formal

modeling notation. Computer Standards & Interfaces, 19(7):325–334, November 1998.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator für

Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Oktober 2008.

[FLP+11a] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe.

Der Energie-Navigator - Performance-Controlling für Gebäude und Anlagen. Technik am
Bau (TAB) - Fachzeitschrift für Technische Gebäudeausrüstung, Seiten 36-41, März 2011.

[FLP+11b] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe.

State-based Modeling of Buildings and Facilities. In Enhanced Building Operations Con-
ference (ICEBO’11), 2011.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The Energy Nav-

igator - A Web-Platform for Performance Design and Management. In Energy Efficiency in
Commercial Buildings Conference(IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard Rumpe.

View-based Modeling of Function Nets. In Object-oriented Modelling of Embedded Real-
Time Systems Workshop (OMER4’07), 2007.

Bibliography Related Interesting Work from the SE Group, RWTH Aachen

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt, and

Bernhard Rumpe. Modelling Automotive Function Nets with Views for Features, Vari-

ants, and Modes. In Proceedings of 4th European Congress ERTS - Embedded Real Time
Software, 2008.

[GHK+08b] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt, and

Bernhard Rumpe. View-Centric Modeling of Automotive Logical Architectures. In

Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter
Systeme IV, Informatik Bericht 2008-02. TU Braunschweig, 2008.

[GHK+15a] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram Mir

Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk Reiß, Alexan-

der Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wortmann. Integration of Hand-

written and Generated Object-Oriented Code. In Model-Driven Engineering and Software
Development, Communications in Computer and Information Science 580, pages 112–132.

Springer, 2015.

[GHK+15b] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram Mir

Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk Reiß, Alexan-

der Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wortmann. A Comparison

of Mechanisms for Integrating Handwritten and Generated Code for Object-Oriented Pro-

gramming Languages. In Model-Driven Engineering and Software Development Confer-
ence (MODELSWARD’15), pages 74–85. SciTePress, 2015.

[GHR17] Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a Sustainable Ar-
tifact Model: Artifacts in Generator-Based Model-Driven Projects. Aachener Informatik-

Berichte, Software Engineering, Band 30. Shaker Verlag, December 2017.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling Variants

of Automotive Systems using Views. In Modellbasierte Entwicklung von eingebetteten
Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model

with State. Technical Report TUM-I9631, TU Munich, Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.

MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domänspezifischer

Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braunschweig, August 2006.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.

Textbased Modeling. In 4th International Workshop on Software Language Engineering,
Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.

MontiCore: A Framework for the Development of Textual Domain Specific Languages. In

30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, Companion Volume, pages 925–926, 2008.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration von

Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung 2006
Conference, LNI 82, Seiten 67-81, 2006.

[GLPR15] Timo Greifenberg, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Energieef-

fiziente Städte - Herausforderungen und Lösungen aus Sicht des Software Engineerings. In

Linnhoff-Popien, Claudia and Zaddach, Michael and Grahl, Andreas, Editor, Marktplätze

Related Interesting Work from the SE Group, RWTH Aachen Bibliography

im Umbruch: Digitale Strategien für Services im Mobilen Internet, Xpert.press, Kapitel 56,

Seiten 511-520. Springer Berlin Heidelberg, April 2015.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engineering Tag-

ging Languages for DSLs. In Conference on Model Driven Engineering Languages and
Systems (MODELS’15), pages 34–43. ACM/IEEE, 2015.

[GMN+20] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Con-

tinuous Transition from Model-Driven Prototype to Full-Size Real-World Enterprise In-

formation Systems. In Bonnie Anderson, Jason Thatcher, and Rayman Meservy, editors,

25th Americas Conference on Information Systems (AMCIS 2020), AIS Electronic Library

(AISeL), pages 1–10. Association for Information Systems (AIS), August 2020.

