= Proceedings
- of Seminars

Full-scale Software Engineering
New Trends in Software Construction

2021

Editors: Horst Lichter
Peter Alexander
Nils Wild

Selin Aydin
Christian Plewnia

Alex Sabau

Table of Contents

Jakob Drees, Erdzan Rastoder:
50 Years of Mutation Testing — Has it gained any Influence on Software Testing
in Practice?

Md Tasin Siddiqi, Timo Rohrer:
An Overview of Fault Taxonomies For Test Automation

Ricky Jonathan, Joana Schmidt:
Towards Aspects of Cloud Computing

Philip Niederpriim, Yannick Kahlert:
Carbon Footprint Assessment of Compute Cluster Workloads

Nedelcho Dimov, Ivan Slavov:
Project management of data-driven projects — Challenges and Management
Approaches

Pavan Nadkarni, Sehrish Khan:
A Systematic Study and Collation of Amazon AWS and Microsoft Azure Cloud
Architecture Design Patterns

Mahta Khoobi, Muhammad Daniyal Danish:
Quality of Service Requirements of Workloads in Compute Clusters

Laurens Studtmann, Noyan Ahmed Siddiqui:
Towards a Quality model for Messaging Systems in Event-Driven Architectures

Pascal Sahner, Maria Kazantzi:
Software Testing Pyramid: How Architecture Influences The Shape

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

50 Years of Mutation Testing - Has it gained any Influence
on Software Testing in Practice?

Jakob Drees
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

jakob.drees1@rwth-aachen.de

ABSTRACT

Automated software testing is an indisputable best prac-
tice during development. To assess the quality of the test
suite in use, various coverage techniques are applied. For
decades, the field of mutation testing has seen very active
research and some advances in the applicability of the tech-
nique at an industrial scale. Mutation testing describes the
practice of seeding the source code with small changes and
testing whether the test suite is granular enough to catch
these changes. In research, this has been viewed as the
most effective way to evaluate a test suite. In this paper,
we first introduce the concept of mutation testing itself and
the main challenges it faces at an industrial scale. Next, we
present some possible solutions suggested in the literature
to tackle these challenges. Then we take a look at some
industrial case studies using mutation testing and tools sup-
porting that process that have come up over the last few
years. With this, we give a brief overview of the current
state of mutation testing at different scales. In the end, we
give some suggestions on how its industrial adoption could
be improved in the future, based on literature suggestions
and the progress that has already been made.

Keywords
Mutation Testing, Software Testing, Quality of Tests

1. INTRODUCTION

A widely used testing technique to compute the quality of
a test suite is code coverage. Code coverage only checks if
pieces of a software’s code are executed by the appropriate
tests. Which does not necessarily check if the covered lines
of code comply with the desired behavior. This is where
mutation testing seeks to improve. As the name suggests,
mutation tests automatically modify pieces of a program
where tests like unit tests exist. After the program has been
modified, the existing tests run on the modified program to
check if the introduced modifications can be detected. Two
cases can arise. The first when a mutation is detected by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Erdzan Rastoder
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

rastoder.erdzan@rwth-aachen.de

a test and the second when a mutation was not detected.
In the latter, this might indicate that the introduced mu-
tation is either equivalent to the original code or that the
existing tests are not sufficient to discover these mutations.
The mutation testing technique is considered one of the best
approaches to measure the effectiveness of an existing test
suite [2,/15][17]. However, the benefits come at a price. Com-
pared to traditional mutation testing approaches, two main
disadvantages arise [4]: The first one is the sheer number
of mutants that are generated when executing a mutation
test. With a large amount of produced mutants comes the
computational effort, which also means that not a negligi-
ble amount of time has to be used to execute the mutation
tests |7]. Highlighting, the fact that the area of mutation
testing was largely studied in academics focusing on small
projects. Secondly, an important aspect is how mutation
testing should be adopted by developers to increase the ef-
fectiveness of the existing test suite. Remarkable is, also the
fact that most developers never heard or were played with
the concept of a mutation testing [41]. To take up these
problems, we aim in this paper to analyze solutions from
large software companies like Facebook [4] or software used
in safety-critical systems. Thereby, we try to find out the
feasibility of using mutation testing in the industrial sector
instead of the limited academic studies focusing on small
projects.

1.1 Motivation

Hamelt [16] and DeMillo et al. [8] originally proposed
the idea of mutation testing to test the adequacy of a test
suite. Elaborating further on mutation testing, Offutt [27]
supported further mutation testing ideas, that simple faults
introduced by for example mutations detected by test suites,
would also be able to detect faults consisting of multiple
faults, which can be seen as complex faults. Despite, the
potential benefits of integrating mutation testing into an
existing project, its usage has mainly been limited to the
academic sector [19]. In the context of industrial usage of
mutation testing, it is often stated that by its usage there is
struggling [36}|21]. One major problem seems to be the asso-
ciated high-performance needs that have to be incorporated
in a project [26]. Due to the lacking integration of tools,
this issue can not be improved. From the user’s point of
view, again the missing integration of tools, which ease the
usage of mutation testing usage, are reported [26]. While
these problems are addressed in the literature, numerous
effort have been done to improve the industrial usage pos-
sibility. We aim to provide information on how mutation

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

testing is used in industry cases and highlight their used
tools and methodologies. After we have analyzed existing
use case scenarios, we aim to provide possible suggestions
on how efficiently mutation testing could be integrated into
an existing project. However, even before that, we will dis-
cuss in which industry contexts mutation testing is feasible
to be applied.

2. MUTATION TESTING

The concept of mutation testing is not a new one. There-
fore, much research has been directed at its strengths and
weaknesses. This chapter aims to provide a short overview of
the ideas behind the technique and how it compares against
code coverage.

2.1 Central Ideas

Mutation testing is used to evaluate the ability of a given
test suite to find faults in the code. This means it tests the
test suite instead of the actual source code. This works by
modifying the written source code with well-defined atomic
changes, so-called mutation operators [8]. The research dis-
tinguishes between first-order mutants (FOM) and higher-
order mutants (HOM), with FOM making a single change
to the source code and HOM being the connection of several
FOM to form a more complex fault [18]. Examples of FOM
and HOM can be seen in [Listing 1| and |Listing 2|

Listing 1: First-Order Mutant
while (x > y):
x =x / 10;

return x
Can be mutated to:

while (False):
x =x / 10;
return x

Listing 2: Higher-Order Mutant
while (x > y):
x =x / 10;
return x

Can be mutated to:

while (y >= x):
y =x / 10;
return y

Because of the vast number of possibilities, there are a lot
of slightly different mutation operators.

The method of mutation testing has been suggested in the
late 1970s by DeMillo et al. [8] and bases on two basic
hypotheses:

1. Competent programmer hypothesis: This hypothesis
assumes that programmers write sound and efficient
code that is nearly perfect and contains only small er-
rors. Therefore, a program could also be corrected
with only relatively few changes since the code works
as intended for the most part.

2. Coupling effect hypothesis: The coupling effect de-
scribes that test data that can detect very simple er-
rors in a program also must be able to detect more
complex programming errors because it is already sen-
sitive enough to find these simple errors. With simple
errors meaning something like an error in an assign-
ment. This is derived from the thought that more
complex errors are just compounds of simple errors.

After a mutation operator has been applied to the source
code of the program, the test suite is run on the mutated
code. Now, there are two possible outcomes: The first one
being one or more tests fail, killing the mutant and therefore
showing the test suites resistance to that mutation. The sec-
ond outcome would be that all tests still pass, which means
the mutant survives. Surviving mutants are hints for code
that is not well tested. Once a mutant survives, it has to
be evaluated if the mutant points to not well-tested code
or if it is equivalent [30]. We speak of an equivalent mu-
tant when it is a mutated version of the original program
that is equivalent to the original source and therefore in-
distinguishable for the test suite. These equivalent mutants
should not be considered further since they do nothing to
improve the tests |8]. Recently, a slightly different approach
has been suggested by Petrovié¢ et al.[35] that looks at pro-
ductive versus unproductive mutants instead of sheer equiv-
alence. With this distinction, equivalent mutants can be
considered productive as well, because they can improve the
source code itself rather than the test code. This can hap-
pen when the equivalent mutant achieves the same result,
but maybe with an improved encapsulation or more concise
code. Unproductive, however, means mutants that are not
useful because they are equivalent to the original source and
do not drive source code improvement or point to places in
the code that should often not be tested, such as the exact
string of an error message. Since this is not a task trivially
automated, developers have to do much of this evaluation
effort.

After reviewing the unkilled mutants, a mutation score can
be calculated from the number of killed mutants divided by
the number of non-equivalent mutants. This mutation score
then quantifies the mutation resistance or adequacy of the
current test suite. The reviewing developers can of course
also decide to write additional tests to kill some surviving
mutants. After the addition of those tests, the mutation test
has to be applied again to verify the results and calculate
the new mutation score. To calculate a meaningful muta-
tion score, a lot of different mutation operators need to be
applied to various lines of the source code.

Again, it is important to understand that mutation testing
is used as a test evaluation rather than a source code evalu-
ation. In that sense, it is best compared to coverage metrics
that are widely applied in software development. Never-
theless, a programmer might decide to rewrite parts of the
source code because of an equivalent mutant showing a more
elegant and equivalent way.

2.2 Mutation Testing vs. Code Coverage

In software testing, the usage of various coverage criteria
for assessing the test suite is fairly widespread [43]. It has a
very similar goal to mutation testing, in terms of evaluating
the test instead of the source code itself. Code coverage di-
vides the program into syntactical structures and then tracks
which test executes which part of the code. For example,

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

statement coverage is a metric for the percentage of source
code lines visited by the test suite of that program. This
way, a test suite with high coverage is perceived as better
(to a certain extent) compared to one with a lower cover-
age score, since its theoretical ability to find faults in the
program is much higher. This explanation makes clear that
statement coverage in particular and code coverage, in gen-
eral, is a syntactical technique of evaluating the test suite.
Its quantitative approach indicates that a higher coverage
hints for more intense testing. However, a big problem of
all coverage notions is that they are easily tricked because
they are of a syntactical nature. Imagine, for example, a
test that calls a method but never asserts a value or asserts
something always true (i.e. 1 == 1) as seen in
This test would cover at least some lines of that method,
but not detect any faults.

Listing 3: Weak test
function test_some_logic ():
x = some_logic ()
assert 1 =— 1

Similarly, just by chance, the chosen test data sometimes
might not cover certain edge cases that would lead to an
error but still, the called code would count as fully covered.
As shown in research, this leads to the coverage metrics be-
ing an imperfect metric for assessing a test suite [17] [24].
Since mutation testing follows a completely different ap-
proach, it is not tricked that easily. It works directly on
the source code and mutates statements in a (semi-)random
way, meaning that its evaluation is done semantically rather
than syntactically. Also, there is strong evidence that mu-
tations are a valid substitute for real faults in a program,
making them extremely effective at seeding faults into not
well-tested parts of the source code [20, 34]. Therefore, this
technique is more likely to find not fully tested parts than
coverage criteria. This has been shown by various studies in
the past [22,32].

2.3 Main Challenges

Mutation testing is in its pure form a very thorough tech-
nique, mutating almost every line and seeding multiple pos-
sible mutation operators per line. Many studies found mu-
tation testing to be a very effective technique to evaluate
and improve the quality of the test suite [34, |41} |20]. Also,
a lot of research has been directed at finding mutation op-
erators that provide value and resemble real faults that can
be found by a test suite [9} |1§]. Its thoroughness leads to
mutation testings superior evaluation of a test suite but at
the same time places two major burdens on the development
process:

1. Extremely high computational effort needed
2. Time-intensive review process for developers

Firstly, because of the sheer number of possibilities, a pro-
gram can be mutated, the first step of mutation testing takes
a long time. The examples in [Listing 1| and [Listing 2|should
indicate that there are infinitely many ways to “mutate” a
program. For every mutation, the test suite needs to be
executed in order to assess if any tests fail. This quickly
adds up to a strong load on the testing infrastructure. As
calculated by Klischies and Fogen [21] the application of

mutation testing can take up around 60 times the time the
normal test suite would take, making it seem infeasible for
larger projects. Additionally, even though research has been
directed at reducing the number of unproductive mutants |9}
40| |3] and therefore prevent false alarms for the developers,
still, the developers have to go through each surviving mu-
tant manually and decide if it is a defect in the test suite or
rather an unimportant equivalent mutation. This can take
up much time in the development process, potentially slow-
ing it down tremendously.

Lastly, it should be noted that despite the strong sugges-
tion of researchers that mutation testing should be seen as a
gold standard for test suite assessment, developers seem not
to be convinced that it is worth the time they potentially
would have to invest in the review process. This, of course,
is a major hindrance since developers are the ones who have
to use this workflow. Nevertheless, this problem is of course
highly correlated with the other two, since developers should
be more open to applying mutation testing when the overall
overhead that comes with it is relatively small.

3. SUGGESTED APPROACHES TO MUTA-
TION TESTING WEAKNESSES

This chapter aims to present some suggested approaches
to overcome these challenges in practice and therefore be
able to apply mutation testing without the tremendous over-
head it is often associated with.

3.1 Reducing the Computational Effort

1. Random and Selective Selection

The goal to reduce the computational effort of execut-
ing mutation tests, which is closely related to the num-
ber of mutants generated, is to reduce the produced
mutants. One simple way is to choose on a random
basis which mutants should be included. Even though,
leaving some mutants out, Malevris and Papadakis [31]
state that selecting an exemplary 20% of the mutants
randomly causes a 7% fault loss, which they argue is
a reasonable trade-off. Additionally, based on large
open-source projects, Gopinath et al. [13| found out
that randomly selecting a constant number of selected
mutants statistically results similar to the case when
using all possible mutants.

To highlight the differences between selecting mutants
randomly or from the selective mutation, Zhang et al.
[44] came to the conclusion, that no important dif-
ferences can be seen between these two approaches.
Whereas Gopinath [14], even though, with the same
conclusion of the non-significant difference between the
two approaches, also elaborated a maximal improve-
ment over the random selection of mutants, which is
reached at 13%. These numerous works, seem to pro-
vide enough evidence, on having the safe option to
choose randomly mutants to reduce their amount, while
not significantly impacting its capabilities.

2. Selection based on Importance
Another approach to reducing the number of gener-
ated mutants is to scope the mutants to the available
budget and time which a project has. This is done by

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

ranking the mutants according to their perceived im-
portance. This allows the actual testers to configure
their analysis so that only the most important mutants
are used. Based on a set of already analyzed mutants,
Sridharan et al. [42] by using a Bayesian methodology
select by prioritization the most informative mutants.
These informative selected mutants give the testers the
possibility to concentrate on the mutants which require
the most work to kill them.

3.2 Time Intensive Review Process

Once the mutants have been generated and run against
the current test suite, a set of mutants that survived the
test suite is left. One of the most important goals is to iden-
tify the surviving mutants that only resemble code that is
equivalent to the initial source code, and therefore probably
not of great use in enhancing the test suite. As mentioned
in a new notion of productiveness has been in-
troduced, where even equivalent mutants can be productive
because they might trigger the developer to rewrite parts
of the code to be more elegant or efficient. Nevertheless,
the bulk of research in the past has been focused on re-
ducing equivalent mutants and not differentiating between
productive and unproductive mutants, which only came up
relatively recently.

For the most part, it is obvious that reducing the compu-
tational effort and reducing the time needed for a review
process will have similar goals, namely dramatically reduc-
ing the number of mutants that are generated and therefore,
tested. Another common goal would be to detect the equiv-
alence of mutants with the original source code early on, so
they would not have to be reviewed and maybe not even
tested against each other.

The former has already been discussed in the last section.
However, the latter has seen a lot of progress with the use of
HOM. A great advantage of these HOM is that it is relatively
easy to evaluate if a mutant is equivalent. One problem with
their use is the creation of these special mutants [18]. It is a
difficult problem to find relevant combinations of first-order
mutants that represent an effective HOM and places an ad-
ditional burden on the preparation of the mutation testing
process. But it is still an active research field and has shown
promising results recently [28].

Another approach to detecting equivalent mutants early on
is a technique called "Trivial Compiler Equivalence” (TCE).
With TCE for a large number of mutants, it can be decided
efficiently if they are equivalent or not [29]|. This greatly re-
duces the number of mutants that have to be tested and since
it eliminates equivalent mutants, it specifically reduces the
time that developers have to invest into the review process
because it strips out a large portion of unnecessary mutants
7).

Another important aspect of improving the review process
is how and when developers are presented with the surviv-
ing mutants. However, the research on this has been fairly
shallow to non-existent. Most case studies try to integrate it
in their normal code review process while the tests run, they
are displayed to the developer and any reviewers that might
have to give the code a pass. An approach taken by Petrovic
and Ivankovic [33] was to surface only a very limited sub-
set of surviving mutants at a time to keep the impact on
the review process as little as possible. This greatly reduces
the number of mutants that can be acted upon, but tries to

achieve a balance between usability during development and
improving the mutation score.

3.3 Low Adoption in Software Development

Arguably, one of the most important aspects to drive mu-
tation testing adoption is to convince software developers of
its use. Even though there does not seem to be reliable data
on this topic, some case studies show that most developers in
the industry are not aware of its existence in the first place,
let alone that it is seen as the gold standard for test eval-
uation in research [4] |7]. But first and foremost, this gold
standard comes with a high cost that not every developer
sees as worth for the use they are getting. Additionally, it
is extremely difficult to prove the effect of mutation testing
in a specific program because to do so one would have to
maintain two versions. One that works with mutation test-
ing, the other one with the usual workflow, and then check
whether the version that has been developed and released
with the usual workflow contains the same faults as the mu-
tation tested one. There has been some research on these
specific problems but still, this is seen as a hindrance |34].
As pointed out in [section 2] the doubts that developers have
regarding the effect they get for the extra effort is highly in-
fluenced by the overhead mutation testing that will actually
add to their development process, while the computational
effort should not play a big role. Therefore, advances in
reducing the time for the mutant review process and the
number of surfaced mutants already has a positive impact
on mutation testing evaluation.

Apart from case studies, an approach to drive adoption
of mutation testing has been the development of the game
CODE DEFENDERS' by Rojas and Fraser [38]. In this
game, two players, an attacker and a defender try to seed
mutations into source code or respectively write a strong
test suite to find the faults (see. This gamification
of mutation testing seems to be very interesting, especially
for new developers just learning the concepts of testing.

4. MUTATION TESTING IN PRACTICE

The introduction of mutation testing often struggles in the
software industry [25]. Madeyski et al. state that due to sev-
eral issues, the struggle is enforced [23]. In an experiment to
integrate mutation testing in existing source code Nica et al.
|26] confirmed the statements of a large number of the gener-
ated mutants and the problem of having multiple equivalent
mutants, which cause the high computational effort prob-
lem. Furthermore, the necessary time to integrate mutation
testing to set up the experiment seems extremely high [25],
considering that the setup consists of configuring the tool
which conducts the mutation testing technique to execute
the mutation testing, took several months. Based on the
necessary time to execute mutation tests on Math4, which
includes 850 tests, it was estimated that to execute mutation
testing on Apache Solr, which on its part has 10500 tests, it
would take approximately 540 hours to run the test single
threaded [25]. With the assumption that the test coverage
lies at 90%, whereby the time to execute the mutation test
would increase with lower test coverage. This again confirms
the first stated problems of the great computational effort,
which are needed to run the mutation tests. Despite the ef-
fort which are necessary to integrate mutation testing inside

"https://code-defenders.org

Copyright © 2021 for this paper by its authors

https://code-defenders.org

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Mutants

ED Al Mutants

D bar(int)

JUnit tests

B AllTests

@ bar(int)

Create a mutant here

1 public class Puzzle {
foo(
return x + 1;

x) {

public bar(int x) {
return x - 1;

[®ELive E¥killed] claimed Equivalent EEquivalent Mutant restrictions:)
Keyboard Shortcuts @ ~ Editor Mode: default

Figure 1: In CODE DEFENDERS, a player can try to create mutants by hand, trying to avoid a certain test suite. Or write

that test suite themselves to kill mutants.

a company’s existing software suite, we present successful
integrations.

4.1 Mutation Testing at Facebook

One of the most recent examples of large-scale mutation
testing is a case study that has been conducted at Face-
book [4] within their mobile code base, only focusing on the
parts that are written in Java. The goal of the case study
was to evaluate whether mutation testing could be intro-
duced at Facebook without causing a tremendous overhead
for both the developers and the infrastructure. To achieve
this, they developed a tool called "Mutation Monkey” that is
responsible for introducing mutations into source code sub-
mitted by developers to the version control system. These
mutants are then subject to the same testing process the
normal commit would be and at the end, a surviving mu-
tant can be presented to the developer via their usual tool
for code review. It is important to point out that the nor-
mal process for a code commit at Facebook already contains
several steps to reduce the computational effort for testing
(e.g. greatly reduce the number of executed tests with the
help of a previously trained program). During the initial de-
velopment of Mutation Monkey, its developers used internal
and external data sources for Java programming faults and
the respective fix to greatly reduce the number of mutation
operators applied by Mutation Monkey while still maintain-
ing the usefulness of mutation testing. Included in these
data sources were for example past crashes of the mobile
app and the corresponding code faults that led to these
crashes. The rationale behind this learning of fewer mu-
tants was that they would be better suited for the specific
codebase at hand, rather than seeding numerous mutations
that would not have great potential to show important flaws
in the testing strategy. When put into production, Mutation
Monkey used 19 different mutation operators. Additionally,
Mutation Monkey tracks which tests have executed but not
killed the specific mutant to improve the quality of the re-
sults and give the developer a better understanding of the
tests that could potentially be improved.

Over the period of two months, 15,000 mutants had been

produced with a survival rate of 60 - 70% depending on the
mutation operator. The authors of the study point out that
this is an extremely high survival rate when compared to the
baseline of around 10 - 15% when using conventional muta-
tion testing in comparable research [33|. Especially, since
these mutations are by design not equivalent to the original
program. Still, it is important to note that the survival rate
of a mutant can only serve as an indicator, but not as proof
of its usefulness. During the period of the research, the ap-
plication of Mutation Monkey also did not produce notice-
able infrastructure costs because of the reduced number of
mutation operators and the scheduling of their computation
which took place during less busy hours infrastructure-wise.
To evaluate how developers saw the introduction of Muta-
tion Monkey, the researchers also conducted several inter-
views with developers that had worked on the mobile Java
code and therefore been subject to the Mutation Monkey
testing. Somewhat interesting is that none of the 26 develop-
ers interviewed knew about the concept of mutation testing
beforehand. This again points to the extremely low adoption
in the industry. After being introduced to it and working
with some of Mutation Monkeys’ suggestions, most of the
developers thought of it as a good idea and the majority of
this group took the surfaced mutant as a reason to improve
a test or write a new one. But, even though the mutants
produced by Mutation Monkey were based upon past pro-
duction crashes and other common Java source code faults,
some developers still rejected the idea that mutation testing
would give benefits in the day-to-day development process,
arguing that one could alter a program in infinitely many
ways and writing a test for all of them was just not feasi-
ble. The paper did not give any information on how long it
took developers to evaluate whether a mutant can be used
to improve the test suite. Nevertheless, the authors stress
that a large portion of the interviewed developers decided
to act upon the surfaced mutants and therefore showing the
usefulness of learned mutation operators in practice.

4.2 Mutation Testing in Safety Critical Soft-
ware

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

To evaluate the effectiveness of using mutation testing in
the industry, Delgado-Perez et al. conducted an experiment
where a software suite written in C provided by a nuclear
industry was selected to apply the mutation testing tech-
nique [7]. In [6] also a safety-critical program was used to
find out if the introduced mutations correlate with real code
faults, where 85% of the mutations have also been produced
by real faults. Additionally, in [1] it was concluded that
the mutations which were injected by a mutation test were
more comparable to real code faults when comparing with
mutations introduced willingly instead of using a mutation
testing tool. To avoid the high computational resources nec-
essary to execute a mutation test, the experiment only used
a subset of mutation operators which reduces the number of
produced mutants, while assuming that the chosen subset
represents also the missing one. Even when reducing the
number of produced mutants there might still be a dupli-
cate, equivalent, or invalid mutants present which are also
called ineffective. Therefore, TCE is used to remove these
ineffective mutants. As for a possible mutation testing tool
that would be used, an open-source and free tool was chosen
to highlight the possibility of using mutation testing without
paid commercial solutions. As a tool Milu 3.2 2 was used
which natively supports TCE and as for the subset of opera-
tors, 12 out of the 77 present operators were selected. After
executing the mutation tests on the selected safety-critical
nuclear software the number of generated mutations for each
tested function was considerably lower, compared to other
studies, ranging from 75 to 331 generated mutants. These
represent the mutants before the application of TCE, where
after its execution nearly 50% were detected as ineffective
and therefore ignored. Surprisingly, the remaining mutants
almost all equal valid faults at 96%. As for the effort to
augment the existing test suite and for the replacement of
the branch test suite, only around 20% have been added
additionally to the existing test suite. This leads to the re-
searchers’ conclusion that the necessary effort to provide to
include mutation testing in safety-critical software suites is
plausible to achieve.

4.3 Tools used in Industry

Tool for executing Mutation Testing

PITest is a mutation testing framework for one of the most
used programming languages, Java [10]. An important prac-
tical feature of PITest is the good integration with common
tools used in the industry for development like build tools
or development environments [5]. Additionally, to cope with
the possible performance impact of having to generate a lot
of mutants, PITest does not work with the actual source
code but uses the byte code. Additionally, to analyze the
results of the mutation process, PITest generates a report
which allows to easily switch between the results and the
concerned code sections.

When common development tools are used, the integration
is straightforward as it merely requires the addition of a task
in the build file to configure PITest like which classes should
be tested or defining the output directory of the results. Af-
terward, the build file can be used as usually as PITest will
not make any modifications to the compiled code nor will it
leave any artifacts, except the generated reports which are

2Milu https://github.com/yuejia/Milu

saved in the defined directory.

| 1 | int demoFct(a, b) {
12] (a == b){

Changing this to a!=b does not cause any test to fail.

Please fix Not useful

return 42;

}

return 2;

ofol>lel [[]

Figure 2: Mutation Review Tool

Tools for Monitoring Mutation Testing

When programming collaboratively in the industry on a
common project the review process is an important one as
also stated by Linus’ Law [37] “Given enough, eyeballs, all
bugs are shallow”. Indirectly indicating that the practice
of reviewing committed code from other developers is one
option to ensure the absence of bugs in the reviewed code.
Now if the integration of mutation testing should be adopted
inside a company that already has these workflows of the
review process, it would be beneficial to integrate the muta-
tion also inside the review process. Similar to the possibil-
ity of leaving comments on regular sections of code, which
should be resolved by the original author of the written code,
Google has similarly integrated the review of mutation test-
ing in their code review process [33]. Exemplary in figure
we see a demonstration scenario that can occur during the
review process. We notice that the reviewer is presented
with a dialog presenting more information about the muta-
tion which has been done on that precise line of code. In
this case, the mutation has not been noticed by a test. Now
the reviewer has the choice to decide if this mutation should
be noticed by an additional test or if it would not be useful
to write an additional test for that specific mutation. In the
first case, when the reviewer clicks on the “Please fix” button,
the original author of the code gets notified that an addi-
tional test should be written, to catch this mutation. In the
second case, the reviewer clicks on the “Not useful” button,
whereupon no one gets notified to improve the code for that
specific mutation. Petrovic et al. state in [33] that the code
review process is the ideal place to integrate mutation test-
ing for newly written code, as the submitted code is reviewed
and thus, can be marked as further improvable, increasing
the possibility to find bugs and minimize them in the final
product. Sadowski et al. state in [39] that the integration of
the mutation test analyzation results inside the developer’s
workflow is a key point to improve their effectiveness. On
contrary, if the results have to be looked at in a different
workflow, thus ripping the developers out from their usual
to look at the mutation test results, their effectiveness is
drastically reduced. The huge number of possible mutants
per line of code that can be generated, together with the fact
that not all lines of code should be mutated as lines used for
logging, Google in [33] uses a probabilistic mutation testing
analysis technique and one limiting the generated mutants
to only interesting lines of code, to limit these disadvantages.
To limit the generated mutants, Google takes the approach
of only generating one mutant per line of code. Otherwise,

Copyright © 2021 for this paper by its authors

https://github.com/yuejia/Milu

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

with numerous generated mutants the review process would
suffer, as the review interface gets cluttered and the actual
reviewers will get quickly confused. Therefore, the muta-
tion operator is picked randomly from the possible mutants
which can be picked for that possible mutation environment.
However, this randomly picking of a mutation operator loses
its randomness over time, as with the information of the re-
viewers who decide if a mutation is considered useful or not.
Google integrates these decisions into the probabilistic mu-
tation generation process over time to improve the selection
of a “random” mutant. As for the detection of relevant lines
of code where mutations should be generated. Google uti-
lizes an arid node detection via abstract syntax tree traver-
sal, described in [33]. With these improvements to limit the
number of generated mutants and to limit their generation
to lines of code that should be mutated, the review pro-
cess’s effectiveness gets improved by avoiding unnecessarily
included mutations.

S. HOW TO FURTHER DRIVE MUTATION
TESTING ADOPTION

The results presented in show very promising
approaches to the application of mutation testing at industry
scale. The insights by some larger software companies and
a growing number of tools to make the application process
easier are keys to that. In this section, we want to build on
these approaches and propose some ideas on how mutation
testing could be used in the future.

5.1 When and how to use mutation testing
As shown in [subsection 3.1] and [section 4| there exist nu-

merous ways to decrease the computational effort that can
be successfully applied to real-world projects while still pre-
serving most benefits of mutation testing. With this being
said, nowadays, the time developers have to invest in evalu-
ating mutants is a far larger burden than the computational
effort placed on the infrastructure. When it is still not possi-
ble to apply mutation testing to the whole codebase because
of the computational overhead, it should be considered to
only test certain key parts to ensure the adequacy of the
test suite when it comes to the core of the application. This
is especially true when the business logic is held within only
a few components.

Furthermore, neglecting the size of the software project, mu-
tation testing should be used when software failures could
potentially harm human beings or cause tremendous finan-
cial loss. A safety-critical system, as presented in
would be the perfect example for such a case. The
failure of its computer systems could lead to incredible and
lasting damage to its surroundings, making a rigid test suite
essential.

Additionally, while it might be interesting to apply muta-
tion testing to the entire codebase of an existing project,
this will probably not produce the most effective results,
since the amount of surfaced mutants is most likely far too
high to be handled properly. Instead, it is more effective to
apply the technique with every change that is made to the
software and therefore improving the test quality little by
little.

A very promising looking approach to both decrease compu-
tational effort and reduce the number of equivalent mutants
has been to use learned HOM that are derived from past

faults |4]. Surely, this requires additional effort when intro-
ducing mutation testing but could pay off in the long term,
making it a viable option for larger long-term projects. Ad-
ditionally, it might be possible to create a number of these
learned HOM for different languages and make them pub-
licly available for future use in various projects with that
specific language. This would require several repositories
with common bugs and their respective fixes to learn these
in the first place but would help smaller projects to use these
more advanced techniques.

To take this even further, one could imagine that the cre-
ation of such a repository could also be structured by use
case or system type. The rationale behind this is that differ-
ent types of systems often employ totally different architec-
tures and therefore probably benefit from mutation testing
in very different ways. By capturing the nature of those
systems, it might be possible to tailor mutations for various
system types driving its effectiveness and efficiency.

5.2 Tackling developer doubts

A large problem remains with the low awareness of de-
velopers and their doubts regarding the application of mu-
tation testing. We argue that both should be addressed
in tandem by introducing developers to the technique and
immediately showing the benefits. The most obvious place
for such an introduction would be universities. Here, stu-
dents learn software development and engineering, including
how to test their code. A great addition to this repertoire
would be the application of mutation testing in small ex-
ample projects. This way, students would become familiar
with the concepts and also experience their usefulness first-
hand in a potentially less goal-oriented environment than a
software company trying to hold a deadline. Additionally,
we suggest that mutation testing should be added to the
curriculum of professional certifications like the ones from
ISTQB?. The International Software Testing Qualifications
Board (ISTQB) provides different certifications for software
testers, none of which contains the practice of mutation test-
ing at the moment. Adding mutation testing could lead to
raising awareness among software testers and therefore drive
adoption independently of the universities.

While the scenarios presented above would be the ideal long-
term scenario, it is not very likely to come before a broader
adoption of mutation testing in the industry, and therefore
developers already working have to be convinced first. This
poses a different challenge because of the many different
companies and projects software developers work at. Large
tech companies such as Facebook and Google can play an
important role in proofing that mutation testing can be ap-
plied at a large scale and acting as kind of a blueprint for
smaller companies. In that sense, past and future case stud-
ies of these two and how mutation testing improved their
test suite are a great way to drive adoption. Nevertheless,
it is unlikely that this alone will suffice. Instead, the cost of
applying mutation testing should be driven as low as pos-
sible to allow adoption for smaller teams without the need
to invest hours into the process. An example could be the
automatic generation of test code after a mutant surfaced,
as shown by Fraser and Zeller [12]. This takes a lot of the
work away from the developer but poses a more difficult
challenge to researchers. Additionally, this might not be
possible for a large portion of surfaced mutants because of

Shttps://wuw.istqgb.org/

Copyright © 2021 for this paper by its authors

https://www.istqb.org/

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

the often complex nature of source code. In these cases,
Facebook’s approach is promising because it provides the
developer with context information about which test cases
visited the mutated part of the code but failed to detect it.
This way, the amount of time for developers to evaluate the
usefulness of the mutant is greatly reduced. It shows how
crucial the review process is for adoption by software devel-
opers.

The game CODE DEFENDERS, as presented in
tion 3.3} is also very promising. Gamification has shown
great success in other areas and might help a great deal in
making developers aware of the technology. It should be
noted, however, that the game might not be best suited for
promoting the unique strengths of mutation testing since it
only shows the creation and killing of mutants rather than
how the process could be made easier for a developer or how
it improves the test suite specifically. We would like to see
further developments in this field, as they are already hap-
pening [11]. One could for example add additional languages
to make it more accessible to a broader audience than only
Java developers.

Lastly, it might be beneficial to conduct an experiment sim-
ilar to Facebook’s case study [4] to drive mutation testing
acceptance of software developers. The authors of that pa-
per argued that even though they could not prove the real
use of mutation testing regarding the prevention of actual
production faults, they saw it as a success that developers
deemed the information useful and improved the test suite as
a result. While this might be a difficult thing to pull off since
developers often choose and design the tools they use, it can
still be a way of showing the use of mutation testing to de-
velopers who would have considered the effects non-existent.

5.3 Improving the Mutant Review Process
As already highlighted in an effective strat-

egy to integrate mutation testing inside the existing work-
flow of the developers is to use the code review phase. Sim-
ilar to Google, Facebook integrated the generation of mu-
tants to be shown as code changes to the developer. Having
these two large companies emphasize the usefulness to in-
tegrate mutation testing also in the code review shows the
possible importance for companies that would like to inte-
grate mutation testing in their software. However, it should
be noted that both Facebook and Google integrated mu-
tation testing in their code review workflow and systems.
Even though Facebook integrated the workflow in their code
review tool Phabricator, new companies trying to use mu-
tation testing and similarly would like to integrate muta-
tion testing in their code review workflow would need addi-
tional setup work. For larger companies that do have the
capacities, this would be feasible, but the question remains
if smaller ones would have the same possibilities to have
a dedicated developer team at the beginning of the muta-
tion testing integration. In the case of integrating the gen-
erated mutations in the code review process, it would be
important as stated in [33] [4] to maximize the generation
of useful mutations as much as possible. As otherwise, the
code review, which still largely involves developers to review
the code changes, would suffer from ineffective or equivalent
generated mutants. Thereby, also affecting their effective-
ness and causing confusion|33]. To mitigate the disadvan-
tages of generating numerous mutations having no effect on

the code, tools limiting the generated mutants are applica-
ble. The first step into this direction would be like in [33]
to randomly select an applicable mutant operator and thus
limiting the possible generated mutants to one for each code
line. This would greatly help small companies which try to
quickly integrate mutation testing as they do not have to
deal with the huge number of generated mutants. The pos-
itive side of using this approach is that it can be enhanced.
If a company sees how useful mutation testing is, additional
features can be added to improve the random picking of mu-
tation operators. Like in the case of Google [33] the infor-
mation gathered from the review phase can be analyzed to
switch from the random picking to a probabilistic one. This
would be an upgrade that companies with enough capaci-
ties and motivation to use mutation testing could integrate.
The same applies to highlighting which lines of code should
be considered in the mutants’ generation phase. Like lines
where logging functions are written, which would only clut-
ter up the code review phase [4].

6. CONCLUSION

Mutation Testing is still an evolving discipline that can en-
hance software development to find its way more and more
in the industry. Despite the disadvantages surround muta-
tion testing, numerous progressions have been made in this
direction. We presented possible tools which allow teams in
a project to integrate mutation testing in their development
workflow. This integration is the first step to improve its
usage inside a team. Regarding the computational aspects
of mutation testing, simpler and more elaborated methods
have been proposed to reduce computational costs. These
methods range from randomly selecting mutants to com-
plex mutants’ recognitions, implemented in existing tools.
Leading to the presentation of existing tools which actu-
ally perform the mutation testing, which can be used in
existing projects. Based on our results, we believe that the
integration of mutation testing is a feasible option if a soft-
ware project must assure with more rigorous their software
project. Nevertheless, this path is not limited to industry
partners with high capacities, as also small developer teams
can benefit from a moderate workload using the proposed
approach from mutation testing.

7. REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is

mutation an appropriate tool for testing experiments?
In G. Roman, W. G. Griswold, and B. Nuseibeh,
editors, 27th International Conference on Software
Engineering (ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA, pages 402-411. ACM, 2005.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE
Transactions on Software Engineering, 32(8):608-624,
2006.

[3] D. Basile, M. H. ter Beek, M. Cordy, and A. Legay.
Tackling the equivalent mutant problem in real-time
systems: the 12 commandments of model-based
mutation testing. In R. E. Lopez-Herrejon, editor,
SPLC ’20: 24th ACM International Systems and
Software Product Line Conference, Montreal, Quebec,
Canada, October 19-23, 2020, Volume A, pages
30:1-30:11. ACM, 2020.

Copyright © 2021 for this paper by its authors

[4]

[10]

[11]

[14]

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

M. Beller, C. Wong, J. Bader, A. Scott, M. Machalica,
S. Chandra, and E. Meijer. What it would take to use
mutation testing in industry-a study at facebook.
CoRR, abs/2010.13464, 2020.

H. Coles, T. Laurent, C. Henard, M. Papadakis, and
A. Ventresque. PIT: a practical mutation testing tool
for java (demo). In A. Zeller and A. Roychoudhury,
editors, Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA
2016, Saarbriicken, Germany, July 18-20, 2016, pages
449-452. ACM, 2016.

M. Daran and P. Thévenod-Fosse. Software error
analysis: A real case study involving real faults and
mutations. In S. J. Zeil and W. Tracz, editors,
Proceedings of the 1996 International Symposium on
Software Testing and Analysis, ISSTA 1996, San
Diego, CA, USA, January 8-10, 1996, pages 158-171.
ACM, 1996.

P. Delgado-Pérez, 1. Habli, S. Gregory, R. Alexander,
J. A. Clark, and I. Medina-Bulo. Evaluation of
mutation testing in a nuclear industry case study.
IEEE Trans. Reliab., 67(4):1406-1419, 2018.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. Computer, 11(4):34-41, 1978.

V. Do, Q. Nguyen, and T. Nguyen. Evaluating
mutation operator and test case effectiveness by
means of mutation testing. In N. T. Nguyen,

S. Chittayasothorn, D. Niyato, and B. Trawinski,
editors, Intelligent Information and Database Systems
- 18th Asian Conference, ACIIDS 2021, Phuket,
Thailand, April 7-10, 2021, Proceedings, volume 12672
of Lecture Notes in Computer Science, pages 837-850.
Springer, 2021.

O. Ezenwoye. What language? - the choice of an
introductory programming language. In IFEE
Frontiers in Education Conference, FIE 2018, San
Jose, CA, USA, October 3-6, 2018, pages 1-8. IEEE,
2018.

G. Fraser, A. Gambi, and J. M. Rojas. Teaching
software testing with the code defenders testing game:
Experiences and improvements. In 15th IEEE
International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2020,
Porto, Portugal, October 24-28, 2020, pages 461-464.
IEEE, 2020.

G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. IEEE Trans. Software Eng.,
38(2):278-292, 2012.

R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and
A. Groce. How hard does mutation analysis have to
be, anyway? In 26th IEEE International Symposium
on Software Reliability Engineering, ISSRE 2015,
Gaithersbury, MD, USA, November 2-5, 2015, pages
216-227. IEEE Computer Society, 2015.

R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen,
and A. Groce. On the limits of mutation reduction
strategies. In L. K. Dillon, W. Visser, and L. A.
Williams, editors, Proceedings of the 38th
International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016,
pages 511-522. ACM, 2016.