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe, Christoph Schulze,

and Andreas Wortmann. Modeling Variability in Template-based Code Generators for

Product Line Engineering. In Modellierung 2016 Conference, LNI 254, pages 141–156.

Bonner Köllen Verlag, March 2016.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical Report

TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop on
Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages 17–32.

Springer, 2011.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level Re-

quirements Management and Complexity Costs in Automotive Development Projects:

A Problem Statement. In Requirements Engineering: Foundation for Software Quality
(REFSQ’12), 2012.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity Dia-

grams with Semantic Variation Points. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’10), LNCS 6394, pages 331–345. Springer, 2010.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard

Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software Product
Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard Rumpe,

and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Services in the Inter-

net of Things. In Conference on Future Internet of Things and Cloud (FiCloud’14). IEEE,

2014.

[HHK+15a] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard

Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of Delta Modeling

Languages. Journal on Software Tools for Technology Transfer (STTT), 17(5):601–626,

October 2015.

[HHK+15b] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard Rumpe,

and Klaus Wehrle. A comprehensive approach to privacy in the cloud-based Internet of

Things. Future Generation Computer Systems, 56:701–718, 2015.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard Rumpe,

and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In Variability Mod-
elling of Software-intensive Systems Workshop (VaMoS’13), pages 11–18. ACM, 2013.

Bibliography Related Interesting Work from the SE Group, RWTH Aachen

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven

Völkel. An Algebraic View on the Semantics of Model Composition. In Conference on
Model Driven Architecture - Foundations and Applications (ECMDA-FA’07), LNCS 4530,

pages 99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven

Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous Systems with

Compositional Modeling. In Conference on Software Engineeering in Research and Prac-
tice (SERP’09), pages 172–176, July 2009.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta-

oriented Architectural Variability Using MontiCore. In Software Architecture Conference
(ECSA’11), pages 6:1–6:10. ACM, 2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-Based

Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins Workshop
(TOPI’12), pages 61–66. IEEE, 2012.

[HLMSN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez, Bernhard

Rumpe, Steven Völkel, and Andreas Wortmann. Composition of Heterogeneous Modeling

Languages. In Model-Driven Engineering and Software Development, Communications in

Computer and Information Science 580, pages 45–66. Springer, 2015.

[HLMSN+15b] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez, Bern-

hard Rumpe, Steven Völkel, and Andreas Wortmann. Integration of Heterogeneous Mod-

eling Languages via Extensible and Composable Language Components. In Model-Driven
Engineering and Software Development Conference (MODELSWARD’15), pages 19–31.

SciTePress, 2015.

[HMR+19] Katrin Hölldobler, Judith Michael, Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wort-

mann. Innovations in Model-based Software and Systems Engineering. The Journal of
Object Technology, 18(1):1–60, July 2019.

[HMSNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wortmann.

Compositional Language Engineering using Generated, Extensible, Static Type Safe Vis-

itors. In Conference on Modelling Foundations and Applications (ECMFA), LNCS 9764,

pages 67–82. Springer, July 2016.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of ”Se-

mantics”? IEEE Computer, 37(10):64–72, October 2004.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Workbench Edition 2017.

Aachener Informatik-Berichte, Software Engineering, Band 32. Shaker Verlag, December

2017.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Component In-

terfaces. In Technology of Object-Oriented Languages and Systems (TOOLS 26), pages

58–70. IEEE, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der Linden.

Hierarchical Variability Modeling for Software Architectures. In Software Product Lines
Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural Modeling

of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,

RWTH Aachen University, February 2012.

Related Interesting Work from the SE Group, RWTH Aachen Bibliography

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling for Soft-

ware Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte En-
twicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH, 2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-oriented

Software Product Line Architectures. In Large-Scale Complex IT Systems. Development,
Operation and Management, 17th Monterey Workshop 2012, LNCS 7539, pages 183–208.

Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung eines Pro-

duktlinienansatzes in die automotive Softwareentwicklung am Beispiel von Steuergeräte-

software. In Software Engineering Conference (SE’12), LNI 198, Seiten 181-192, 2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically Deriving

Domain-Specific Transformation Languages. In Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’15), pages 136–145. ACM/IEEE, 2015.

[HRW18] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Software Language Engi-

neering in the Large: Towards Composing and Deriving Languages. Computer Languages,
Systems & Structures, 54:386–405, 2018.

[JWCR18] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe. Does Dis-

tance Still Matter? Revisiting Collaborative Distributed Software Design. IEEE Software,

35(6):40–47, 2018.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In A. Moreira and

S. Demeyer, editors, Object-Oriented Technology, ECOOP’99 Workshop Reader, LNCS

1743, Berlin, 1999. Springer Verlag.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, and

Steven Völkel. Design Guidelines for Domain Specific Languages. In Domain-Specific
Modeling Workshop (DSM’09), Techreport B-108, pages 7–13. Helsinki School of Eco-

nomics, October 2009.

[KKR19] Nils Kaminski, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Dynamic Architec-

tures of Self-Adaptive Cooperative Systems. The Journal of Object Technology, 18(2):1–

20, July 2019. The 15th European Conference on Modelling Foundations and Applications.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling Cyber-

Physical Systems: Model-Driven Specification of Energy Efficient Buildings. In Modelling
of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM, October 2012.

[KMR+20] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas

Wortmann. Model-driven Digital Twin Construction: Synthesizing the Integration of

Cyber-Physical Systems with Their Information Systems. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and Sys-
tems, pages 90–101. ACM, October 2020.

[KMS+18] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg, Steffen

Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann, Philipp Orth, and

Johannes Richenhagen. Improving Model-based Testing in Automotive Software Engi-

neering. In International Conference on Software Engineering: Software Engineering in
Practice (ICSE’18), pages 172–180. ACM, June 2018.

Bibliography Related Interesting Work from the SE Group, RWTH Aachen

[KNP+19] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard Rumpe, and Thomas

Timmermanns. Modeling and Training of Neural Processing Systems. In Marouane

Kessentini, Tao Yue, Alexander Pretschner, Sebastian Voss, and Loli Burgueño, editors,

Conference on Model Driven Engineering Languages and Systems (MODELS’19), pages

283–293. IEEE, September 2019.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and Refine-

ment with State Transition Diagrams. In Workshop on Feature Interactions in Telecommu-
nications Networks and Distributed Systems, pages 284–297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In

H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoftware.
Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Software Engineer-

ing, Band 14. Shaker Verlag, Aachen, Deutschland, 2012.

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian Stüber. On the

Engineering of AI-Powered Systems. In Lisa O’Conner, editor, ASE’19. Software Engi-
neering Intelligence Workshop (SEI’19), pages 126–133. IEEE, November 2019.

[KR18] Oliver Kautz and Bernhard Rumpe. On Computing Instructions to Repair Failed Model

Refinements. In Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’18), pages 289–299. ACM, October 2018.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering, Band 1.

Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical model

for distributed information processing systems - SysLab system model. In Workshop on
Formal Methods for Open Object-based Distributed Systems, IFIP Advances in Information

and Communication Technology, pages 323–338. Chapmann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing. Springer,

Schweiz, December 2014.

[KRRS19] Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stüber. Model-Based En-

gineering for Avionics: Will Specification and Formal Verification e.g. Based on Broy’s

Streams Become Feasible? In Stephan Krusche, Kurt Schneider, Marco Kuhrmann, Robert

Heinrich, Reiner Jung, Marco Konersmann, Eric Schmieders, Steffen Helke, Ina Schae-

fer, Andreas Vogelsang, Björn Annighöfer, Andreas Schweiger, Marina Reich, and André

van Hoorn, editors, Proceedings of the Workshops of the Software Engineering Conference.
Workshop on Avionics Systems and Software Engineering (AvioSE’19), CEUR Workshop

Proceedings 2308, pages 87–94. CEUR Workshop Proceedings, February 2019.