(15]

(16]

(17]

(18]

(19]

[20]

21]

(22]

23]

[24]
(25]

(26]

R. Gopinath, C. Jensen, and A. Groce. Code coverage
for suite evaluation by developers. In P. Jalote, L. C.
Briand, and A. van der Hoek, editors, 36th
International Conference on Software Engineering,
ICSE 14, Hyderabad, India - May 31 - June 07, 2014,
pages 72-82. ACM, 2014.

R. G. Hamlet. Testing programs with the aid of a
compiler. IEEE Trans. Software Eng., 3(4):279-290,
1977.

L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In

P. Jalote, L. C. Briand, and A. van der Hoek, editors,
36th International Conference on Software
Engineering, ICSE 14, Hyderabad, India - May 31 -
June 07, 2014, pages 435-445. ACM, 2014.

Y. Jia and M. Harman. Constructing subtle faults
using higher order mutation testing. In Fighth IEEE
International Working Conference on Source Code
Analysis and Manipulation (SCAM 2008), 28-29
September 2008, Beijing, China, pages 249-258. IEEE
Computer Society, 2008.

Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering, 37(5):649-678, 2011.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,

R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In

S. Cheung, A. Orso, and M. D. Storey, editors,
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22,
2014, pages 654—665. ACM, 2014.

D. Klischies and K. Fégen. An analysis of current
mutation testing techniques applied to real world
examples. Full-scale Software Engineering/Current
Trends in Release Engineering, 13:52, 2016.

N. Li, U. Praphamontripong, and J. Offutt. An
experimental comparison of four unit test criteria:
Mutation, edge-pair, all-uses and prime path coverage.
In Second International Conference on Software
Testing Verification and Validation, ICST 2009,
Denwver, Colorado, USA, April 1-4, 2009, Workshops
Proceedings, pages 220-229. IEEE Computer Society,
20009.

L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala.
Overcoming the equivalent mutant problem: A
systematic literature review and a comparative
experiment of second order mutation. IEEE Trans.
Software Eng., 40(1):23-42, 2014.

B. Marick. How to misuse code coverage. 04 2000.

J. Mozucha and B. Rossi. Is mutation testing ready to
be adopted industry-wide? In P. Abrahamsson,

A. Jedlitschka, A. Nguyen-Duc, M. Felderer,

S. Amasaki, and T. Mikkonen, editors,
Product-Focused Software Process Improvement - 17th
International Conference, PROFES 2016, Trondheim,
Norway, November 22-24, 2016, Proceedings, volume
10027 of Lecture Notes in Computer Science, pages
217-232, 2016.

S. Nica, R. Ramler, and F. Wotawa. Is mutation
testing scalable for real-world software projects? In
VALID Third International Conference on Advances

Copyright © 2021 for this paper by its authors

[39]

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

in System Testing and Validation Lifecycle, Barcelona,
Spain, 2011.

A. J. Offutt. Investigations of the software testing
coupling effect. ACM Trans. Softw. Eng. Methodol.,
1(1):5-20, 1992.

S. Oh, S. Lee, and S. Yoo. Effectively sampling higher
order mutants using causal effect. CoRR,
abs/2104.11005, 2021.

M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon.
Trivial compiler equivalence: A large scale empirical
study of a simple, fast and effective equivalent mutant
detection technique. In A. Bertolino, G. Canfora, and
S. G. Elbaum, editors, 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1, pages
936-946. IEEE Computer Society, 2015.

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L.
Traon, and M. Harman. Chapter six - mutation
testing advances: An analysis and survey. Adwv.
Comput., 112:275-378, 2019.

M. Papadakis and N. Malevris. An empirical
evaluation of the first and second order mutation
testing strategies. In Third International Conference
on Software Testing, Verification and Validation,
ICST 2010, Paris, France, April 7-9, 2010,
Workshops Proceedings, pages 90-99. IEEE Computer
Society, 2010.

A. Parsai and S. Demeyer. Comparing mutation
coverage against branch coverage in an industrial
setting. CoRR, abs/2104.11767, 2021.

G. Petrovic and M. Ivankovic. State of mutation
testing at google. In F. Paulisch and J. Bosch, editors,
Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pages 163-171. ACM, 2018.
G. Petrovic, M. Ivankovic, G. Fraser, and R. Just.
Does mutation testing improve testing practices?
CoRR, abs/2103.07189, 2021.

G. Petrovic, M. Ivankovic, B. Kurtz, P. Ammann, and
R. Just. An industrial application of mutation testing;:
Lessons, challenges, and research directions. In 2018
IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICST
Workshops, Visteras, Sweden, April 9-13, 2018, pages
47-53. IEEE Computer Society, 2018.

S. Rani, B. Suri, and S. K. Khatri. Experimental
comparison of automated mutation testing tools for
java. pages 1-6, 09 2015.

E. S. Raymond. The cathedral and the bazaar -
musings on Linux and Open Source by an accidental
revolutionary. O’Reilly, 1999.

J. M. Rojas and G. Fraser. Code defenders: A
mutation testing game. In Ninth IEEE International
Conference on Software Testing, Verification and
Validation Workshops, ICST Workshops 2016,
Chicago, 1L, USA, April 11-15, 2016, pages 162—-167.
IEEE Computer Society, 2016.

C. Sadowski, J. van Gogh, C. Jaspan, E. Séderberg,
and C. Winter. Tricorder: Building a program analysis
ecosystem. In A. Bertolino, G. Canfora, and S. G.
Elbaum, editors, 87th IEEE/ACM International

(40]

(41]

42]

(43]

(44]

Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1, pages
598-608. IEEE Computer Society, 2015.

D. Schuler and A. Zeller. Covering and uncovering
equivalent mutants. Softw. Test. Verification Reliab.,
23(5):353-374, 2013.

B. H. Smith and L. A. Williams. On guiding the
augmentation of an automated test suite via mutation
analysis. Empir. Softw. Eng., 14(3):341-369, 2009.
M. Sridharan and A. S. Namin. Prioritizing mutation
operators based on importance sampling. In I[EEE
21st International Symposium on Software Reliability
Engineering, ISSRE 2010, San Jose, CA, USA, 1-4
November 2010, pages 378-387. IEEE Computer
Society, 2010.

D. Tengeri, A. Beszédes, D. Havas, and T. Gyiméthy.
Toolset and program repository for code
coverage-based test suite analysis and manipulation.
In 14th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2014,
Victoria, BC, Canada, September 28-29, 2014, pages
47-52. IEEE Computer Society, 2014.

L. Zhang, S. Hou, J. Hu, T. Xie, and H. Mei. Is
operator-based mutant selection superior to random
mutant selection? In J. Kramer, J. Bishop, P. T.
Devanbu, and S. Uchitel, editors, Proceedings of the
32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, pages 435—444.
ACM, 2010.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

An Overview of Fault Taxonomies For Test Automation

Md Tasin Siddiqi
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

tasin.siddigi@rwth-aachen.de

ABSTRACT

Fault taxonomies have been developed to aid in understand-
ing root causes as well as to get an understanding of the di-
versity of faults in software projects. The fault taxonomies
range from general to application specific, with the goal to
support quality assurance activities. Testing the faults can
occur manually or with automation, however making the
distinction which to choose is difficult. This paper gives a
background to fault taxonomies and testing in general, and
discusses one general and one JavaScript specific taxonomy
in more detail. For the different categories of faults identi-
fied, the applicable testing techniques as found in relevant
research are discussed, such as automated regression or man-
ual black box testing. Thus, an overview of which categories
of faults in taxonomies are best automated or tested manu-
ally are identified to develop a cohesive testing strategy.

Keywords
Fault Taxonomy, Test Automation, Testing Strategy

1. INTRODUCTION

In this paper titled ’Fault Taxonomies to Drive Test Au-
tomation’, we discuss the well documented taxonomies of
faults that prevail in industry and why they do in the first
place. Software testing plays a integral role in the Software
Development Lifecycle, even from the earliest days of com-
puters [17, [18]. Every software goes to several iterations
of testing before it is first released for customers, since it
is “crucial to the success of a software project” [5]. While
not every project or application might necessitate exhaustive
testing, there are many examples of software where testing
is crucial and a minor bug might result in loss of millions of
dollars (as in the case of financial software) or worse loss of
human lives (in case of healthcare [37] or military [34] soft-
ware). Even if all software might not be designed for such
precision or to be responsive to the millisecond, all contem-
porary software should be tested to ensure data security
and minor bugs because of which the user loses interest and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Timo Rohrer
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

timo.rohrer@rwth-aachen.de

ends up not using the software [3]. As there are many al-
ternatives for a particular software genre in this competitive
world, more and more companies are investing and innovat-
ing to ensure that their software are optimized to capture the
largest share of customer base. This can only be possible if
the software is flawless or at least close to it. Therefore test
engineers and product managers are constantly coming up
with testing protocols that are comprehensive and capture a
large taxonomy of bugs which can be fixed at the right time
and with as few resources as possible. Striking this balance
requires careful consideration of which faults should be ac-
counted for by manual testing and which should be covered
by an automated test suite. And while the creation of fault
taxonomies in academia and industry projects is plentiful
|30, [ol |22 25l |27} [39], there has been little consideration
in how to leverage the taxonomies to help decide what to
automate.

There is no one correct universal method of testing and
most often devising a suitable test strategy is an art than
a science which requires great expertise specific to a niche
industry. There is a constant trade-off between manual test-
ing and automation testing and frequently it comes down to
the experience of a Senior Test Architect who then decides
when and what to automate and what to leave out to be
tested manually. However, it must be noted that there are
certain standard frameworks and test suites for certain genre
of applications for which a more objective decision can be
made.

Manual Testing vs. Automated Testing

Aspect of
Manual Automation
Testing

Test Done manually by QA Done automatically using automation
Execution testers tools and scripts
Test Time-consuming and less More testing in less time and greater
Efficiency efficient efficiency
Types of . Most tasks can be automated, including

Entirely manual tasks . .
Tasks real user simulations
Test Difficult to ensure sufficient

Easy to ensure greater test coverage

Coverage test coverage

Figure 1: Differences Between Manual and Automation Test-
ing [24]

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Research Questions

Many bug taxonomies have been developed to support qual-
ity assurance activities. The goal of this research is to get an
overview of the bug taxonomies available in order to extract
the essence that can be used to drive test automation. Our
paper basically revolves around the following questions :

e RQ1: What type of bugs can be easily detected by
manual testing?

e RQ2: Which are easier to detect by automated test-
ing?

e RQ3: Do we need structured test suites to detect the
bug types or should we utilize explorative testing?

e RQ4: What can we learn from those taxonomies in
order to create a test automation strategy?

Organization

We start off in Section [2| by establishing the context and
defining the lingo that is prevalent in the Test-Automation
Community. Then we proceed onto describe what Test-
ing is in general. From there we dive deep into the broad
categories of Software Testing, namely : Manual Testing
Methods (such as Exploratory Testing, Negative Testing and
Black Box Testing) and Automated Testing (such as such as
Automated benchmarking, Combinatorial testing and Au-
tomated regression testing). Next, some related work is dis-
cussed in Section In section {4 two bug taxonomies are
presented: a more general one by Catolino et. al. in the
paper titled Not All Bugs Are the Same and then a more
specific one by Gyimesi et. al. in the paper titled BugJS.
In Section [5] we discuss which bug types as defined by the
taxonomies can or should be automated and what should
be left out to be tested manually. Lastly, in Section [f] we
conclude the paper.

2. BACKGROUND

2.1 Fault taxonomies

Prevalent in the natural sciences, a taxonomy is created by
defining distinct groups of things based on some shared char-
acteristics and then aggregating them to form a classifica-
tion. While the most well known application for taxonomies
is biology, they have also been used widely in business, eco-
nomics, and computer science. At it’s core, a taxonomy cat-
egorizes or classifies things into types. Frequently, an impor-
tant part of taxonomies is a hierarchical ordering, forming a
tree structure. In the context of software engineering, there
are multiple applications for taxonomies, including classify-
ing tools and techniques such as a taxonomy of model-based
testing approaches [36]. In the context of this paper bug
taxonomies will be examined, where software bugs are clas-
sified. To understand bugs, first it is necessary to give same
definitions:

DEFINITION 1 (FAILURE). A failure is “an event that
occurs when the delivered service deviates from correct ser-
vice”, which “means that at least one (or more) external state
of the system deviates from the correct service state. The de-
viation is called an error” [4].

For example, a failure might be a crash of an application,
a network connection loss, or slow loading of content on a
website.

DEFINITION 2 (FAuLT). "The adjudged or hypothesized
cause of an error is called a fault”, or bug [4).

For example, the the previous example failure of an appli-
cation crash, the underlying bug might be a segmentation
fault, also called a memory access violation.

Over the years, many bug taxonomies have been proposed,
ranging from system and application specific to more general
ones. Some commonly defined properties for taxonomies as
aggregated by Lough [26] include:

e Comprehensible, so that experts and those new to the
field can understand and extract value out of the tax-
onomy

e Exhaustive and complete, meaning any thing must be
able to "fit” in the structure and all possible categories
are accounted for

e Deterministic and objective, so that the characteristics
by which a thing is classified by can be automatically
Yextracted” from the thing only and be "clearly observ-
able”

e Mutually exclusive, meaning "categories must not over-
lap77

e Primitive and repeatable, meaning the classification
would be the same if repeated by another party

e Specific and unambiguous, meaning established and well
defined terminology is used

2.2 Testing

Software Testing is the process of testing the quality of
software in order to deliver software applications of the high-
est quality to the client. There are software applications
that require great precision and a minute fault may result
in a catastrophe: the loss of millions of dollars or the loss
of human lives. Therefore a structured method which tests
software at each stage of development becomes crucial to
ensure that the release software is devoid of any such bugs.
Over the years many strategies and approaches of software
testing have been developed to achieve this goal. We shall
discuss the most common and widely used approaches that
exists in industry these days (29, |6].

2.2.1 Manual testing

In this type of testing, the software testers manually ex-
ecute test cases without the use of any automation tools.
They simulate the role of the end-user and try to find as
many bugs as possible. The bugs are finally reported into a
report which are passed on to developers to fix them. Man-
ual testing often focuses on usability, performance testing,
and assessing the overall software quality. Among the most
common manual testing methods are :

e Exploratory Testing : is a type of dynamic testing,
which allows the tester freedom to interact with the
application as they like without a predefined test pro-
cedure.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

e Black Box Testing : is more structured, where an ap-
plication’s functionality is tested based on the require-
ments or specifications it was built for. The inner
workings of the application are not considered in this
type of testing.

e Negative Testing : is when invalid inputs are inserted
to check if the application handles exceptions properly
and returns errors appropriately. This type of test-
ing validates that the application can handle improper
usage.

e Usability Testing : is a method that does not rely in
writing test cases in code, rather it evaluates an ap-
plication by having users interact with it. Additional
reviewers watch the users and gather feedback on the
ease of use of the application.

e Acceptance Testing : is a method where, frequently
the intended end user of the application, tests it to
ensure the solution will work for their needs.

e Manual Regression testing : is a method of verification
which is used to confirm that a recent update, bug
fix or code change has not adversely affected the pre-
existing features. It re-executes some of the test cases
to ensure that existing functionality works correctly
and no new bugs have been introduced.

e Test Case Execution : Test cases help the tester through
a sequence of steps to validate whether the application
is working as intended. A good test case requires good
writing skills, attention to detail and a good under-
standing of the application.

2.2.2 Automated Testing

In this type of testing an automation tool is used to exe-
cute pre-scripted test cases. The objective of automation
testing is to increase productivity of testers by simplify-
ing and increasing efficiency in the testing process [32] [33].
Among the advantages of Automated Testing over Manual
testing are the following:

e Quicker : Automated testing speeds up the process of
software testing in comparison to manual testing. In
terms of testing execution, it will increase productivity
and reduce testing time for the majority of apps/web-
sites.

e Avoids Repetition : Repetitive tasks are inefficient
when done manually, especially when they reoccur.
There is also an increased chance of human error. Au-
tomated testing can eradicate this, depending on the
quality and scope of the test cases.

While automated testing has a lot of advantages, it has is
disadvantages as well such as :

e High setup cost : Initial set up costs (automation tool
purchase, training and tutorials, maintenance of test
scripts) are expensive. Also, if the app or website
changes regularly, the cost and time associated with
script maintenance will increase considerably.

e Not Universal : While automated testing is great for
types of testing like stress testing and smoke testing,
it’s not suited for everything. Looking at user inter-
face, documentation, installation, compatibility, and
recovery are often better suited to manual tests.

3. RELATED WORK

Among the earliest work on developing fault taxonomies
for software was by Chillarege et al. [11] in the form of the
Orthogonal Defect Classification. In this taxonomy, cate-
gories such as Algorithm or Assignment defects were iden-
tified. More research by Freimut et al. [16] developed a
taxonomy which focused more on the orgin of the fault.
More root cause based taxonomies were developed by Chan
et al. [10]. Some of the categories include parameter in-
compatibility fault, misunderstood behaviour fault, response
faults, and time-out exceptions. Work on more application
specifc taxonomies include one on JavaScript conducted by
Hanam et al. [20]. Fault types included missing arguments,
unhandeled exepctions, dereferenced non-values, and incor-
rect comparisons. For Java applications, Hovemeyer at al.
[21] defined a number of bug patterns, including Redun-
dant Comparison to Null, Dropped Exception, Null Pointer
Dereference, and Inconsistent Synchronization.

4. FAULT TAXONOMIES

In the following section two bug taxonomies will be pre-
sented, a general one by Catolino et al. [8] as well as a more
specific one by Gyimesi et al. [19]. For each, an overview
of the taxonomy is given first and then descriptions of the
bug types identified which are relevant to this research are
discussed.

4.1 Not All Bugs Are the Same

This paper by Catolino et al. [§] aims to identify and
classify reported bugs thereby building a taxonomy of bugs
so that the process of bug triage, that is, the process of
assigning the fixing of a reported bug to the most qualified
developer. The basis of classification is identifying the root
cause of the reported bugs. This paper found nine main
common root causes of bugs during the study.

Research Methodology

The empirical study definition and design that were followed
in this paper to create a bug root cause taxonomy. The
research questions (RQ) formulated in the study were:

e RQ1 To what extent can bug root causes be categorized
through the information contained in bug reports?

e RQ2 What are the characteristics, in terms of fre-
quency, topics, and bug fixing time, of different bug
categories?

e RQ3 How effective is our classification model in classi-
fying bugs according to their root cause exploiting bug
report information?

Configuration issue

Example summary.

“JEES Web model does not update on changes in
web.zml”
[Eclipse-WTP Java EE Tools| - Bug report: 190198

Figure 2: Example of Configuration issue bug report (8|

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

The first taxonomy of bug root cause happen to be con-
figuration issue. It is a taxonomy mainly related to a wrong
usage of external dependencies that cause issues in the web
model of the application. It mostly occurs due to external
dependencies such as external libraries when some software
package is installed for the first time.

Network issue

Example summary.

“During a recent reorganization of code a couple of
weeks ago, SSL recording no longer works”
[Eclipse-z_Archived] - Bug report: 62674

Figure 3: Example of Network issue bug report [8|

This is the category of bugs having connection or server
issues as it’s root cause. It is caused by network problems,
server shutdowns or communication protocols that are not
properly used within the source code. The server side net-
work issues are probably more in the control of the tester-
s/troubleshooters than the client side one. A network issue
could range from a total loss of connectivity to intermittent
connectivity and even performance problems.

Database related issue

Example summary.

“Database connection stops action servlet from loading”
[Apache Struts] - Bug report: STR-26

Figure 4: Example of Database issue bug report |[8]

This category of bugs comprise all connection issues be-
tween the database and the main application. An example
of this type of issue are issues related to failed queries. All
bugs related to wrong SQL statements are part of this cat-
egory because they relate to issues in the communication
between the application and an external database, rather
than characterizing issues within the application.

GUI related issue

Example summary.

“Text when typing in input box is not viewable.”
[Mozilla-Tech Evangelism Graveyard] - Bug report:
152059

Figure 5: Example of GUI issue bug report (8]

This category includes all bugs related to the Graphical
User Interface of a software project. It comprises all issues
referring to stylistic errors, i.e. screen layouts, element colors
and padding, text box appearance, and buttons as well as
all un-usual messages appearing to the user.

Performance issue

Example summary.

“Loading a large script in the Rhino debugger results in
an endless loop (100% CPU utilization)”
[Mozilla-Core| - Bug report: 206561

Figure 6: Example of Performance issue bug report (8]

This category comprises all bugs that are related to perfor-
mance issues, including memory overuse including memory
leaks and methods with infinite loop.

Permission/Deprecation issue

Example summary.

“set TrackModification(boolean) not deprecated; but does
not work”
[Eclipse-EMF] - Bug report: 80110

Figure 7: Example of Permission issue bug report [8|

This category includes all bugs related to presence, modi-
fication or removal of deprecated method calls or APIs. Also
problems related to unused APIs are included in this cate-

gory.

Security issue

Example summary.

“Disable cocoon reload parameter for security reasons”
[Apache-Lenya] - Bug report: 37631

Figure 8: Example of Security issue bug report (8]

All issues related to vulnerability and security are part of
this category. The kind of bugs related to this category are
those such as reloading certain parameters and removal of
unused permissions that might decrease the overall reliabil-
ity of the system.

Program Anomaly Issue

Example summary.

“Program terminates prematurely before all execution
events are loaded in the model”
[Eclipse-z_Archived] - Bug report: 92067

Figure 9: Example of Anomaly issue bug report [8]

Bugs introduced by developers when trying to enhance
existing source code and that are concerned with specific

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

circumstances such as exceptions, problems with return val-
ues and unexpected crashes arising due to error in the logic
of the program (rather than GUI related problems) are all
part of this category of issue. Bug reports in this category
tends to generally have the source code included as well so
that a discussion around possible fix can be accelerated.

Test Code-related issue
Example summary.
“Ithe test] makes mochitest-plain time out when the

HTMLS5 parser is enabled”
[Mozilla-Core] - Bug report: 92067

Figure 10: Example of Test code issue bug report

This category comprises of bugs appearing in test code.
Bugs in this category report problems related to test cases.

B Database-related issue
Network issue

[Configuration issue
M GUl-related issue

B Performance issue B Permission/Deprecation issue
Il Program Anomaly issue [} Security issue

Test Code-related issue

250 375 500

Figure 11: Frequency of each category of bug root cause

4.2 BugsJS

An example of a more application specific fault taxonomy
is BugsJS by Gyimesi et al. . Ten server side JavaScript
libraries powered by Node.js, including Express and Mon-
goose, were selected after a survey of open source projects
on Github. On their Issues pages, bugs were selected based
on criteria such as the bug-fixes being low complexity and
in isolation as well as relevant test cases being included. In
total, 542 bugs and their corresponding fixes and test cases
were selected for the final dataset. Note: example code may
be shortened for better comprehension.

As seen in Figure the authors of the paper identified
four major categories of bugs: incomplete feature implemen-
tation, incorrect feature implementation, generic errors, and
perfective maintenance. Perfective maintenance refers to
feature enhancements and therefore will no be considered
in this paper.

W
Bugs in BugsJS feature

1-Incomplete
feature implementation

51 1.2.1-Missing
type check

—

12.2-Empty

1.1-Incomplete 2
input parameters

Data Processing 7

—

1.2-Missing
Input Validation

1.23Missing
null check

|_—’>

4 1.2.4-Missing
handling of spaces.

7 [1255-Missing handling.
of special characters

—

2
1.3-Error handling |——>

1.3.1-Callbacks

10

1.4-Incomplete 1
—)
configuration processing

141 Missing
type check

3 15-Incomplete
output message

2.1.1-Incorrect.

type comparison

2.12-Incorrect
initialization

22Incorrect
input validation

2.2.2-Incorrect handling
of special characters

7
6
.

2.3 Incorrect
filepath

2.2.1-Unnecessary
; type check
1

223 Empty
input parameters

7
e —

4-Perfective
Maintenance

Y
—
—

2.4-Incorrect
output

F—

2.4.1Incorrect
output message

3.3-Variable
initialization
6 34-Data
processing
3 3.5-Missing
type conversion

9 2.5-Incorrect
configuration processing
7 [26-Incorrect handiing
—> b
of regex expressions.
4
2.7-Performance
3
3.1-Typo

321 Missing
return statement
322-Incorrect
return statement
8 3.3.1-Missing
initialization
4 3.3 2-Incorrect
initialization

3.2-Return
statement

_

36-Loop
statement

1 3.6.1-Incorrect
loop statement

Figure 12: Taxonomy of bugs in the benchmark of JavaScript

programs of Bugs

JS [19]

e Incomplete feature implementation refers to cases where
the specification for a feature was not fully consid-
ered in the implementation. According to the authors,
these cases frequently occurred when corner-cases ap-
peared or when requirements changed over time, ex-
posing the underlying incomplete implementation.

e Incorrect feature implementation bugs are a wrong im-
plementation of the desired feature, frequently due to
an incorrect interpretation of the requirements.

e Generic errors differ from the previous category in that
they arise from common programming mistakes, not a
misunderstanding of the requirements.

Incomplete feature implementation

Incomplete Data processing

A large category of bugs identified by the authors is incom-
plete data processing. These bugs occur when an incorrect
interpretation of how the input should be transformed causes
an error. An example can be seen next, where a helper func-
tion from the Lodash library needed to be added to properly
escape special characters.

- var text = $(this).html();
+ var text = _.escape($(this).text ());

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Missing input validation
An example of such an error is shown below, where an ad-

ditional condition was added to only execute the operation
if a line number exists.

- if (file && file.sourceMap) {
+ if (file && file.sourceMap && line) {

Error handling

The category of bugs identified as error handling are a per-
fect fit for manual negative testing. Incomplete error han-
dling occurs when the software does not fully cover all ex-
ceptions. An example can be found below, where before the
program did not properly throw an error.

- procWrapper.on(’SIGINT’, disconnectBrowsers)
+ procWrapper.on(’SIGINT’, function () {

+ disconnectBrowsers (process.exitCode)

+ 1)

Incomplete configuration processing

Errors which pertain to incomplete configuration of the pa-
rameters to a a program fall in this category and below can
be seen a example from Karma.

- options[helper.toCamel (name)]
+ options[helper.toCamel (name)]

argv [name];
argumentValue;

Incomplete output message

Any output messages that were incomplete fall in this cate-
gory. In the example below from Hessian, any number which
exceed the maximum safe integer are casted to a string so
that they could be safely read.

+ if (val.greaterThan (MAX_SAFE_INT)) {
+ val = val.toString();

Incorrect feature implementation
Incorrect data processing

A large percentage of bugs found in the dataset belong to
the category Incorrect data processing, referring to a funda-
mental error in the logic of data transformation. An example
from Eslint can be seen below, where it needs to be decided
if a rename is necessary or not. If the property lacks a key,
it is not necessary, so a additional condition was added to
this if statement.

- if (props[i].computed) {
+ if (props[i].computed || !props([i].key) {

Incorrect input validation

Another large category of bugs includes errors in checking if
a given input is valid. An example from Eslint can be seen
below, where a function was causing false negatives on octal
numeric literals.

- /" [0-9]+$/.test (source.get (node.obj).value))
+ astUtils.isDecimalInteger (node.obj))

Incorrect filepath

A category of bugs which fixes incorrect filepaths was iden-
tified by the authors. A bug from Hexo can be seen below,
where the path can be both absolute or relative and is then
resolved.

- if (path[0] !== ’/’) path = ’/’ + path;
- return config.url + path;
+ return urlFn.resolve(url || config.url, path);

Incorrect output

Bugs where the output was not correct were grouped in a
category. A Bug from Eslint can be seen below, where in-
stead of the last, the penultimate item should be returned.

- loc: lastlItem.loc.end,
+ loc: penultimateToken.loc.end,

Incorrect configuration processing

Any bugs which relate to the incorrect configuration of the
values of parameters to a program fall in this category. An
example from Eslint can be seen below, were unnecessary
default options were passed even when not explicitly speci-
fied.

- let parserOptions = Object.assign(
= {}, defaultConfig.parserOtpions);
+ let parserOptions = {};

Incorrect handling of regex expressions

Bugs related to incorrect regex expression were grouped in
one category. An example from Eslint can be seen below,
where a a check for multiple spaces had to be fixed.

- comnst multi = /({2,})+7?/,
+ const multi = /({2,})C [+x{?]1 | ["+x{?]11$)/,

Performance

As a part of incorrect feature implementation, the authors
identify performance as a category of bugs which occur.
These bugs are frequently discovered from normal usage of
the application, since an error caused a large amount of com-
puter resources to be used, such as memory or CPU time.
An example is a bug is Eslint where a regex caused catas-
trophic backtracking, because it was matching non-linebreak
characters followed by a linebreak. The new regex shown be-
low simply matches newlines.

+ const lineEnd = /\r\n|[\r\n\u2028\u2029]/g;

Generic
Typo

A common error type that developers might make are ty-
pos, as identified in the taxonomy. Below is an example
from Pencilblue, where the word prototype was spelled in-
correctly.

- BODY_PARSER_MAP [mime]
+ BODY_PARSER_MAP [mime]

protoype;
prototype;

Return statement

Forgetting a return statement was another category of bugs.
Below is an example from Karma.

- msg = config.formatError (msg)
+ return config.formatError (msg)

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Variable initialization

Either incorrectly initializing a variable or missing it entirely
are in this category of bugs. An example from Mongoose can
be seen below.

- var values;
+ var values, errorMessage;

Data processing

Generic data processing errors were categorized in this group,
and below an example can be seen from Eslint.

- node.id [0] === node.id [0].toUpperCase ()
+ node.id [0] !== node.id [0].toLowerCase ()

Missing type conversion

Generic missing type conversion errors were captured in this
category. Below an example from Shields can be seen, where
the labels of the string had to be converted to a string before
changing them to upper case.

- data.text [0]
+ data.text [0]

data.text [0].toUpper ();
(>’ + data.text [0]).toUpper ();

Loop statement

The last section in the category of generic bug is an incorrect
loop statement, as seen in the example from Eslint below.

- while ((currentAnc = currentAnc.parent)) {
+ do {
if (isConditionalTest (currentAnc)) {
return currentAnc.parent;
}
-}

+ } while ((currentAnc = currentAnc.parent));

S. DISCUSSION

In this section the two bug taxnomies are discussed to ex-
tract the gist of the different bug categories. Furthermore,
for the different bug types, the best testing strategy is dis-
cussed, whether that be manual or automated testing. The
recommendations are based on existing literature and also
specify the sub type of testing, for example exploratory test-
ing or regression testing.

Automated database testing

Database related issues were only identified in the more gen-
eral bug taxonomy, since the BugsJS taxonomy does not
cover a system that includes databases. However, they is
certainly a category of bugs that can be automated. With
increasing data complexities, heterogeneous environments
and data sizes in terabytes, it is really difficult to form a
testing strategy based on manual testing. In these cases,
test automation can help perform data validation, schema
verification, database health check, security checks, etc. It
helps in performing the right data checks in optimum time-
frame and budget. However, to ensure there are no database
crashes, failovers, broken insertions or deletions, one needs
to create a sound database test automation strategy. This
can be achieved by following the right steps.

Here’s are the 8 steps to performing automation database
testing accurately :

1. Identification of Scope The first thing is to identify
what needs to be covered in database testing, what can
be excluded, and which all data sets are impacting the
application performance most.

2. Test Script Preparation The next step is to prepare
the test scripts which requires one to grab needful SQL
queries to be executed, identify conditional flows and
prepare automation scripts.

3. Test Case Identification This step is to identify the
priority test cases to carry out data checks with query
to query or query to previously stored data.

4. Ezxecution In this step, one needs to execute scripts
that are prepared or tweak them to perform as ex-
pected.

5. Reporting Once the execution is over we can dig into
the detailed analytics and generate reports for man-
agers and developers to take necessary actions.

6. Post Ezxecution Monitoring Post the execution and re-
porting, monitor the test results to identify the trends
and make necessary tweaks and fixes to the test scripts.

7. Test Script Reuse Post the unit execution, you can fur-
ther reuse the test script for regression test execution.

8. Cross-checking with Ul Testing Report Lastly, cross-
check the database automation testing results with Ul
testing and affirm the findings made by two separate
channels to take further actions.

Frameworks such as Selanium can be extended to provid
automatic databases testing functionality. The authors in
report a significant reduction of 92% in the effort to ex-
ecute automated tests in databases when compared to man-
ual execution using such a tool.

Automated GUI testing

CTests V6 X

oATABRSE &
LOGIN BY XSTATE
war !

Figure 13: Example of the test status menu from automated
GUI testing application Cypress Eﬂ

GUI related issues were also not mentioned in the BugsJS
taxonomy since it only pertains to server side libraries, but
they are another type of bugs that can be automated. In
fact there already exists tools such as Selenium, Cypress,
AutolT, iMacros, Watir, EggPlant etc. to perform GUI

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

testing. After a command line interface (CLI) has been sub-
stituted with the graphical user interface, developers start
to face drawbacks. It turns out that the experience of us-
ing a graphical front-end is different depending on a device’s
screen dimension, operating system, browser of choice, and
so on. Graphical user interface testing allows development
teams to ensure that users can experience all the elements
of the website in the same way regardless of their platform
or browser. As studies demonstrated, "GUI testing is an ap-
plicable technology for automated system testing with effort
gains over manual system test practices” [7]. For example,
as seen in Figure authors in [13| showed that the ini-
tial effort to setup GUI testing automation is higher, but it
proves to more efficient over time.

Cumulative Testing Effort

50 -

40+

time (hours)
8
T

| — Manual testing, weekly
.......... ’ Selenium
------ EyeAutomate

1 10 20 30 40 50 60
SUT versions (weekly)

Figure 14: The cumulative testing effort over time for weekly
manual testing and Selenium and EyeAutomate |13]

However, there may still be errors in the visual represen-
tation of an application than automated test suites would
have difficulty catching. So while automation might cover
most cases, some edge defects may still need to be manually
checked.

Automated performance testing

A category of bugs which exists in both taxonmies and
that can be tested in an automated manner is Performance.
While the argument might be made that egregious perfor-
mance issues will almost always be caught by simply using
the application, it is still valuable to build an automated
performance testing infrastructure to benchmark the appli-
cation. Relying on subjective experience is not a consistent
enough approach to make sure the performance of software
stays satisfactory. In addition, the prevalence of mature
frameworks to benchmark code makes performance testing
easily automated. Well written tests should be agnostic of
the implementation, meaning little rewriting of tests is re-
quired. After refactoring a large part of the application,
automated benchmarking can verify the changes did not in-
troduce performance issues. Libraries for JavaScript such as
Benchmark.js as well as Webload for more general testing
can be used to easily write statistically significant bench-
marking tests. Automated performance testing checks the
speed, response time, reliability, resource usage, and scala-
bility of software under an expected workload by leveraging
automation [38]. Within performance testing, there are a

number of different sub categories. Load testing tests the
performance by increasing the load until it reaches a thresh-
old. Stress testing tests the performance and stability when
hardware resources aren’t sufficient. This type of testing is
also applicable to the similar network issues as defined in
the general taxonomy.

Automated regression testing

For verifying that changes to an application do not regress
the state of them, automated regression testing has proven
a valuable tool. As discussed by authors in [31], "since tests
ensure compliance to the behavior coded in them, deviations
from this behavior will cause affected tests to fail. This ca-
pability of tests is cited to increase developers’ confidence
to refactoring code”. Depending on the scope and coverage
of the tests, automated regression testing can catch program
anomaly issues as defined by the more generic taxonomy.
Here, the category concerns errors that arise from “enhanc-
ing existing source code”, such as refactoring activities, and
automated regression testing is a perfect match.

Automated code analysis

Automated code analysis tools such as ESLint are a common
tool to find possible code errors and deviations in the style
guidelines [35] of software projects. Often a part of the auto-
matic CI/CD workflow, code analysis tools can enforce code
consistency, catch common programming mistakes, and pre-
emptively prevent compile or runtime errors. For example,
for JavaScript ESLint can enforce rules to catch errors for
such bugs like variable initialization as defined in BugsJS.
Additionally, typos and missing returns are also able to be
detected by ESLint, and other code analysis tools. While,
for example, not all typos can be caught by such methods,
they represent an invaluable tool in a testing suite to en-
sure high quality code and are an obvious application for
automation.

Manual black box testing

The premise of black box testing is to test compliance of the
software with the requirements [28]. The code is therefore
not considered in this method. This means exact specifica-
tions and requirements are required for the software tester to
understand what the software should do. This leads it well
suited to a number of bug types as defined in the BugsJS tax-
onomy. Incomplete or incorrect outputs are are categories of
faults which are typically well defined in the feature require-
ments. Here, the defined requirements allow the tester to
interact with the feature and write test cases without look-
ing at the source code. As such, it is well suited to black box
testing. Additionally, multiple bug categories from the more
generic fault taxonomy suit this type of testing well. The
category Security issue is best done manually, since there
are many vulnerabilities that a human needs to verify [14].
Security demands are frequently well documented as part of
the software development cycle to pass legal requirements
such as data protection rules. With such well defined re-
quirements, it is a good fit for manual black box testing. By
an analogous argument, the category of bugs described as
Permission/Deprecation issue is best done manually as well.

Manual negative testing

Negative testing is using incorrect or invalid inputs to "to
stimulate error-handling of the system” as well as ”check

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

for appropriate responses” |15]. Therefore it is well suited
to the category of bugs defined as Error handling in the
BugsJS taxonomy. The idea is to induce error states in
the application through invalid inputs and to observe the
response. Exception handling using interrupts or signals or
seamless error detection and correction are possible to fix
missing error handling. However, to automate this type of
testing would be difficult, since the whole premise is to break
the software. With induced program crashes or undefined
behavior, such negative testing is best done manually.

Manual exploratory testing

As opposed to black box testing, exploratory testing does
not follow set guidelines. The goal is for testers to explore
the application and write test cases at the same time [23].
As such, for categories of bugs which pertain more to fea-
ture implementation and that do not have well defined re-
quirements, this type of testing is well suited. From the
BugsJS taxonomy categories of bugs such as incomplete and
incorrect data processing as well as missing and incorrect
input validation are best dealt with by exploratory testing.
Similarly, incomplete or incorrect configuration processing
and incorrect filepath are errors which occur in the imple-
mentation of a feature. Generic errors like incorrect regex
expressions, type conversions and incorrect loop statements
are very difficult to automate. Additionally, these bug cat-
egories necessitate understanding the inner workings of the
application, so black box testing is not adequate. The cate-
gory of bugs which the Not All Bugs Are the Same taxonomy
defines as Test Code-related issue is best handled by manual
exploratory testing. Writing a test suite to find the bugs in
the test suite is not economical, and therefore best done in
a manual fashion.

Lessons from taxonomies for automation

Though there are many tools available to automate almost
all genre of issues from performance to GUI issues, it is of-
ten the experience of the Test Engineers that choose to au-
tomate certain categories of bugs while testing others man-
ually. However, as demonstrated in this paper, more objec-
tive techniques are possible to be developed. From analyzing
two taxonomies, some commonalities have emerged. Perfor-
mance, a category of bugs in both, is a clear example were
extensive academic literature and industry practice has es-
tablished it as a clear application for automation. On the
other hand, faults pertaining to error handling are best han-
dle through manual negative testing. While taxonomies are
often most useful when they are specific to the project or
niche they pertain too, the lessons for which type of faults
can be best automated from this paper can be used as rec-
ommendations after the taxonomy is already in place. In
essence, it is best to create a taxonomy that is among oth-
ers; complete, deterministic, and repeatable as described in
Section Then, this research can be used as a starting
point to figure out which of the categories of faults are to be
automated. With a fault taxonomy and testing recommen-
dations for the different fault categories, a comprehensive
strategy for testing has thus been developed.

6. CONCLUSION

Software Testing is an art that requires years of experi-
ence and domain expertise to decide on a test plan strat-
egy to be adopted. There are situations where manual test-

ing might be superior than automated testing and again in-
stances where automated testing is better than manual test-
ing. However, there is never a clear cut answer. More than
often, a good test strategy has incorporates both manual
and automated tests. Both Manual and Automated testing
should be looked at as two tools in the toolbox of a mechanic.
It’s the clever discretion of the mechanic when and where to
use those tools to get the job done. We discuss both of those
tools here in this paper in detail. We've also talked about
the fault taxonomies encountered most often and referenced
two papers which talk about a general bug taxonomy and
then another which is more specific to Javascript. Finally we
have discussed which specific testing methods suits a fault
type best.

7. REFERENCES

[1] 8 Steps to Performing Automated Database Testing
Accurately.
https://www.testing-whiz.com /blog/8-steps-to-
performing-automated-database-testing-accurately.
Accessed on 2021-05-30.

[2] JavaScript End to End Testing Framework.

[3] S.S. R. Ahamed. Studying the feasibility and
importance of software testing: An analysis. CoRR,
abs/1001.4193, 2010.