[KRRvW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenckstern.

Modeling Architectures of Cyber-Physical Systems. In European Conference on Mod-
elling Foundations and Applications (ECMFA’17), LNCS 10376, pages 34–50. Springer,

July 2017.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Systems

- eine Herausforderung für die Automatisierungstechnik? In Proceedings of Automation
2012, VDI Berichte 2012, Seiten 113-116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development

using Domain Specific Modelling Languages. In Domain-Specific Modeling Workshop
(DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä University, Finland, 2006.

Related Interesting Work from the SE Group, RWTH Aachen Bibliography

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for Com-

positional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07), Technical

Reports TR-38. Jyväskylä University, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Abstract

and Concrete Syntax for Textual Languages. In Conference on Model Driven Engineering
Languages and Systems (MODELS’07), LNCS 4735, pages 286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Development

of Textual Domain Specific Languages. In Conference on Objects, Models, Components,
Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for Com-

positional Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[KRV14] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development using

Domain Specific Modeling Languages. In Proceedings of the 6th OOPSLA Workshop on
Domain-Specific Modeling (DSM‘ 06). CoRR arXiv, 2014.

[KRW20] Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated semantics-preserving

parallel decomposition of finite component and connector architectures. Automated Soft-
ware Engineering, 27:119–151, April 2020.

[LMK+11] Philipp Leusmann, Christian Möllering, Lars Klack, Kai Kasugai, Bernhard Rumpe, and

Martina Ziefle. Your Floor Knows Where You Are: Sensing and Acquisition of Movement

Data. In Arkady Zaslavsky, Panos K. Chrysanthis, Dik Lun Lee, Dipanjan Chakraborty,

Vana Kalogeraki, Mohamed F. Mokbel, and Chi-Yin Chow, editors, 12th IEEE Interna-
tional Conference on Mobile Data Management (Volume 2), pages 61–66. IEEE, June 2011.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle. Model

Evolution and Management. In Model-Based Engineering of Embedded Real-Time Systems
Workshop (MBEERTS’10), LNCS 6100, pages 241–270. Springer, 2010.

[MKB+19] Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Weidlich, and Judith

Michael. Privacy-Preserving Process Mining: Differential Privacy for Event Logs. Business
& Information Systems Engineering, 61(5):1–20, October 2019.

[MKM+19] Judith Michael, Agnes Koschmider, Felix Mannhardt, Nathalie Baracaldo, and Bernhard

Rumpe. User-Centered and Privacy-Driven Process Mining System Design for IoT. In

Cinzia Cappiello and Marcela Ruiz, editors, Proceedings of CAiSE Forum 2019: Informa-
tion Systems Engineering in Responsible Information Systems, pages 194–206. Springer,

June 2019.

[MM13] Judith Michael and Heinrich C. Mayr. Conceptual modeling for ambient assistance. In

Conceptual Modeling - ER 2013, LNCS 8217, pages 403–413. Springer, 2013.

[MM15] Judith Michael and Heinrich C. Mayr. Creating a domain specific modelling method for

ambient assistance. In International Conference on Advances in ICT for Emerging Regions
(ICTer2015), pages 119–124. IEEE, 2015.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture Descrip-

tions of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MMR+17] Heinrich C. Mayr, Judith Michael, Suneth Ranasinghe, Vladimir A. Shekhovtsov, and Clau-

dia Steinberger. Model Centered Architecture, pages 85–104. Springer International Pub-

lishing, 2017.