[4] A. Avizienis, J. Laprie, B. Randell, and C. E.
Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEFEE Trans.
Dependable Secur. Comput., 1(1):11-33, 2004.

[5] V. R. Basili and R. W. Selby. Comparing the
effectiveness of software testing strategies. IEEE
Trans. Software Eng., 13(12):1278-1296, 1987.

[6] A. Bertolino. An overview of automated software
testing. J. Syst. Softw., 15(2):133-138, 1991.

[7] E. Bérjesson and R. Feldt. Automated system testing
using visual GUI testing tools: A comparative study in
industry. In G. Antoniol, A. Bertolino, and Y. Labiche,
editors, Fifth IEEE International Conference on
Software Testing, Verification and Validation, ICST
2012, Montreal, QC, Canada, April 17-21, 2012,
pages 350-359. IEEE Computer Society, 2012.

[8] G. Catolino, F. Palomba, A. Zaidman, and
F. Ferrucci. Not all bugs are the same:
Understanding, characterizing, and classifying bug
types. J. Syst. Softw., 152:165-181, 2019.

[9] M. Caulo and G. Scanniello. A taxonomy of metrics
for software fault prediction. In 46th Euromicro
Conference on Software Engineering and Advanced
Applications, SEAA 2020, Portoroz, Slovenia, August
26-28, 2020, pages 429-436. IEEE, 2020.

[10] K. S. M. Chan, J. Bishop, J. Steyn, L. Baresi, and
S. Guinea. A fault taxonomy for web service
composition. In E. D. Nitto and M. Ripeanu, editors,
Service-Oriented Computing - ICSOC 2007
Workshops, International Workshops, Vienna,
Austria, September 17, 2007, Revised Selected Papers,
volume 4907 of Lecture Notes in Computer Science,
pages 363-375. Springer, 2007.

[11] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J.
Halliday, D. S. Moebus, B. K. Ray, and M. Wong.
Orthogonal defect classification - A concept for
in-process measurements. IEEE Trans. Software Eng.,

Copyright © 2021 for this paper by its authors

[12]

[16]

[20]

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

18(11):943-956, 1992.

A. M. F. V. de Castro, G. Macedo, E. Collins, and

A. C. Dias-Neto. Extension of selenium RC tool to
perform automated testing with databases in web
applications. In H. Zhu, H. Muccini, and Z. Chen,
editors, 8th International Workshop on Automation of
Software Test, AST 2013, San Francisco, CA, USA,
May 18-19, 2013, pages 125-131. IEEE Computer
Society, 2013.

F. Dobslaw, R. Feldt, D. Michaelsson, P. Haar, F. G.
de Oliveira Neto, and R. Torkar. Estimating return on
investment for GUI test automation tools. CoRR,
abs/1907.03475, 2019.

M. Felderer, M. Biichler, M. Johns, A. D. Brucker,

R. Breu, and A. Pretschner. Security testing: A
survey. Adv. Comput., 101:1-51, 2016.

K. Fogen and H. Lichter. Combinatorial robustness
testing with negative test cases. In 19th IEEE
International Conference on Software Quality,
Reliability and Security, QRS 2019, Sofia, Bulgaria,
July 22-26, 2019, pages 34-45. IEEE, 2019.

B. G. Freimut, C. Denger, and M. Ketterer. An
industrial case study of implementing and validating
defect classification for process improvement and
quality management. In 11th IEEE International
Symposium on Software Metrics (METRICS 2005),
19-22 September 2005, Como Italy, page 19. IEEE
Computer Society, 2005.

D. J. Garney. A software structure for testing a
complex product with a minicomputer. In A. K.
Hawkes, editor, Proceedings of the 26th ACM annual
conference, ACM 1971, USA, 1971, pages 191-196.
ACM, 1971.

D. Gelperin and B. Hetzel. The growth of software
testing. Commun. ACM, 31(6):687-695, 1988.

P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian,
A. Beszédes, R. Ferenc, and A. Mesbah. Bugsjs: a
benchmark of javascript bugs. In 12th IEEE
Conference on Software Testing, Validation and
Verification, ICST 2019, Xi’an, China, April 22-27,
2019, pages 90-101. IEEE, 2019.

Q. Hanam, F. S. D. M. Brito, and A. Mesbah.
Discovering bug patterns in javascript. In

T. Zimmermann, J. Cleland-Huang, and Z. Su,
editors, Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November
18-18, 2016, pages 144-156. ACM, 2016.

D. Hovemeyer and W. Pugh. Finding bugs is easy.
ACM SIGPLAN Notices, 39(12):92-106, 2004.

N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio,
A. Stocco, and P. Tonella. Taxonomy of real faults in
deep learning systems. CoRR, abs/1910.11015, 2019.
J. Itkonen and K. Rautiainen. Exploratory testing: a
multiple case study. In 2005 International Symposium
on Empirical Software Engineering (ISESE 2005),
17-18 November 2005, Noosa Heads, Australia, pages
84-93. IEEE Computer Society, 2005.

E. Kinsbruner. Manual Testing vs. Automated Testing
| by Perforce.

M. Lackovic, D. Talia, R. Tolosana-Calasanz, J. A.
Banares, and O. F. Rana. A taxonomy for the analysis

[26]

27]

28]

29]

30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

of scientific workflow faults. In 15th IEEE
International Conference on Computational Science
and Engineering, CSE 2010, Hong Kong, China,
December 11-18, 2010, pages 398-403. IEEE
Computer Society, 2010.

D. L. Lough. A taxonomy of computer attacks with
applications to wireless networks, 2001.

L. Mariani. A fault taxonomy for component-based
software. Electron. Notes Theor. Comput. Sci.,
82(6):55-65, 2003.

L. Mariani, M. Pezze, and D. Zuddas. Recent
advances in automatic black-box testing. Adv.
Comput., 99:157-193, 2015.

J. D. McGregor. An overview of testing. J. Object
Oriented Program., 9(8):5-9, 1997.

A. Nikanjam, M. M. Morovati, F. Khomh, and H. B.
Braiek. Faults in deep reinforcement learning
programs: A taxonomy and A detection approach.
CoRR, abs/2101.00135, 2021.

C. Oezbek. Introducing automated regression testing
in open source projects. CoRR, abs/1001.0683, 2010.
M. Sanchez-Gordén, L. Rijal, and R. C. Palacios.
Beyond technical skills in software testing: Automated
versus manual testing. In ICSE ’20: 42nd
International Conference on Software Engineering,
Workshops, Seoul, Republic of Korea, 27 June - 19
July, 2020, pages 161-164. ACM, 2020.

O. Taipale, J. Kasurinen, K. Karhu, and

K. Smolander. Trade-off between automated and
manual software testing. Int. J. Syst. Assur. Eng.
Manayg., 2(2):114-125, 2011.

O. Tal. Software dependability demonstration for
safety-critical military avionics systems by statistical
testing. PhD thesis, Nottingham Trent University, UK,
1999.

K. F. Témasdéttir, M. F. Aniche, and A. van
Deursen. The adoption of javascript linters in practice:
A case study on eslint. IEEE Trans. Software Eng.,
46(8):863-891, 2020.

M. Utting, A. Pretschner, and B. Legeard. A
taxonomy of model-based testing approaches. Softw.
Test. Verification Reliab., 22(5):297-312, 2012.

M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella,
and W. M. Hasling. Applying model-based testing to
healthcare products: preliminary experiences. In

W. Schifer, M. B. Dwyer, and V. Gruhn, editors, 30th
International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008,
pages 669-672. ACM, 2008.

E. J. Weyuker and F. I. Vokolos. Experience with
performance testing of software systems: Issues, an
approach, and case study. IEEE Trans. Software Eng.,
26(12):1147-1156, 2000.

M. Young and R. N. Taylor. Rethinking the taxonomy
of fault detection techniques. In L. E. Druffel,

D. Fairley, and D. Bjgrner, editors, Proceedings of the
11th International Conference on Software
Engineering, Pittsburg, PA, USA, May 15-18, 1989,
pages 53-62. IEEE Computer Society / ACM Press,
1989.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Towards Aspects of Cloud Computing

Ricky Jonathan
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

ricky.jonathan@rwth-aachen.de

ABSTRACT

Cloud computing is a concept that allows users to utilize
— instead of their own computing resources — on-demand
computing resources offered by cloud provider through the
internet. This has been widely used because of its potential
to improve business operation through cost efficiency, easy
maintenance, high degree of scalability, etc. However, lots of
aspects or terms in the context of cloud computing remain
unclustered and are still not well-defined. This may lead to
difficulty to understand the whole concepts in and of cloud
computing. Moreover, this leads to other difficulty to iden-
tify and tackle some problems related to cloud services, as
well as to measure the Quality of Service (QoS) guarantee of
cloud services accurately. This paper contributes to create
an approach that abstracts the aspects of cloud computing
and elaborate the importance of those aspects. In this way,
cloud computing aspects can be generalized into the basic
must-have cloud service requirements and would be easier
to comprehend.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords

Cloud computing, cloud dimension, cloud service require-
ments

1. INTRODUCTION
1.1 Background

Cloud Computing has been well-known for establishing
virtualized on-demand services (e.g., storage, computing ser-
vice, database) to its users. The appearance of cloud com-
puting was concerned with the limitation by data center to
flexibly scale in/out in order to deal with evolving business
challenges. The usage of classic data center has a great risk
of over-provisioning and therefore causes additional cost by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2018/19 RWTH Aachen University, Germany.

Joana Schmidt
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

joana.schmidt@rwth-aachen.de

companies. Furthermore, companies using server on data
center also need to hire IT staff to manage and secure the
IT infrastructure. As cloud computing usage is based on
pay-per-use service and provides virtualized IT infrastruc-
ture, it has been preferred nowadays to reach economies of
scale. As depicted in Figure 1, cost efficiency has become
the reason for the use of cloud services. For instance, cloud
storage (e.g., Dropbox) is one of the biggest advantages pro-
vided by cloud service provider.

Cloud computing benefits

Flexibility
Agility

Better IT resource management and busaness focus

i

—

[———

[———
emciency (SN

[

b

S

|

|

High reliability /a

Rapid developments, deployments and

Better performance
Greater mohbility
Improved automation, supportand management

Impraved

Gireen-IT

Highast accumenca

Figure 1: Cloud computing benefits [6]

1.1.1 Characteristic of Cloud Computing

In order to have better understanding about cloud com-
puting, we specify the essential characteristics of cloud com-
puting introduced by NIST (National Institute of Standard
and Technology) [14]: On-Demand self-service, broad net-
work access, resource pooling, rapid elasticity, and measured
service. On-Demand self-service: Cloud service provision-
ing is highly automated and customers do not need human
interaction with each service provider. Broad network ac-
cess: Service are reachable over the internet. Resource pool-
ing: Computing resources are pooled to serve multiple con-
sumers. Rapid elasticity: Services can be elastically pro-
visioned to scale according to demand. Measured service:
Cloud systems automatically control and optimize resource
use by leveraging a metering capability.

1.1.2 Deployment Models of Cloud

Furthermore, depending on the relationship among cloud
provider and users, the deployment models of cloud com-
prise of public cloud, private cloud, community cloud, and
hybrid cloud [14] [23]. Public cloud: The term public refers

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

to open service for public. Thus, universities, companies,
or government may benefit from the usage of public cloud.
Private cloud: This type of cloud allows only exclusive use
of the infrastructure to a certain organization. This type
of cloud is reasoned by privacy issues. Community cloud:
The use of the service is only allowed for specific commu-
nities that have the same concerns. For example, business
organizations that working together on the same business
goals may use community cloud. Hybrid cloud: This is the
mixture of two or more cloud service types (public, private,
or community). This can be useful, as an organization is
able to keep privacy of sensitive data on private cloud, while
application with less compliance requirements could be pro-
vided via public cloud to reach economies of scale.

1.1.3 Service Models of Cloud

NIST also categorizes cloud computing into 3 service
delivery types such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service

(SaasS).

Access Control

Access Control Access Control

Application

Application

Data

—
Customers have control
—

Figure 2: Customers’ control over different layers in different
service models |[§]

TaaS: a cloud service provider (CSP) delivers IT infras-
tructure including server, network, storage, and operating
system. Cloud servers are delivered through virtualization
via API, granting access for the clients to the infrastruc-
ture. However, users need to maintain hardware and soft-
ware on their own, including the operating system, runtime,
application, security, database, etc. Hence, IaaS is regarded
as self-service business model in cloud computing. Compa-
nies that are ready to invest the time on maintaining the
abovementioned aspects can benefit from IaaS, as IaaS is
known by its high degree of flexibility (independent of plat-
form) and it also allows clients to have complete control of
the infrastructure, so that clients can specify them based on
their needs. The other advantages are that clients, especially
startup companies, could avoid spending money on buying
the ready software product. In the other hand, the down-
side is additional work for managing the infrastructure. IaaS
clients need to train the staff to manage all the resources, as
they are responsible for managing the infrastructure. The
most prominent example of IaaS is Amazon Elastic Compute
Cloud (Amazon EC2), introduced in 2006.

PaaS: a CSP not only delivers, but it also manages cloud
environment including server, storage, network, operating
system, runtime, database, and security. In other words,

PaaS gives the ready-to-use platform for the clients to create
an application. In this way PaaS enables users to customize
their own software application without caring about the un-
derlying infrastructure. The other advantages is that PaaS
also provides services to test and deploy the customized ap-
plication on its platform. However, PaaS has less flexibility
than IaaS in terms of scale in/out because PaaS has no con-
trol over the underlying infrastructure. Microsoft Azure and
Google App Engine are examples of big PaaS-providers.

SaaS: a CSP provides complete software product where
services are hosted from remote server. Users can benefit
from this type of service, as they do not need to spend time
and effort to maintain software update, as it is managed
by the provider. However, the drawbacks are lack of control
over data, low degree of software customization, and possible
downtime due to, for example, system failure or software
upgrades. Typical example of SaaS is Google Apps.

There exists more advantages and disadvantages which
emerge generally as characteristics of cloud computing ser-
vices such as high efficiency, measurable service delivery,
pay-as-you-go services, security issues, possibility of data
loss, vendor lock-in, etc. In this era, cloud service has al-
ready been used all over the world, but concerns about pri-
vacy of data stored in cloud are growing rapidly and need
to be addressed accordingly.

1.2 Motivation

Cloud computing has wide range of functionality and there-
fore there exists lots of aspects that need to be covered. For
example, an end-user can concern the capacity storage and
data confidentiality of a cloud service. Another example
could be a cloud provider who concerns about how efficient
the services are automatedly provisioned to the user. As a
matter of fact, lots of aspects of cloud computing remain
unclustered and this leads to difficulty in measuring a use of
cloud computing services. Moreover, this also can be shown
by Fehling’s dissertation , which tells the existence of
hundreds of patterns created in the context of cloud com-
puting in order to tailor the type of cloud services according
to each customers’ needs. This means that there may exist
extremely much problem-solution pairs needed to be discov-
ered and it is believed that there may exist even much more
out there in the future. This paper contributes to create an
approach to elaborate the aspects of cloud computing more
thoroughly.

2. RELATED WORK

A cloud provider has responsibility to meet its client re-
quest. Therefore, several aspects of cloud computing must
be taken into account in order to comply with standard
requirements, before proceeding with specific details from
clients. Requirements engineering processes are activity that
deal with determination, documentation, validation, and man-
agement of the requirements. In the paper introduced by
Zalasar et al. , there exists five dimensions of cloud re-
quirements engineering, consisting of contractual, financial,
compliance, operational, and technical dimension.

Contractual dimension deals with the determination of
cloud Service Level Agreement (SLA) between cloud provider
and client, consisting of agreement that certain services with
certain expected level of service delivery must be provided
to the client. In general, the most important components of
SLA between both parties are including contract duration,

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

purpose of contract, pricing model, document approvals, and
responsibilites of actors involved. Furthermore, a cloud SLA
should contain not only types of services, but also the qual-
ity of service (QoS) that would be provided, such as perfor-
mance, reliability, availability, cost, etc. There also exists
penalties in a complete SLA if the clients’ requirements are
not met. Moreover, in order to measure the QoS accurately,
metrics must be taken into account as key performance in-
dicator (KPI) of a cloud provider |[3|. Financial dimension
refers to problem related to pricing models, accounting and
billing. As cloud usage is considered as pay-per-use service,
where people pay proportionally to the amount of resource
or time they used, the financial aspect is becoming a focus
of both providers and clients. Compliance dimension deals
with legal and security issues by providing and using cloud
services. In order to prevent malicious attacks or fraud,
cloud provider should be willing to proceed with security
protocol, such as by being transparent about the geograph-
ical location where the data is stored, and also by proving
that the location is formally permitted by governance poli-
cies and agreed upon the contract. Operational dimension
is essential for keep the service running well and always re-
silient given a sudden change or an unexpected failure by
the delivery of service. Technical dimension sets functional
and non-functional requirements of cloud services. The func-
tional properties are regarded as the service that will be pro-
vided, while the non-functional properties are related to the
Quality of Service, such as performance, reliability, availabil-
ity, cost, etc . All these dimensions classify specific re-
quirements of cloud services, that subject to a certain cloud
service agreement.

Service Dimensions

l Contractual |

l Financial | l Compliance | l Operational | l Technical |

Essential Characteristics

On-Demand
Self-Service

Broad Network Rapid Measured

Access Elasticity Service

Resource Pooling

Service Models

Software as a Platform as a Infrastructure

Service Service as a Service
Deployment Models
e~ ——— e e,
— Public ~3 g—Ptivﬂe ~, % Community :,/_)
Qx_..._ P — A A
- =F e
- B =
= Hybrid — —
= e

Figure 3: Extension of the NIST cloud definition framework

Another dimension classification of cloud computing is
presented by Repschlaeger et al. [16] . In his paper he pro-
poses cloud computing dimension based on user’s objective.
These are, as shown on Figure 5, consisting of service and
cloud management; I'T security and compliance; reliability
and trustworthiness; scope and performance; costs; and flex-

Cloud Business Model Framework

Business Model

Platform-as-a-Service

Infrastructure

[storage | [__Computing | [Business | Development Saas

On-demand WS

instanceOf instanceOf instanceOf instanceOf instanceOf instanceOf

\ \ | | | |

‘ Amazon ‘ [Sun \ [Salesforce | [MmphLabs] | SAP | [Xignite

\]] 1] 1 | 1

|
|

Figure 4: Cloud business model framework

ibility. Each target dimension represents a general objective
which customers pursues and which characterizes his cloud
or IT strategy. The service and cloud management provides
functions for cloud service operations such as for controlling
and monitoring service performance. Then, IT security and
compliance guarantee shielding and protection of data and
applications in cloud against unauthorized access. Another
target dimension - reliability and trustworthiness - ensures
availability of services and that the service level corresponds
to the conditions of Service Level Agreements (SLAs). An-
other target dimension scope and performance deals with
purpose of service as well as specification of QoS guarantee.
The target dimension costs contains pricing and billing mod-
els as well as payment methods, which are agreed upon SLA.
Flexibility as another target dimension considers scalability
aspect and adaptability to changing capacity requirements.

The last model for cloud computing we will point out,
is introduced by Weinhardt et al. [21]. In his paper he
presents a framework for business models in cloud, which
can be categorized in infrastructure, platform and applica-
tion as shown in Figure 4. This can be regarded as the im-
plementation of what the background section of this paper
above have elaborated about TaaS, PaaS, and SaaS.

However, an approach to model a process of offering and
acquiring of cloud service has never come into discussion yet.
This modelling approach is essential for the readers before
getting familiarized with the aspects of cloud computing.
The main contributions of the paper is to model a use case
diagram specifying activities done by both user and cloud
provider. Then, we elaborate how the aspects of cloud com-
puting are covered along with the interactions between user
and cloud provider.

3. AN APPROACH TO ABSTRACTION OF
CLOUD COMPUTING

We present a use case diagram which shows the inter-
connection between user and cloud provider. This helps to
understand the flow of offering and acquiring a cloud service
by cloud provider and user respectively, shown in Figure 6.
Then, the table 1 shown below defines the use case actions.

Some companies have discovered positive impacts of cloud

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engin

eering & New Trends in Software Construction

Targetdimension: Flexibility Target dimension: Reliability and Trustworthiness Target dimension: IT Security & Compliance
& degree reliability rnsiworiidness data center security network security
hardware ection
standardization resource provisioning disaster recovery :l:;"hi:u p;'u;'iui.- sEcurity non: scurity
service dynamics redundancy redundancy service auditing CZls ‘opportunities
. 1 L) =0 ¥
joning ontract IT compliance
provisioning fme ° length _
setup time scalability data security datacenier location
Eability and Resources
instance customizing data privacy BoCess security
Target dimension: Scope & Per
service characteristics. hardware add-on services performance
instance type network access server fype ge 7t computing time
service configuration processortyps ‘"m:::,md = — 1
netwark service instance capacity

Target dimension: Service & Clowd Management

Target dimension: Costs

service et porial service cperatians. price class payment ‘service charging
contactand consulting services usability wlm'mwb_ it price leved time of payment assessment basis costtransparency
sell serv
support cusiomizing cpticns price resilience payment method harg
reporting and chargingtype UL....:E,
moniboring price fransparency

Figure 5: Target dimension of cloud computing [16]

computing on their business processes. Nevertheless, they
have to estimate the cost for developing and deploying appli-
cation in a cloud offered by a provider, including IT infras-
tructure, data centre equipment, software licenses, software
maintenance, etc. In some cases it is even more reasonable to
build on premise-infrastructure at one time payment rather
than to make use of cloud service, e.g., to avoid long-term
costs. Cloud computing has several downsides on its own,
such as cloud platform interoperability, security issues, and
service availability [4]. Hence, enterprises have to make a
decision regarding the cloud adoption, whether to buy or
lease the IT services, by considering the benefits, risks, and
also financial factors.

Moreover, companies, as a user, plan the details of ser-
vice they are willing to have. The fundamental ingredient
for customer to obtain a suitable service is the type of ser-
vice such as SaaS, PaaS, or laaS, because any later service
requirements (e.g., cost) could not be clearly defined with-
out it. For example, if a project is considered as a short-
term project that would not cause big expense, the com-
pany should invest such an expense to SaaS provider as the
company does not have to take another effort and additional
cost for maintaining hardware and software, which is unnec-
essary for short-term project.

Then, comparing existing cloud providers is essential to
get the “product knowledge” offered by them. A key ele-
ment for comparing those is Service Level Agreement (SLA).
This is a service-based agreement, which proposed by cloud
provider to all customers using the service. Users having the
service requirements read the policy and terms of use and
analyse the QoS guarantee stated in Service Level Objec-
tive (SLO). Then, they need to know which KPIs a cloud
provider uses to measure the QoS, before finally consider if
such service requirements are possible to be fulfilled by cloud
provider. However, the complex environment of cloud arises
the challenge to precise the QoS guarantee and the cause
of possible service interruptions. Additionally, Figure 7 [5]
simplifies the concept of SLA. QoS is considered as Non-

Internet J

Decide to buy/lease
service

User Compare & Select <_<1f]'§‘_u_ﬂ_9_>j Read SLA, QoS Cloud Provider
provider guarantees, efc

See pricing modal

Infrasiructurs Provider Servics Provider

Figure 6: Use-Case Diagram: Offering and Acquiring Cloud
Service

Functional Requirements (NFR) and KPI is considered as
Non-Functional Properties (NFP).

As shown in Figure 8 [3], both functional and non func-
tional properties reside at each cloud service model. Func-
tional properties are merely about what kind of service a
cloud provider give to a user and therefore easy to be defined.
For instance, Amazon EC2, as a IaaS cloud provider, pro-
vides several instance types (e.g., Mac instances) for users
to develop, build, and test a software on those instances.
Amazon RDS PaaS cloud allows user to schedule queries,
operate, easily scale their relational database, and backing
it up in the cloud. As SaaS cloud provider, Google Apps
provided Google Drive that allows user to back up, update,
and share documents.

Non-functional properties are instruments to measure ser-
vice delivery performance. These are related to cost ef-
ficiency, availability, security, and many other KPIs. De-
pends on what kind of service a cloud provider delivers
(e.g., database, storage, microservices, etc), only some cer-
tain amount of KPIs are picked for the performance target.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Table 1: Use Case Definition

Action

Definition

Decide to buy/lease service

User makes cost estimation, benefit, risk, and opportunity cost for developing
and deploying application in an offered cloud by provider for a certain period
of time. A paper that provides modelling tool to support this decision making
of acquiring IaaS clouds is presented by Khajeh-Hosseini et al. . The
authors consider technical, financial, and compliance benefits and risks in the
development of the tool. This action is often accompanied with comparing
different cloud providers and - not limited to - deployment options as well as
usage scenarios.

Select service

User considers the best usage scenario based on their actual needs. As stated in
the introduction section, there exists 3 main service models of cloud, namely
IaaS, PaaS, and SaaS. Cloud provider introduces the service model that it
offers.

Compare and select provider

User considers all important aspects, including cost, QoS guarantee, secu-
rity, legal, etc, and finally select the most suitable provider. Cloud provider
presents Service Level Agreement (SLA), which is of main interest for users,
as it contains all information regarding agreement and service specification.

See pricing model

Cloud provider creates user-centric pricing model that enables usage optimiza-
tion of cloud service for reasonable cost. The basic pricing model used in cloud
service pay-per-use and subscription-based pricing. User takes pricing model

into account.

Wang et al.
decision process to maximize the revenue of cloud service providers.

propose a pricing strategy using Markov

Policy =~ SLA
NFR ~ SLO
| |
NFP ~ KPI

Figure 7: SLA, SLO, KPI

This should be clearly stated in cloud SLA to keep the trans-
parency of QoS guarantee for customers.

Finally, pricing model affects customers’ decision on choos-
ing cloud service at reasonable cost. In cloud computing,
pay-per-use (e.g., Amazon EC2, price per hour) and sub-
scription based pricing (e.g., Adobe Creative Cloud, monthly
subscription fee) are the standard choice that cloud providers
use ﬂgﬂ Cloud providers offer not only attractive pricing
scheme, but also consider investment costs, maintenance
cost, QoS guarantee, as well as supply and demand be-
haviour on market. In this way, cloud provider may have
a beneficial and user-centric service offer. This leads to a
fact that costs play a major role by both parties.

3.1 Relation of Use Case to Cloud Computing
Dimension
The use case diagram models a process that covers all the
aspects mentioned by Zalasar et al. . ‘We present the
terms of cloud computing related to those aspects below in
the next section.

Functional
Properties

subject
Mon-functional to SLO
Properties
Functional
Properties
subject
Cloud Service PaaS Nom-functional fo SLO
Properties
Functional
Properties
subject
to SLO
Mon-functional
Properties

Figure 8: Requirement of cloud service at each service model

3

Financial dimension is covered by users foreseeing the cost
efficiency, cost, and risk before acquiring (buy or lease) cloud
service. The objective of providers is that to provide users
with services that can help them to reach economies of scale.
Policies and terms of use, covering the compliance dimen-
sion, are described in cloud SLA to ensure security protocol
in service delivering process in certain period of time agreed
upon the contract. Nowadays, cloud providers tend to use
different techniques of cryptography such as block cipher,
stream cipher, hash function, etc [2] in order to mitigate
risk of data leakage. However, there still exists threat that
cloud providers still may, due to full control of services, have
their security being compromised if they lose their control
over data. For example, Amazon give a statement in its
cloud SLA that they are not responsible for any data cor-
ruption, unauthorized use, or any other related terms that
bring harm to the application [12].

Operational dimension takes care of responsibilities of all
parties involved in cloud SLA. Its existence to ensure that

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Cloud Dimensions

Contractual

Costs l
l l l network
ayment " cost security
pay! price officiency
class

data

rZing
pecun = IT compliance
pay-per- ecorg?mies data security
it scale data privacy

data integrity

data trust

Technical]

Service&Cloud- l Scope&Performance

Management Reliability
and e
i % Trustworthiness Flexibility
y web
service portal
operations interoperability &
portability

Operational

incident
and service
Management

Figure 9: Differentiation of Cloud Computing Dimensions

the process of service delivery runs as agreed upon the con-
tract. This consists of service response, service priority,
and service management. The prominent example could
be measurement of service availability using Mean-Time-To-
Recover (MTTR) or Mean-Time-Between-Failure (MTBF).
MTTR measures the time needed by a system after down-
time to re-operate according to the service specification,
while MTBF specifies the average time of failures of service
in a normal operation. Therefore, the less amount of MTTR
or MTBF means the better process delivery. Finally, techni-
cal dimension is covered by users comparing result specifica-
tion offered by cloud provider, e.g., how a provider chooses
metrics to evaluate the target fulfilment. Non-functional
properties measured by KPI are the key element to figure
out the efficient solution.

Contractual dimension ensures good communication be-
tween user and cloud providers. To recap, this dimension
is related to all aspect of cloud SLA such as offered service
model (IaaS, PaaS, or SaaS), pricing model, service man-
agement, service response, availability, metrics, responsibil-
ities of actors, etc. We believe that financial, compliance,
operational, and technical dimension are a part of contrac-
tual dimension, as all of them are essential for establishing
cloud SLA and the fact that contractual dimension is the
SLA itself that holds those four dimensions together. Thus,
comparing cloud providers by analyzing the content of cloud
SLA would also consider all the abovementioned dimension
of cloud computing. However, it is important to know that
there are a bunch of terms derived from each dimension level.

3.2 Refinement of Cloud Computing Dimen-
sion

In Figure 9 we try to generalize the cloud computing terms
from each cloud dimension into the most basic must-have
cloud service requirements. For the base of our sketch, we
use the classification of cloud dimensions from Zalasar et al.
[24], consisting of contractual, financial, compliance secu-
rity, operational and technical dimension. All of these di-

mension were refined by related aspects of cloud computing
dimension, which are provided by Repschlaeger et al. [16]
122].

The financial dimension is responsible for financial and
economic aspects of cloud computing. Costs play a ma-
jor role there, because cloud computing offers monetary ad-
vantages, for example small capital commitment or that
the costs for the resources required are lower. However,
providers of cloud services use different pricing and -billing
models. Pay-per-use can be cited as an example of a pric-
ing model, with this method the customer has to pay for
the services used by him either fully or partially. Another
aspect of the costs is the payment, which includes the pay-
ment method consisting of credit card or bank transfer and
also the time of payment, i.e. whether the costs for the
services are debited in advance or afterwards. Price class is
another criterion that influences the costs. This includes the
price level, price resilience and price transparency, i.e. which
information about price options or resilience are available.
A strong benefit of cloud computing is the cost efficiency
that also contributes to the costs in the financial dimension.
Therefore, cloud computing services offer cost advantages,
for example the reduction of investment and operating costs.
Besides, economies of scale are another significant advan-
tage of cloud computing, because of that larger providers
have lower costs for delivering a service. Moreover, cloud
provider can deliver better services due to the more reliable
infrastructure and availability of resources. Furthermore,
they provide deeper expertise for customers and also make
use of Green IT, i.e. combined operations that can reduce
power consumption [13].

The compliance security dimension is responsible for legal
and regulatory aspects of cloud services and their restric-
tions. Data and applications that are utilized in the cloud
need to correspond to compliance guidelines and be secured
against unauthorized access. IT-compliance is one aspect
of this dimension that includes data security, data privacy,
data integrity and data trust. The main goal in data se-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

curity is the protection of sensitive data. To ensure this,
different technique for example Encryption technique were
often used to secure outsourced data. Data privacy is one
security challenge of cloud computing. It can be assured by
the cloud services preventing opponents from inferring the
user’s behavior, when they visit the sensitive data, i.e. it is
not a direct data loss. Data integrity guarantees the cus-
tomer reliability and uniformity of data, so that the data of
the customer can not be changed or manipulated without the
customer’s approval. If somebody has unauthorized access
to the stored data of the customer, then the data integrity is
at risk. Therefore, it is important to insure data integrity for
avoiding data corruption and data crash. Data trust is also
an essential aspect between the customers and cloud service
providers. Because the technology and control of the data
is non-transparent for the customers, trust is only based on
the security which the provider conveys to the customers.
In order to build trust in the relation between customer and
provider, reputation, isolating data without contravening in-
tegrity and the privacy issues as well as transparency of data
are important measures [18]. Another aspect of this dimen-
sion is the data center security which is not related to the
customer but only to the provider. The provided security
of the data center includes for example building protection
or virus protection. Furthermore, network security can be
grasped as a criterion that describes the security of the pro-
vided infrastructure and also the communication protection.

The operational dimension is responsible for ensuring that
the cloud services run according to the agreed contract. The
main components of it are service response, service priority,
and service management. The service cloud management
is authoritative for appropriate cloud service operations by
providing corresponding features of the provider, the main
focus is on the requirements and responsibilities by the cus-
tomer. It consists for example of offered support for access
control and of the possibility to design the web interface indi-
vidually. Incident service management is one part of service
cloud management that includes appropriate support under
certain circumstances as well as customer service. Further-
more, service operations are essential for the service cloud
management, because they control and manage cloud ser-
vices by offering monitoring and- reporting functionalities.
In addition, their existence is necessary to update and re-
place software and hardware and also for maintenance. Web
portal as another criterion of service cloud management
deals with the usability of the surface of the web portal and
also with functions for the customer to adapt this surface by
providing customizing options.

The technical dimension is responsible for functional and
measurable attributes of cloud service. It can be divided
into functional and non-functional requirements of cloud ser-
vices, where functional properties are related to the service
that will be provided and non-functional properties to the
Quality of Service. One basic requirement includes scope
performance, i.e. the scope of services and the performance
of a cloud provider. It covers aspects of the hardware, so
which processor type or server type is used as well as as-
pects of service characteristics like available operating sys-
tems, network access or service configuration. Furthermore,
add-on services are part of the scope of services for instance
storage service, database service or messaging service which
are all additionally bookable. The criterion performance is
related to the maximum limit of instance capacity and to

the required computing time as well as connection band-
width, i.e. transfer volumes and transfer speed. Another
non-functional requirement describes the flexibility of cloud
computing services, which implies adaptability to changing
capacity requirements.

Consequently, resources are allocated and released as re-
quired and the provisioning time is reduced. Moreover, in-
teroperability and portability is a significant feature of flex-
ibility, because nowadays, there is a wide variety of digital
media which are distributed over different networks. There-
fore, a standardization is important to guarantee interoper-
ability between clouds as well as transcoding of media con-
tents [1]. On this account media cloud enables the cus-
tomer to manage media content transparently, even across
users domains and Inter-cloud computing, i.e. communi-
cation between two or more clouds, is required to identify
services and to create more services in order for better provi-
sioning of services in dealing with multimedia [1]. To meet
the different requirements of the users, one cloud needs to
interact with another cloud or multiple clouds, what creates
‘Cloud of Clouds’ (CoC) allowing direct data communica-
tion [1]. The prerequisites required for this are the stan-
dardization of cloud interoperability whereby service level
agreement (SLA) has to be integrated there as well as an
Inter-cloud Protocol [1]. Portability of cloud services is
also of great relevance in cloud computing, because it allows
the users to transfer their data and application from one
platform to another [10]. This can be the case, e.g. when
the user wants to change from private cloud to hybrid cloud
|10]. The migration of the data to another platform and net-
worked work in the cloud is required to ensure portability
|10]. The last non-functional requirement of technical di-
mension will be reliability and trustworthiness, which guar-
antee availability and operational readiness of cloud services
according to the Service Level Agreements (SLAs). In de-
tail, reliability refers to the compliance with provider’s ser-
vice commitments and is ensured by disaster recovery plan,
redundancy system that means different data centers and
network connections from different internet service providers
as well as safety measures for personal data. The criterion
of trustworthiness includes service transparency as well as
the provider profile and provider reporting which is gained
through his business activities, experience in the market and
auditing.

In summary, it can be said that this refinement of cloud
computing aspects is not the only possibility. Because the
limits of the dimensions are fluid, which is why a clear as-
signment of an aspect to a dimension does not have to be
unambiguous.

4. DISCUSSION

Although the identified use case diagram can be used to
model the interaction between cloud user and provider, this
still has drawbacks regarding the abstraction of cloud com-
puting aspects. It contains only, as a use case diagram
in general, the actors involved with specific roles and the
actions performed by actors. However, there exists many
possible scenarios which can not be described by a single
use case diagram. For instance, this does not explain what
would happen while using the cloud service if a user realize
to have miscalculated its own optimal target requirements
and consider that the service would not suffice to fulfill the
revised requirements. A possible scenario would be to switch

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

a new contract and to pay the penalties for breaking a dura-
tion contract, or to re-analyze and to maintain the require-
ments so that the cloud service currently used could at least
give a certain value to the user by the end of the contract,
although the optimal requirements are not met at all. This
creates a hole in describing the whole cloud computing as-
pects. In addition, the use case diagram — unlike an activity
diagram — can not create a workflow that put the actions
into the sequences that could be more comprehensive for
the readers.

We also believe that the refinement and classification of
cloud computing aspects is not simple because of the fact
that each cloud user has its own targets and ways to consider
the requirements for an optimal delivery of service. Figure
9 is the generalization of the whole cloud computing aspects
that restricts the terms of cloud computing into the basic
must-have needs in the cloud service.

However, many of these cloud computing aspects are ex-
posed to dangers and face major challenges. Figure 10 shows
a list of the identified risks of cloud computing based on lit-
erature research @ It includes the risks of security, third
party vendors, management and control, laws and regula-
tion, portability and interoperability, disaster recovery, vir-
tualization risks, lack of standards and auditing, maturity
of technology and uncontrolled viable costs. The diagram
shows that security is the biggest cloud computing risk. The
user saves all of his or her sensitive data in the cloud, conse-
quently the cloud provider has to ensure that the personal
data is secured against use by third parties. One security
threat is data breach, i.e. when sensitive data is stolen by
unauthorized access or even by insider person. For instance,
a leak of financial information can damage large companies.
Furthermore, data loss is another security threat, because
the personal data as well as the data of the companies which
are stored in the cloud, can get lost for example by acciden-
tal deleting. In addition, the data can also be threatened by
employees by manipulating or leaking the data. The data
location also poses a further risk of security, because of that
the data should be stored in different location instead of
only in one place. Another risk is account hijacking which
means that hijackers get unauthorized access to credentials
in order to provide and manipulate sensitive data as well as
to enter in other’s transaction, because they can access all
of user’s services. Multi tenancy can be listed as a final risk
of security, i.e. users share many resources which can cause
interference as well as a riskier change management.

In figure 10 [@], it also can be shown that portability
and interoperability represent a great risk of cloud comput-
ing. Interoperability allows the user to run an application
on different platforms and portability guarantees that the
users can transfer their data and application from one plat-
form to another . One challenge of Inter-Cloud
Computing are ,,Heterogeneous Media Contents and Media
Transcoding® due to different services that are offered.
,Data/Media Sanitization* represents another challenge
of interoperability, because some service providers do not al-
low customers to save certain data in the cloud. Therefore,
the data must pass through a filter and be selected accord-
ingly. Furthermore, ,Heterogeneous Media Storage Tech-
nologies” [1] can also be seen as a challenge, since multime-
dia content consume a lot of storage space, it is essential to
develop procedures that increase the efficiency to store and
search data. In addition, if providers do not use the same

media storage technologies, it can result in a reduction in
efficiency when clouds communicate. Another risk of cloud
computing as shown in figure 10 is disaster recovery which
reduce enormous data loss by recovering information from a
backup server . There are some challenges such as data
storage due to the increased amount of data as well as failure
detection which should be able to identify failures quickly to
ensure a faster resolution so that the system downtime is re-
duced. Another challenge of disaster recovery is reliability,
which can be ensured by storing the data at several loca-
tions. Moreover, replication latency can be seen as an ad-
ditional problem, because disaster recovery mechanism are
dependent on backup replication techniques. There are two
different types of these techniques that can be divided into
synchronous and asynchronous. Synchronous backup repli-
cation has high costs and can affect system performance,
whereas asynchronous replication decrease the quality of dis-
aster recovery service. Furthermore, security poses another
challenge, because disaster recovery wants to protect data
from disasters . Although cloud computing has many
advantages, it can be seen that there are also many chal-
lenges that cloud computing has to face. Therefore, it is
essential to pursue objectives that will support the security
of data and minimize risks of cloud computing.

Cloud computing risks

Security
Third party vendoss {service providers)
Management and control
Laws and regulations { compliance)
Portability and interoperability
Disaster recovery
Virtualization risks
Lack of standands and auditing
Maturity of technology

Uncontrolled viable costs

Lawest accurrence

Highest occumence.