Bibliography Related Interesting Work from the SE Group, RWTH Aachen

[MNRV19] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Towards Privacy-

Preserving IoT Systems Using Model Driven Engineering. In Nicolas Ferry, Antonio Ci-

cchetti, Federico Ciccozzi, Arnor Solberg, Manuel Wimmer, and Andreas Wortmann, ed-

itors, Proceedings of MODELS 2019. Workshop MDE4IoT, pages 595–614. CEUR Work-

shop Proceedings, September 2019.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Semantic Model

Differencing. In Proceedings Int. Workshop on Models and Evolution (ME’10), LNCS

6627, pages 194–203. Springer, 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differencing

for Activity Diagrams. In Conference on Foundations of Software Engineering (ESEC/FSE
’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics for

Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen University,

Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Diagrams Anal-

ysis Using Alloy Revisited. In Conference on Model Driven Engineering Languages and
Systems (MODELS’11), LNCS 6981, pages 592–607. Springer, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic Differencing

for Class Diagrams. In Mira Mezini, editor, ECOOP 2011 - Object-Oriented Programming,

pages 230–254. Springer Berlin Heidelberg, 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams. In

Object-Oriented Programming Conference (ECOOP’11), LNCS 6813, pages 281–305.

Springer, 2011.

[MRR11f] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configurable Consis-

tency Analysis for Class and Object Diagrams. In Conference on Model Driven Engineering
Languages and Systems (MODELS’11), LNCS 6981, pages 153–167. Springer, 2011.

[MRR11g] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Summarizing Semantic Model

Differences. In Bernhard Schätz, Dirk Deridder, Alfonso Pierantonio, Jonathan Sprinkle,

and Dalila Tamzalit, editors, ME 2011 - Models and Evolution, October 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component and

Connector Models from Crosscutting Structural Views. In Meyer, B. and Baresi, L. and

Mezini, M., editor, Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’13),
pages 444–454. ACM New York, 2013.

[MRR14a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component and

Connector Models from Crosscutting Structural Views (extended abstract). In Wilhelm

Hasselbring and Nils Christian Ehmke, editors, Software Engineering 2014, LNI 227, pages

63–64. Gesellschaft für Informatik, Köllen Druck+Verlag GmbH, 2014.

[MRR14b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and Con-

nector Models against Crosscutting Structural Views. In Software Engineering Conference
(ICSE’14), pages 95–105. ACM, 2014.

Related Interesting Work from the SE Group, RWTH Aachen Bibliography

[MRV20] Judith Michael, Bernhard Rumpe, and Simon Varga. Human behavior, goals and model-

driven software engineering for assistive systems. In Agnes Koschmider, Judith Michael,

and Bernhard Thalheim, editors, Enterprise Modeling and Information Systems Architec-
tures (EMSIA 2020), pages 11–18. CEUR Workshop Proceedings, June 2020.

[MS17] Judith Michael and Claudia Steinberger. Context modeling for active assistance. In Cristina

Cabanillas, Sergio España, and Siamak Farshidi, editors, Proc. of the ER Forum 2017 and
the ER 2017 Demo Track co-located with the 36th Int. Conference on Conceptual Modelling
(ER 2017), pages 221–234, 2017.

[MSNRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An Extended Symbol

Table Infrastructure to Manage the Composition of Output-Specific Generator Information.

In Modellierung 2016 Conference, LNI 254, pages 133–140. Bonner Köllen Verlag, March

2016.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as Interac-

tive Systems. In Model-Driven Engineering for High Performance and Cloud Computing
Workshop, CEUR Workshop Proceedings 1118, pages 15–24, 2013.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations with

UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages 188–197.

Springer, 2002.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Behaviour

Modelling with Automata. In Proceedings of the Industrial Benefit of Formal Methods
(FME’94), LNCS 873, pages 154–174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures. In

Congress on Formal Methods in the Development of Computing System (FM’99), LNCS

1708, pages 96–115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Baclavski,

K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa Bay, Florida, USA,
October 15. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In Kilov,

H. and Baclavski, K., editor, Practical Foundations of Business and System Specifications,

pages 281–297. Kluwer Academic Publishers, 2003.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Connector Sys-
tems. Aachener Informatik-Berichte, Software Engineering, Band 19. Shaker Verlag, 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In B. Harvey

and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages 265–286. Kluwer

Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematisches

Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell. Technischer

Bericht TUM-I9510, TU München, Deutschland, März 1995.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams, Stream Process-

ing Functions, and State-Based Stream Processing. International Journal of Software and
Informatics, 2011.