Figure 10: Cloud computing risks @]

5. CONCLUSION AND FUTURE WORK

Cloud computing aspects are the key for efficient usage of
a cloud service. Those are stated on Service Level Agree-
ment (SLA) to ensure the quality of the offered service.
However, the QoS guarantee is not always easy to mea-
sure by cloud customers under some circumstances, e.g.,
customers do not even know which aspects should be con-
sidered — this means that they are not sure if the offered
service level will meet their requirement — , or they are not
aware of the KPI chosen by the provider. In cloud com-
puting, only customers with clear definition of SLA metrics
can deal with the process of obtaining a suitable service at a
reasonable cost. In this paper, the interconnection between
cloud user and provider in the form of a use case diagram
are presented. Then, the important dimensions of cloud
computing were mapped to actions in the use case diagram.
In this way, the readers should have an idea which and why
cloud computing aspects in each dimension are essential. Fi-
nally, the computing aspects were restricted into the most
basic must-have aspects and established in Figure 9.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

As future work, other techniques of abstracting cloud com-
puting aspects can be done in order to elaborate the aspects
from different point of view. For example, instead of a use
case diagram, an activity diagram is also suitable to abstract
the process of the offering and acquiring the service. Activ-
ity diagram could describe the sequence of actions that per-
formed in the use case diagram above, so that the workflow
of cloud service is easier to understand at a first glance.

Moreover, an extension of cloud computing dimension is
still open for the research. The more dimension classification
exists, the easier cloud computing aspects can be mapped.
Another work could be the mapping of cloud computing as-
pects to cloud computing design patterns founded by hy-
perscalers like Google, Amazon, or Microsoft, which tailor
its types of cloud services according to its customers’ needs,
from private organization to public enterprises. In doing
so, the result of the work is about establishing the aspect
classification of cloud computing design patterns.

6. ACKNOWLEDGMENTS

We would like to thank Alex Sabau, as our supervisor, for
the time and effort given for reviewing and giving insights
to improve our paper.

7. REFERENCES

[1] M. Aazam and E.-N. Huh. Inter-cloud architecture
and media cloud storage design considerations. the
proceedings of Tth IEEE CLOUD, Anchorage, Alaska,
USA, 27, 2014.

[2] A. Albugmi, M. O. Alassafi, R. Walters, and G. Wills.
Data security in cloud computing. In 2016 Fifth
international conference on future generation
communication technologies (FGCT), pages 55-59.
IEEE, 2016.

[3] M. Alhamad, T. Dillon, and E. Chang. Conceptual sla
framework for cloud computing. In 4th IEEE
International Conference on Digital Ecosystems and
Technologies, pages 606—-610. IEEE, 2010.

[4] S. Bibi, D. Katsaros, and P. Bozanis. Application
development: Fly to the clouds or stay in-house? In
2010 19th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative
Enterprises, pages 60-65. IEEE, 2010.

[5] L. Braubach, K. Jander, and A. Pokahr. A middleware
for managing non-functional requirements in cloud
paas. In 2014 International Conference on Cloud and
Autonomic Computing, pages 83-92. IEEE, 2014.

[6] M. Carroll, A. Van Der Merwe, and P. Kotze. Secure
cloud computing: Benefits, risks and controls. In 2011
Information Security for South Africa, pages 1-9.
IEEE, 2011.

[7] C. Fehling, F. Leymann, R. Mietzner, and
W. Schupeck. A collection of patterns for cloud types,
cloud service models, and cloud-based application
architectures. University of Stuttgart, Faculty of
Computer Science, Electrical Engineering, and
Information Technology, Germany, University of
Stuttgart, Institute of Architecture of Application
Systems, Technical Report Computer Science, 5:19,
2011.

[8] D. Freet, R. Agrawal, S. John, and J. J. Walker.
Cloud forensics challenges from a service model

standpoint: Taas, paas and saas. In Proceedings of the
7th International Conference on Management of
computational and collective intElligence in Digital
EcoSystems, pages 148—155, 2015.

[9] R. L. Grossman. The case for cloud computing. IT
professional, 11(2):23-27, 2000.

[10] H. Gupta and D. Kumar. Security threats in cloud
computing. In 2019 International Conference on
Intelligent Computing and Control Systems (ICCS),
pages 1158-1162. IEEE, 2019.

[11] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and
P. Teregowda. Decision support tools for cloud
migration in the enterprise. In 2011 IEEFE 4th
International Conference on Cloud Computing, pages
541-548. IEEE, 2011.

[12] T. A. Lipinski. Click here to cloud: End user issues in
cloud computing terms of service agreements. In
International Symposium on Information Management
in a Changing World, pages 92-111. Springer, 2013.

[13] M. Malathi. Cloud computing concepts. In 2011 3rd
International Conference on Electronics Computer
Technology, volume 6, pages 236-239. IEEE, 2011.

[14] P. Mell, T. Grance, et al. The nist definition of cloud
computing. 2011.

[15] M. Nicho, M. Hendy, et al. Dimensions of security
threats in cloud computing: A case study. Review of
Business Information Systems (RBIS), 17(4):159-170,
2013.

[16] J. Repschlaeger, S. Wind, R. Zarnekow, and
K. Turowski. A reference guide to cloud computing
dimensions: infrastructure as a service classification
framework. In 2012 45th Hawaii International
Conference on System Sciences, pages 2178-2188.
IEEE, 2012.

[17] D. Serrano, S. Bouchenak, Y. Kouki, F. A.
de Oliveira Jr, T. Ledoux, J. Lejeune, J. Sopena,

L. Arantes, and P. Sens. Sla guarantees for cloud
services. Future Generation Computer Systems,
54:233-246, 2016.

[18] P. Sirohi and A. Agarwal. Cloud computing data
storage security framework relating to data integrity,
privacy and trust. In 2015 1st international conference
on next generation computing technologies (NGCT),
pages 115-118. IEEE, 2015.

[19] A. A. Tamimi, R. Dawood, and L. Sadaga. Disaster
recovery techniques in cloud computing. In 2019 IEEE
Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT),
pages 845-850. IEEE, 2019.

[20] W. Wang, B. Liang, and B. Li. Revenue maximization
with dynamic auctions in iaas cloud markets. In 2013
IEEE/ACM 21st International Symposium on Quality
of Service (IWQoS), pages 1-6. IEEE, 2013.

[21] C. Weinhardt, A. Anandasivam, B. Blau, N. Borissov,
T. Meinl, W. Michalk, and J. Stofler.
Cloud-computing. Wirtschaftsinformatik,
51(5):453-462, 2009.

[22] S. Wind, K. Turowski, J. Repschlager, and
R. Zarnekow. Target dimensions of cloud computing.
In 2011 IEEE 13th Conference on Commerce and
Enterprise Computing, pages 231-235. IKEE, 2011.

[23] H. Yang and M. Tate. Where are we at with cloud

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

computing?: a descriptive literature review. 2009.

[24] A. S. Zalazar, L. Ballejos, and S. Rodriguez.
Analyzing requirements engineering for cloud
computing. Requirements Engineering for Service and
Cloud Computing, pages 45-64, 2017.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Carbon Footprint Assessment of Compute Cluster
Workloads

Yannick Kahlert
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany
yannick.kahlert@rwth-
aachen.de

ABSTRACT

The rising popularity of cloud computing over the past decade
has led to an increasing concern about its contribution to
global carbon emissions. Our goal is to conduct a literature
review that provides an overview of the topic of assessing
the carbon footprint of workloads, e.g., web services or data
processing jobs running in compute clusters. In the first
part of our paper, we clarify how to estimate the carbon
footprint of a data center based on four factors, primarily
energy consumption.

In section B, we will proceed with the assessment of work-
loads. Since a server consumes a certain fixed amount of
energy regardless of the utilization, higher utilization rates
have a higher energy efficiency. We will see that this cor-
relation between utilization and energy is linear only under
certain circumstances and not for all hardware components.
We will further present a formula approach to determine the
carbon footprint using the PowerTOP software.

In the third and final part, we answer the question of
how the carbon footprint of data center workloads can be
optimized. To this end, we provide an overview of known so-
lutions and current research approaches. Examples include
optimization of the cooling systems or reducing the amount
of power consumed in idle states as well as the shifting of
workloads to other data centres where their carbon footprint
would be lower.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering
; D.2.9 [Software Engineering]: Management—productivity,
programming teams, software configuration management

Keywords

carbon footprint, cluster computing, energy consumption,
energy efficiency, energy optimization, idle, workload

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Philip Niederprim
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

philip.niederpruem@rwth-

aachen.de

1. INTRODUCTION

Global data traffic continues to increase, a trend acceler-
ated by the Corona pandemic[l]. While 51% of the world’s
population had access to the Internet in 2018, that figure
will be 66% by 2023 and the number of devices connected to
IP networks will be more than three times the global pop-
ulation by 2023 [B]. Data centers, as the factories of the
digital age, accounted for 21% of the IT sector’s energy con-
sumption in 2017 [4, p. 15] and in total, global IT industry
produces as much CO2 as all air traffic or approximately 7%
of global electricity [P,].

“Across the tech sector we need to recognize that data
centers will rank by the middle of the next decade among
the large users of electrical power on the planet.” [d]

—Brad Smith, President Microsoft

What factors influence the carbon footprint assessment
of compute cluster workloads? To answer this question we
cannot avoid to look at the data centers on which these
workloads are executed. The fast-growing industry has a
relevant share in global energy consumption and hence also
in CO2 emissions and climate change.

There are many different aspects that influence the envi-
ronmental impact of a data center. The carbon footprint
is highly dependent on the energy mix that the data cen-
ter draws from. FEven if there are some countries with a
very high share of renewable energy, the energy price or in-
creased latency due to increased distance to the customer
can be reasons not to build data centers in these locations.
On the other hand, there are companies that are committed
to becoming more environmentally friendly, which, if they
do it by their own conviction or not, is good marketing in
this day and age.

Consequently, as long as generating energy emits CO2,
energy consumption plays a major role in making data cen-
ters greener. In addition, there is also an economic interest
in reducing energy costs. To this end, we will first explain
what the major power consumers of a data center are. In
this regard, there have been many efforts and numerous ap-
proaches to optimization in research for many years, which
we will only touch on in this paper. Furthermore, there are
also indirect environment-related factors, such as the dis-
posal and recycling of so-called e-waste, an appropriate us-
age time of components or the production as well as logistics
of spare parts.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

How can the carbon footprint of a compute cluster work-
load be determined or estimated? To this end, we will
present a procedure to get to a formula that answers this
question. We will further show how the energy consump-
tion of various computing workloads differs before highlight-
ing different techniques to increase data center efficiency.
We break these optimization strategies down into software,
hardware (since an overall increased efficiency increases the
efficiency of a specific workload as well) and further opti-
mization strategies.

2. RELATED WORK

The section that covers the factors contributing to the
carbon footprint of data centers is based on a series of re-
ports focusing on the development of carbon intensity over
the years made by the International Energy Agency (IEA)
[2], the Federal Environment Agency of Germany [0] and
the U.S. Energy Information Administration (EIA) [4] re-
spectively. An article from Greenpeace [d] also proved to be
important to our research despite usually having rather low
credibility, as it contained important information regarding
differences in company power policies that was deemed trust-
worthy enough to be used.

The section on the power consumption of data centers was
done using a number of small references such as Koomey’s
own blog [H], papers by Thurrott [24] and Danilak [IT] as
well as the aforementioned article by Greenpeace. Another
report by the Federal Environment Agency of Germany was
also used here. [26]

For the workload discussion we used Meisner’s paper on
PowerNap [7] with additional information and graphics pro-
vided in Tsirogiannis article [Z5].

When it comes to the topic of optimization, there were
numerous papers discussing this. In the end, we decided to
focus on Kaushik’s and Meisner’s papers on GreenHDF'S [[I3]
and PowerNap [I7] respectively as well as a survey on power
saving strategies by Singh. [2T]. We chose them because of
their clear structure and high density of useful information
which almost every paragraph contained. We also reused
previous sources such as the report by Borah [7] since they
also contained important information about this topic. How-
ever, this particular report was rather short, gave only quick
overviews and additionally, it suffered from a bad writing
style which made it easy to misinterpret points.

3. ENVIRONMENTAL IMPACT OF CLOUD
COMPUTING

While other influences exist, the majority of the emissions
data centers produce can be tracked back to their power
consumption and the associated carbon intensity.

The main concern and primary topic of this paper is the
energy consumption of a data center. Unlike carbon inten-
sity, a center’s operating company has direct influence on the
power distribution and -consumption of their data centers
and the implementation of power saving strategies. We’ll
touch more on the distribution of power and the ways of
reducing usage in later sections (section B, section H). For
carbon intensity, in 2019 the International Energy Agency
(IEA) reported a carbon intensity of 475g/kWh [2], how-
ever, using this to calculate the carbon footprint would lead
to inaccurate results as it’s the global average and doesn’t
take regional differences into account. It assumes a homoge-

neous green/brown (low emission/high emission) power ra-
tio where as in reality this ratio changes on a much smaller
scale. For example, German authorities estimated a car-
bon intensity of 401 g/kWh in 2019 [0] as one can see in
figure M, where as the US reported a value of 417 g/kWh
[@]. This fluctuation of carbon intensity extends even fur-
ther down, with noticeable regional differences. A third fac-
tor for calculation is the operator of the data center: In a
survey conducted by Greenpeace, noticeable differences in
the energy mix of each service provider were found. Each
data center receives its energy from different sources which
may differ in carbon intensity. In addition, some companies
made deals with government institutions to gain access to
renewable energy in places where it wouldn’t be available
otherwise, reducing the emissions caused by the concerned
data centers. [d] In conclusion, both a data center’s power
consumption as well as the carbon intensity of its location
and its owner’s power policy is needed in order to provide
an accurate picture of a data center’s carbon footprint.

3.1 Power Consumption of Data Centers

While the well-known "Moore’s law” shows a trend that
the performance of computers doubles about every 18 months,
Koomey found out in 2010 that the energy efficiency (com-
putations per kWh) also doubled about every 18 months
(1.57 years) since the very first computers [20, 14]. However,
this is no guarantee for the future, especially since one ap-
proaches certain physical limits if not already reached (Den-
nard scaling, second law of thermodynamics, Landauer’s
principle). Therefore, from the turn of the millennium on-
wards, the doubling of efficiency slowed down to every 2.6
years [H]. Even though the trend has increased again to 1.2
years since 2014, due to the physical boundaries it is as-
sumed that "Koomey’s law” can no longer be observed from
2048 at the latest. [4]

In the long term, efficiency will therefore increase only
slowly, whereas the demand for data centers continues to
rise, resulting in an even greater energy consumption. While
global data center electricity consumption was estimated at
about 382 TWh in 2012 [d], in 2016 it was about 416 TWh,
almost 40% more than the entire UK. The US share of total
consumption in 2016 was 90 TWh [I0]. As can be seen in
figure O, even the best case scenario has projected energy
consumption more than tripling from 2020 to 2030.

Data centers consume an enormous amount of energy,
even though the actual computing consumes less than half
of the energy as can be seen in figure B. Data centers require
constant cooling to function properly, which is achieved by
installing air conditioning, or by indirect cooling, such as
using outside air, indirect evaporative cooling (IDEC) units,
and also using sea water.

85% of IT decision makers do not know the energy re-
quirements of their data center [26]. This lack of awareness
is surprising, as one of the largest operational expenses in
delivering IT is the cost of energy. It suggests that many
companies put energy consumption on the back burner and
value performance, reliability and stability higher.

Measurement

Many indicators have already been proposed to compare the
efficiency of a data center. Widely used is the PUE (power
usage effectiveness).

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Grams / kilowatt hour Million tons
1.000 400
900 T 350
800 @:@_ + + + + + + + + 4+ + 4+ + + + +
-@_@ @. @ 300
R 55 IR T T T e = T B T UF UF @F iF GE 38 @B RE U6 5 %G
S et eescse00gegny . . i -
@@@@@@@@
400 I i ik T T T T, T T T T gy T, g T E i T T T T T T b T T T T 1 -m- 150
| 100
200 RS TEN TR A A O | B T BE 10 IE E U i BB ‘r‘ W I 1 iF i3
0 5 0
@qg @qN \qqu »"‘qﬁ @q“ \qqh '@qb @q'\ \c’q% \“qq '19@ '196\ '»QGW f»“’é’] qsp“ w"@ w“’c’b Wé\ '\-“P% 'Peq ‘15’50 "F'& '190 ‘19\?} '\9& "5;@ '15’\'0 "5‘4\ @“‘9 ,yu“q‘

Carbon dioxide emissions! from electricity generation

—a— Carbon dioxide emission factor electricity mix

1 Electricity mix including fossil, nuclear and renewable energy sources
* extrapolated data
** Expert estimate (only for carbon dioxide emissions)

Figure 1: Development of the specific carbon dioxide emissions of the German electricity mix (8]

9.000

8.000 A 7.933

7.000
~4—Data Centers Best
6.000
~@-Data Centers Expected
5.000
~#-Data Centers Worst
4.000

3.000 2.967

2.000

1.000 1.137

[
2010

2012

2014 2016 2020

r

2018 2022 2024 2026 2028 2030
Yeal

Figure 2: Electricity usage (TWh) of Data Centers worldwide
2010-2030 [6]

Total Facility Power

PUE = IT Equipment Power

It measures the ratio of overhead power and the actual
power needed for computing. A value of one would therefore
mean that all energy is used for computing, whereas a data
center with a value of two would need twice as much energy
for lighting, cooling or safety-related electrical equipment as
for computing. In the U.S.; the average is about 1.91, and
”green” data centers are generally considered to have a PUE
of 1.5 or less, with Facebook achieving as high as 1.1 in one
of its modern data centers. [IH, p. 2]

However, PUE also has known pitfalls, as the following
example shows. If 100 servers were idle in a data center

Fans
y 11%

~ Cooling, Dry
 coolers/pumps.
| 16% IT Load

[Sy 46%

Cooling, Chilled _;
water
5%

Lighting

Standby 2%

Gen block
heater

2%

PDU/trans loss UPS Loss
2% 5%

Figure 3: Typical energy distribution of a data center. [I¥]

and one wanted to save energy by switching off servers, the
PUE would increase with each server switched off, since the
energy share of light and cooling would increase. If the num-
ber n of active servers were to run towards zero, the PUE
would even diverge towards infinity. A second problem is
that the PUE does not take into account the efficiency of
the deployed servers themselves. One approach to solving
these two problems would be to consider power per watt in
addition to PUE. The question here is how best to mea-
sure performance. One common method is FLOPS (floating
point operations per second). The Green500 even lists the
500 most efficient supercomputers based on this metric, al-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

though this benchmark is hardly applicable to real produc-
tion environments. For a fair comparison, the location and
climatic conditions must be taken into account in addition
to the combination of PUE and performance per watt.

Although energy efficiency plays a major role, it should
not be the only factor that determines whether a data cen-
ter or company is green. In a report published in 2017 [d],
Greenpeace examined the world’s largest digital companies
in terms of their data centers. Decisive factors included
energy mix, transparency, efficiency and further commit-
ment. The evaluation shows that, how green a data center
is appears to depend heavily on company policy rather than
economic reasons, with the majority scoring poorly. Lead-
ing companies such as Google, Apple, Facebook, eBay, and
Switch are using their influence to get vendors, utilities, and
governments to provide access to renewable energy where
none existed before. [d, p. 6] Though, this trend seems
to take place mainly in the USA by major internet compa-
nies. Video streaming should also be highlighted, where all
providers except Google’s YouTube performed poorly, such
as Netflix or Amazon Prime, even though video streaming
accounted for two-thirds of global data traffic in 2015. [d, p.
7]

4. CARBON FOOTPRINT OF COMPUTING
WORKLOADS

While we addressed the environmental impact of a data
center in section B, we will go just one level further and
focus on workloads. If you can quantify the environmental
impact of a data center, it can be mapped to a workload, for
example, by dividing it evenly among all workloads. Yet, in
this paper we focus on the direct environmental costs, more
precisely the power consumption. To this end, we first clarify
the impact of the utilization of various resources on power
consumption, followed by approaches to measure power on
a given server and the distribution of idle time across all
workloads, and finally present a formula that quantifies the
power consumption of a workload on all servers involved.

4.1 Hardware Utilization and corresponding
Power Usage

In non-optimized systems, as much as 60% of peak power
is wasted in idle states. Furthermore, typically, server uti-
lization is below 30%. [I7, p. 1] Consequently, physical ma-
chines lose a lot of efficiency due to low CPU load or even
idling. It is obvious to consider these idle states as a start-
ing point for optimization strategies (more in Section B). In
some data centers there will be times when the load is reg-
ularly minimal, for example at night. In this case one could
relatively easy apply optimization strategies like Consolida-
tion (minimize amount of servers) or Power Napping (shut
down server in idle state). The problem gets more sophis-
ticated, when idle periods last only a few seconds, although
occurring regularly. [I'7, p. 1]

In the following, the most important hardware compo-
nents like CPU, disk as well as the system board are exam-
ined for their relation between utilization and energy con-
sumption. Figure @ shows an exemplary power consumption
of a server. The whole pie chart represents the maximal en-
ergy consumption, and the right, grey side of the pie shows
the idle power consumption, which is about half of the peak
power. The Idle Power is further divided into its components

48W [0 2xCPUs idle

2x CPUs S idl @ 4xSDDs idle
active EnElr ek 0 4xHDDs idle
(112wW) | STOREL @ System board

(156W) W 4GB DIMM
O4GB DIMM

—— cacaomm
[1 O4GBDIMM

/
4x SSDs

\ .
active (10W) 4x HDDs active (10W)

Figure 4: Exemplary power breakdown of one server from
25, p. 2]

Sequential scan:
from CPU-bound to Disk-bound

25
20 /_”4/—0———H’K‘
15 ¢

—o—4 HDDs (striped disks)
10 | —©-4SSDs (striped disks)

5 - W*
0 \z/)<\/<\

0% 20% 40% 60% 80% 100%
Device utilization

30

Power (Watts)

e

Figure 5: Power consumption in relation to utilization of stor-
age disks. [28, p. 5]

on the right side. The two CPUs waste the most power in
idle, followed by the RAM, which needs to refresh its mem-
ory in idle, and system board components. The idle power
of the HDDs is relatively low whereas the consumption of
SSDs is almost zero. On the left half of the pie chart, the
additional power consumption when all CPUs and HDDs are
fully loaded is illustrated. While the storage media require
a similar amount of power, the CPUs consume additional
112 Watt. [28, p. 2] The RAM and the system board do not
increase in their power usage with increased system load.
While some components have almost fixed power consump-
tion without much difference between load and idle state,
SSDs have perfect energy proportionality. As can be seen
in figure B, HDDs do not have this property, as their disk
must first accelerate to a certain RPM, which is maintained
for some time during inactivity.

In the literature, a linear correlation between CPU load
and energy consumption is often assumed. But as shown in
figure B, this is not invariably the case.

According to Dimitris Tsirogiannis et al., three conditions
must be met for a linear correlation to be fulfilled. [25, p.
5]

1. operations are cpu-bound
2. there are no shared resources among CPU cores

3. no power management techniques are applied

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

(a) Performance-oriented (b) Energy-efficient

160 {CPU scheduling 160 { CPU scheduling
120 120 -
g 5
3 z
T80 - T80 -
2 3
& e
S —0-RowScan S —o—RowScan
%40 b —m-Hashjoin %40 b —m-Hashjoin
=#—ComprColScan —&—ComprColScan
——Sort —e—Sort
0 0 T T T]
0 2 4 6 8 0 2 4 6 8

Number of CPU cores used Number of CPU cores used

Figure 6: Dual CPU power consumption with database oper-
ations. [Z8, p. 2]

Energy waste concerns at idle have led to calls for a fun-
damental redesign of computer system components to make
energy consumption proportional to workload. Dynamic fre-
quency and voltage scaling (DVF'S) of processors is an exam-
ple of the concept of energy proportionality, allowing up to
cubic energy savings at reduced loads. However, processors
continue to decrease as a percentage of total server power
and DVFS continues to be an active research topic [I°7].

4.2 Power Consumption of a workload

Mathematically speaking, we understand a workload w as
a set of processes that can be executed on arbitrary num-
bers of computing units(like server, vm, container) simulta-
neously.

w:={p1,...,Pn} : workload of n processes

pow(p,t) : power(watt) of p at time t

Evidently, the simplest case is that only one workload is
executed on one or more computing units. In this case, the
total power consumption is equal to that of the workload.
But when we consider a set of workloads running at the
same time on the same resources, the problem becomes more
challenging.

Wo={wi,...,wi} : all workloads

To calculate the power consumption ¢ of w over a time
period [a,b] C Ry:

b
c(w, a,b) ::/ Zpow(p, t)dt

pEW

However, the power function pow must be continuous,
which can be achieved by deriving a function from the hard-
ware. For example by measuring one hardware component
under low load, then execute the workload and measure it
again. Then, a suitable function can be set up for each hard-
ware component, taking into account the points mentioned
in the previous section. These can then be aggregated into a
server-dependent function pow. This must be done for each
server on its own, when the hardware components differ.

Hardware usually allows not only the load of a process
but also the power consumption to be read out. This saves
us from creating models that convert utilization to power
consumption, which would be not only complicated but also
inaccurate. One software that can read the power consump-
tion directly is powerTOP. Assuming that we perform a
measurement every second with powerTOP, we can now re-
place the continuous function pow with the discrete function
powC, which represents the measured power consumption in
second t. This makes the formula ¢ much simpler.

b

c(w,a,b) = Z Z powC(p, t)

t=a pcw

a,beNa<b

It makes at least as much sense to consider power con-
sumption as a function of time as it does to consider it as
a function of a request. This makes sense especially for e.g.
web servers or CDNs. The easiest way to do so is by count-
ing the requests from start time a until b and to divide the
power consumption by the amount next. To keep it more
general, we will stick with time dependence.

4.3 Base Power

The base power consumption poses a problem when cal-
culating the power consumption of a workload as one has to
decide on how to distribute the base power consumption on
all current workloads.

Therefore, we adapt function c to also distribute the base
power to the workloads. To do this, we first need the total
power of the computing units.

In the following, we will neglect the parameters a and b
for the sake of clarity. It should be noted that all functions
still depend on a time interval.

Ctotal : total power consumption

Cworkloads = Z C(U))

weWw

: consumption of all workloads

Splitting it evenly between all £ workloads is simple:

Ctotal — Cworkloads

k

But since the power and computation time needed is not
equal among all workloads, cnew is not very fair. It would
even assign energy to completely inactive workloads. An-
other approach would be to distribute it based on workload
run time. But as we already have the measured power con-
sumption of a workload, we think it is the fairest one to
use:

csprit(w) = c(w) +

(Ctotal - Cumrkloads)c(w)
Cworkloads

Cfaz'rsplit(w) = C(’UJ) +

Cairsplit Splits the energy overhead proportionally to the
energy consumption of a single workload and is thus much
more accurate than cgpiis.

4.4 Calculating the Carbon Footprint

With base power considered, we can now calculate the
carbon footprint C'F of one workload by applying the carbon
intensity I (in grams / kilowatt) of the data center:

CF = Cfairsplit * 1

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Note that we only included the energy, because the energy
is easy to assign to one workload and usually the primary
source of carbon footprint for one workload. Future work
could start here and calculate the CO2 footprint of con-
sumed resources of a data center and distribute it to the
workloads. However, since the resulting footprints are likely
to differ significantly among data centers, this task probably
lies with the operators of the centers themselves.

S. OPTIMIZATION STRATEGIES

Given how complex the structure of a data center can be,
nearly every component of it can be optimized to reduce its
overall power consumption and in turn, the power needed
to execute a given workload and the associated carbon foot-
print. This section will focus on some of the efforts made
to save power, from large-scale architectural redesigns up to
workload-specific strategies.

Not every strategy is applicable to every business, for ex-
ample, there will usually be some sort of trade-off between
energy consumption and latency, which often has a direct
impact on revenue. Also providers who rent out servers can-
not necessarily optimize well, as they have to guarantee a
certain performance, especially dedicated servers elude most
optimization strategies here. So much for possible pitfalls,
which we will not go into further here, as in this section we
refer in particular to companies that operate or rent highly
scalable data centers.

5.1 Choice of Location

As previously discussed, cooling consumes more than 40%
of a data center’s power, so reducing the need for it is a
reliable way to save power. Besides more advanced cooling
systems or a higher server temperature, one can also take ad-
vantage of environmental cooling by placing the clusters at
high altitudes, near water reservoirs or other naturally cold
places [21]. While this does reduce cooling requirements, it
also leads to logistic problems, as those places tend to be
remote. Proper care should be applied to choose a suitable,
easy to reach location for each data center and to ensure
that it makes the most out of the features the environment
provides. How these are utilized is discussed in more detail
in the next section.

5.2 The right Temperature

The temperature to which a data center should be cooled
is a matter of controversy. On the one hand, it is claimed
that a room temperature of 28°C instead of 20°C does not
harm servers and reduces the power requirement of the cool-
ing system by more than one fifth [26]. On the other hand,
operators fear indirect costs due to higher failure rates and
shorter component lifetimes. Simply increasing the ambient
temperature in the data center may not always have the de-
sired effect of reducing energy consumption. [9, p. 1] The
optimum temperature varies from data center to data center
and must always be found out anew, nevertheless there are
guideline values that an efficient data center should fulfill.
The trend is toward warmer temperatures. While older data
centers were generally designed for a temperature of 15 or
16°C, loosely based on the principle that colder is better [I9,
p- 2], many data centers today run a few degrees warmer
than they did 10 or 15 years ago to save on cooling costs
[23], and while ASHRAE (American Society of Heating, Re-

frigerating and Air-Conditioning Engineers) recommended
a temperature of 20 - 25°C in its first edition of Thermal
Guidelines for Data Processing Environments in 2004, by
2008 it was 18 - 27°C. Meanwhile, there are different classes
depending on factors such as humidity and more, allowing
a temperature range of up to 5 - 45°C. [22, pp. 10-11],
which means that filtered outside air or water can be used
for cooling without air conditioning refrigeration or heat ex-
changers. The generated heat is oftentimes lost and simply
emitted to the outside. Yet data centers have a lot of savings
potential here. Especially in cold regions, where data cen-
ters like to be built anyway, this circumstance can be used
well as district heating. Sweden is considered a pioneer in
this area. A data center can theoretically heat up to 10,000
homes [I6]. If the infrastructure for this is lacking, however,
energy can also be recovered from the heat.

5.3 Power-Efficient Hardware

Increasing the efficiency of the hardware used for com-
puting will also lead to a reduction in overall power con-
sumption. Numerous CPU manufacturers have already im-
plemented saving strategies into their products: Intel intro-
duced the "SpeedStep” technology, which dynamically allo-
cates power based on the current workload. AMD invented
PowerNow to reduce CPU Voltage and clock speed if the
workload is low where as Cool n’ Quiet processor’s only re-
duce them while the CPU is idle. [21] On the matter of
storage devices, the usage of Solid State storage instead of
hard disk storage is also advised, as they requires less power
for the sole reason of not having moving parts. Hardware
manufacturers such as IBM are also working on improving
their storage devices to reduce thermal waste and increase
efficiency at higher temperatures. [[d, pp.3-4]. The usage of
low power/single board computers can also lead to an in-
crease in efficiency. [17]

5.4 PowerNap

Given that idle states are major "power wasters” (as dis-
cussed in section E), reducing the energy consumption dur-
ing these phases is indispensable for power saving. As such,
multiple approaches regarding it have already been proposed,
with PowerNap being one of those. It’s base premise is
rather simple - work at full power while occupied, rest while
idle and return to full power as soon as new work is de-
tected, as the system is completely inactionable during the
resting phase in order to conserve as much power as possible.
Thus, the average powerP,,y consumed in a system can be
described as

Pavg = Pnap * Fn,ap + Pmax(l - Fn,ap)

where Ppqp and Pp,q, describe the power used in inactive
and active mode respectively and Fi,qp the time spent in the
resting phase. The main factor that distinguishes PowerNap
from similar implementations is the addition of additional
"wake” and ”suspend” states. These act as additional jobs,
performed when new work batches arrive and the system
is in its resting state and when the job queue is empty for
"wake” and ”suspend” respectively. These transitions have
to be performed extremely quickly (10 ms or lower), oth-
erwise much of the potential energy savings are lost. At
peak performance, with transition speeds lower than 1 ms,
power demand rises almost linearly with usage, eliminating

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

[Active
Work in Suspend
Queue H wake
»
f ¥ ¥ e
Avrrival Arrival Arrival
Figure 7: Example sequence of events occurring in a

PowerNap-managed system [I7]

DVFS Fgp, =100% == ===~ PowerNap T,= 100 ms
DVFS Fep, =40% - - - - -~ PowerNap T,=10 ms
DVFS Fgpy =20% PowerNap T,=1ms
100% -
S 80% - .
3 ;
Qo .
X 60% - 7
E .
’
\O .
o . .
S 40%q .
@ ' .
g !
. .
o 20% {: .
. .
2 f
<
0% T T T T 1

0% 20% 40% 60% 80% 100%

% utilization

Figure 8: PowerNap and DVFS(another power-saving
method) compared by their power demand based on usage
()

the issue of idling completely. But even sub-optimal imple-
mentations such as ones with a transition speed of less than
10 ms still show substantial power savings. Implementing
PowerNap could reduce power usage by almost 70%, which
can be further improved by the usage of advanced power
delivery systems. [I7]

5.5 Cluster Management

The ever expanding IT sector and the increasing demand
in cloud computing services has caused a number of differ-
ent cluster types to emerge. One of these are HDFS-Clusters
(Hadoop Distributed File System). In a HDFS cluster, data
and workloads are balanced between all servers so that any
server can be used for any job at any given time. This,
however, makes it hard to nigh impossible to take advan-
tage of switching into low-power modes while idle by meth-
ods such as the aforementioned PowerNap as switching be-
tween active and inactive states takes time and thus require
long, predictable idle phases which generally do not occur
in HDFS-managed clusters. GreenHDFS promises to be an
energy-efficient replacement for the existing HDF'S and offers
a solution to the problem described above by dividing the
cluster beforehand into low-demand (cold) and high-demand
(hot) zones.

Hot zones contain relevant, frequently used data and there-

100% 100%

90% Hot 90%

80% — @ 80%
L T0% d | S70% Hot
S60% Foon ™
850% 8 50% N
240% S 40%
T Cold on -
309 ° = 30% cold v

20% 2 20%

10% 10%

0% 0%
331 4M5 430 515 530 614 331 415 430 5M5 5/30 64
Days Days

Figure 9: Percentage of hot/cold data and the associated file
count of an Yahoo! cluster [I3]

fore are optimized towards performance and speed. Power
is not a concern in this zone and thus no efforts regarding
power saving are being made.

Cold zones on the other hand contain old data which is rarely
used. It makes up more than 60% of the total data, therefore
the servers responsible for holding it consist mostly out of
storage media with little or no regards payed towards perfor-
mance. As such, the physical space needed for the cold zone
to handle this data is rather low, which in turn improves
the performance of the hot zone due to the ability to assign
more servers to it. This allows for significant power saving
by assigning old data to the cold zone and shifting these into
constant low-power mode, waking them up only if the stored
data is needed or to use the latent computing capacity to
temporarily boost performance during periods of high uti-
lization. 3] The usage of scheduling tools like Oozie can fur-
ther reduce power consumption, since they can preemptively
start idle servers when a workload is scheduled there, run all
jobs which require the data stored there at once and power
them down again thereafter, preventing constant switching
and performance loss due to wake-up latency.

A test using GreenHDF'S was performed on an Yahoo!-cluster
and showed direct power savings of 26 percent (41607$ worth
of electricity) in comparison to the standard HDFS, not ac-
counting the indirect power savings due to a reduced tem-
perature in the cold zone and the associated reduction in
cooling demand. [I3]

5.6 Workload Shifting

In big networks, consisting of a number of geographically
distributed data centers, Workload Shifting can be used to
basically execute a given workload where it would produce
the least amount of carbon emissions. However, simply as-
signing every request to one data center would not only lead
to a spike in latency due to increased distance but also flood
it with requests, creating a situation similar to a DDoS at-
tack. Therefore, the average response time of a data center
is used in conjunction with its carbon density to determine
the optimal place for each workload.

In order to test the applications of Workload Shifting, a par-
tial simulation of the Amazon network was conducted [21],
spanning three data centers located in California, Virginia
and Dublin respectively, with request sources in the vicinity
of the data center. The amount of requests originating from
each of those was calculated using Facebook data, as their
services cover a broad spectrum and are used globally. Car-
bon intensity was calculated using the energy mix of a data
center’s location while considering the availability of solar
power, the renewable energy of choice due to its predictable

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

power output and downtime pattern.

250
1400 g
1200 + g 200 =
Z41000 - _ E =
) w0 =] g 150 =
Da00 - = -
2 - g
W 00 - 8 100
g 4
8 400 3
& 50 =
200 - g
<
[} 0
NWS WSNB WSG WST Nws WSNB WSG WST
Fig. 7. Comparison of brown energy usage. Fig. 9. Comparison of average response time.
500 12
__ 450 3 -
a0 =) g7
2 350 £ o0s =
2 300 “EJ = =
£ 250 = £ 96
- = £
ﬁ 200 S,
=04
g 150 <
T P
i 8 02
50 o
o 00
NWS WSNB WSG WST NWS WSNB WSG wsT

Fig. 8. Comparison of carbon emission. Fig. 10. Comparison of cost (algorithm efficiency).

Figure 10: Results of the simulation. WSG is the main algo-
rithm, WSNB and WST are variations of it and NWS doesn’t
utilize Workload Shifting[27]

The results of the simulation show that in comparison to
NWS, brown energy usage and therefore carbon emissions
have dropped while the average response time has increased
significantly, with small differences between the variations of
the Workload Shifting algorithm. Taking this into account,
Workload Shifting proves to be an effective way to reduce
carbon emissions, if latency isn’t a concern [27]. Because it
increases latency, it may not be fit for every kind of work-
load: Urgent jobs which can not afford to wait shouldn’t
be handled by a workload shifting algorithm to ensure their
execution in a timely manner.

6. CONCLUSIONS

There are four factors - power consumption, carbon in-
tensity of the power used, owner power policy and the en-
vironmental cost of the used components - influencing the
carbon footprint of a data center, the main one being power
consumption. Using it to calculate the proportion of a given
workload yet proves to be a challenge as not all of the total
power is used for computing. In fact, over half of it is con-
sumed by cooling and lighting operations, which shouldn’t
be included in calculation since they occur independent of
the current workload. Also, power is still used in idle states,
further complicating the process. One has to consider this to
get an accurate result. These can then be obtained by em-
ploying tools like PowerTOP and the formula ¢ mentioned in
section B2. If several workloads are to be considered, base
power has to be divided among them. The results can then
be translated to kWh and multiplied with carbon intensity
to get the carbon footprint. On the matter of reducing car-
bon emissions, there is no ”silver bullet” to universally solve
the problem. A data center’s carbon footprint can be re-
duced and optimized in a multitude of different ways, some
of which differ based on factors like location or manage-
ment model used. One could, however, compare these and
create a list of priorities based on their overall significance:
Some approaches promise huge amounts of saved power (e.g.

Cooling/Idling optimizations) or are easy to implement (e.g.
using more advanced components for server construction),
while other methods may lack efficiency, are harder/more
expensive to implement or come with major trade-offs (e.g.
Increased response time in Workload Shifting) compared to
others.

7. ACKNOWLEDGMENTS

This paper was made using Overleaf.

8. REFERENCES

[1] Bilanz 2019: Co2-emissionen pro kilowattstunde strom
sinken weiter | umweltbundesamt.
https://www.umweltbundesamt.de/presse/
pressemitteilungen/bilanz-2019-co2-emissionen-
pro-kilowattstunde-strom. Accessed on 2021-05-30.

[2] Data & statistics - iea.
https://www.iea.org/data-and-statistics/data-
browser/7country=WORLD&fuel=Energyi
20consumption¥indicator=TotELecCons. Accessed on
2021-05-16.

[3] Entwicklung der spezifischen kohlendioxid-emissionen
des deutschen strommixes | umweltbundesamt.
https://www.umweltbundesamt.de/bild/
entwicklung-der-spezifischen-kohlendioxid.
Accessed on 2021-05-30.

[4] Frequently asked questions (fags) - u.s. energy
information administration (eia). https:
//www.eia.gov/tools/faqs/faq.php?id=74&t=11.

[5] Jonathan koomey: Blog.
https://www.koomey.com/post/153838038643.
Accessed on 2021-06-01.

[6] A.S. G. Andrae and T. Edler. On global electricity
usage of communication technology: Trends to 2030.
Challenges, 6(1):117-157, 2015.

[7] A. D. Borah, D. Muchahary, S. K. Singh, and
J. Borah. Power saving strategies in green cloud
computing systems. International Journal of Grid
Distribution Computing, 8(1):299-306, 2015.

[8] U. Cisco. Cisco annual internet report (2018-2023)
white paper, 2020.

[9] G. Cook, J. Lee, T. Tsai, A. Kong, J. Deans,

B. Johnson, and E. Jardim. Clicking clean: Who is
winning the race to build a green internet? Greenpeace
Inc., Washington, DC, 5, 2017.

[10] D. R. Danilak. Why energy is a big and rapidly
growing problem for data centers. Accessed on
2021-05-28.

[11] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol,
I. Poese, C. Dietzel, D. Wagner, M. Wichtlhuber,
J. Tapiador, N. Vallina-Rodriguez, O. Hohlfeld, and
G. Smaragdakis. Implications of the covid-19
pandemic on the internet traffic. In Broadband
Coverage in Germany; 15th ITG-Symposium, pages
1-5, 2021.

[12] M. D. Gértz, R. Kiihn, O. Zietek, R. Bernhard,
M. Bulinski, D. Duman, B. Freisen, U. Jentsch,
T. Kloppner, D. Popovic, and L. Xu. Energy efficiency
of a low power hardware cluster for high performance
computing. In M. Eibl and M. Gaedke, editors,
INFORMATIK 2017, pages 2537-2548. Gesellschaft
fiir Informatik, Bonn, 2017.

Copyright © 2021 for this paper by its authors

https://www.umweltbundesamt.de/presse/pressemitteilungen/bilanz-2019-co2-emissionen-pro-kilowattstunde-strom
https://www.umweltbundesamt.de/presse/pressemitteilungen/bilanz-2019-co2-emissionen-pro-kilowattstunde-strom
https://www.umweltbundesamt.de/presse/pressemitteilungen/bilanz-2019-co2-emissionen-pro-kilowattstunde-strom
https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=Energy%20consumption&indicator=TotElecCons
https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=Energy%20consumption&indicator=TotElecCons
https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=Energy%20consumption&indicator=TotElecCons
https://www.umweltbundesamt.de/bild/entwicklung-der-spezifischen-kohlendioxid
https://www.umweltbundesamt.de/bild/entwicklung-der-spezifischen-kohlendioxid
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
https://www.koomey.com/post/153838038643

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

[13] R. T. Kaushik and M. Bhandarkar. Greenhdfs: [27] M. Xu and R. Buyya. Managing renewable energy and
towards an energy-conserving, storage-efficient, hybrid carbon footprint in multi-cloud computing
hadoop compute cluster. In Proceedings of the environments. Journal of Parallel and Distributed
USENIX annual technical conference, volume 109, Computing, 135:191-202, 2020.

page 34, 2010.

[14] J. Koomey, S. Berard, M. Sanchez, and H. Wong.
Implications of historical trends in the electrical
efficiency of computing. IEEE Annals of the History of
Computing, 33(3):46-54, 2011.

[15] J. Li, J. Jurasz, H. Li, W.-Q. Tao, Y. Duan, and
J. Yan. A new indicator for a fair comparison on the
energy performance of data centers. Applied Energy,
276:115497, 2020.

[16] mdr.de. Ein rechenzentrum kénnte 10.000 wohnungen
heizen | mdr.de.
https://www.mdr.de/wissen/faszination-
technik/stromverbrauch-rechenzentren-koennen-
heizen—-unnd—knehieniO0_htmli. Accessed on
2021-05-29.

[17] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap:
eliminating server idle power. ACM SIGARCH
Computer Architecture News, 37(1):205-216, 2009.

[18] J. Ni and X. Bai. A review of air conditioning energy
performance in data centers. Renewable and
Sustainable Energy Reviews, 67:625—640, 2017.

[19] M. K. Patterson. The effect of data center
temperature on energy efficiency. In 2008 11th
Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems,
pages 1167-1174, 2008.

[20] R. Schaller. Moore’s law: past, present and future.
IEEE Spectrum, 34(6):52-59, 1997.

[21] S. Singh, A. Swaroop, A. Kumar, and Anamika. A
survey on techniques to achive energy efficiency in
cloud computing. In 2016 International Conference on
Computing, Communication and Automation
(ICCCA), pages 1281-1285, 2016.

[22] A. TC et al. Data center power equipment thermal
guidelines and best practices. ASHRAE TC 9.9,
ASHRAE, USA, 2016.

[23] P. Thibodeau. It’s getting warmer in some data
centers | computerworld.
https://www.computerworld.com/article/2483971/
1t-s-getting-warmer-in-some-data-centers.html.
Accessed on 2021-05-29.

[24] P. Thurrott. Amd delivers a major mobile efficiency
milestone - thurrott.com.
https://www.thurrott.com/hardware/236987/amd-
delivers—a-major-mobile-efficiency-milestone,
2020. Accessed on 2021-06-01.

[25] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy efficiency of a database server.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
pages 231242, 2010.

[26] U. (UBA) and B. Engel. Vortrag gut fiir ihr
rechenzentrum. gut fiir die umwelt..
’https://www.blauer-
engel .de/sites/default/files/publication/2017-
10-10-prasentation-der-blaue-engel-fuer-
rechenzentren-final-2-folien-pro-seite.pdi’,
2014. Accessed on 2021-05-25.

Copyright © 2021 for this paper by its authors

https://www.mdr.de/wissen/faszination-technik/stromverbrauch-rechenzentren-koennen-heizen-und-kuehlen100.html
https://www.mdr.de/wissen/faszination-technik/stromverbrauch-rechenzentren-koennen-heizen-und-kuehlen100.html
https://www.mdr.de/wissen/faszination-technik/stromverbrauch-rechenzentren-koennen-heizen-und-kuehlen100.html
https://www.computerworld.com/article/2483971/it-s-getting-warmer-in-some-data-centers.html
https://www.computerworld.com/article/2483971/it-s-getting-warmer-in-some-data-centers.html
https://www.thurrott.com/hardware/236987/amd-delivers-a-major-mobile-efficiency-milestone
https://www.thurrott.com/hardware/236987/amd-delivers-a-major-mobile-efficiency-milestone
https://www.blauer-engel.de/sites/default/files/publication/2017-10-10-prasentation-der-blaue-engel-fuer-rechenzentren-final-2-folien-pro-seite.pdf
https://www.blauer-engel.de/sites/default/files/publication/2017-10-10-prasentation-der-blaue-engel-fuer-rechenzentren-final-2-folien-pro-seite.pdf
https://www.blauer-engel.de/sites/default/files/publication/2017-10-10-prasentation-der-blaue-engel-fuer-rechenzentren-final-2-folien-pro-seite.pdf
https://www.blauer-engel.de/sites/default/files/publication/2017-10-10-prasentation-der-blaue-engel-fuer-rechenzentren-final-2-folien-pro-seite.pdf

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Project management of data-driven projects - Challenges
and Management Approaches

Nedelcho Dimov
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

nedelcho.dimov@rwth-aachen.de

ABSTRACT

More and more organizations have an interest to invest in
data-driven projects in order to keep pace with their compe-
tition. Because of this trend, many studies and experiments
started to focus on the exploration of this field and its im-
provement for example seeking more efficient algorithms and
data storage. Many experts say that there is a lack of re-
search on how the teams should be managed, coordinated
and formed. The high failure and incompletion rate of such
projects confirm that an in-depth research on project man-
agement of data-driven projects is needed.

In this paper we conduct a literature review where we look
for the main challenges that the team members, managers
of the projects and other participants in such projects meet.
We discuss them and show the causes for them. The liter-
ature review is conducted to find approaches for the over-
coming of the challenges mentioned in this paper.

The results of the literature review are the following prob-
lems in data-driven projects: need for a better definition
of lifecycle development process, process methodology and
concrete team roles. The approaches we found in the liter-
ature bring with them some advantages but also some dis-
advantages that we discuss in the paper. Other approaches
we found need to be tested in real projects in order to be
evaluated so that their positive and negative effects can be
explored.

Keywords

Process methodologies, management challenges, management
approaches, big data, data science, data mining

1. INTRODUCTION

Data-driven projects are projects in the fields of big data,
data science, data mining. There are such projects in big
companies like Facebook, Twitter, LinkedIn [1], where big
amount of data should be processed.

Big data is related to data science, but in big data the quan-
tity of data collected and analysed is far greater. Therefore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Ivan Slavov
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

ivan.slavov@rwth-aachen.de

a project is called a big data project, when large amount of
data should be processed and analysed. Furthermore, differ-
ent tools, computing infrastructure and storage are needed
to process and analyse such a huge amount of data. For a
project to be considered as a big data project it should fulfill
the 4 V’s namely: Variety, Volume, Velocity and Veracity.
The term variety describes that there are many different
types of data. Volume means that we work with a large
amount of data. Velocity describes the speed with which we
process the data. Veracity means that the data is trustful
and of high quality [1] [2].
Data Mining projects are another example for data-driven
projects, where a huge amount of data is analysed. The
aim of the team in such projects is to find interesting and
valuable structures within the data. These structures can
be global or local as the analysis of which one will be re-
searched depends on the interest in the specific field. It uses
tools from many fields for example from computer science,
machine learning etc. [19)
The last type of data-driven projects that we mention in
our paper are the Data Science projects which consist of
many principles helping the teams to extract information
and knowledge from data. In such projects the teams use
Data Mining but apart from it there are other things that
they use. For example causal analysis, methods and method-
ology for visualizing data etc. [20]
There has been a high interest in data-driven projects, but
according to some studies a large amount of such projects
fail [1]. One of the main reasons is that there is no unified
standard for the project management of data-driven projects
[2]. When we look at the research in the field of big data,
data science and data mining, we can clearly see that more
of them are exploring algorithms and data models and give
suggestions about their improvement. Very little research is
about the project management of data-driven projects and
gives suggestions about overcoming the problems in this field
|3]. Therefore in this paper we will perform a literature re-
view to identify the challenges for the project management
in this field and look for some suggestions for overcoming
mentioned challenges.

The aim of this paper is to find possible solutions for the
following research questions:
1. What are the main challenges in data-driven projects?
2. What approaches exist for overcoming said challenges?
3. What are unsolved challenges?
In the following, the discovered challenges will be mentioned.
After that, possible approaches for them will be presented.
At the end there will be a summary of the challenges that

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

have not been solved yet.

2. METHODOLOGY

The literature review was conducted in the following steps:

First, we searched in IEEE explore for papers with sim-
ilar keywords like process methodologies challenges, data-
driven projects, big data, data science, data mining chal-
lenges. We restricted our search to challenges related to the
project management of such projects.

After that, we searched for approaches in Google Scholar
and IEEE explore with similar keywords as above. We fo-
cused on the papers that suggested approaches for challenges
that we mentioned.

We used the results and findings of 26 papers or articles
about the challenges and approaches in such projects.

Finally, we summarized all the information.

3. PROJECT MANAGEMENT CHALLENGES

In this section we will talk about the challenges in data-
driven projects. We found the following challenges during
the literature review :

3.1 No concrete definition of roles in data-driven projects

3.2 Difficulty of choosing the right process methodology

3.2.1 Unclear requirements

3.2.2 Teamwork and communication problems

3.2.3 Plannability problems

3.3 Fulfilling the 4 V’s

3.1 No concrete definition of roles in data-driven

project teams

The first big challenge with managing such projects we
found, was that there is no concrete definition of roles within
a team. This is because in data-driven projects, the jobs
that are required are often from different fields and require
different skills. For example, many of the projects need peo-
ple that are specialized in Big Data, Data Mining and Data
Science [22|. Team members in such projects need many
different skills in the disciplines computing, math, statistics,
machine learning and business domain knowledge[24].

| Role | Number of Jobs |
Data Science Researcher 0
Data Scientist 440
Data Architect 467
Data Analyst 696
Data Science Programmer 0
Data Engineer 378
Big Data Engineer 107
Information Architect 123
Data Science Manager 7
System Orchestrator 0
Data Provider 28
Big Data Application Provider 0
Big Data Framework Provider 0
Data Consumer 3
Security and Privacy 148

Figure 1. Search results for a respective job |4]

In our paper, we will reference the work of Jeffrey Saltz
and Nancy Grady |4] who researched the roles defined by 5
different organizations - NIST, EDISON, SAIC, Springboard

and Gartner. In these organizations, they found that there
are positions with similar names that have different tasks or
there are different names for positions that have the same
task.

The authors of this paper conducted an experiment by
searching on a jobs website for some positions, used in the
above-mentioned organizations. The results of the experi-
ment can be seen in
As we can see some of the roles defined by the organiza-
tions are not even used in the real world and other are used
too broadly. This makes it very difficult to define the skills
needed for each of those roles and employers, who are looking
for employees in the field, cannot make a right judgement,
if the candidates are qualified enough for the respective job.
In [the approach section| we will briefly describe the roles de-
fined by the five organizations. Then we will compare these
roles and talk about some of the skills that they require.

3.2 Difficulty of choosing a process methodol-
ogy

Another challenge we found in the literature is that there
are many different methodologies and each project needs
a specific process methodology depending on the fields that
are used in it. Furthermore, the methodologies used in prac-
tice are defined only for a specific field or have not been
adapted for the new challenges that data-driven projects
bring [10] [9]. Therefore, their application in real world
projects decreases [10]. Companies search for new method-
ologies that are more appropriate or use ones that are de-
fined for another field but are more efficient than the current
methodologies. Some examples are Agile Kanban, Scrum ,
CRISP-DM |[9].
We also found that every known methodology brings not
only advantages but also disadvantages, which makes choos-
ing the right process methodology tremendously important
for a successful project. One reason is that in such projects
the amount of data used is too large and many different
fields are involved. One person cannot handle them, which
leads to the creation of teams to process the data [22] [11].
This challenge is the cause for further challenges project
managers of data-driven projects face. The first one is that
requirements given by the customers are not clearly defined.
The second one is that there are problems with teamwork
and communication in such teams. The last one is that it
is hard for the teams to plan the future work. Now we will
show about each of those problems in more detail.

3.2.1 Unclear requirements

According to the paper by Jeffrey Saltz and Ivan Shamshurin
|2] there are more unclear requirements in data-driven projects
compared to other software development projects. One of
the main reasons for the uncertainty is that the analysis
in data-driven projects has exploratory nature. Because of
this nature, the requirements in such projects are not clear
and the results from the projects about these requirements
cannot be validated very often. The focus of team process-
ing the data and business teams are different. For example,
business teams focuses on financial benefits, while teams,
processing the data, tend to focus on model accuracy [23].
One more reason for that is that there is a gap between the
customer and project manager caused by unwillingness to
collaborate. It is a big problem, because software develop-
ment teams do not have insight. That is why, they need

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

domain experts to help them [23]. This makes it harder
for the team to understand and clarify the requirements of
the project and then successfully fulfill them. Apart from
that, customers do not understand how data-driven projects
work and have too high expectations [22]. The wrong under-
standing of the requirements, that is a specific characteristic
for the data-driven projects is one of the main reasons for
the need of a specific methodology for such projects to be
created [3].

3.2.2 Teamwork and communication problems

Another problem resulting from the lack of appropriate
process methodology is that around three quarters of data-
driven projects fail because of bad communication in the
team [3]. A cause for that can be that the teams of such
projects should consist of team members with different skills
and from different areas. For example, business teams and
technical teams in a project can have different metrics ac-
cording to which they assess the success of the project. It
can happen that while one of the teams assesses the project
as successful the other one can assess it as unsuccessful
[23]. Another example can be the collaboration between
the software development team and data science team in
the project. They have to understand how the project will
be used in production in order for the software development
team to integrate it correctly and the data science to under-
stand the real requirements about the project|23].
Therefore, effective communication in such teams is very im-
portant factor for the success of the project. If such problems
arise in the projects they can lead to delays. It is advisable
for a methodology to be created, where this aspect is consid-
ered and guidelines are given on how to solve such problems
within the team [21].

3.2.3 Plannability problems

The explorative nature of analysis also causes the last
challenge that we will mention in our paper. Data-driven
projects need to respond on changes in the requirements at
any time, because they are very common especially during
the analysis process. These changes can be related to some
problems that can arise in this process. Such changes can
happen because the model or the data change. In such cases
an urgent reaction is needed so that the changes can be made
in time and so that the analysis process can be accomplished
in time [2].

Inthe approach section] we would like to summarize what

methodologies exist and can be applied to data-driven projects

so that these challenges can be overcome. Current data-
driven projects use some of the following methodologies:
CRISP-DM, Agile Kanban and Scrum, but they have some
drawbacks. Some proposed approaches we found are for
example Team Data Science Process (TDSP), Knowledge
Discovery in Data Science (KDDS) and Refined Scrum-DS.
They can be possible solutions to the challenges brought
by the other methodologies in a data-driven project. Fur-
thermore, we will describe these methodologies and we will
discuss some of their strengths and weaknesses. Apart from
that, we will compare the different methodologies and try to
relate them to the problems introduced above.

3.3 Fulfilling the 4 V’s

Another challenge we found in some papers is fulfilling the

4 V’s of big data. As mentioned in the introduction there is
a high failure rate of such projects. It is 55%, where general
software projects only have about 38% failure rate [18]. The
most essential requirement in big data projects is to fulfill
the 4V’s, but there is no standardized process that considers
them and is one of the main causes for their great percent-
age of incompletion. Variety is the most difficult out of the
4 V’s that the manager of the project needs to deal with[18].
The paper The Design of a Software Engineering Lifecycle
Process for Big Data Projects by Yen-Tai Lin and Sun-Jen
Huang [18] proposes a standard that can handle the chal-
lenges we mentioned above. In [the approach section|section
we will describe it briefly.

4. PROJECT MANAGEMENT APPROACHES

In this section we will talk about some approaches we
found, that try to solve some of the above-mentioned chal-
lenges.

4.1 Approaches for the definition of roles in
data-driven projects

4.1.1 NIST

The NIST organization is a standards organization. They
have defined the following roles: System Orchestrator, Data
Provider, Big Data Application Provider, Big Data Frame-
work Provider, Data Consumer, Security and Privacy and
Management .

System Orchestrator: defines the goals of the project and
monitors the team.

Data Provider: gives new data or information feeds.

Big Data Application Provider: gives instructions how the
project should be executed to meet the requirements set by
the System Orchestrator and these related to the security
and privacy.

Big Data Framework Provider: creates the framework where
the data will be processed to meet all privacy and security
requirements.

Data Consumer: this is the end user or system.

Security and Privacy: monitors the privacy and security re-
quirements.

Management: manages the system and data-driven lifecycle
process|[4].

4.1.2 EDISON

The EDISON organization is another standards organi-
zation that has defined the following roles: Data Scientist,
Data Science Researcher, Data Science Architect, Data Sci-
ence Programmer, Data/Business Analyst.

Data Scientist: finds data sources and applies mathemati-
cal models to process the data.

Data Science Researcher: finds valuable knowledge and re-
veals relations between different goals of the project.

Data Science Architect: creates and maintains the architec-
ture of data-driven applications.

Data Science Programmer: codes an analytics application.
Data/Business Analyst: analyses the found data and makes

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

it usable for presenting|4].

4.1.3 SAIC

The SAIC organization is an industry organization that
has defined the following roles: Information Architect, Data
Scientist, Metrics and Data, Knowledge and Collaboration
Engineer and Big Data Engineer.

Information Architect: develops data models, data stan-
dards and the design of data structures.

Data Scientist: works in all stages of the life-cycle process,
extracts value from the data and cares for the verification of
the received results in each step.

Metrics and Data: creates data models to increase the pro-
ductivity.

Knowledge and Collaboration Engineer: promotes knowledge
management and collaboration within the enterprise.

Big Data Engineer: role that covers a big part of the tasks
within the life-cycle of the project|4].

4.1.4 Springboard

The Springboard organization is also an industry organi-
zation. They have defined the roles: Data Engineer, Data
Scientist, Data Analyst and Data Architect.

Data Engineer: knows many programming languages and
implements requests from data scientists.

Data Scientist: transforms the goal of the project into a data
question and creates predictive models to find a solution and
present it.

Data Analyst: finds the value from the data and shows it in
presentable form.

Data Architect: structures the technology needed to manage
the data models[4].

4.1.5 Gartner

The Gartner organization is an advisory company that
has defined the following roles: Data Scientist, Data En-
gineer, Business Experts, Source System Experts, Software
Engineers, Quant Geeks and Unicorns.

Data Scientist: participates in all stages of life-cycle pro-
cess.

Data Engineer: transforms the data in such a way that data
scientists can easily understand and process it and to in-
crease the productivity.

Business Experts: have a good understanding of the busi-
ness domain.

Source System Experts: know the data at the business ap-
plication level.

Software Engineers: codes, integrates data or deploys re-
sults.

Quant Geeks: very skillful in a specific field and sometimes
are needed occasionally and sometimes mandatory.
Unicorns: have a huge variety of skills and with very deep
understanding of all data science related topics|4].

After the introduction of the roles in different organiza-
tions, we will make a comparison of them.
As we can see above almost all of the organizations have the
data scientist role and its definitions are very similar. This

job requires skills in the fields of software engineering, math,
statistics and data communication. The tasks of this job are
management of the data, finding and management of data
sources, building mathematical models, translating business
goals into data questions etc. This job is among the most
used in other organizations and this can be confirmed by
It is among the most searched jobs in this field.

Another popular position among different organizations is
Data Engineer. The main required skills are software engi-
neering, math and statistics. In some organizations the main
difference to data scientist is that this job does not require
skills related to data communication. Its focus lies on skills
related mostly to software engineering like programming in
different languages, because they implement the model re-
ceived by the data engineer. Furthermore, data scientists use
machine learning and data analytics, so that skills related to
these fields are also required. For data engineers such skills
are not necessary, because they deal with data pipeline, data
sets and data ingestion[4]. In some of above-mentioned orga-
nizations the jobs big data framework provider, data science
programmer have similar roles to data engineers, but
[l shows that these names are not used at all.

Another position defined in some organizations is data
architect. Its tasks are mainly related to the creation and
maintenance of facilities and applications used for the man-
agement of the data models. This is also popular according
to

Data analyst is the most common job as we can see in
It is related to the analysis, visualisation and ex-
planation of the data and requires skills related to data com-
munication, math, statistics and algorithms. In comparison
to data scientists software engineering skills are not needed.

The role data provider defined by NIST coincides with a
task of the data scientist in EDISON which is provision of
data. This job is not popular among the different organiza-
tions according to

Quant geeks and unicorns are unique roles that are only
defined by Gartner. For quant geeks excellent math and
statistics skills are required, while unicorns should be good
at every required skill needed in such projects.

Data consumer, system orchestrator, management, met-
rics and data, knowledge and collaboration engineer are roles
that are not popular among different organizations and can
be seen only in one specific organization.

In the literature, we found no concrete suggestion for the
definition of the roles within a data-driven project team.
The reason for that is the continuous evolution of these
projects [4]. There is currently a need for an unification
of the definition of said roles. The roles defined by these
organizations can serve as a foundation for the future work
on unification of the roles in such projects.

4.2 Approaches for a process methodology

In this section we will discuss the approaches when it
comes to choosing a process methodology. First, description
of the methodologies will be given. After that, the advan-
tages and disadvantages each of the methodologies will be
presented. Lastly, there will be a discussion about which
challenges each of the methodologies solve.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

4.2.1 CRISP-DM

CRISP-DM (also known as Cross Industry Standard Pro-
cess for Data Mining) was defined in the 1990s and it con-
sists of 6 steps which form a cycle through which the project
can iterat. The steps are: Business understanding, data un-
derstanding, data preparation, modeling, evaluation, deploy-
ment.[9] [12]

Business understanding: this is the first step of the cycle.
The main purpose of the stage is to identify the project goals
and requirements and they get turned into a problem in the
field of data mining.

Data understanding: In this step the team begins to collect
data and tries to understand the data and whether problems
can arise. They attempt to extract hidden information.
Data preparation: Deals with processing the data and turn-
ing it into the final data set

Modeling: In this phase the team picks up a modeling tech-
nique and changes the parameters to reach optimal values
Evaluation: The team evaluates the steps of the previous
phase and whether the models meet the project goals and
requirements.

Deployment: after the creation of the model the team needs
to reorganize the results to make them understandable and
useful for the end user. [12]

Now that the CRISP-DM methodology has been described,
we will discuss a little bit about its real world application.
According to reports, the usage of this methodology is de-
creasing but some experts claim that it would be very useful
for the definition of a standard methodology used in all data-
driven projects [11]. One major drawback of this methodol-
ogy is that it is not updated anymore, redefined and trans-
formed to be used in data-driven projects. There is very
small number of tools that contain it [10]. This methodol-
ogy cannot handle the challenges related to the exploratory
activities that are a main characteristic of the data-driven
projects [25]. It is not flexible enough for such projects and
cannot overcome the plannability problems in such projects
[25]. This methodology spends much time on understanding
the requirements of the project [§8]. Thanks to the business
understanding step, teams understand the requirement and
business goals [12]. This can be confirmed by the experi-
ment of Ivan Shamshurin, Jeffrey Saltz and Kevin Crowston,
who conducted an experiment in which they tested differ-
ent methodologies within teams of students. The students,
who used CRISP-DM, had good understanding of the re-
quirements. The team members of the experiment said that
this methodology improved the communication, collabora-
tion and teamwork [8].

4.2.2 Agile Kanban

In recent years, a Lean approach has become popular in
the field of the software development. It focuses on the effec-
tiveness of the work and how to reduce the unnecessary ac-
tivities to speed up the process. At first, it has become very
popular in the car manufacturing industry and has shown
to produce good results. Its principles are: focus on qual-
ity, fast results, respect the people, creation of knowledge,
always trying to improve the process, reduction of the un-
necessary things and activities in the process. Kanban is
one of the tools used in the Lean approach. It is used in
the project management and is an addition to the agile ap-

proach. The most important thing from it is the "Kanban
board”. It represents a list of all the tasks that should be
done and who is working on them. In this list, the priority
of the tasks can be seen. This helps the team members to
see the task which they should do easily and shows them
how to deal with it fast. This clarity is achieved because of
the following steps:

Preparation: where the team tries to understand the busi-
ness goals of the project and the data.
Analysis: where the team starts working on the project and
during the implementation each task that it has done and
has to do is on the board.Also the executed tests are shown
on the board.
Deployment: where the team shares feedback and discuss
the results.
There is a limitation to the tasks that can be done in each
phase. This forces the team to prioritize tasks and to work
together. In this way, results can be delivered faster and
tends to have better quality. (8] [13]

While we were reviewing the literature, we found a sum-
mary of the benefits of the Kanban approach in projects re-
lated to software development by Ahmad, M. O., Markkula,
J., & Oivo, M. |13|. The experiment done by Ivan Shamshurin,
Jeffrey Saltz and Kevin Crowston confirms that these ben-
efits apply to data science which is a part from the data-
driven projects [8].

The design of this methodology leads to better overview
of how the process should be executed. The challenge about
unclear requirements can be solved by Agile Kanban. Be-
cause of the "Kanban board” teams participating in the ex-
periment had a good understanding of the requirements and
goals of the project, which according to results of the ex-
periment leads to a higher customer satisfaction. In this
methodology, the plannability challenges caused by new re-
quirements of the customer can be handled easily and ear-
lier. This happens, because the members working on the
project make decisions what should be done. Furthermore,
they decide what are the priorities in the project without
the approval of top-level management [13|. This is due to
the Kanban board that helps for the prioritization of the
tasks [8]. Apart from that, there is no fixed timetable and
at any time the new requirements can be considered. Even-
tually, a change of the priorities can be made [13]. Because
of these reasons, Agile Kanban is very flexible and can help
for solving the plannability challenges. While we were re-
viewing the literature, we found the work of Ahmad, M. O.,
Markkula, J., & Oivo, M. [13], who show some general ad-
vantages of this methodology. In real projects, it brings in
comparison to another agile methodology faster delivery of
the results which are of good quality. It also leads to an
increase in learning within the team and to better coordina-
tion and communication with other people involved in the
project. This methodology increases the self-organization
and motivation of the team members. This happens, be-
cause they can see what other members prefer to work on
and approve or reject their preference. Complex tasks and
individual struggles of a team member to deal with a specific
task can be noticed faster, easier so that team members can
get help earlier [13].

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

4.2.3 Scrum

The Scrum methodology is one of the most used agile
methodologies in software development [5]. It enables the
team to be very adaptive to changing requirements of the
customers and brings results faster. It represents a cycle
through which a team iterates and conducts tests continu-
ously. It is designed to speed up the process and enhances
the communication in all phases of the project. The Scrum
methodology also improves the skills of the team members,
which can lead to better results [14]. The main roles within
Scrum are: Scrum team, Master, Product Owner, which col-
laborate during the whole process.

The Master tries to help the team to overcome challenges.
The Scrum team is related to the development, testing and
other activities needed.

One of the most essential things used in Scrum is a sprint
[14]. A sprint typically lasts between one week and one
month. During a sprint the team members work on a task,
that was given to them before the sprint. Once a sprint
starts the task of each team member cannot be changed un-
til the beginning of the next sprint. At the end of each
period, the team has to show an usable product. After each
sprint, there is a review of it. The documentation of the
sprint, the tasks during it and requirements that should be
fulfilled in it are written in the sprint backlog [14]. All tasks
that need to be completed are written in the product back-
log, where the priority of the tasks can be changed and also
new tasks can be added [5]. These tasks and requirements
are defined by the product owner and are called user stories.
The product backlog is split up in sprint backlogs. The next
step is called sprint planning. In this step, the team dis-
cusses how to complete each sprint. In the Daily Scrum
the team members discuss what they have achieved during
the current day. Other parts of the Scrum methodology are:
Sprint Burndown, Product Burndown and Release Burndown
charts, that show the progress of the project |14].

Now that we described the Scrum methodology we will
give some disadvantages of it in data-driven projects. In the
experiment conducted among students by Jeffrey S. Saltz,
Ivan Shamshurin, Kevin Crowston [8] they found, that there
was not enough time for understanding the requirements and
the data that has been already provided. Therefore, this
methodology is not appropriate for overcoming of the un-
clear requirements. The team members had problems with
deciding what to do in a sprint and there were also changes
of the tasks during it, which is not allowed by the definition
of the methodology. One of the main reasons for that is the
exploratory nature of such projects. Because of that, the
teams cannot make a right assessment how much time they
will need to do the tasks. This leads to the failure of the
methodology to deal with the plannability problems. Ac-
cording to the experiment, this methodology had the worst
results. The experiment conducted by Jeffrey S. Saltz, Ivan
Shamshurin [5] in an organization with many employees
confirms the same problems that the methodology had in
the previous experiment. For example, the problem with
plannability also emerged there. Some of the team members
said that it needs to be more flexible during sprints, because
sometimes problems emerge that need to be fixed immedi-
ately. Therefore, in these teams there were difficulties to

finish the task on time. Another finding of the experiment
was that an increase in the number of team members lead to
reduced quality of work and the daily meeting became less
useful. That suggests that teamwork within the team is de-
creased. Therefore, it is also not appropriate for overcoming
of the problems with teamwork and communication [5|.
From the disadvantages we can conclude that the Scrum
methodology does not help for solving any of the challenges
which we defined.

Following, a comparison of the above-described method-
ologies will be performed. Agile Kanban helps for the im-
provement of all of the challenges we mentioned. It together
with CRISP-DM is more useful for the challenges related to
unclear requirements, teamwork and communication prob-
lems. However, CRISP-DM is not as flexible in compari-
son to Agile Kanban.According to our challenges the Scrum
methodology had the worst results out of the three method-
ologies. As we can see from both experiments Scrum has
achieved the lowest results, which supports our point.

Now that we discussed some methodologies that are used
in practice and problems they bring in a data-driven project
environment we will describe some emerging approaches,
that are an adjustment or combination of the above-mentioned
approaches.

4.2.4 Team Data Science Process

Team Data Science Process (also TDSP) is an emerg-
ing approach and was defined by Microsoft in 2016. It is
described as an agile and iterative methodology, based on
CRISP-DM but also containing elements of Scrum such as
backlog artifacts, sprints and roles. The four roles within a
TDSP project are: Group manager, Team lead, Project lead
and Individual team contributor. The process consists of the
following 5 phases: Business understanding, Data acquisition
and understanding, Modeling, Deployment and Customer ac-
ceptance. [9)

The phases:

Business understanding: similar to CRISP-DM in this stage
the task of the team is to define the project goals and re-
quirements. Another part of this phase is the identification
of data sources, that the client needs.

Data acquisition and understanding: in this step the team
tries to process the data. Then, it assess whether it is suf-
ficient to complete the goal. The team also attempts to
extract new data or to update the current one.

Modeling: in this phase the team creates a model of the data
and decides whether the model has good quality.
Deployment: the team deploys the model.

Customer acceptance: in this phase the customer decides
whether the model and its deployment fulfill the require-
ments. [15]

The four roles in the TDSP approach are:
Group Manager: the main job of this role is to create the
team or teams according to the standard of Team Data Sci-
ence Project and to help for the improvement of the team-
work.
Team Lead: this role is responsible for only one team and
just like the Group Manager tries to improve the collabora-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

tion in it.

Project Lead: this role is responsible for the management of
the task that each team member needs to do during the day.
Individual Contributor: this role represents the team mem-
bers that work on the assigned tasks in the project. [15]
The design of TDSP is very similar to the design of CRISP-
DM. Business Understanding and Deployment are defined
just like in CRISP-DM. Modeling has the same name as in
CRISP-DM but it is a combination of Modeling and Eval-
uation stage in CRISP-DM. Data Acquisition and Under-
standing are mixture of Data Preparation and Data Under-
standing stages.

The main advantage of TDSP over CRISP-DM is that
it defines four roles and their tasks during each stage of a
project |9]. Another positive characteristic of this methodol-
ogy is that it leads to better teamwork and collaboration. Its
application in a data-driven project can help with the team-
work and communication problems challenge [15] [26]. This
methodology cannot help for the solving of the plannability
challenge, because the planning sprints have fixed lengths.
This leads to a decrease in flexibility [26].

4.2.5 Knowledge Discovery in Data Science

Knowledge Discovery in Data Science (also KDDS) is an-
other approach consisting of 4 phases: assess, architect, build
and improve [9].

Assess: during this step, the team looks for possible alter-
natives and assesses them.

Architect: searching for a solution that fulfills the assigned
requirements.

Build: in this step, the team handles the development, test-
ing and deployment of the solution.

Improve: the team tries to improve the system. For example
to make it faster and more accurate. [16]

KDDS has 5 process stages: plan, collect, curate, analyze
and act. [9]

Plan: planning the coordination between different organi-
zations that work on this project. Another task is the as-
sessment of the expenses. One more task is the consideration
whether the project fulfills the privacy regulations.

Collect: The team has to choose what type of database they
are going to use, to achieve big volume and high veloc-
ity. Another task is that the teams from different organi-
zations negotiate on ways to provide the other teams with
the needed data.

Curate: In this stage, the teams try to understand the data.
After that, the teams check whether the expected results
will fulfill the privacy and security requirements. In this
step the team checks the distributed repositories for cura-
tion and analysis. Another task is the consideration of the
data quality. One more task is consideration whether sam-
pling is needed.

Analyze: During the first iteration the hypothesis for the
data set is made. In the second iteration it is approved or
denied. Another task in this stage is that the teams try
to find simpler ways to achieve the same business goal. The
team needs to choose an algorithm that can run parallel with
a huge quantity of data. People working on the project also

need to consider concurrency. The teams also need to con-
sider latency, because the analytics of nodes may not be in-
dependent. Furthermore, the teams need to analyse whether
all communication requirements are fulfilled for each device.
Act: In this last stage the team tries to visualize the data
in a way that it is useful and understandable for people who
do not have a deep knowledge in statistics. The teams have
the task to check whether they fulfill all the data privacy
and security requirements when exchanging data between
the different organizations working on the project. [16]

In this methodology, the plan stage helps for the coor-
dination of different organizations that participated in the
project. The collect stage considers the big volume and the
high velocity that such projects can have.

Some studies have shown that KDDS has shown good results
in real world applications 9] . Another reason why KDDS
can be better than CRISP-DM in a data-driven project en-
vironment is because KDDS adds more activities that are
directly connected to data-driven projects. For example, it
considers the big volume and high velocity of the data that
such projects need to handle. This consideration contributes
to a better quality of results. Another advantage is that the
KDDS methodology helps with coordination between the
organizations working on a project that might help for the
solving of the teamwork and communication problems [16].

4.2.6 Refined Scrum-DS

Another approach is the Refined Scrum-DS described by
Jeroen Baijens, Remko Helms and Deniz Iren [17]. This
methodology combines Scrum and CRISP-DM in order to
overcome some of the main challenges that come with Scrum.
The Refined Scrum-DS takes five of the six stages of CRISP-
DM: Business Understanding, Data Understanding, Data
Preparation, Modelling and Evaluation which are defined in
the same way like within CRISP-DM. [17]

In the following we will discuss the artefacts, events and
roles within Refined Scrum-DS.
One of the artefacts are the user stories. They are defined
like in Scrum and describe the tasks. All roles must be
present when they are created and they need to be added to
the product backlog. They need to be done after the first
two steps of this methodology.
The artefact product backlog can bring a better understand-
ing of the project. It should be prioritized and created after
the first two steps just like the user stories.
The artefact sprint backlog should contain data preparation
and modelling activities. The Scrum Master and the de-
velopment team decide which user story from the product
backlog needs to be included in sprint backlog and how long
each of the user stories will take. It should be created after
the first two steps.
The last artefact is the incremental. It can help for better
understanding of the project or can be a data-driven prod-
uct, delivered after a sprint and it shows the progress. [17]

The events within the Refined Scrum-DS methodology
are: Sprint, Daily stand-up, Sprint review, Sprint retrospec-
tive, Refinement, Sprint zero.

The sprint is just like the sprint in Scrum, but in Scrum-
DS a four week sprint is preferred and happens during the

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Modelling phase.

Daily stand-up is similar to the daily Scrum and is executed
in the data preparation and modelling phases.

Sprint review is a meeting where the result of a sprint is
shown to the customer and takes place before the Sprint
Retrospective in the Evaluation phase.

Sprint retrospective is a meeting between the team mem-
bers, in which the team discusses the last sprint. It is done
during the Evaluation phase.

Refinement is a meeting about new user stories and their
priority assignment. After that the user stories are com-
bined. This leads to the creation of the product and sprint
backlog. The Refinement is done within the Business and
Data understanding phases.

Sprint zero is sprint before the beginning of the implemen-
tation. It is used to find the business goal and the require-
ments. This is executed in the Data Preparation phase. [17]

CRISP-DM | Business Data Data

step understanding | understanding | preparation Modeling Evaluation

Events Refinement eI S

Sprint retrospective

Daily stand-up Daily stand-up Sprint review
User stories
Artefacts Product backlog Increment
Sprint backlog
Product Owner Serum Master Serum Master Development Team
Roles Scrum Master D Product Owner
Development Team Scrum Master

Figure 2. The phases, artefacts, events and roles of Refined Scrum-DS [17]

The roles within the Refined Scrum-DS methodology are:
Product Owner, Scrum Master and Development team. They
are defined very similarly to Scrum, which we described ear-
lier |17].

Now that we described Refined Scrum-DS, we will briefly

talk about the theoretical advantages it brings. However,
the methodology has not been tested and can hide some
disadvantages of Scrum.
This methodology is an integration of Scrum into CRISP-
DM and improves a lot of its aspects. The design of the
methodology adds the sprint zero so that the team can un-
derstand the business goal and requirements better. This to-
gether with the refinement event helps for defining the user
stories better. That is why this methodology can help for the
unclear requirements challenge. Furthermore, this method-
ology should help for the preparation before a sprint. In
this methodology, the daily stand-up helps the team to have
an effective communication and increases the effectiveness
of the sprint events. Apart from that, the scrum master role
also helps teams have a better communication. The product
owner helps with the communication between the customer
and the developers. These roles and events contribute to
the better teamwork and collaboration in the project. Be-
cause of that, this methodology can handle the teamwork
and communication problems challenge. We will mention
two other advantages of this approach that help for over-
coming the plannability challenge. The first one is that the
complexity of the user stories is considered and it is simpler
for the team to decide how long each task will take. The
second one is that the teams can react better to changes,
because there are more interactions between the team mem-
bers and they get regular feedback from the customer|17].

Here, we summarize the three methodologies and com-
pare them to each other as well as to the other three used
in practice. The three methodologies try to be an improve-
ment to the existing ones. TDSP is an adjustment of the
CRISP-DM so that it fits better to the new challenges that
data-driven projects bring. It handles the teamwork and
communication challenge. KDDS is another uprgade of the
CRISP-DM. It can also deal with the teamwork and com-
munication challenge. Refined Scrum-DS is an integration
of the Scrum into CRISP-DM, because it helps solving the
above-described problems of Scrum.

The methodologies used in data-driven projects have not
only advantages, but also disadvantages. The approaches we
found solve some of the disadvantages, but there is a need
for more research because they have not yet been thoroughly
tested in a real world environment. One thing that experts
have found for sure, is that the methodology that should be
used in data-driven projects should be an agile approach|7].

4.3 Approach for fulfilling the 4 V’s

As we mentioned in the challenges section there is no stan-
dardized lifecycle development process for big data projects,
but the IEEE organization has provided a development pro-
cess for general software projects. The authors of the paper
The Design of a Software Engineering Lifecycle Process for
Big Data Projects [18] base their new approach on the defi-
nition given by the IEEE organization.