Bibliography Related Interesting Work from the SE Group, RWTH Aachen

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann. Language

and Code Generator Composition for Model-Driven Engineering of Robotics Component

& Connector Systems. Journal of Software Engineering for Robotics (JOSER), 6(1):33–57,

2015.

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas Wortmann. Teaching

Agile Model-Driven Engineering for Cyber-Physical Systems. In International Conference
on Software Engineering: Software Engineering and Education Track (ICSE’17), pages

127–136. IEEE, May 2017.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Architec-

ture Structure and Behavior Modeling to Implementations of Cyber-Physical Systems. In

Software Engineering Workshopband (SE’13), LNI 215, pages 155–170, 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutomaton: Mod-

eling Architecture and Behavior of Robotic Systems. In Conference on Robotics and Au-
tomation (ICRA’13), pages 10–12. IEEE, 2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and Behav-
ior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener Informatik-

Berichte, Software Engineering, Band 20. Shaker Verlag, December 2014.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver Ringert, and Pe-

ter Manhart. Behavioral Compatibility of Simulink Models for Product Line Maintenance

and Evolution. In Software Product Line Conference (SPLC’15), pages 141–150. ACM,

2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.

Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare? In T. Clark

and J. Warmer, editors, Issues & Trends of Information Technology Management in Con-
temporary Associations, Seattle, pages 697–701. Idea Group Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium on
Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages 380–402.

Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innovations of
Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941, pages 297–309.

Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring,
2te Auflage. Springer Berlin, Juni 2012.

[Rum13] Bernhard Rumpe. Towards Model and Language Composition. In Benoit Combemale,

Walter Cazzola, and Robert Bertrand France, editors, Proceedings of the First Workshop on
the Globalization of Domain Specific Languages, pages 4–7. ACM, 2013.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer Interna-

tional, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing, Refactoring.

Springer International, May 2017.

Related Interesting Work from the SE Group, RWTH Aachen Bibliography

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement in Hierarchically

Decomposable and Underspecified CPS-Architectures. In Lohstroh, Marten and Derler,

Patricia Sirjani, Marjan, editor, Principles of Modeling: Essays Dedicated to Edward A.
Lee on the Occasion of His 60th Birthday, LNCS 10760, pages 383–406. Springer, 2018.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.

Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag, 2012.

[SHH+20] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard Rumpe, Matthias Brock-

mann, Andreas Wortmann, Judith Maibaum, Manuela Dalibor, Pascal Bibow, Patrick Sapel,

and Moritz Kröger. Effizientere Produktion mit Digitalen Schatten. ZWF Zeitschrift für
wirtschaftlichen Fabrikbetrieb, 115(special):105–107, April 2020.

[SM18] Claudia Steinberger and Judith Michael. Towards Cognitive Assisted Living 3.0 (Extended

Abstract): Integration of non-smart resources into cognitive assistance systems. EMISA
Forum, 38(1):35–36, Nov 2018.

[SM20] Claudia Steinberger and Judith Michael. Using Semantic Markup to Boost Context Aware-
ness for Assistive Systems, pages 227–246. Computer Communications and Networks.

Springer International Publishing, 2020.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Metamodelling:

State of the Art and Research Challenges. In Model-Based Engineering of Embedded Real-
Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57–76. Springer, 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-

mann. A New Skill Based Robot Programming Language Using UML/P Statecharts. In

Conference on Robotics and Automation (ICRA’13), pages 461–466. IEEE, 2013.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener

Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen. Aachener

Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag, 2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev Chat-

terjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and Filtering for

Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation Days. EUROCON-

TROL, 2011.