Variety is a challenge for big data projects. The approach
in the paper tries to overcome it. The term variety is used
to describe if the data is structured, unstructured or semi-
structured as well as the organization of the data. To achieve
variety, the team can look for relevant parts from the data.
Moreover, looking in the unstructured data brings the best
results, but this method hides a lot of risks. Variety needs
to be considered when creating a standard development pro-
cess for big data projects. [18]]23]

Variety is the reason data innovation needs to be included
in the business goal. It can bring additional value from the
data. Because of its uncertainty, only twenty percent of the
goals of the project need to be from data innovation. It is
used to look for data trends using different views, ranges,
properties, dimensions and also mathematical methods as
statistics and multivariable methods. There are three differ-
ent parts of data innovation. The first is that development
team and the customer should discuss about its importance
and decide what percentage of the results will be for the
data innovation. The second is that, data innovation can
be added to data process when needed. The third is that,
the cycle steps through which data innovation iterate, are
created. [18]

The proposed lifecycle process consists of the characteris-
tic data variety, of the concept data innovation and of the
processes software engineering and data analysis. The life-
cycle process defined in the paper The Design of a Software
Engineering Lifecycle Process for Big Data Projects [18] tries
to solve the problems caused by variety by using the follow-
ing processes:

Data value, result and innovation process: that is where the
scope of the data is discussed.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Domain specialist resource management process: this is a
process in where the different resources are considered.
Data inventory process: The available data gets a descrip-
tion with all the needed characteristics.
Data requirement analysis process: This is done to assess the
expected results and their value.
Data cleaning process: In this process the data gets cleaned
at the end of the data innovation process to preserve data
variety. [18]
The proposed lifecycle process gives the following advices to
overcome challenges that come with data innovation:
Data value, result, and innovation process: this process can
be used for the discussion of the changes that need to be
made.
Data innovation process: this is where data innovation is ex-
ecuted.
Data processes represent another challenge for which this
lifecycle process gives the following recommendations:
Data automation and monitoring process: technical process
that aims to create automatic collection and monitoring of
data.
Data visualization: this technical process aims to visualize
the results, because it is very essential for big data projects.
Data decision support process: it is the last recommended
technical process that deals with the assessment of the re-
sults whether they are useful for the customer. [18]

In the design of their proposed lifecycle process the au-
thors have combined the model for general software projects
by IEEE organization and the processes we described.

Agreement processes Project processes Data processes Technical processes

Data value, result, Project planning Data collecting Stakeholder require-

and innovation process process process ment definition process
Project assessment . . .
- ! Data inventory Requirement analysis
Acquisition process and control
process process
process

Decision management Data requirement | Architectural design

Supply process .
process analysis process | process

Risk management Data integration | Data automation

process

process process and monitoring process
Configuration management | Data verification | Data visualization
process process process
Information management | Data analysis Data decision support
process process process
‘ Data modeling Implementation
Measurement process
process process
Organizational project- Data simulation | Integration
enabling process process process
Lifecycle mode Data prediction | Verification
management process process process
Infrastructure management Data innovation | Transition
process process process
Project portfolio Data validation | Validation
management process process process
Domain specialist Data cleaning Operation
resource management
process process

Human resource Data maintenance | Maintenance

management process process process
Quality management .

Disposal process
process

Figure 3. The process proposed by the authors of the paper [18|

This lifecycle tries to handle one of the characteristics of
big data namely Variety. It causes problems because the
data that the teams should process comes from different

sources and is in different formats. The data as mentioned
above can be structured, unstructured or semi-structured.
This is a challenge for the team to process the data. The
processes Data value, result and innovation process, Domain
specialist resource management process, Data inventory pro-
cess, Data requirement analysis process, Data cleaning pro-
cess that we explained are a proposal of the author. Data
innovation emerges because of data variety and has to be
handled in such projects. Data innovation is included in
the business goal, because it brings more value to the re-
sults but it is very uncertain. Therefore, it is recommended
that the team should not invest all of its efforts in it. It
should be only twenty percent of the goals of the project.
The authors describe the processes: Data value, result, and
innovation process, Data innovation process, Data processes
that can solve the challenges related to the data innovation.
The proposed lifecycle development process is a good foun-
dation for the future work on establishment of a standard
for such a process in big data projects. This process needs
to be tested in practice so the advantages and disadvantages
it hides can be discovered.

5. DISCUSSION

Now we will discuss the different approaches we found and
describe which challenge they could help solving.
The unclear requirements challenge can be overcome by Ag-
ile Kanban methodology and Refined Scrum-DS. In Agile
Kanban the preparation step and the Kanban board help for
better understanding of the business goals and the require-
ments of the customer. In Refined Scrum-DS the refinement
event helps for claification of the requirements.
Agile Kanban, TDSP, KDDS and Refined Scrum-DS can
help with the teamwork and communication problems in
data-driven projects. The Kanban board in Agile Kanban
improves the communication [2|. The artefacts, defined in
the TDSP methodology can lead to improved communica-
tion in the team [15]. Because of the Plan stage, the KDDS
methodology can also help with communication and collab-
oration between organizations working on the same project.
Lastly, the Refined Scrum-DS methodology can have better
communication between team members because of the scrum
master role and the daily stand-up. The product owner role
can also lead to better communication between the stake-
holders and the team.
The challenge about the plannability can be solved by Agile
Kanban and Refined Scrum-DS. The Agile Kanban method-
ology can help for solving this challenge, because of its flex-
ibility [2]. As mentioned earlier, the Refined Scrum-DS
methodology can lead to higher flexibility, because the team
members get feedback more frequently.
The last challenge we talked about was fulfilling the 4 V’s.
The approach we mentioned needs to be tested and can serve
as groundwork for the definition of a standardized life-cycle
development process.

Now we will briefly talk about some challenges that we did
not find solutions for. The first that we mentioned is the lack
of clear definition of roles within a data-driven project team.
That is because the field is constantly evolving and a lot of
different skills are needed, which makes it difficult to define
unified roles. We never found a concrete definition of the

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

roles, which is further supported by the papers of Jeffrey S.
Saltz, Nancy W. Grady [4]. In their work we found that
there are currently different organizations defining different
roles, which either have the same name but different job dur-
ing a project or there are some roles that overlap but have
a different name. This leads to more confusion among the
employers when they try to find employees with the needed
skills for a project. The roles defined above can serve as
groundwork for the further definition of unified roles. The
last challenge is the lack of life-cycle process that is used in
practice. Because of that, many big data projects fail or can-
not complete the business goals assigned by the customer.

6. CONCLUSION

In conclusion, we would like to summarize our paper and
also talk about what needs to be done in the future for a
higher success rate of data-driven projects.

The main problems we found in the literature were the
lack of standard for the lifecycle development process, pro-
cess methodology and definition of the roles of team mem-
bers in such projects. The reason, standards from other
fields do not work in a data-driven environment is that they
do not consider their characteristics. For example, projects
involving big data need to consider Volume, Velocity, Verac-
ity and Variety, which cause additional requirements. We
found some approaches for these challenges, that can be the-
oretically good solutions. Nevertheless, they need additional
research and testing in a real world applications, because
they can hide some drawbacks. One of the main objec-
tives we concluded is that there is a big need for unification
and standardization of the above-mentioned roles, which will
lead to a much better success rate of these projects. The
difficulty of solving these challenges comes from the rapidly
evolving field and the many different types of data-driven
projects.

Data-driven projects have become more important and
popular which makes adjustment to their requirements more
and more mandatory.

7. REFERENCES

[1] Ali Sever - Modeling Distributed Agile Software
Development for Big Data Projects: Evolution in
Process.

Jeffrey S. Saltz, Ivan Shamshurin - Achieving Agile Big
Data Science: The Evolution of a Team’s Agile Process
Methodology.

Jeffrey S. Saltz, Ivan Shamshurin - Big Data Team
Process Methodologies: A Literature Review and the
Identification of Key Factors for a Project’s Success
Jeffrey S. Saltz, Nancy W. Grady - The Ambiguity of
Data Science Team Roles and the Need for a Data
Science Workforce Framework

Jeffrey S. Saltz, Ivan Shamshurin - Achieving Agile Big
Data Science: The Evolution of a Team’s Agile Process
Methodology

Jeffrey S. Saltz, Ivan Shamshurin - Big Data Team
Process Methodologies: A Literature Review and the
Identification of Key Factors for a Project’s Success

2

3

[4

5

6

[7] Patricia Frankovd, Martina DrahoSové, Peter Balcoa, -
Agile project management approach and its use in big
data management

[8] Jeffrey S. Saltz, Ivan Shamshurin, Kevin Crowston -
Comparing Data Science Project Management
Methodologies via a Controlled Experiment

[9] Jeffrey Saltz, David Wild, Nicholas Hotz, Kyle Stirling
- Exploring Project Management Methodologies Used
Within Data Science Teams

[10] Piatetsky, G. - CRISP-DM, Still the top methodology
for analytics, data mining, or data science projects.
www.kdnuggets.com/2014/10/crisp-dm-top-
methodologyanalytics-
data-mining-data-science-projects.html

[11] Jeffrey S. Saltz - The Need for New Processes,
Methodologies and Tools to Support Big Data Teams
and Improve Big Data Project Effectiveness

[12] Ana Azevedo, Manuel Filipe Santos - KDD, SEMMA
AND CRISP-DM: A PARALLEL OVERVIEW

[13] Ahmad, M. O., Markkula, J., & Oivo, M. (2013,
September). Kanban in software development: A
systematic literature review. In Software Engineering
and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on (pp. 9-16). IEEE.

[14] Apoorva Srivastava, Sukriti Bhardwaj, Shipra
Saraswat - SCRUM Model for Agile Methodology

[15] Microsoft - T'eam Data Science Process -
https://docs.microsoft.com/en-us/azure/machine-
learning/team-data-science-process/lifecycle-business-
understanding

[16] Nancy.W. Grady - KDD meets Big Data

[17] Jeroen Baijens, Remko Helms, Deniz Iren - Applying
Scrum in Data Science Projects

[18] Yen-Tai Lin, Sun-Jen Huang - The Design of a
Software Engineering Lifecycle Process for Big Data
Projects

[19] David J. Hand - Principles of Data Mining

[20] Foster Provost, Tom Fawcett - Data Science and its
relationship to Big Data and Data-Driven Decision
Making

[21] Jing Gao, Andy Koronios, Sven Selle - Towards A
Process View on Critical Success Factors in Big Data
Analytics Projects

[22] VB Staff
https://venturebeat.com/2019/07/19/why-do-87-of-
data-science-projects-never-make-it-into-production/

[23] Ryohei Fujimaki
https://www.datanami.com/2020/10/01/most-data-
science-projects-fail-but-yours-doesnt-have-to/

[24] Pervaiz Akhtar, Jedrzej George Frynas, Kamel Mellahi
and Subhan Ullah Big Data-Savvy Teams’ Skills, Big
Data-Driven Actions and Business Performance

[25] Fernando Martinez-Plumed, Lidia Contreras-Ochando,
Cesar Ferri, Jose Hernandez-Orallo, Meelis Kull,
Nicolas Lachiche, Maria Jose Ramirez-Quintana and
Peter Flach CRISP-DM Twenty Years Later:From
Data Mining Processes to Data Science Trajectories

[26] What is TDSP? Team Data Science Process
https://www.datascience-pm.com/tdsp/

All of the figures we used are from the referenced papers

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

A Systematic Study and Collation of Amazon AWS and
Microsoft Azure Cloud Architecture Design Patterns

Pavan Nadkarni
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany
pavan.nadkarni@rwth-
aachen.de

ABSTRACT

Since their establishment, design patterns have been an im-
portant means to support the development of software ar-
chitectures and applications. They have become the de facto
standard when it comes to designing software architectures
and code. Over the last decades’ technology and the in-
ternet have evolved rapidly. This has changed the way we
use, approach, and perceive software. As a result, require-
ments such as scalability, availability, and distribution are
being significantly prioritized during the development and
deployment of software applications. Cloud computing is
being used to address them. This area is dominated by the
hyperscalers such as Amazon, Microsoft, and Google. They
define and maintain their own collection of design patterns
to assist customers utilizing their specific cloud platforms.
This has led to a vast patchwork of design patterns being
used in the context of cloud computing. While there exists
de facto standardization of design patterns in architectural
and software development domains like object-oriented soft-
ware, there is a clear deficit in its adoption in the cloud
computing domain. In this paper, we study cloud design
patterns published by the two hyperscalers, Amazon and
Microsoft, to identify redundancies between them. We use
their knowledge and expertise to create an overview of de-
sign patterns defined by them in the field of cloud comput-
ing. We then provide a methodology for categorizing these
patterns into groups and apply standardization techniques
to certain groups to obtain a homogeneous representation of
patterns and then discuss the results obtained.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.11 [Software Engi-
neering]: Software Architectures—patterns, domain-specific
architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Sehrish Kahn
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany
sehrish.kahn?rwth-
aachen.de

Alex Sabau
RWTH Aachen University
Software Construction
Ahornstr. 55
52074 Aachen, Germany
alex.sabau@swc.rwth-
aachen.de

Keywords

Cloud Computing, Hyperscalers, Design Patterns, Cloud
Design Patterns, Cloud Architecture Patterns

1. INTRODUCTION

Looking into the history, it was in 1948 when the first
software program was successfully stored electronically and
executed on a computer [12|. Since then, software applica-
tions have transformed and revolutionized world we live in.
Software application development practices from then on has
evolved continuously. They are being standardized to con-
stantly improve properties like flexibility, reusability, relia-
bility, and operational and performance efficiencies of soft-
ware [4]. Most of the time, obstacles and challenges encoun-
tered during software development were alike across specific
domains. Soon the group of four computer scientists and en-
gineers’, Erich Gamma et al., famously known as the Gang
of Four (GoF) [11] provided generic solutions to address such
challenges in the context of object-oriented software develop-
ment and termed them as design patterns. They published
the book “Design Patterns: Elements of Reusable Object-
Oriented Software” which defines 23 such design patterns
[11] which soon became the de facto standard collection of
design patterns when developing object-oriented software.

With the widespread adoption of technology, billions of
devices connected over the internet are performing compu-
tations and exchanging data in real-time. The data gen-
erated by these components has grown exponentially over
the past decade. This has given rise to the need for on-
demand distributed and remote computational and storage
capabilities. Cloud computing gained wide popularity when
companies like Amazon, Microsoft, and Google, foreseeing
the potential in this sector, decided to offer such on-demand
services to consumers and enterprises by leveraging their ex-
isting investments in data centers [14].

The rapid ongoing shift in the adoption of cloud services
for application development has introduced various new chal-
lenges such as isolation, distribution, elasticity, automated
management, and loose coupling [6]. To overcome these
challenges, each hyperscaler has defined and documented a
catalog of design patterns that cater to their customers in
developing cloud applications on their platform. This has
led to a lack of standardization in such pattern definition,
often resulting in patterns with different names performing
the same or similar functionality.

Christoph Fehling in his dissertation [6] talks about the

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

necessity of pattern organization and its homogeneous repre-
sentation in the field of cloud computing. In this paper, we
hypothesize that there exist several redundancies between
design patterns and their definitions and aim to find an-
swer to the following question: “Does Amazon AWS and
Microsoft Azure have cloud design patterns that address the
same or similar issue but are named differently?”. To answer
this, we present a systematic approach to identify and orga-
nize such patterns by aggregating those defined by Amazon
AWS and Microsoft Azure and generalizing them by decou-
pling them from the individual cloud providers’ context.
The paper is structured as follows. First, the theoretical
background of design patterns, cloud computing, cloud na-
tive applications, and hyperscalers are formally introduced
in to the reader to establish a common terminol-
ogy. Notably, various categorizations of cloud computing,
the importance of design patterns in application develop-
ment, the important cloud application properties, and the
necessity for adopting a standardization process in defin-
ing cloud computing design patterns are introduced to the
reader. In we provide a brief overview of the

related work. Subsequently, in we present our
methodology for categorizing various design patterns offered

by the two hyperscalers, Amazon AWS and Microsoft Azure.
In we present an overview of our results obtained
after applying the methodology outlined in and
then discuss the results in In the end, in

m we draw a conclusion and present future work that can
extend the results.

2. BACKGROUND

2.1 Design Patterns

As quoted by Christopher Alexander in his book “A Pat-
tern Language”, “Each pattern describes a problem which
occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such
a way that you can use this solution a million times over,
without ever doing it the same way twice” [1]. Although
the quote concerns about those patterns found in towns and
buildings, it is nevertheless similar when it comes to design
patterns in software development, where both try to find a
solution to a problem in a context.

As defined by Erich Gamma et al. [11], a design pattern
consists of the following essential components:

e Pattern Name
e Problem
o Solution

e Consequences

2.2 Cloud Computing

The National Institute of Standards and Technology (NIST)

defines cloud computing as “A model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool
of configurable computing resources that can be rapidly pro-
visioned and released with minimal management effort or
service provider interaction” [16]. Additionally, it catego-
rizes the cloud model into five essential characteristics, three
service models, and four deployment models [16]. Here we
just describe the three service models that help to relate the
applicability of a design pattern to a service model.

2.2.1 Service Models

e Software as a Service (SaaS): In this service model,
the consumer uses the provider’s applications running
on a cloud infrastructure accessible from various client
devices through either a client interface or a program
interface. The consumer has limited control over user-
specific application configuration settings and does not
manage or control the underlying cloud infrastructure
or even the individual application capabilities.

e Platform as a Service (PaaS): This capability pro-
vides the consumer the ability to deploy custom-created
or acquired applications onto the cloud infrastructure.
Applications like these can be developed using pro-
gramming languages, libraries, services, and tools sup-
ported by the provider. The consumer can manage
and control only the deployed applications and possi-
bly configuration settings for the application-hosting
environment and not the underlying cloud infrastruc-
ture.

e Infrastructure as a Service (IaaS): This service
model allows the consumer to provision processing,
storage, networks, and other fundamental computing
resources to deploy and run arbitrary software. This
can include operating systems and applications. The
consumer does not manage or control the underlying
cloud infrastructure. But has control over the operat-
ing systems, storage, deployed applications, and lim-
ited control of networking components.

2.3 Cloud Native Applications

Applications that are built to be deployed on the cloud are
termed as cloud-native applications. Such applications need
to exhibit certain inherent properties to benefit from the
cloud environment and its offerings. The IDEAL properties
as proposed by Christoph Fehling [6], help applications to
efficiently handle the workload.

2.3.1 Properties

e Isolated State: This property aims at isolating the
handling of state information of an application to a
minimal number of its components and preferably uti-
lize the data storage functionality offered by the cloud
provider. This improves the scalability and resiliency
of applications.

e Distribution: Cloud environments are typically large
distributed systems. Cloud-native applications deployed
on such environments are generally decomposed into
multiple components whose functionality is largely dis-
tributed to effectively utilize multiple resources in the
cloud environment.

e FElasticity: The cloud-native applications should have
the ability to acquire and relinquish required resources
automatically during runtime depending on the work-
load changes without affecting the user of the applica-
tion. This includes dynamic scale-out and scale-in of
the application instances.

e Automated Management: This property allows cloud-
native applications to appropriately react to dynamic

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

changes in resource demands and failures during run-
time in an automated mechanism without the require-
ment for any human interaction.

e Loose Coupling: Loose coupling is a well-established
concept in distributed applications. Minimizing de-

pendencies between application components makes them
independent and improves their scalability and resiliency

factor. This eases provisioning and decommissioning of
tasks and also reduces the impact of failing application
components.

2.4 Hyperscalers

Hyperscalers are technology giant companies like Ama-
zon, Microsoft, Google, and many others that dominate in
the cloud computing domain. These companies offer an ex-
tensive catalog of specialized cloud platforms and services
to the public and enterprises to build, host, and maintain
their software applications.

This research paper aims to compare patterns defined by
Amazon AWS and Microsoft Azure. It does not scope in
the views of other hyperscalers as only the aforementioned
companies provided a publicly advertised design patterns
catalog.

3. RELATED WORK

As a starting point of our research, we considered “Cloud
Design Patterns” by Microsoft [13] and Amazon’s official
documentation “Amazon AWS Prescriptive Guidance” as
our references. The majority of the topics described by Alex
Homer et al., [13] are applicable to all distributed systems
and for almost all cloud platforms. Microsoft Azure and
Amazon AWS have provided common solutions to recurring
problems in the cloud environment by using pattern-based
description format [13].

However, according to our knowledge and research, there

is significant work done by Christoph Fehling, Johanna Barzen

et al. [7] in the analysis, application, and categorization of
cloud design patterns and by Christoph Fehling [6] regard-
ing architectural and management principles but not partic-
ularly in identifying redundancies among design patterns of
different cloud providers.

The knowledge shared by Christoph Fehling, Thilo Ewald
et al. in [8] is somewhat similar to our research on the sys-
tematic study of cloud design patterns. Here they discuss
and provide the solution for pattern identification in cloud
computing that is offered by different cloud providers, fol-
lowing different pattern approaches. To help developers in
determining which cloud design pattern is suitable in a par-
ticular scenario, an elaborated pattern format in the form of
“pattern authoring toolkit” |9] is provided to users for trace-
able recognition of cloud design patterns [8]. In contrast to
the pattern identification based on its formatting and docu-
mentation style, we categorized design patterns based on the
functionality they offer to cloud users. Christoph Fehling,
Thilo Ewald et al. propose in [8], a well-defined format
for structuring and organizing design patterns by providing
generic graphical notations and a specific pattern template.
This helps users in better management of design patterns re-
gardless of the cloud provider. Whereas, on the other hand,
we grouped similar cloud design patterns that offer the same
solution to a recurring problem for better identification of
design patterns between AWS and Azure.

More generic pattern identification and authorization are
discussed by Christoph Fehling, Johanna Barzen et al. in |7]
under various domains that involve multiple industry part-
ners. In the cloud computing domain, the research done by
Christoph Fehling, Johanna Barzen et al. in [7] has cate-
gorized cloud environment by defining different deployment
options and different service models with the help of dif-
ferent design patterns that are interrelated by pattern lan-
guage. “A pattern language is a set of related patterns that
act as building blocks in that they can be carried out in
one or more pattern application sequences where each sub-
sequent pattern builds upon the former” [5]. Our research
is specific to the cloud domain and we took inspiration to
use cloud service models to categorize interrelated design
patterns instead of categorizing the cloud environment.

In the field of cloud computing, patterns are strengthening
the design and development of software applications. How-
ever, in industries, design patterns are still used in a very
casual way, especially at the time of decision making. In the
conference paper, Christoph Fehling, Johanna Barzen et al.
|7] talk about procedures and techniques to categorize cloud
environment on “a conceptual level by reviewing existing ap-
plications developed for cloud and those that should be mi-
grated to it”. Our categorization of the design patterns adds
knowledge to pre-existing information that is published by
the two cloud providers Amazon AWS and Microsoft Azure.

Steve Strauch et al. in [17] and Christoph Fehling, Frank
Leymann et al. in [10] have covered pattern categorization
for migrating application data to the cloud. Their research
is specific to the categorization of cloud design patterns that
deal with data. However, in our research, we considered de-
sign patterns belonging to various categories and not just
data. Furthermore, the need for categorizing patterns that
provide a solution to problems of the same nature and do-
main has been highlighted by Christoph Fehling, Johanna
Barzen et al. in [7].

When hyperscalers define solutions using design patterns,
they tend to couple their platform-specific offerings into the
solution to assist their customers’ software development pro-
cess. As mentioned by Christoph Fehling, Thilo Ewald et
al., “the industry-driven evolution of cloud computing tends
to obfuscate the solutions to common underlying problems
that are provided by different hyperscalers” [§8]. This was
an important motivation for us in our research to provide
common abstract pattern names for design patterns of Mi-
crosoft Azure and Amazon AWS that eventually serve the
same purpose.

To the best of our knowledge, there has been no study con-
ducted to date to identify redundant or similar cloud design
patterns between the two hyperscalers, Microsoft Azure and
Amazon AWS. Therefore, we primarily rely on the knowl-
edge and expertise of the two hyperscalers, Amazon and Mi-
crosoft |13| to identify redundancies and standards among
their patterns.

4. METHODOLOGY FOR CATEGORIZA-
TION

This is a qualitative and descriptive research to catego-
rize existing cloud design patterns offered by the two hyper-
scalers Microsoft Azure and Amazon AWS.

The need for abstract guidelines in the form of design pat-
terns to develop software solutions arose with the evolution

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

of cloud computing. As this evolution was mostly industry-
driven, cloud providers have offered inconsistent guidelines
to underlying problems by following different formats, ter-
minologies, and approaches. The use of provider-specific
terminologies thus makes it unclear for cloud users to gain
provider-independent knowledge. This research paper is tai-
lored to eliminate the underlying issue and is oriented to-
wards comparing the cloud design patterns of the mentioned
hyperscalers to identify redundancies between them.

To find interrelations between cloud design patterns, we
use pattern-oriented analysis based on the definitions and
documentation provided by Microsoft Azure and Amazon
AWS to extend the existing work of Christoph Fehling [6].
The research is performed in the following three phases:

1. Grouping of design patterns based on the definitions
provided by hyperscalers.

2. Assigning generic names to each group of similar pat-
terns.

3. Assigning pattern categories to grouped patterns.
Next, we discuss each of the three phases in detail.

4.1 Grouping of Design Patterns

The need to group cloud design patterns of Microsoft
Azure and Amazon AWS was to capture common concepts
and abstract away from the models and implementations of
both cloud providers. Our grouping gives cloud users a quick
overview of design patterns that address the same problem.
This makes pattern identification very straightforward.

We formulated the grouping strategy for cloud design pat-
terns by introducing three different types of groups.

e Identical Pattern Group: This is the most refined
yet basic group. The identical pattern group will con-
tain all cloud design patterns of Microsoft Azure and
Amazon AWS that match not only in their definitions
but also in their names. While comparing cloud de-
sign patterns descriptions, we considered the possibil-
ity that these patterns were explained using provider-
specific terminologies, but they essentially address sim-
ilar issues.

o Similar Pattern Group: The comparison criteria for
the similar pattern group get a bit relaxed in terms of
the pattern name. This group includes those design
patterns that offer the same solution to the same re-
curring problem, but they differ in their names and
may incorporate certain provider-specific implementa-
tion details. The description of patterns by Microsoft
Azure and Amazon AWS is mostly provided by us-
ing provider-specific formats and terminologies. The
names given to many patterns consider the context
where a cloud provider tries to explain a problem faced
by them. This leads to ambiguity in naming when
mapping has to be made between patterns that address
similar problems across different cloud providers. Thus
this group draws the comparison based on a problem
situation and its proposed solution.

e Distinct Pattern Group: This group is composed
of those cloud design patterns that are exclusive to
Microsoft Azure or Amazon AWS. For such patterns,
the problem and the solution described by one cloud

provider are not offered by the other. No pattern map-
ping is possible here as cloud design patterns contained
in this group are independent. Thus for this group, we
captured design patterns as two lists, one for each hy-
perscaler.

4.2 Generic Names for Interrelated Design Pat-
terns

Christoph Fehling, Johanna Barzen et al. in their defini-
tion of pattern language, stated that “Patterns are interre-
lated through references in order to guide users during their
application. Through these interrelations, the patterns of a
certain domain form a so-called pattern language” [7].

We found interrelation among design patterns by perform-
ing the grouping in phase one; then, in order to give a quick
insight and guide the cloud users during their application,
we proposed generic and intuitive pattern names for each set
of the interlinked design patterns. Generic naming gives the
actual feasibility of mapping the design pattern of Microsoft
Azure and Amazon AWS. During the process, we analyzed
the characteristics of both cloud providers’ design patterns
and proposed generic pattern names and solutions. These
design pattern names and solutions are standardized as they
are devoid of any provider-specific terminologies.

Generic names were assigned to patterns in the similar
pattern group as this group consisted of those patterns that
addressed the same issues but differed in their names. While
most patterns in the identical pattern group matched in their
definitions and also in their names, there existed few pat-
terns that differed in their names by a word or two. We also
assigned generic names for such patterns.

4.3 Pattern Categorization

This segment focuses on the identification and exploita-
tion of shared characteristics defined for cloud design pat-
terns of the hyperscalers Microsoft Azure and Amazon AWS.
These characteristics enable cloud users to swiftly list design
patterns under a particular category and to identify those
that fulfill the same requirement. To assess the equivalence
between cloud design patterns, we used the following pattern
categories |13] that are defined by the hyperscalers.

e Modern Application Design

e Messaging Integration

Operational Excellence

e Data Management

Performance Efficiency

Reliability
e Security

The categories represent different domains where the design
pattern’s application enhances certain architectural, func-
tional, or non-functional aspects of the cloud application’s
properties. This emphasizes the fact that design patterns
under the same category address solution to the same prob-
lem. It additionally helped in cross-examining our grouping
strategy based on names and pattern definitions provided
by the hyperscalers Amazon and Microsoft.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

S. OVERVIEW OF FINDINGS

As part of our research, we methodically analyzed 94 de-
sign patterns published by the hyperscalers Amazon and Mi-
crosoft for their cloud platforms. We categorized them into
the 3 groups as detailed in[Section 4.1} After categorization,
we identified 11 design patterns under the identical pattern
group that are similar in all aspects in

Among the remaining 83 patterns, with our meticulous
and iterative classification process, we identified 14 design
patterns that fall into the similar pattern group. These de-
sign patterns address similar issues but were inherently cate-
gorized and named differently by the hyperscalers. We stan-
dardized such patterns by decoupling them from the cloud
provider’s reference and proposed a generic name as cap-
tured in

As the catalog of design patterns considered is very vast
and due to spatial limitations, it is extremely difficult to
present a short and conclusive discussion of each design pat-
tern. Thus we present only the generic problem and solution
for the design patterns in the identical and similar pattern
groups in and We categorized design pat-
terns that are exclusive to the hyperscalers under the dis-
tinct pattern group. Here we do not present the specific
pattern definition provided by Amazon [2] [3] and Microsoft
[15] and also the list of distinct patterns. These are captured
in a separate resource file that is hosted on GitLab.!

5.1 Identical Pattern Group
For each pattern in and [5.2] we discuss the

generic problem, which describes the problematic situation
in a cloud application, during when the pattern’s application
should be considered. For this generic problem, we then
present a generic solution that describes how the application
of the pattern resolves the issue. The problems and solutions
presented in these sections are termed generic since they are
free of hyperscaler specific terminologies.

e Bulkhead Architectures

— Generic Problem: A cloud-based application
may include multiple services. Each service might
have one or more consumers. Excessive load or
failure in a service will impact all consumers of
the service.

— Generic Solution: The Bulkhead Architecture
pattern resolves this issue by partitioning service
instances into different groups, based on consumer
load and availability requirements. This design
helps in isolating failures, and provide continued
functionality for a subset of consumers, even dur-
ing a failure.

o Cache-Aside

— Generic Problem: Applications generally use
caching patterns to improve their performance.
This can lead to data inconsistencies in cache and
data store.

— Generic Solution: The Cache-Aside pattern caches

data on demand into a dedicated cache memory
to provide faster access to data. This improves

Link to the Gitlab document: https://git.rwth-
aachen.de/pavanmn/fullscalesoftwareengineeringseminar.git

the application’s performance and helps to main-
tain data consistency between cache and the data
store.

e Choreography

— Generic Problem: Often applications use the
orchestrator pattern to reduce point-to-point com-
munication between services. This has some draw-
backs as it introduces tight coupling between the
orchestrator and other services that participate in
the processing of the business transaction. The
addition and removal of new services would re-
quire making changes in the communication path
between the orchestrator and the service, which
can be complex and hard to maintain.

— Generic Solution: The choreography pattern,
allows each service to decide the processing strat-
egy of an operation instead of relying on a central-
ized orchestrator for communication. Since there
is no point-to-point communication anymore, this
pattern helps reduce coupling between services.
Additionally, it eliminates the performance bot-
tleneck caused by the orchestrator.

o Circuit Breaker

— Generic Problem: In a distributed environment,
calls to remote resources and services can fail due
to transient faults. However, there can also be
situations where faults are due to unanticipated
events and can be long-lasting. In such situations,
it would be optimal to allow the operation to fail
immediately to prevent unnecessary blockage of
critical system resources by the failing requests
and attempt to invoke the service only if it is likely
to succeed.

— Generic Solution: The Circuit Breaker pattern
helps in preventing an application from repeat-
edly trying to execute an operation that is likely
to fail. It acts as a proxy with different states
for operations that can fail. It monitors the num-
ber of recent failures that have occurred and then
uses this information to decide whether to pro-
ceed with the operation or return an exception
immediately by switching to an appropriate state.

e Command Query Responsibility Segregation (CQRS)

— Generic Problem: Applications can have read
and write workloads that are often asymmetri-
cal, with different performance and scale require-
ments. Developing data access models for such
systems which address the representations, par-
allel operations, performance, and management
of security and permissions of the read and write
operations on the data can become complex.

— Generic Solution: The CQRS pattern separates
the read and update workloads for a data store.
Commands are used to update data while queries
perform the read operation. This helps to de-
tach the workload between command and query
part based on the requirements for throughput,
latency or consistency and allow the application

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Table 1: Identical Pattern Group

Pattern Category AWS Pattern Name ¢ Azure Pattern Name Generic Pattern Name

Reliability Bulkhead Architecture Bulkhead Bulkhead Architecture
Data Management, Cache-Aside Cache-Aside Cache-Aside
Performance Efficiency

Modern Application Design, Choreography Choreography Choreography
Performance Efficiency

Reliability Circuit Breaker Circuit Breaker Circuit Breaker

Modern Application Design, CQRS CQRS CQRS
Data Management,
Performance Efficiency
Modern Application Design,
Data Management,
Performance Efficiency
Modern Application Design,
Operational Excellence,
Reliability

Messaging Integration,
Performance Efficiency

Event Sourcing Event Sourcing Event Sourcing

Leader Election Leader Election Leader Election

Priority Queue * Priority Queue Priority Queue

Messaging Integration, Pub/Sub Publisher/Subscriber Publisher /Subscriber
Operational Excellence

Modern Application Design, Saga Distributed Saga Saga

Data Management, Transactions

Reliability

Modern Application Design, Sidecar Sidecar Sidecar

Operational Excellence

“The patterns that are italicized and marked with asterisk symbol refer to the list of old Amazon patterns. Since these design
patterns are still endorsed by Amazon they were considered within the scope of our research work.

to improve its scalability, performance, and secu- — Generic Solution: The Leader Election pattern
rity. allows electing an instance as the leader among
the coordinating instances that undertakes the re-
sponsibility of managing coordination among other
instances in a distributed application. This can
help in preventing conflicts and interference among
instances while accessing shared resources.

e Event Sourcing

— Generic Problem: Many applications work with
data by maintaining only the current state of the
data and making updates on it when required us-
ing the traditional CRUD approach. This ap-
proach can limit the ability to scale, create up-

e Priority Queue

date conflicts during concurrent access, and fails
to capture the history of operations on the data
item.

— Generic Solution: The Event Sourcing pattern
uses an append-only store to capture all opera-
tions performed on a data item instead of storing
just the current state of the data. This helps to
reconstruct the application’s state at any point in
time by reprocessing the operation history. This
improves the scalability, performance, and con-
sistency of applications and prevents the need to
perform data synchronization.

e Leader Election

— Generic Problem: Cloud applications perform
multiple tasks in a coordinated manner and access
resources that are shared. When working with
shared resources, it becomes critical to avoid con-
flicts and interferences with other tasks accessing
the shared resources.

— Generic Problem: In cloud applications, mes-
saging queues are typically used to delegate tasks
to other services for background processing. As
the volume of requests increases, it becomes nec-
essary for the application to prioritize specific re-
quests such that these should be processed earlier
than lower priority ones.

— Generic Solution: The priority queue pattern
uses a highly reliable queue to prioritize and main-
tain requests sent to various services. It allows the
application to process requests with higher prior-
ity quickly than those with lower priority. Multi-
ple queues can be created depending on the vary-
ing priority levels. This helps in developing highly
reliable applications.

e Publisher/Subscriber

— Generic Problem: In cloud applications, com-
ponents need to communicate and exchange infor-
mation with other components as new events oc-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

cur. This makes it essential to establish an asyn-
chronous messaging system that allows the ex-
change of information with interested consumers
in an efficient manner.

Generic Solution: The Publisher/Subscriber pat-
tern helps in establishing an asynchronous medium
of communication among the different services with-
out coupling the sender and the receiver. The
subscribers can subscribe to various channels for
which they would like to be notified. Whenever a
new event gets generated for a channel the pub-
lisher notifies all consumers that have subscribed
to the particular channel.

e Saga

— Generic Problem: Distributed cloud applica-

tions require a way to coordinate transactions be-

tween multiple services to maintain data consis-

tency. Cross-service data consistency requires a

cross-service transaction management strategy and
a method to roll back the entire transaction in

case of failure.

Generic Solution: The Saga pattern offers a

failure management strategy to preserve data con-

sistency across microservices in a distributed trans-
action scenario. A saga is a sequence of transac-

tions that updates each service and publishes a

message/event that helps in triggering the next

transaction step. The subsequent transaction is

executed based on the event’s outcome and in case

of failure, the saga triggers a compensating trans-

action to roll back the prior transactions.

o Sidecar

— Generic Problem: Applications generally re-

quire peripheral tasks which implement function-
ality such as logging, monitoring, and configu-
ration. These functionalities are typically inte-
grated into the main application and tightly cou-
pled to it. This creates interdependence among
the core functionality and the peripheral task.
Any failure in the peripheral tasks can lead to
an outage of the application’s core functionality.

Generic Solution: The Sidecar pattern allows
to bundle and launch a helper container alongside
the main container that offers the core service.
The helper container shares the same lifecycle as
the parent application and provides supporting
features to it. This pattern also helps to decouple
the application’s core service from other periph-
eral functionality.

— Generic Solution: The API Gateway pattern

resolves this issue by introducing a gateway com-
ponent between the client and the backend ser-
vices that expose their API. The gateway receives
the request from the client and performs a reverse
proxy to route the request to the necessary inter-
nal service. In this way the client is abstracted
from the numerous internal endpoints and is re-
mains unaffected if these services are refactored.

e External Configuration Store

— Generic Problem: Applications runtime envi-

ronments utilize configuration information typi-
cally held in files. In a cloud-hosted scenario, an
application with multiple instances has configu-
rations specific to each instance. This makes it
a challenge to manage changes to local configu-
rations across multiple running instances of the
application. It also limits the possibility of shar-
ing common configuration settings across multiple
applications.

Generic Solution: The External Configuration
Store pattern enables storing the configuration
data in a centralized store and detaches it from
the application deployment package. This facili-
tates for easier management of configuration data.
It also allows multiple applications and their in-
stances to easily access this shared configuration
data during startup.

e Service Callback

— Generic Problem: Cloud applications generally

rely on APIT calls over the HTTP(S) protocol and
follow REST semantics to expose various services.
At times these services can execute tasks in the
backend that may be long-running. This makes it
infeasible for clients to wait for a reply from the
backend in cases of a synchronous request-reply
pattern.

Generic Solution: The Service Callback pat-
tern allows the clients to make a synchronous API
call in a non-blocking way using the asynchronous
poll model. This gives the appearance of asyn-
chronous processing. This can be implemented
using an HTTP poll model and configuring a sta-
tus endpoint. The client can invoke the status
endpoint to know the status of the resource/task.
This builds a loosely coupled architecture avoid-
ing bottlenecks caused by synchronous communi-
cation.

e Static Content Hosting

5.2 Similar Pattern Gl‘Ollp — Generic Problem: Web applications typically

include static contents like HTML pages, images
e API Gateway

— Generic Problem: When a client consumes mul-
tiple services, setting up multiple communication
endpoints for each service is a challenging and te-
dious task. Additionally, the client not only needs
to be aware of all the endpoints but also needs to
adapt to any endpoint changes or service refac-
toring done on the server side.

and videos which are to be hosted. Rendering
these static contents takes up computing resources
that can alternatively be used for other purposes.

Generic Solution: The Static Content Host-
ing pattern allows hosting the static contents of
a web application directly on cloud-based storage
offered by the cloud provider that can directly de-
liver contents to clients. This avoids the usage of

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Table 2: Similar Pattern Group

Pattern Category

AWS Pattern Name

Azure Pattern Name

Generic Pattern Name

Modern Application Design,
Operational Excellence

API Gateway

Gateway Routing

API Gateway

Modern Application Design,
Operational Excellence

Bootstrap *

External Configuration
Store

External Configuration
Store

Messaging Integration,
Operational Excellence

Decouple Messaging

Asynchronous
Request-Reply

Service Callback

Modern Application Design,
Data Management,
Performance Efficiency

Direct Hosting *

Static Content Hosting

Static Content Hosting

Data Management,
Performance Efficiency

Inmemory DB Cache *

Cache-Aside

Cache-Aside

Modern Application Design,
Operational Excellence,
Reliability

Monitoring Integration

Health Endpoint
Monitoring

Application Monitoring

Modern Application Design,

Multi Load Balancer *

Gateway Offloading

Shared Functionality

Operational Excellence Delegation
Modern Application Design, Private Distribution * Valet Key Token-Based Resource
Data Management, Security Access

Messaging Integration,
Reliability, Performance
Efficiency

Queuing Chain *

Queue Based Load Levelling

Queue Based Load Levelling

Efficiency

Reliability Retries and Backoff Retries Retry
Data Management, Sharding Write * Sharding Sharding
Performance Efficiency

Reliability, Performance Stamp * Deployment Stamp Stamp

Data Management,
Performance Efficiency

Storage Index *

Index Table

Index-based Access

Messaging Integration, Data

Web Storage *

Claim-Check

Reference-Based Messaging

Management, Performance
Efficiency

“The patterns that are italicized and marked with asterisk symbol refer to the list of old Amazon patterns. Since these design
patterns are still endorsed by Amazon they were considered within the scope of our research work.

computational resources for rendering static con-
tent and saves costs.

itoring, authentication, and authorization. Con-
figuring, managing, and maintaining these shared
or specialized services deployed with every appli-
cation increases administrative overhead and the
possibility of making an error during configura-
tion.

e Application Monitoring

— Generic Problem: With applications hosted re-
motely in the cloud, it becomes necessary to mon-
itor these applications to verify if these services
are available and working correctly. Monitoring
the cloud-hosted services is challenging than mon-
itoring on-premises services because one may not
have full control of the hosting environment.

— Generic Solution: The Shared Functionality Del-
egation pattern allows delegating the configura-
tion of certain shared/specialized functionalities
components like load balancers and gateways that
are common to multiple applications. This also
reduces the administrative overhead of configura-

— Generic Solution: The Application Monitoring tion and maintenance for multiple deployments.

pattern allows incorporating functional checks in
an application to monitor it. These checks can be
exposed externally using published API endpoints
to allow users to monitor different functional met-
rics of the application.

e Token-Based Resource Access

— Generic Problem: Cloud applications typically
use data stores to handle the upload and down-
load of data directly without requiring the appli-
cation to perform any processing nor use valuable
resources such as compute, memory, and band-
width. But this requires applications to securely
control access to the data in a granular way to
allow untrusted clients to communicate directly

e Shared Functionality Delegation

— Generic Problem: Applications generally re-
quire shared/specialized functionality that are com-
mon to many other applications like logging, mon-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

with the data store to perform the required read
or write operations.

Generic Solution: The Token-Based Resource
Access pattern lets applications provide clients
with a limited time-restricted direct access to a
specific resource by issuing tokens like URLs. This
offloads the data transfer functionality from the
application and helps to minimize cost and max-
imize scalability and performance.

e Queue-Based Load Levelling

— Generic Problem: Cloud applications are com-

posed of multiple services that are subjected to
varying amounts of loads depending on the num-
ber of dependent services. Predicting the volume
of requests to a service when it is used by a num-
ber of tasks running concurrently is very difficult.
Peaks in demand can cause an overload and can
also result in the failure of the service.

Generic Solution: The Queue-Based Load Lev-
elling pattern uses a queue acting as a buffer be-
tween a task and a service it invokes. This can
help to ease out the load and minimize the impact
of heavy loads on availability and responsiveness
for both the task and the service. This addition-
ally enables asynchronous and loose coupling of
services.

o Retry

— Generic Problem: Transient faults are quite

common when applications interact with services
deployed in the cloud. These issues typically get
self-resolved and return successful results when
retriggered after a suitable delay.

Generic Solution: The Retry pattern allows ap-
plications to handle ephemeral failures when try-
ing to communicate with services and resources.
The application can perform a retry operation
during such failures. This makes the applications
are more resilient, reliable, and fault-tolerant.

e Sharding

— Generic Problem: Data stores hosted by a sin-

gle server can have limitations concerning storage
space, computing resources, and network band-
width. While scaling up resources of the server
helps to resolve issues momentarily, it is generally
not a long-term resolution for commercial cloud
applications that need to support large numbers
of users and high volumes of data.

Generic Solution: The Sharding pattern in-
volves horizontal partitioning of the data store in
units known as shards. The data persisted into
the data store is distributed onto different shards

based on certain pre-identified columns called keys.

This technique improves the scalability and per-
formance of an application when storing and ac-
cessing huge volumes of data.

e Stamp

— Generic Problem: The work of setting up the
operating system, middleware, and applications
required for any virtual server takes considerable
time, effort, and expense. Deploying multiple
such server instances to address performance and
scalability issues would require the setup work
to be performed multiple times for each instance
making this a tedious and time-consuming pro-
cess.

— Generic Solution: The Stamp pattern allows
the creation of a machine image that already has
the required environment like the operating sys-
tem, middleware, and applications set up as part
of the image. This image can then be used to
swiftly deploy multiple independent copies of the
environment known as stamp and improve the
scalability of your solution.

o Index-Based Access

— Generic Problem: Applications typically exe-
cute a large number of queries on the data store
to fetch data. Searching for a specific set of data
from a huge data store can be time-consuming
and cause delays in response if the storage or in-
dexing of data is not optimized.

— Generic Solution: The Index-Based Access pat-
tern creates indexes over fields in the data store
that are frequently accessed by the application
queries. These indexes act as metadata and al-
low applications to locate the data swiftly and
improve the overall searching performance.

e Reference-Based Messaging

— Generic Problem: A messaging-based architec-
ture should have the ability to send and receive
large files/messages like images, documents, and
multimedia. But sending them over the message
bus directly consumes high resources and band-
width and can also slow it down. Additionally,
messaging platforms impose restrictions on the
size of messages that can be exchanged.

— Generic Solution: The Reference-Based Mes-
saging pattern allows applications to deliver large
files to clients by storing such files in a data store
offered by the cloud provider and then sending a
reference for it via a messaging system. Clients
interested in processing the specific message ob-
tain the reference to retrieve the data from the
data store.

6. DISCUSSION

Our study on design patterns published by Amazon and
Microsoft supports our initial hypothesis that there exist re-
dundant design patterns defined by the two hyperscalers.
We identified that there exists an overlap in the pattern def-
inition among the hyperscalers, but this accounts for only
11 percent of our research data. Based on the results pre-
sented in Section 5, we see that the overall overlap is sig-
nificantly higher for the similar pattern group as compared

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

to the identical pattern group. After applying our standard-
ization process, the percentage of common patterns between
the hyperscalers Amazon and Microsoft has increased by
nearly 15 percent. This data contributes to a clearer under-
standing of the need to adopt standardization techniques
in the design pattern definition process. It also backs the
statement citing the need of defining a pattern language in
the field of cloud computing for pattern organization and its
homogeneous representation as stated by Christoph Fehling
in his dissertation [6].

Here we acknowledge that the generalizability of our re-
sults is limited to the design patterns defined by Amazon
AWS and Microsoft Azure. The results do not take into ac-
count design patterns defined by other available hyperscalers
like Google and RedHat. This was well beyond the scope of
our research due to the non-availability of a published list
of design patterns adopted by these hyperscalers.

7. CONCLUSION AND FUTURE WORK

In our paper, we collected and reviewed various cloud de-
sign patterns published to date by the hyperscalers Amazon
and Microsoft for their respective cloud platforms. We cat-
egorized these design patterns into 3 different groups based
on their definition and sample use cases provided by the hy-
perscalers. While this method was not entirely objective,
we relied upon the expertise of the hyperscalers and vari-
ous other research works to base our claims. In instances
where decisions had to be taken subjectively, we referenced
various available resources to gain necessary knowledge and
understanding of a design pattern and its use case. The
knowledge gained was accompanied by multiple iterations
of classification and peer reviews before stating the results.

With extensive research, we discovered that a fraction of
design patterns coincide among the hyperscalers. With this
result, it can be stated that while there exist no standards
defined for pattern definition in cloud computing, there are
some patterns that have been widely adopted and have thus
become the de facto standard set of design patterns in the
domain of cloud computing. Applying our standardization
process to the remaining patterns helped in extending the
list of common design patterns between the two hyperscalers,
Amagzon and Microsoft. The results assist anyone research-
ing in the field of cloud computing to understand such de-
sign patterns and their applications in a generic way. It is
also very beneficial for enterprises that are looking to mi-
grate their applications between the two hyperscalers. The
results also help us to understand how the adoption of stan-
dardizations benefits capturing knowledge more efficiently
and reduces redundancy and ambiguity.

Our research work can be extended further by consider-
ing different methodologies or properties or design pattern
definitions of other hyperscalers like Google and RedHat if
available for categorizing and grouping the design patterns.
For example, deduce a mapping function using certain fun-
damental cloud application design properties that groups
design patterns into certain pre-defined categories. Since
cloud technology is evolving rapidly, new patterns get de-
fined over time. A similar methodology can be adopted to
standardize the new patterns and append them to the ex-
isting catalog of identified cloud computing design patterns.
The results also raise new questions like “Why do the pattern
definitions and names provided by the hyperscalers differ for
the design patterns captured in the similar pattern group?”,

“Why some categories of patterns like application migration
are captured only by a single hyperscaler?”. Additionally,
tools can be developed for automatically performing pattern
suggestion, identification, and categorization using mapping
functions that utilize the captured catalog of cloud design
patterns as the underlying database.

8. REFERENCES
[1] C. Alexander, S. Ishikawa, M. Silverstein,

M. Jacobson, I. Fiksdahl-King, and S. Angel. A
Pattern Language: Towns, Buildings, Construction.
Oxford University Press.

[2] Amazon AWS. Aws cloud design patterns. http://en.
clouddesignpattern.org/index.php/Main_Page.

[3] Amazon AWS. Aws perspective guidance.
https://aws.amazon.com/prescriptive-guidance.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A., Patterson, A. R.
nad Ion Stoica, and M. Zaharia. Above the clouds: A
berkeley view of cloud computing. Technical report,
2009.

[5] R. Cope and A. Naserpour. Cloud Computing Design
Patterns. 2017.

[6] C. Fehling. Cloud Computing Patterns Identification,
Design, and Application. PhD thesis, January 2015.

[7] C. Fehling, J. Barzen, U. Breitenbiicher, and
F. Leymann. A process for pattern identification,
authoring, and application. pages 1-10. Institute of
Architecture of Application Systems, University of
Stuttgart, Germany, March 2014.

[8] C. Fehling, T. Ewald, F. Leymann, M. Pauly,
J. Riitschlin, and D. Schumm. Capturing cloud
computing knowledge and experience in patterns.

[9] C. Fehling, T. Ewald, F. Leymann, M. Pauly,
J. Riitschlin, and D. Schumm. Pattern authoring
toolkit. http://cloudcomputingpatterns.org/
authoringtoolkit.zip, 2012.

[10] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and
S. Verclas. Service migration patterns - decision
support and best practices for the migration of
existing service-based applications to cloud
environments. 2012.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

[12] T. Haigh, M. Priestley, and C. Rope. ENIAC in
Action: Making and Remaking the Modern Computer.

[13] A. Homer, J. Sharp, L. Brade, M. Narumoto, and
T. Swanson. Cloud Design Patterns. February 2014.

[14] ISO/IEC JTC 1/SC 7 Software and systems
engineering. Iso/iec 25010:2011 systems and software
engineering — systems and software quality
requirements and evaluation (square) — system and
software quality models. Technical report, 2011.

[15] Microsoft. Azure cloud design patterns.
https://docs.microsoft.com/en-
us/azure/architecture/patterns/.

[16] National Institute of Standards and Technology. The
nist definition of cloud computing. Technical report.

[17] S. Strauch, V. Andrikopoulos, T. Bachmann, and
F. Leymann. Migrating application data to the cloud
using cloud data patterns. 2012.

Copyright © 2021 for this paper by its authors

http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
https://aws.amazon.com/prescriptive-guidance
http://cloudcomputingpatterns.org/authoringtoolkit.zip
http://cloudcomputingpatterns.org/authoringtoolkit.zip
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Quality of Service Requirements of Workloads in Compute
Clusters

Mahta Khoobi
RWTH Aachen University
Aachen, Germany
mahta.khoobi@rwth-aachen.de

ABSTRACT

Computer science is a vast field that is both expanding and
changing at an enormous speed. This modification implies
on everything within this vast territory of bits, ranging any-
thing from algorithms, to hardware to deployments. For
example, serverless architecture has changed the software
deployment immensely from what it was a few years ago.
Regardless of all the advancements in the sub-domain of
infrastructure, there are still various gaps that need to be
filled, one of which this paper tries to answer.

In the modern world of software development, enterprise
applications are expected to run on clusters rather than a
single server. Through managing these clusters by avail-
able platforms, we can configure and change the quality re-
quirements expected from the deployed software. For exam-
ple, to satisfy the availability requirements of a software in
Kubernetes, memory and processing power can be config-
ured, but these are not the only configurations to be kept
in mind. In the event of excess load from users (Scalability
Requirement), an additional resource might be required for
constant delivery of services. The Quality of Service (QoS)
requirements - which are defined by users’ demands, need
to be translated into Quality of Service attributes provided
by clusters and implemented in the software development
phase.

This research paper aims to focus on i) what compute
cluster requirements exist? ii) and What relationship exists
between QoS requirements of a service/software and com-
putes clusters’ configurations? The standard Quality of Ser-
vice requirements of a Software will be divided into subat-
tributes and mapped to QoS features offered and provided
by clusters.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—Infrastructure, Deployment, soft-
ware configuration management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Muhammad Daniyal Danish
RWTH Aachen University
Aachen, Germany
daniyal.danish@rwth-aachen.de

Keywords

quality of service requirements, compute clusters, QoS of
workloads

1. INTRODUCTION

Ever since computers were invented, there has been con-
stant effort to upgrade both the hardware and the software
capabilities. For Software, the efficiency of algorithms keeps
on improving. Similarly, more powerful hardware is avail-
able, than it was in the year before. This can be seen from
the comparison between the number of cores in the super-
computers from 2020 [3] and 2010 |2] in which the cores have
increased 30 folds. [27]

As the usage of the internet increased, applications had
millions of active users during the peak time. Hence more
powerful computers were required to handle the workload
[8]. Workloads can be defined as a group of tasks, running
applications, or parallel batch jobs on clusters. [20]

Initially, vertical scaling was suggested as a solution to
meet hardware requirements. In vertical scaling, the re-
sources like memory and CPU for a single server are added
to provide more resources for the application to run. One of
the downsides of vertical scaling is that the maximum point
for scaling is limited to the size of the server. Although this
is still one of the current solutions based on the working en-
vironment, this is not the case anymore when it comes to
resource utilization, cost reduction and power consumption
1291 36].

To consider these factors, modern-day architecture uses
horizontal scaling, in which rather than increasing the hard-
ware within the system, virtualization is used to satisfy the
hardware requirements and these systems communicate and
transfer data with each other. By virtualization, a single
server can be treated as multiple virtual machines, running
the workloads [8]. One way of realizing virtualization is the
use of containers and clusters, which are one of the funda-
mental concepts of software development in the current era.

2. BACKGROUND

Clusters and cluster computing have seen a substantial
rise in adoption in the last decade. Startups and tech gi-
ants alike are leveraging cluster-based architectures to de-
ploy and manage their applications especially when work-
load increases.|22] But, what is a cluster? And what is
the relationship between clusters and containers? And why
might one want to consider using a cluster to host their ap-
plication? To be more clear, some terms will be explained

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Cluster

Node

Node
I :Pod: :Pod: :POd: :POd:

Figure 1: Diagram visualising the relation between containers, pods, and clusters |23|

in the following section, some of which will be used for the
rest of this paper.

2.1 Containers

According to the Figure 1, the container is the basic part
of a cluster, logically inside a pod. Containers hold individ-
ual applications and their respective resources, software, and
configuration and can be perceived as software encapsulated
operating systems’ processes, which have their namespace
and resource limits, like CPU and memory [14]. Containers
help applications to run more efficiently and be transported
more quickly. Unlike virtual machines, which are similar in
concept, containers do not have their guest operating sys-
tem; instead, they run dependent on an existing operating
system. This gives more flexibility to the system since it can
run anywhere. Therefore, containers have enabled agility in
development lifecycles [35].

2.2 Pods

Pods are a group of one or more containers, which are al-
ways scheduled together (always run on the same machine),
with shared storage/network resources, and a specification
for how to run the containers. To access a pod, each pod has
its IP address and port. Therefore, containers in a pod have
the same IP address and port. Pods are a great solution for
managing groups of closely related containers that depend
on each other and need to co-operate with the same host to
accomplish their purpose |33 [6]

2.3 Nodes

Node is like a host for pods and a Pod always runs on
a Node. A Node is a worker machine, either a virtual or
a physical one. Each node has some components like con-
trolling unit and container runtime (like Docker), which is
responsible for pulling the container image and running the
application 17} |33].

2.4 Clusters

A cluster is a collection of pods, which hosts storage and
networking resources that be used to run various workloads
that comprise the system. The entire system may consist of
multiple clusters |33|. To visualize the definition, a cluster
can be seen as a board that provides the circuitry to run all
the pods (which have the container instances in them) in an
orchestrated manner as defined by the users [6].

2.5 Deployment

A deployment is a resource object that provides declara-
tive updates to applications. A deployment gives descrip-
tion about an application’s life cycle, such as which images
to use for the app, the number of pods there should be, and
the way in which they should be updated. A deployment en-
sures running and availability of desired number of pods, the
recorded and versioned update process,which can be paused,
continued, and rolled back to previous versions. [28]

2.6 Cluster Computing

Clusters work together in the execution of intensive com-
pute and data tasks that would be not feasible via a single
computer. Clusters are used mainly for high availability,
load-balancing, and scalability purposes. Cluster Comput-
ing is highly available as it maintains redundant nodes which
are used to provide non-stop service in terms of the system’s
failure. The performance of the system is improved here be-
cause even if one node fails at some point, there is another
standby node that will take the responsibility of the task
and eliminates the concept of single points of failure with-
out any hindrance [38]. Since multiple computers are linked
together in a cluster, they share the computational work-
load as a single virtual computer. The user’s requests are
received and distributed among all the standalone comput-
ers to form a cluster. This results in balanced computational
work among different machines, improving the performance
of the system. [31]

To visualize the relationship between containers, pods,
and clusters, again take a look at Figure 1. In summary,
the relation can be defined as below [6]:

e A container runs logically in a pod (though it also uses
a container run time)

e A group of pods, related or unrelated, run on a node

e A node is a working machine for the cluster, either
virtual or physical

e A cluster can contain many pods, related or unrelated
[and] grouped under the tight logical borders called
name-spaces

Although clusters and horizontal scaling sound like a bril-
liant solution, they come with their challenges such as the
need for good architecture and manageability. Moreover, it

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

might get slow because the resource allocation in horizon-
tal scaling might cause variable delays in VM deployments.
Therefore, a controlling platform is needed to orchestrate all
the clusters based on workloads’ requirements and resource
specifications [36].

2.7 Container Orchestration Platforms

Along with containers concepts, the microservice archi-
tectural pattern has been adopted, which encapsulates an
individual core application functionalities as microservices
and builds the whole system by composing them. These in-
dependent components are easier to develop, manage, and
(horizontally) scale [12].

These micro-service applications usually consist of thou-
sands of clusters providing services, to satisfy the quality of
service requirements of enterprise applications. To benefit
from micro-service applications and this powerful pattern,
the clusters should be reliable, available, scalable, and se-
cure.

Container orchestration platforms can be defined as a sys-
tem that provides an enterprise-level framework for manag-
ing containers at scale. That means making sure that all the
containers that execute various workloads are scheduled to
run physical or virtual machines. These platforms simplify
container management and provide a blueprint not only for
defining initial container deployment but also for manag-
ing multiple containers for achieving the quality of service
requirements.

Some of the key capabilities of a container orchestration
platform are:

e Providing high availability and fault tolerance

e Security

Simplifying networking

Ability for continuous deployment and scalability
e Providing monitoring and governance
e Cluster state management and scheduling

There are many container orchestration platforms available
today like Docker, Kubernetes, Amazon Web Services (AWS),
Microsoft Azure, which can be deployed to manage the clus-
ters. Kubernetes is an open-source platform, which has been
produced to automatize the deployment and management of
clusters of Docker containers [15|. Docker [9] containerizes
individual processes and allows them to be run within a sep-
arated container. The service developer can create Docker
images containing desired service elements and Kubernetes
will deploy and manage the components.

To achieve reliable, available, and scalable software, Ku-
bernetes and other similar platforms give the users the in-
terface to configure the clusters according to the business
requirements and budgets [33].

2.8 Quality of Service Requirements

For an enterprise software to be successful, it is very es-
sential to fulfill all the requirements that a customer expects
from it. This involves both the expectations from the soft-
ware and also the expectations from the deployment. No
matter how wonderful software is, it would not be deemed
useful if it is not available when it is needed. To emphasize

more on the importance of this let us take an example of
an online video conferencing application called Zoom. By
March 2021, Zoom was able to increase its revenue gener-
ation by more than 300 percent. People argue that it was
because of the COVID-19 pandemic whereas actually, it was
because Zoom was able to scale quickly compared to its com-
petitors. Its architecture was able to handle the increase in
the load from users and kept on delivering the service. Had
it not been a scalable system, then things would have been
very different for Zoom now. [16]

From the discussion above, the importance of the cus-
tomers’ requirements for the quality of service can be un-
derstood, with which we can have a successful running soft-
ware. The Quality of Service Requirements (QoS Require-
ments) is aimed to provide continuous service even during
the event of excess load. Therefore, the availability, scal-
ability, security, and maintainability of the service can be
fulfilled. Often these requirements are interrelated and cer-
tain trade-offs must be considered. For example, to make a
system more secure a compromise on performance require-
ments have to be made. Since there are many configurations
that one must consider while designing the deployment ar-
chitecture, it is possible to skip a few trade-offs or relations.
Therefore, one can conclude that if the deployment archi-
tecture was not planned properly, things could have been
turned out differently, for example, the mentioned software;
Zoom. This shows that it is important to first identify these
requirements expected by the workloads and then map them
to the respective clusters’ requirements, which are provided
by the current features in clusters’ orchestration platforms.

This paper addresses this gap by providing a relation be-
tween QoS requirements and their respective compute clus-
ter configurations. In the next section, the paper discusses
related work which has been done regarding QoS require-
ments of both clusters and batch jobs. Further down it
writes what major QoS requirements for the workload are
and what configurations we can do with the clusters to en-
sure those QoS requirements will be met. It talks also briefly
about what benefits we get from each requirement and gives
a more pragmatic view of how clusters can be configured.

3. RELATED WORK

As a starting point for our research, we have considered
Kubernetes documentations [17] and books |33} 18] as it is
the most powerful cluster management platform, in which
the more advanced topics related to the quality of service
management have been explained. The majority of tech-
nical implementations they have provided are mostly cover
reliability, availability, scalability, and security. Moreover,
to consider a standard for quality of service requirements
of workload, we considered the standard of ISO/IEC 25010
[1). In this standardization, one quality model is defined
to do the quality evaluation of a system. This model de-
termines which quality characteristics will be taken into ac-
count when evaluating the properties of a software prod-
uct. This mainly covered quality of service requirements
from stakeholders’ perspective, namely functionality, perfor-
mance, security, maintainability, etc. which categorizes the
product quality into characteristics and sub-characteristics.

However, according to the research we have done, signif-
icant work has been done regarding applying the quality of
service requirements expected from the workload to the clus-
ters” quality of service management. This paper [24] focuses

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Quality of Service Requirements
fol

Workloads & Clusters

Workloads

I==lca

—>| Reliability e Physical .>‘ Modularity
Design Secuirty

Fault _>{ Incremental Network _,{ Reusability
Tolerance Deployment Security

-P|Recnverabi|ity} —»{ Monitoring] —>{ Se':"l"t:i’w J -P{Modiﬁability]

iy

(d

Availability Mainatainability

using IaC

i

Al i nn}
= Demand

Fault Tolerance

by Use of Horzontal vs Identity
se

| 5 Multi factor
Vertical Scaling P

Y

Hardware
Ability

e

Define Custom Application
Prioritizatis > Data
Security

Figure 2: Diagram visualising the overview of quality of service requirements for workloads and clusters and their relations

on a service-oriented computing environment and provides
a hybrid method to develop complex applications and sat-
isfy user’s personalized requirements. With the fast growth
of web services, each user requirement may be supported
by a set of services with similar functionality but different
QoS. This hybrid method is proposed to solve the QoS-aware
service composition. This method uses a search scheme to
combine the search space reduction and the exploration of
the reduced search space. It handles QoS-aware service com-
position optimization effectively and efficiently.

To achieve QoS requirements relating to resource utiliza-
tion and scaling, a generic system is proposed to both
dynamically scale up the Kubernetes clusters to guarantee
QoS and at the same time avoid wasting resource utilization
while providing required QoS. The proposed system con-
tains four modules: monitor module, QoS module, scaling
module, and executing module. First, the monitor module
uses open-source tools to monitor and store the real-time
status of a Kubernetes cluster. Then, to guarantee QoS, the
QoS module has a method to automatically decide a thresh-
old for CPU utilization that can meet users’ requirements.
Next, the scaling module provides a scaling algorithm to get
an ideal number of nodes in the Kubernetes cluster. Fi-
nally, according to the ideal number of nodes, the executing
module adjusts the scale of the Kubernetes clusters to run
the application. As a result, The proposed system improves
CPU utilization of a Kubernetes cluster by 28.99%.

One of the important problems with cloud resource man-
agement is resource provisioning which is necessary to be
handled during the workload fluctuations in cloud-based ap-
plications. Resource provisioning is a concept which deals
with the resource allocations for services and makes sure
that cloud services do not run out of hardware resources
under any circumstances . Resource provisioning de-
pends on the number of users and the number of resources
as important factors and it can automatically scale up based
on the clusters workloads and QoS metrics provided by the
users. However, since the submitted cloud workloads by
users are heterogeneous in terms of QoS metrics, therefore,
their analysis and identification to meet QoS requirements
agreed in service level objectives (SLOs) can play an impor-

tant role to provision the cloud resources in a cloud environ-
ment. This paper proposes an efficient solution based on
a metaheuristic-based clustering mechanism to analyze the
cloud workloads. The proposed approach utilized a combi-
nation of the genetic algorithm and fuzzy C-means technique
for clustering the heterogeneous cloud workloads based
on QoS metrics.

4. QUALITY OF SERVICE REQUIREMENTS
FOR WORKLOADS AND CLUSTERS

Quality of Service requirements is technical requirements
of a system that features attributes like performance, scala-
bility, availability, and serviceability. They are usually iden-
tified by the business needs and hence differ from project to
project. For example, if the business needs to be available 24
hours a day, throughout the year, then the QoS requirement
for availability must be addressed. Similarly, if the system
has requirements in which it can face peak hours with im-
mense load from users, then scalability requirements should
be addressed.

QoS requirements are closely interrelated. Satisfying one
requirement,/ system quality might hinder the satisfaction of
the second requirement,/ system quality. One such pair can
be performance and security, or availability and serviceabil-
ity. For example, adding higher levels of security in a system
will affect the performance in a negative way. This in turn
will affect the availability. To improve the availability one
can add additional servers, which will affect serviceability -
maintenance cost. Understanding these trade-offs and how
system qualities are interrelated is a key to design a suc-
cessful system. This system should satisfy both business
requirements and business constraints.

To have an overview of the quality of service requirements
in both workloads and clusters, you can see the diagram
(Figure 2). Each requirement in the workloads branch has
been divided into sub-requirements and each requirement in
the clusters branch has been divided into different strategies
for the realization of the requirement with the aid of cluster
management platforms and other environmental settings.

The section below further talks about the system quali-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

ties which affect deployment design along with some further
guidance on which factors should be considered while for-
mulating QoS requirements.

4.1 QoS requirements of Service

4.1.1 Performance

Performance is one of the business requirements which is
generally expressed in non-technical terms. For example, a
user for a web-based system might describe the performance
as something: User expects a reasonable response time typ-
ically no greater than 2 seconds.

Considering these business requirements, one must ana-
lyze all the use cases and see how the requirements can be
addressed in a better way. Usually, in some cases, load con-
ditions are added to see how the system performs under
load. After testing on these requirements one can write per-
formance in terms of response time, and for load conditions,
it can be then written as the sum of throughput and re-
sponse time. Since it is almost impossible to guarantee no
errors, therefore, it is always recommended to write down
the number of allowable errors. Following are the possible
two ways in which this requirement for performance can be
written:

e Response time of web pages should not take longer
than 2 seconds throughout the day, sampled at every
10 seconds intervals with 6 errors per million.

e During defined peak periods of the day, the system
must be able to register at least 16 new users in less
than 15 seconds with less than 6 errors per million.

Usually, Performance requirements are closely related to
the availability requirements (failover impact) and latent ca-
pacity (capacity available to handle unusual peaks), and
therefore, it is important to distinguish between these re-
quirements. Like availability, the performance also has a
relation with security. In most of the cases, performance
goes down when the system is being tried to make more se-
cure [11]. Otherwise, it is extremely important to provide
security as much as possible especially for some applications
like Banking and online transactions, it is better to find a
trade-off between these qualities, so the system can have
a bit of both in the right quantities. With this in mind,
consumer trust can be achieved which is undeniable require-
ments expected from online banking [5].

4.1.2 Availability

Availability is measured to specify the uptime of the sys-
tem. It is usually measured in the percentage of times that
the system is accessible for users. The time when the system
is not available for the users (downtime) could be because of
several reasons like software, hardware, network, or power
loss. However, many times systems are shut down for main-
tenance or upgrades, which is called scheduled downtime
and this is not considered as downtime. Availability’s mea-
surements can be formulated as an equation with which we
can calculate the uptime of the system as follows:

availability = uptime/ (uptime + downtime) - 100

Normally, the availability is measured in terms of nines (see
Table 1) and it defines the amount of time (per year) for an

available system with running services [7]. We can also con-
sider the converse view which shows the unexpected down-
time of a system. Therefore, an average system with 99.9
percent availability has availability of three nines, which
means 364.64 days available time during a year and 8.76
hours of downtime. It is straightforward that adding addi-
tional nines can affect the deployment designs significantly.
The table below depicts the downtime in terms of hours con-
cerning the number of nines of availability for a system that
runs throughout the year every day (8760 hours).

Fault-Tolerant Systems: Fault-tolerant systems are sys-
tems that can continue to give their services even during
hardware or software failures. Availability requirements of
four or more nines usually describe fault-tolerant systems.
Fault tolerance can be achieved by providing redundancy
in both software and hardware in terms of CPUs, network
devices and memory [21]. For example, in hardware redun-
dancy, a server can be made fault-tolerant by using an iden-
tical server running in parallel, with the same operations for
the backup server. As a redundancy approach to the soft-
ware, all client information in a database can be replicated
to another database in case of failure of the main one [26].

For a system to be fault-tolerant, either all single points
of failure must be eliminated or tackled. A single point of
failure is a component or service which is part of the critical
path of the system and can not be backed up by redundant
systems. The system will fail if one of these components
fails and therefore it is very important to identify all sin-
gle point of failure components during designing systems. It
is both costly and difficult to implement fault-tolerant sys-
tems. Therefore, it is recommended to understand the user
requirements properly to see if it is important to implement
a fault-tolerant system in the first place.

Prioritizing Services Availability: From a user’s point of
view, usually few services are more important than others,
therefore, availability is normally applied to service rather
than a system as a whole. For example, a service that deals
with real-time communication would have little to no sig-
nificance on the overall availability of a system. However, a
service on which several other services rely on such a direc-
tory service would have a greater impact on the system as
a whole. Therefore, these services should be given greater
priority when considering the availability of a system. We
can divide services into the following categories to identify
their importance:

e Mission critical: Always available systems, such as database

services.

e Must be available: Services which should be available.
It is okay to have reduced performance such as mes-
saging service.

e Can be postponed: Services that must be available in a
given time frame such as calendar services for internal
company services.

e Optional: Good to have services. For example, in some
environments, chatbots can be ignored.

To choose which strategy we should pick is dependent on
what expectations users have from the service and whether
the scope we are working on is highly available demanding
like online transactions or less care about availability in on-
line chatbot of a retails shop.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Table 1: Availability in “Nines”

Number of nines | Available Percentage | Uptime per year | Downtime per year
2 99% 361.35 days 3.65 days
3 99.9% 364.64 day 8.76 hours
5 99.999% ~365 days 5.26 minutes

Loss of Service: Availability includes scenarios when the
service is no longer present. The design and requirement
must include this possibility and narrate whether the con-
nection should be restarted or if there is a way to resume
the service from the point it was interrupted. It should also
narrate how the system will react to this loss and what de-
ployment steps should be taken to minimize this loss.

4.1.3 Scalability:

Scalability is the ability to add up resources to the existing
resources to satisfy the additional load from users. Scalabil-
ity typically requires the addition of hardware resources but
it should not demand any kind of change in the existing ar-
chitecture of the deployment nor does this should require
downtime because of the addition of resources. Scalability
should not be done in a way that takes away the service from
the user and leads to a bad user experience instead.

Like with availability requirements, scalability implies more
on individual services rather than the system as a whole.
However, for the components/services on which many other
components/services depend, such as Directory service, scal-
ability can have a system-wide impact.

Scalability for a system on a deployment design level is
not specified specifically unless the requirement document
mentions these scalability requirements and needs. How-
ever, the deployment architecture should include some tol-
erance for unexpected cases for which scalability should be
done. For such cases, the critical components which should
be scaled as well as the percentage increase in the software,
hardware, and network should be specified in the QoS re-
quirement guide.

Growth Estimation: For a system to be able to stand
against the sudden increase in workload, it is very important
that growth estimation has been done during deployment
architecture design. This involves extrapolation of project
workload over time, evaluation of use cases under which a
sudden increase of load from users can be expected, and
hunches that might never get filled. There are three keys
that help to develop scalability requirements for scalable sys-
tems:

e High-Performance Design Strategy: This strategy al-
lows to absorb growth and do better scheduling. It
requires an increased budget for availability require-
ments and it assumes that the workload increases over
time.

e Incremental Deployment: Clear milestones for the sys-
tems upgrade are defined. These milestones are usually
load-based requirements.

e Extensive Performance Monitoring: The system is be-
ing monitored all the time to see if there is an increase
in load in which case extra resources are being added.

4.1.4 Security:

Security requirements are considered complex requirements
because they can involve all deployment stages. Mainly, in
security analysis, we identify critical services and threats for
those services and how they can affect the organization as a
whole. Following are few things that should be considered
while implementing security:

e Physical Security: Physical security means providing
security to any type of hardware that your system is
using. It can be servers, data rooms, routers, etc. This
is most important because other types of security will
mean nothing if anyone can go and damage the hard-
ware.

e Network Security: This includes implementing strate-
gies to avoid unauthorized access, denial of service
(DOS) attacks, and tempering on your network which
can be done via ports, firewalls, access control lists,
etc.

e Application and Application Data Security: This in-
cludes using all the practices in development that help
avoid data leakage and expose any security threats.

4.1.5 Serviceability:

It is a measure of the efficiency with which the deployed
system can be maintained, changed, or upgraded. It includes
subattributes like modularity, reusability, modifiability, and
testability. Modular systems or services are the ones that
are flexible to change and the change would not affect other
systems/services. Reusable components or services can be
used in other systems, and modifiable services are flexible
to an efficient change without decreasing the quality of the
current system. To measure serviceability, testability helps
to define and perform test criteria for a service [1].

4.2 QoS configurations/features cluster offers:

Different systems need different quality of service require-
ments. How to design and implement the right system de-
pends on those requirements. As it is mentioned earlier,
to implement the workload requirements in clusters, some
portable and extendable platforms for managing container-
ized workloads and services have emerged that facilitate
both declarative configuration and automation as well as
the quality of service requirements. Clusters’ orchestration
platforms like Kubernetes, provide different strategies for
each quality of service requirements based on the system’s
conditions, which will be discussed in detail in this section;

4.2.1 Scalability:

There are different strategies to implement scalability in
clusters which can be either software-based or hardware-
based [18].

e Ability to autoscale on demand:

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Clusters orchestration systems can watch the clusters
and when the CPU or other metrics pass over a thresh-
old, then they increase the capacity of resources auto-
matically. By defining the autoscaling details, both
minimum and maximum range of scaling. For exam-
ple in Kubernetes, Without the maximum limit, Ku-
bernetes will keep creating pods—groups of containers
in clusters— until all resources are exhausted and via
cloud environment with autoscaling of VMs then we
will incur a significant cost and if there is no minimum
limit, then all pods could be terminated. This is why it
is important to consider the upper threshold to reduce
any extraneous costs.

Performance monitoring of the system to determine
when to autoscale:

We may encounter resource scarcity while we hori-
zontally scale the clusters. Therefore, there are some
factors like DaemonSets and stateful sets, division of
workload in a namespace, etc. which will affect decid-
ing about efficient resource scalability.

Available resources to add to cluster:

Via horizontal autoscaling, we can scale the cluster,
storage, and other objects. However, in the end, we’re
limited by the physical or virtual resources available to
our cluster. If all the clusters are running at their full
capacity, the cluster management platform will just fail
to scale. On the other hand, in dynamic workloads,
scaling down the clusters is possible, but with static
scaling (via Hardware) you will still pay for the ex-
cess capacity. One solution to this problem is to make
use of storage solutions provided either by Cluster Or-
chestration Platforms or the Cloud Storage Solutions.
Moreover, understanding the fluctuations of the work-
loads and considering the cost/benefit ratio of having
excess capacity versus having reduced response time
or processing ability can help significantly.

4.2.2 Availability:

There are many aspects to highly available clusters, such
as ensuring that the control plane, which manages worker
nodes and pods in clusters, can keep functioning in the face
of failures, protecting the cluster state in storage compo-
nents, protecting the system’s data, and recovering capacity
and/or performance quickly. More aspects to availability
can be defined as below:

e Maximize uptime of systems by recovery strategies:

The level of the immediate recovery varies depend-
ing on the workload’s requirements. For some systems
which are not sensitive to downtime, the Best Effort
strategy will work, which means; in case of downtime,
there is no predefined strategy like redundancy, etc.
However, for more sensitive systems there are some
quick recovery and self-healing strategies that are pro-
vided by most of the cluster orchestration platforms.
To maximize uptime of the system, different strategies
can be deployed based on different occasions [33].

Hot Swapping: By replacing the failed component on
the fly without/with minimum interruption to the users,
the availability of the system can be achieved. In
this method, the stateless components can be replaced

without harm by only redirecting the clients to the
new component. However, for stateful components,
systems will either refuse to have in-flight transactions
because the respective users are resilient to failures or
the systems will keep a hot replica in sync, which may
cause system overhead and a low performance if it is
not partially implemented for the system.

Leader Election: In the case of having many worker
components and a master component, it is possible
to make the workers redundant and swap the master
component by electing a new leader. This election can
be done following the Hot Swapping method. Some
master components, such as the scheduler, can’t have
redundant instances active at the same time. Other-
wise, it will be chaos that different schedulers handle
pods and components. The correct way is to have these
components run in leader election mode. This means
that multiple instances are running, but only one is
active at a time and if it fails, another one is elected
as leader and takes its place.

Smart Load Balancing: Load balancing is about dis-
tributing the workload across multiple components that
service incoming requests. In case of failure of some
components, the load balancer should stop sending
workload to those components and be provided by
fresh components. Kubernetes have provided this abil-
ity through services and labels.

Fault tolerance by use of redundancy in hardware and
data Level:

If a critical component fails and you want the system
to keep running, you must have a copy of the com-
ponent ready to go. In some conditions, for example
for stateless pods, the cluster orchestration platform
may provide replication controllers or replica sets to
provide redundancy. However, some components like
the master component or storage component need also
to get backed up by a redundant component and stor-
age, respectively, to provide fault tolerance and avoid
data loss. Moreover, the API servers, which are part of
clusters, can be redundant and available to the users.
Since the API servers are mostly stateless, there is no
need to coordinate them but a load balancer may be
deployed to distribute the workload to each.

Prioritizing service availability:

The scheduler can prioritize the group of components,
namely pods, and if a high-priority pod could not be
scheduled, the scheduler will find a lower-priority pod
and evict it to continue with the scheduling. In this
way, Pods which are prioritized to be available will
be on the top list for scheduling. One major security
problem with this method is that In an unsafe clus-
ter environment with unknown users, a malicious user
could create high-priority Pods, causing other Pods to
be evicted/not get scheduled. An administrator can
use different strategies to avoid that. For example, in
Kubernetes, admins can deploy ResourceQuota to pre-
vent users from creating pods at high priorities. Dis-
aster Recovery Environment

4.2.3 Security:

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Clusters are exposed to an increasing number of attacks
coming from public networks. Therefore, mechanisms for
efficiently managing security are needed [25]. Security can
be provided in different layers which will be introduced as
follows:

e Network security:

The network is considered one of the primary candi-
dates for security threats. All sorts of information can
be leaked if the network is compromised and there-
fore significant attention should be given to secure it.
From a deployment perspective, there are certain ways
in which security can be provided. One of the common
methods is to introduce a firewall on the compute clus-
ter. Access control list (ACL), secure access zones,
port blocking, and blocking DoS attacks are few other
options that can be used to make the security of a
system better.

e Implement organization-wide security policies such as
Multi-Factor Authentication:

Authentication in clusters implemented when the users
or services want to access the system through the API
server. When a client request to the API server, the
request gets checked by a list containing different plu-
gins. These plugins try to obtain the identity of the
client through different methods, such as client certifi-
cate, authentication token passed in an HTTP header,
basic HT'TP authentication, etc.

e Application data security:

This can be achieved through password policies, access
control mechanisms, encryption, etc. The level of secu-
rity can be increased by securing the clusters through
role-based access control which is introduced after fac-
ing a path traversal attack. This happens when clients
try to retrieve the token to authenticate and run ma-
licious pods on clusters [13].

4.2.4 Performance:

Several research has been done to improve the perfor-
mance of applications using cluster computing. Through
these research some models for performance and resource
management have been suggested. In one of them, a Ref-
erence net-based model for Pod container lifecycle in Ku-
bernetes has been suggested. |[19] Such a model can be used
as a basis to support: (i) capacity planning and resource
management; (ii) application design, specifically how an ap-
plication may be structured in terms of pods and contain-
ers. Moreover, Container Orchestration Platforms’ teams
are constantly improving the performance of the large-scale
APIs of these systems and have derived tremendous im-
provements. When Kubernetes 1.2 was released, it sup-
ported clusters of up to 1,000 nodes within the Kubernetes
service level objectives. Kubernetes 1.3 doubled the number
t0 2,000 nodes [34]. In order to achieve a better performance,
we can summarize the findings to important points:

e Ability of system to provide adequate response time
and throughput:

In [4], a container performance study with Docker shows
network performance degradation in some configura-
tions and a negligible CPU performance impact in all

configurations. Unlike Docker, Kubernetes uses a par-
tial nested-container approach with the Pod concept
where network virtualization is used once, as the same
IP address is used for all containers inside a Pod, lead-
ing to better performance.

e Ability of system to handle peak loads during scalabil-
ity:

Although increasing the number of nodes in a cluster
is key for horizontal scalability, pod density is impor-
tant too. Pod density is the number of pods that can
be managed efficiently on one node. If pod density is
low, then running too many pods on one node does
not help the scalability. That means that you might
not benefit from more powerful nodes (more CPU and
memory per node) because the node will not be able
to manage more pods. In Kubernetes 1.2, the Pod
density increased from 40 pods to 100 pods per node.

e Ability to define custom resources for containers:

It is possible to define the amount of CPU and mem-
ory that a container needs (these are called Requests)
and a hard limit on what it may consume (known
as Limits). By defining the Requests, the scheduler
will understand which Pod should be scheduled. If
the requested amount of CPU/Memory was not avail-
able, the scheduler will not choose that specific Pod or
any other Pod, which does not provide the Requested
CPU/Memory, the workload, therefore, may be de-
layed to get done. In order to overcome this problem,
QoS will be defined for each Pod’s Requests/Limits.
There are three different classes of Quality of Service;
BestEfforts (lowest priority), Burstable, Guaranteed
(highest priority). BestEffort means no guarantee for
that pod to be provided by the desired amount of
CPU/Memory and also for the sake of Limits, they are
the first to be killed by schedulers. On the other hand,
Guaranteed is the one with the highest priority in
terms of providing Request/Limit features. Burstable
pods get the number of resources they request but are
allowed to use additional resources (up to the limit) if
needed |[18].

4.2.5 Serviceability (Maintainability)

Building an infrastructure is without a doubt a complex
art that has been evolving over time. However, how to main-
tain such a system is another story. There are many aspects
around that should be considered. Here we have summa-
rized the two most important ones:

e Automation for the infrastructure creation using In-
frastructure as Code (IaC):

Maintaining infrastructure manually has many prob-
lems such as increased cost, inconsistency, speed, and
many more. This once-considered manual process can
unsurprisingly be automated in cloud computing. There
are generally two major types, imperative and declar-
ative. Where imperative instructions are given which
should be executed at certain milestones while in declar-
ative the outcome is told.

e Monitor Your Deployments:

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

For workloads to be production-ready, we need to have
them monitored. Most production-ready charts in-
clude support for metrics exporters, so the application
status can be observed by tools. Also, it is impor-
tant to ensure that your workloads also integrate with
logging stacks like ELK for improving the observability
of your containerized applications. The advantages are
uncountable: early failure prevention, auditing, trend
detection, performance analysis or debugging, among
others. [32]

4.3 Limitations

Despite doing all the configurations which a cluster can
offer correctly and diligently, one can never rule out the im-
portance of other factors such as coding ethics or the network
bandwidth when talking about system quality. For exam-
ple no matter how secure the deployed cluster is but if the
underlying service did not follow coding conventions for pro-
tecting data, then data breaches and/or weak linkages can
occur. One more example can be a data transfer between
two services in which the underlying network plays an im-
portant role and deployment would not be able to mitigate
the delays much. As seen from these examples it should be
clear that no matter how good the deployment architecture
is, there are several other factors that can always hinder the
overall performance of the system and they should be given
as much attention as the deployment architecture itself is
given.

5. CONCLUSION

Compute clusters have positioned themselves as one of
the fundamental concepts in the age of modern software
development. These compute clusters help to achieve the
desired benchmark of quality software must deliver such as
availability time or scalability. This paper talks about how
these clusters can be configured for deployment to deliver
the quality of service (QoS) requirements that are expected
from a certain software system. A relationship has been
presented between different QoS requirements and clusters
configurations along with various trade-offs between QoS re-
quirements. The aim is to improve the quality of deploy-
ment by checking all the configurations one must keep in
mind to achieve certain QoS requirements. The relation-
ship presented in this paper helps to achieve this task by
demonstrating all the configurations for a compute cluster
along with certain external factors on which a certain QoS
requirement might depend. This model makes it harder for
the reader to miss out on any metric while ensuring a suc-
cessful deployment as per need. Nevertheless, it includes
some limitations as the deployment does not depend only
on compute clusters but also on external features such as
bandwidth. These external circumstances have not been dis-
cussed in this paper in detail to limit the scope. The model
presented can be improved by future work, which considers
these external factors and incorporates them in the model
presented. An example for these features can be bandwidth
or latency, upon the addition of which the model would be
more informative and complete.

6. REFERENCES

[1] 1. 25000. Iso/iec 25010.
[2] T. 500. Top500 news:, jun 2010.

3]

[4]

[5]

(6]
[7]

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

20]

T. 500. Top500 news: Japan captures top500 crown
with arm-powered supercomputer, jun 2020.

M. Amaral, J. Polo, D. Carrera, I. Mohomed,

M. Unuvar, and M. Steinder. Performance evaluation
of microservices architectures using containers. 2015
IEEE 14th International Symposium on Network
Computing and Applications, pages 27-34, 2015.

F. C. Casald, L.V. and M. Guinaliu. The role of
security, privacy, usability and reputation in the
development of online banking. Emerald Group
Publishing Limited, 31(5):583-603, 2007.

K. Casey. What’s the difference between a pod, a
cluster, and a container?, sep 2020.

T. Chumash. Obtaining five “nines” of availability for
internet services. Rutgers University, 2019, 2005.

L. P. Dewi, A. Noertjahyana, H. N. Palit, and

K. Yedutun. Server scalability using kubernetes. In
2019 4th Technology Innovation Management and
Engineering Science International Conference
(TIMES-iCON), pages 1-4, 2019.

Docker. Build, ship, and run any app, anywhere, jan
2019.

S. A. Ghobaei-Arani, M. An efficient resource
provisioning approach for analyzing cloud workloads:
a metaheuristic-based clustering approach.
Supercomput 77, 2021.

W. Hasselbring and R. Reussner. Toward trustworthy
software systems. Computer, 39(4):91-92, 2006.

I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini,
G. Martuscelli, R. Montanari, and A. Palopoli.
Container orchestration engines: A thorough
functional and performance comparison. In ICC 2019
- 2019 IEEFE International Conference on
Communications (ICC), pages 1-6, 2019.

X. Jing and Z. Jian-jun. A brief survey on the security
model of cloud computing. In 2010 Ninth
International Symposium on Distributed Computing
and Applications to Business, Engineering and
Science, pages 475-478, 2010.

A. Khan. Key characteristics of a container
orchestration platform to enable a modern application.
IEEE Cloud Computing, 4(5):42-48, 2017.

D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee.
Tosca-based and federation-aware cloud orchestration
for kubernetes container platform. Applied Sciences,
9(1), 2019.

T. Krazit. How zoom pulled off the scaling event of a
lifetime, 2020.

Kubernetes. Kubernetes documentation.

M. Luksa. Kubernetes in Action. Manning, Pages:
445-450, 2018.

V. Medel, O. Rana, J. a. Bafiares, and U. Arronategui.
Modelling performance amp; resource management in
kubernetes. In Proceedings of the 9th International
Conference on Utility and Cloud Computing, UCC ’16,
page 257-262, New York, NY, USA, 2016. Association
for Computing Machinery.

A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R.
Das. Towards characterizing cloud backend workloads:
Insights from google compute clusters. SIGMETRICS
Perform. Eval. Rev., 37(4):34-41, Mar. 2010.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

[21] V. Nelson. Fault-tolerant computing: fundamental
concepts. Computer, 23(7):19-25, 1990.

[22] A. Nordhoff. What is a cluster? an overview of
clustering in the cloud, jul 2020.

[23] M. Palmer. Kubernetes networking guide for
beginners, sep.

[24] S. Peng, H. Wang, and Q. Yu. Multi-clusters adaptive
brain storm optimization algorithm for qos-aware
service composition. IEEE Access, 8:48822-48835,
2020.

[25] M. Pourzandi, D. Gordon, W. Yurcik, and G. Koenig.
Clusters and security: distributed security for
distributed systems. pages 96— 104 Vol. 1, 06 2005.

[26] S. Prathiba and S. Sowvarnica. Survey of failures and
fault tolerance in cloud. In 2017 2nd International
Conference on Computing and Communications
Technologies (ICCCT), pages 169-172, 2017.

[27] R. A. P. Rajan. Serverless architecture - a revolution
in cloud computing. Tenth International Conference
on Advanced Computing (ICoAC), pages 88-93, 2018.
10.1109/ICoAC44903.2018.8939081.

[28] Redhat. What is a kubernetes deployment?

[29] Redswitsches.com. The difference between horizontal
vs vertical scaling, dec 2019.

[30] D. Rountree and I. Castrillo. Chapter 6 - evaluating
cloud security: An information security framework. In
D. Rountree and I. Castrillo, editors, The Basics of
Cloud Computing, pages 101-121. Syngress, Boston,
2014.

[31] N. Sadashiv and S. M. D. Kumar. Cluster, grid and
cloud computing: A detailed comparison. In 2011 6th
International Conference on Computer Science
Education (ICCSE), pages 477-482, 2011.

[32] J. Salmeron. 5 tips to deploy production-ready
applications in kubernetes.

[33] G. Sayfan. Mastering Kubernetes. Packt, Page: 215,
2017.

[34] G. Sayfan. Mastering Kubernetes. Packt, Page: 238,
2017.

[35] W. Staff. Cloud containers, may 2021.

[36] J. E. Victor Millnert. Holoscale: horizontal and
vertical scaling of cloud resources. IEEE/ACM 15th
International Conference on Utility and Cloud
Computing (UCC), page 196, 2020.

[37] X. Wang and H. Wang. Driving behavior clustering for
hazardous material transportation based on genetic
fuzzy c-means algorithm. IEEE Access, 8:11289-11296,
2020.

[38] Wikipedia. Cluster computing.

[39] Q. Wu, J. Yu, L. Lu, S. Qian, and G. Xue.
Dynamically adjusting scale of a kubernetes cluster
under qos guarantee. In 2019 IEEE 25th International
Conference on Parallel and Distributed Systems
(ICPADS), pages 193-200, 2019.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Towards a Quality Model for Messaging Systems in
Event-Driven Architectures

Noyan Ahmed Siddiqui
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

noyan.siddiqui@rwth-aachen.de

ABSTRACT

Event-driven architectures (EDAs) are a highly important
paradigm, used in a lot of critical business applications in
need of fast, scalable, reliable, and asynchronous communi-
cation. This includes the likes of stock exchanges, news tick-
ers, air-traffic control, and supply chain management. These
and similar applications need to be able to react quickly to
their often very dynamic environments, and can thus make
use of the advantages of event-driven architectures. A key
component in any event-driven architecture is the messag-
ing system responsible for delivering event notifications. Be-
cause such a system has great influence on the behaviour and
characteristics of the EDA, it is highly important to consider
the quality of the messaging system.

In this paper, we set out to create a clear definition of
quality for messaging systems in event-driven architectures
by constructing a quality model. We offer a list of external
quality attributes for messaging systems that may need to
be catered to when applying an event-driven architecture to
an application. The quality attributes making up our model,
concerning characteristics like efficiency and reliability, are
described and explained in detail. We also explain how the
attributes can improve the quality of the application, how to
apply them, where trade-offs need to be made among them,
and give a rationale to which extent an attribute is fulfilled.
We showcase how these attributes can be applied and how
they interact with each other on the examples of Kafka and
RabbitMQ), two widely used message brokers in the industry.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.11 [Software En-
gineering]: Software Architectures—Patterns

Keywords

event-driven architectures, messaging systems, Kafka, Rab-
bitMQ

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Laurens Studtmann
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany

laurens.studtmann@rwth-aachen.de

1. INTRODUCTION

There is great demand for software that can handle asyn-
chronous communication between different components based
on significant changes in the environment of a system, also
referred to as events. Event-driven architectures (EDAs) try
to address this exact need. In an EDA| participating agents
detect events and can react by sending a message, also called
event notification, which can be received by other agents in
the system. Many modern-day applications are in need of
such systems, like for example stock exchanges, news tick-
ers, air-traffic control, and supply chain management [3][15].
There are many factors that determine the quality of an
EDA for a given application, and one major part is made up
by the messaging system chosen for delivering the event no-
tifications. The quality of that messaging system, described
by characteristics like end-to-end messaging latency or fault
tolerance, is thus highly important for the overall quality of
the application.

1.1 Research Goal

Creating a detailed quality model that describes and ex-
plains quality attributes in messaging systems for EDAs is an
important contribution to the development of better EDAs.
As such, it is the goal of this paper to present such a quality
model for messaging systems in event-driven architectures.
For that we have set the following four objectives: First, to
explain the quality attributes themselves, second, to answer
the question of when and why they are important, and third,
where there are trade-offs to be found between the different
characteristics. To further illustrate this, we have chosen
two popular messaging systems, Kafka and RabbitMQ), for
our fourth objective: To explain for the different characteris-
tics how they can be catered to in the real world, considering
the relationships among them in particular.

For this paper, we focus only on external quality attributes.
Internal attributes like maintainability or interoperability
are out of scope.

The paper will first introduce and explain the general
functionality and structure of event-driven architectures, give
an overview of both Kafka and RabbitMQ), and then go over
quality models in general. The main part will focus on the
quality model, covering all the different attributes in detail
as well as how they can be handled in Kafka and RabbitMQ.
Section [4] will conclude the paper and offer some avenues for
further research.

2. BACKGROUND

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

2.1 Event-Driven Architectures

An event-driven architecture (EDA) is a software design
pattern in which participating agents are categorised into
producers and consumers. Producers react to events, which
are significant and relevant changes in the environment of
the software system, by packaging the relevant information
into a message, also referred to as an event notification, and
sending it over a messaging system. An event notification
is handled by a so-called broker and transmitted to con-
sumers which can then act upon it. A notable property of
most EDAs is that producers and consumers are only loosely
coupled. This enables event-driven applications to become
highly scalable, an important property in particular for large
distributed systems.

The communication model of EDAs is considered message-
oriented. This means that it is based around asynchronous
messaging instead of a request/response model. Such asyn-
chronous communication is necessary because events can oc-
cur arbitrarily and need to be distributed and dealt with at
any time. The message-oriented communication of EDAs
can generally be categorised into the point-to-point (P2P)
model or the publish/subscribe (pub/sub) model [14]. With
P2P, each message sent by a producer goes through a queue
which relays the message to one specific consumer. When
EDAs follow the publish/subscribe paradigm, the messages
are assigned to categories by the producer (now called pub-
lisher). A consumer (now called subscriber) can subscribe
to a category that is relevant to them. When a publisher
sends a message of that category, all the agents subscribed
to that category will receive it. Compared to P2P, this
further anonymises the agents and increases their indepen-
dence: Publishers only assign categories, not specific agents,
and subscribers only subscribe to categories and have no
knowledge of the publishers who sent the messages. This
strong decoupling further improves the scalability of EDAs.

2.2 RabbitMQ

RabbitMQ [4] is a popular open source messaging sys-
tem implementing the Advanced Message Queuing Protocol
(AMQP). AMQP was originally developed for the finance in-
dustry as a standard for asynchronous messaging, and was
thus shaped by the strict performance, reliability, and scal-
ability requirements of that sector [5]. RabbitMQ builds
upon this by extending AMQP in a few different ways: For
example, RabbitMQ can let clients know that a connection is
blocked or unblocked, it can prioritise certain consumers so
that they are notified first, and the system can ensure that
rejected or expired messages are rerouted (so-called dead
lettering). For a more exhaustive list, see the protocol ex-
tensions in [11]. Nowadays, RabbitMQ supports protocols
other than AMQP via plugins, like the Simple Text Ori-
ented Message Protocol (STOMP) for example. RabbitMQ
is written in the Erlang programming language, which is de-
signed for building distributed and fault-tolerant software
[4]. Due to the use of the actor model in the communication
between different Erlang processes in the underlying system,
scalability is enhanced significantly [5].

These general design decisions are supposed to enhance
the quality of applications that use RabbitMQ as the mes-
sage broker in event-driven architectures. How exactly dif-
ferent quality characteristics are affected will be discussed
in each respective part in Section [3]

RabbitMQ’s messaging system revolves around so-called

exchanges, which act like mailboxes or post offices in the real
world. An illustration of the components and their interac-
tion can be seen in Figure[l] (b). When a publisher sends a
message, it is delivered to an exchange, which handles the
distribution of the message to queues according to certain
rules (referred to as bindings). The content of the queues
can then either be fetched by consumers or the messages
are directly pushed to consumers subscribed to the queue in
question. Depending on the type of exchange, both point-to-
point and publish/subscribe models for delivering notifica-
tions can be realised. The exchanges and queues are stored
on and handled by RabbitM@ nodes, which are somewhat
independent instances of RabbitMQ, that make up the mes-
saging system.

2.3 Kafka

Apache Kafka is a distributed event streaming platform
capable of handling large amounts of data in the form of
events. It is a highly popular system, handling trillions
of events per day [2]. It started off as a messaging queue
service but quickly evolved to a full-fledged event stream-
ing platform. It provides, among others, the following core
functionalities [2]:

e Publish and subscribe to a stream of records

e Store the streams of records, in categories called topics,
in a fault-tolerant way

e Process streams of records as they occur

The earlier discussed concept of producers and consumers
applies to Kafka as well. Producers can publish a stream of
records to one or more Kafka topics and on the other end,
consumers can subscribe to topics and consume streams of
records produced for them. A topic is the core abstraction
that Kafka provides for a stream of records to categorise the
records that can be published to the topic. A topic itself
can have multiple subscribers at a time. A topic is further
partitioned, i.e. it is spread over a sequence of buckets of
records located on different Kafka servers, also known as
brokers. A certain record stored within a certain partition
of the topic is assigned a sequential ID, called offset, that
identifies that record.
Kafka is used for following broad class of applications:

e Building real-time streaming data pipelines that reli-
ably get data between systems or applications

e Building real-time streaming applications that trans-
form or react to the streams of data

2.4 Quality Models

Quality models provide a framework that evaluates a sys-
tem’s overall quality and value it provides to the end users.
It aims to describe the quality of a system, meaning the
extent to which the system is valuable, meeting the goals
and objectives of the application. The idea is to first de-
fine the goals of the product. The identification of the
goals/objectives helps to set priorities based on the impor-
tance of each quality aspect.

The goals can then further be mapped to concrete qual-
ity attributes, also called quality characteristics, which help
with evaluating the quality of the system. Each of these
characteristics can also be decomposed into subcharacter-
istics if they are too broad. Furthermore, for each of the

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Quality Model for
Messaging Systems ey 4
in EDAs

Completeness

Correctness

Fault Tolerance Availability
Recoverability
Publisher
Ordering Guarantee
Durability
Latency
Timeliness
Throughput Exchange
Resource Utilisation
=
Capacity O
L)
(T
Scalability C:E \
Confidentiality
Integrity
Accountability
- Consumer
Authenticity

(a)

(b)

Figure 1: (a) Diagram visualising the attributes of our quality model, organised into their different categories. (b) Illustration
of basic components in the RabbitM(Q messaging system, adapted from .

quality attribute/sub characteristics certain metrics can be
identified along with some measurement criteria. However,
determining quality metrics is out of scope for this paper.

2.5 Related Work

Papers that deal with designing and developing modern
event-driven applications in general without our chosen fo-
cus on the underlying messaging system include and
. and [3] also deal with EDAs and publish/subscribe
middleware respectively from a Quality of Service perspec-
tive, and offer general insights into improving these types of
systems as a whole. These works differ from our paper in the
sense that we focus on messaging systems and put emphasis
on the relationship between the different quality attributes.

For a comparison between different messaging systems and
deciding which broker to pick in which kinds of applications,
there is 7] which compares Kafka, RabbitMQ, RocketMQ@,
ActiveM @), and Pulsar. Other works featuring similar com-
parisons are between Kafka and RabbitMQ, and be-
tween RabbitMQ and ActiveMQ. These papers cover the
mentioned systems in a general, non-EDA specific context.
Also note that due to the age of the papers and the rapid
ongoing development of the messaging systems, some newer
features are not considered in these works which we do in-
clude in our findings, like for example quorum queues in
RabbitMQ. For more of a general concept and motivation
behind RabbitMQ), see [4].

3. QUALITY ATTRIBUTES

In the following section we present the quality model for
messaging systems in EDAs. A visualisation of the qual-

ity attributes in their respective categories can be found in

Figure(l] (a).
3.1 Reliability

One of the most important requirements and signs of qual-
ity in a software architecture in any business application is
reliability. It is key that the software does what it was de-
signed to do consistently and with as low of a probability of
failure as possible, even during adverse circumstances.

With EDAs this means that the handling of events and
event notifications by producers and consumers and the trans-
mission of messages between them happen in a reliable fash-
ion. This, however, is a challenging task in the dynamic envi-
ronments where the event-driven approach is most suitable:
Events occurring at arbitrary times with large changes in
the number of notifications sent at a given moment, varying
message sizes, changes in the list of consumers that need to
receive the notifications, as well as the need for asynchronous
transmission of messages often across multiple network hops
are all sources of non-determinism in the system. They are
common challenges in the real world, especially when paired
with limited processing resources . When reliable trans-
mission of information is critical, as is the case in a lot of
business applications, dealing with these concerns becomes
a high priority. Ensuring the quality of a software based on
an event-driven architecture means catering to the following
reliability criteria concerning the messaging system.

3.1.1 Completeness

Perhaps the most obvious quality attribute related to re-
liability is completeness, also referred to as at-least-once de-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

livery, meaning that all event notifications are received and
dealt with by the respective consumers, with no messages
lost along the way.

Lost messages can have strong negative effects on the ap-
plication, like when critical information on sudden changes
in the environment stays unknown to relevant parts of the
system.

A loss of messages can be caused by inconsistencies and
non-determinism in the network, network failure, or errors in
the producer, consumer, or the notification delivery software
in between [3].

Factors that can provoke or amplify such problems in-
clude an overload of the system — e.g. with a large number
of events and/or large message sizes —, unreliable network
infrastructure, or events that are not properly handled by
the software — e.g. incorrect event types or corrupted mes-
sages. It is the responsibility of the messaging system to
account for such occurrences and handle them gracefully.
For further detail on handling of larger failures, see Section
B3l on fault tolerance.

As a quality metric, instead of the sometimes infeasible
all-or-nothing requirement that is completeness, one should
rather consider the probability of delivery of the event noti-
fications [3|. Of all the notifications that are supposed to be
delivered to a consumer, what is the fraction of the messages
that arrive?

To increase the probability of delivery one can make some
immediate considerations: The protocol for the underlying
communication can be chosen to be reliable. Reliable pro-
tocols like for example TCP [13] can support the detection
of lost, incomplete, or corrupted messages, and resend them
or apply error-correction techniques to ensure a proper de-
livery of the message. But such protocols usually come at
the expense of some efficiency. These features generally re-
quire more information to be sent, and more processing to
take place for sending, transmitting, and receiving a mes-
sage. In an environment with limited resources, this can
cause not only performance issues but in extreme cases even
an overload or outage of the system and thus a decrease in
reliability if the measures taken for ensuring completeness
are excessive.

It is a highly application-specific balance that has to be
struck between acceptable loss of messages and efficiency.

The protocols supported by RabbitMQ all use TCP for
communication. This means that on the network level, mes-
sages will be guaranteed to be transmitted, as long as the
TCP connection is upheld. However, any operation above
the network layer must still be considered for completeness,
which is why one can choose to use consumer acknowledge-
ments and publisher confirms in RabbitMQ to ensure that
the messages are not only received, but also acted upon by
both the broker and the consumer. Effectively, these ac-
knowledgements and confirms show a change in ownership of
the particular message that was acknowledged or confirmed.
In the end, this guarantees every message to be delivered
at least once, and means that completeness is fulfilled, as
long as acknowledgements and confirms are used. But, as
discussed in the next section on correctness, fulfilling the at-
least-once delivery guarantee means losing the at-most-once
delivery guarantee in RabbitMQ [11].

In Kafka [2], completeness in the sense of at-least-once-
delivery is handled similarly, by resending the message until

confirmation of the arrival is received. This also covers the
case of the transmission of a large file which fails half way
through the processing. It will then resend the message and
process the file again from scratch. In any case complete-
ness with at least-once-delivery is ensured. However, after
the successful processing of a message, it can happen that
the acknowledgement is lost, causing the message to be sent
twice, violating correctness.

3.1.2 Correctness

Correctness can be considered a counterpart to complete-
ness. A system is correct if all received messages are mes-
sages that were supposed to be received.

Catering to correctness means to avoid sending unneces-
sary messages, like event notifications without the associated
event occurring due to an error in the producer’s software.
Such false-positive messages are comparatively hard to come
by though, as arbitrarily sent messages without an actual
event occurring would be rare in a functional event-driven
application. In the real world, however, duplicate messages
will be the most common type of superfluous message to deal
with, as they can occur randomly due to network-related er-
rors and attempts at resending lost messages for example
|[11]. This would then violate the notion of at-most-once
delivery, where these duplicates are not allowed.

Depending on the application and the type of event noti-
fication that was duplicated or otherwise superfluous, prob-
lems with correctness may not be as impactful as a missing
message. For example, when an event notification informs
about the current ambient temperature, a duplicate message
has no serious consequences other than the use of slightly
more resources. In other cases, it could mean that an article
is shipped twice instead of once or that some information is
displayed redundantly in a user interface.

That does not mean however that unnecessary messages
cannot cause serious problems: If too much of a medication
is sent to patients at a hospital due to duplicate event notifi-
cations, patients may take too high of a dose, or the supply
of the hospital would run out unexpectedly, causing some
patients to not get their appropriate medication.

So it can still be important to cater to correctness, by
reducing the amount of superfluous messages or avoiding
them entirely. As with completeness, the protocol of the
underlying communication channel can be set up to detect
and deal with such messages at the cost of some compute
resources and bandwidth [13]. Or one can use the strategy of
“fire-and-forget” to guarantee at-most-once delivery because
messages are always transmitted just once [11]. But this
would considerably decrease the probability of delivery, as
a lot of measures for ensuring completeness like resending
notifications would need to be excluded from the system.

Having a system that is both complete and correct would
guarantee exactly-once delivery, meaning that exactly one
message is sent and received for every event notification that
is supposed to be transmitted. While this is the ideal sce-
nario, it is challenging to achieve in all circumstances.

For example in RabbitM @), at-most-once delivery can only
be achieved by choosing not to use acknowledgements and
confirms, and delivering messages in a “fire-and-forget” fash-
ion. But because the acknowledgements and confirms are re-
quired for at-least-once delivery, guaranteeing exactly-once
delivery is not possible in RabbitMQ [11].

Similar to RabbitMQ, the at-most-once delivery type can

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

be achieved in Kafka by following a “fire-and-forget” policy.
In addition to that, Apache Kafka also supports exactly-
once stream processing through Streams API, by enabling
the eractly-once processing guarantee in the configuration
2]

3.1.3 Fault Tolerance

Hardware, infrastructure, and software outside of the event-
driven architecture can and will fail in some way for most
systems eventually. In order to make an EDA properly re-
liable, its messaging system needs to be able to robustly
handle these cases of failure as gracefully as possible.

Improving the fault tolerance of an EDA means identify-
ing the most likely points of failure in and around the appli-
cation, and making sure the messaging system keeps working
to the extent that is possible in the given circumstances if
such a failure occurs. In most applications, a system that
crashes entirely when such issues emerge is worse than a
system that drops a few messages, which is worse than a
system that becomes temporarily slower to deliver notifica-
tions. In case of a network failure or crash of a participant,
for example, the system should not crash or ignore the issue,
but detect the problem and engage in measures for recov-
ery, as explained in Section [3.1.4] on recoverability. In case a
producer crashes, the system could detect this and notify rel-
evant consumers of the problem. Or if a consumer crashes,
durable messaging as discussed in Section [3.1.6] can still no-
tify the consumer of the missed messages after it comes back
online.

A more extreme measure that also requires extra hardware
is the support for redundant communication channels. By
transmitting over multiple connections, the system can still
operate even if one channel fails entirely. This would also
have the consequences of much increased resource utilisation
as well as not being able to guarantee at-most-once delivery,
due to every message being transmitted multiple times.

Multiple instances of a RabbitMQ server within the same
local network can be configured to function as a single bro-
ker, which enables better fault tolerance, as well as load
balancing across instances at the cost of performance and
resources [4].

A queue mirroring technique called quorum queues can
be used in RabbitMQ to improve the fault tolerance when
data safety is of high importance [11]. Using quorum queues
means that a number of replicas are created for each queue,
with one designated leader. In case the RabbitMQ node
of the leader fails or becomes otherwise unavailable, a new
leader will be elected which takes over the responsibility of
the old leader. This way, the system can withstand the
failure or unavailability of multiple nodes, as long as there
are enough nodes left that are responsible for the particu-
lar queue to form a majority. Configuring a queue to use
this feature requires more resources and limits scalability
in particular, as keeping the replica queues up-to-date is a
comparatively expensive and time-consuming operation.

Kafka streams are built on fault-tolerance capabilities. A
multi-datacentre approach for Kafka deployments allows the
system to disperse to data-centres in multiple regions [2]. In
case of a disaster — power outage, software failure, hardware
failure, or any other error causing a datacentre to fail com-
pletely — Kafka continues to work on other active datacentres
until the service is restored.

Improving the availability of an event-driven application
means making sure that the system is operational and re-
sponsive as often as possible. In other words, system down-
time needs to be reduced.

Availability is an important consideration in an event-
driven architecture and as such its messaging system. When
the brokers go down, the whole system may become unre-
sponsive. So for a lot of applications, the availability of the
messaging system is very high on the list of priorities.

Catering to availability means increasing the fault toler-
ance of the system, making availability a consequence of
fault tolerance, so the techniques described for fault toler-
ance [3.1.3] apply. Fault tolerance encompasses more than
improving availability, though, as availability is about the
time the system is functional at all, while improving fault
tolerance can also mean lessening the performance impact
of an occurring fault, which has no impact on availability.

3.1.4 Recoverability

In case of some parts of the system failing catastrophically,
a messaging system can be designed to be able to recover
lost information and continue operating after the issue has
been resolved.

This may be important for applications where critical in-
formation is being transmitted and data loss would have
negative impacts in addition to the problems introduced by
the system failure. With all the data that is saved in a sys-
tem with high recoverability during operation right before a
failure occurs, it is also a helpful property for figuring out
what caused the issue in the first place.

For example, if parts of the system responsible for the
transmission of messages fail and crash, any event notifica-
tions in transit may be lost, as they are generally only kept
in a volatile memory buffer for a short period of time. A
way of making the system more recoverable would be to use
persistent messages [15]: Instead of only keeping the mes-
sages in memory, they are also written to a more permanent
storage solution, like a database. This way, they can be
retrieved and retransmitted after an outage.

This comes, like most other improvements to reliability,
at the cost of more processing resources and latency. Addi-
tional hardware components are also required for the persis-
tent storage.

In RabbitMQ), individual messages can be declared to be
persistent, in order for these messages to be written to disk
by the so-called persistence layer |[11]. To gain the benefits
just described, the queue that the message was placed in
also needs to be configured to be durable, so the queue stays
and is recovered after the node in question is restarted. In
the other queue mode, called transient, the messages in the
queue are lost, even if they were declared persistent. Durable
queues are not to be confused with the notion of durability
we describe in Section however.

Partitions in Kafka are highly available and replicated to
multiple instances [2], as shown in a possible architecture
for a multi-datacentre deployment of Kafka in Figure 2} In
case of a failure or if re-processing is required, the stream
data is persisted to Kafka. Kafka also maintains a repli-
cated changelog for every Kafka topic which tracks all state
updates. These changelogs topics are further partitioned as
well so that each local state store instance. Next when the
consumer tries to reprocess the failed process the data is still
available.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Producers Producers

oo |

ZooKeeper

Schema Registry

Quorum Replicator Quorum
Replicator

Producers Producers

I oo |

ZooKeeper

Schema Registry

Figure 2: A multi-datacentre reference architecture |2].

3.1.5 Ordering Guarantee

Fulfilling the ordering guarantee means that messages are
received in the same order they are published.

This order of messages may have a significant impact on
the functionality of a system. If the order changes during
transmission, one can imagine the following scenario:

A machine in the system controlled by the EDA is pow-
ered off. An event notification is sent to turn the machine
on, and a split second later, another notification is sent to
turn it off again. If the messages are received in reverse or-
der, the consumer will presumably try to turn off the already
powered down machine, which may or may not cause prob-
lems already, and then turn it on. The machine may now
be running indefinitely even though it should not be, until
the error is noticed or another shutdown event notification
is received.

Similarly to completeness and correctness, the underlying
communication protocols like TCP can do most of the work
ensuring correct ordering of messages, at the cost of some
overhead [13].

As TCP is in use in RabbitMQ, any ordering issues on
the network layer are taken care of. Above this layer, order-
ing is preserved per default under the assumption that the
messages are consumed by a single consumer only [11]. The
reason for this limitation is that if there are multiple sub-
scribers of a queue, one consumer may requeue a message,
causing that message to be out of order. So for messages that
require strict ordering, one needs to resort to a queue bound
to only a single consumer. However under this assumption,
the ordering is preserved even under the circumstances of
the communication channel closing or the message being re-
queued by the consumer.

In Kafka, topics are split into partitions. The ordering of
messages is preserved within the partition by default, but
cannot be guaranteed across partitions. In case of multi-
partitioned topics a system of key/partitions can be used to
maintain the order of messages. The keys used by Kafka
allow for messages with the same key to be put on one par-
tition [6].

3.1.6 Durability

In the pub/sub paradigm, a messaging system is consid-
ered durable if it fulfils the following functionality: When
a consumer is subscribed to a category of messages but be-
comes inactive — for example due to a restart of the consumer
—, the messages they would have received during the down-
time are stored. When the consumer in question comes back
online, the missed messages will be delivered [15].

Other causes for this feature to become relevant would be
a crash of a consumer or network failure. In both cases, the
consumer would not be reachable, and the messages would
be kept until they can be delivered. This comes at the cost
of some memory and/or disk space, which can become a
problem if a large number of messages are supposed to be
delivered to inactive consumers, like when a consumer is
shut down for a long period of time.

Do note that the concept of durability we refer to here
is not the same as persistent messaging, as persistence is
about the broker responsible for transmitting the data fail-
ing or being otherwise powered off, while durability is about
the consumers being temporarily unavailable. Persistence
is also mostly aimed at system failure or other rather un-
planned shutdowns, while durability may be a more normal
part of the workflow, with consumers powering down with-
out unexpected causes, to save power for example, and still
want to consume the missed messages the next time they
are active |15].

In RabbitMQ), all messages are durable by default in the
sense just described. However, durable queues in RabbitMQ
refer to a different concept more related to persistence, and
are not to be confused with the notion of durability ex-
plained in this section. It is further discussed in Section
BT4

As mentioned earlier, by default the stream data in Kafka
is stored in a persistent manner. The use of distributed
commit logs/changelogs makes it durable.

3.2 Efficiency

The efficiency of a software system is the ability to fulfil
all the functionalities of the system and its purpose with
optimal utilisation of all the necessary resources including
time, memory, storage, etc.

Efficiency can be considered inherent to the fundamental
design of event-driven architectures. EDAs consist of modu-
lar participants, namely producers and consumers, that can
work simultaneously without being dependent on each other.
Given the modularity, even multiple consumers and produc-
ers can spin up and work in parallel. This loose coupling
of an EDA’s participants results in more seamless, scalable,
and in the end efficient operations. A fully event-driven
system is well-suited for asynchronous communication and
therefore also for parallelisation [14].

To deliver an efficient solution in an EDA, a middle-ground
has to be identified for the particular application between
resource utilisation and time consumption.

3.2.1 Timeliness

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Time behaviour in event-driven architectures refers to the
latency and throughput rates that the system supports and
guarantees to perform activities. Ideally, an efficient EDA
enables high throughput while offering low latency.

The latency of an event being handled can be a measure
of multiple different time spans in the operation of an EDA:
The latency we are interested in is the raw delivery time, or
the time it takes from the producer sending the event notifi-
cation to the consumer receiving it. This concerns only the
messaging system used for communication, without consid-
ering the processing time within the producers or consumers,
which of course also has an impact on time behaviour. For
this paper, however, we are only concerned with the mes-
saging system.

Efficient time behaviour is obviously a highly important
aspect of a messaging system, as a lot of applications have
the need of events being dealt with quickly. The lower the
latency, the faster the system can adapt to changes in the
environment, increasing the quality of the system consider-
ably. Some systems have very strict real-time requirements
that need to be catered to, where an event needs to be dealt
with within a set amount of time. This means that not only
is there a requirement for the latency being low, but also
consistent [10].

There can be multiple ways to reduce and stabilise latency.
The most obvious area to configure is the chosen commu-
nication protocol. Using faster protocols can improve the
latency, however often at the cost of reliability and/or re-
source utilisation. Using UDP [12] instead of TCP [13] for
example will positively impact latency, but cause a decrease
in reliability.

Apart from that, efficient event filtering can also posi-
tively impact the latency [10]. If events are categorised more
finely, they can be sent only to the consumers that need it,
saving time and resources by reducing unnecessary transmis-
sions. On the flipside, having the categories be too fine — and
thus too numerous —, encoding and matching the events into
the categories can become processing intensive. Defining a
proper category to an event can also become more error-
prone, especially if it is done by a user. This means that a
proper balance needs to be found between coarse and fine-
grained categories. A highly sophisticated approach would
be to adapt the granularity of categories depending on the
current conditions [10]. If event filtering is the bottleneck be-
cause of limited processing capabilities in some producers,
the model should become more coarse, but if the network
transmission is the limiting factor, finer-grained categories
should be used.

With RabbitMQ, one has a lot of freedom to define cat-
egories as sophisticated or basic as it is required, due to
the use of the routing system of AMQP. Flexibility is fur-
ther increased by the different kinds of exchanges that can
be used to fulfil not only the basic point-to-point or pub-
lish/subscribe needs [11].

The routing in Kafka is much more restricted, which can
lead to suboptimal distribution of messages and thus a per-
formance decrease in some applications in need of more so-
phisticated routing [5].

Throughput refers to the amount of data being transferred
per unit of time. For larger messages, this may be the fac-
tor to prioritise when it comes to timeliness, while latency

is more important for smaller messages. However, the two
concepts are of course heavily intertwined.

A way of improving throughput in event-driven architec-
tures can be applied if the job contains multiple independent
sub-tasks. These subtasks can then be taken over by differ-
ent consumers and thus result in better throughput, and
thus faster completion of the whole job with reduced time
consumption. Adding more consumers further emphasises
this improvement, however the overhead introduced by hav-
ing to synchronise over the larger number of consumers may
degrade performance significantly [15].

As fundamentally distributed messaging systems, both
RabbitMQ and Kafka benefit in terms of throughput by the
use of distributing tasks across multiple machines.

3.2.2 Resource Utilisation

This quality attribute is concerned with using the least
amount of hardware, processing power, memory, and stor-
age. The asynchronous nature of event-driven architectures,
can allow for better utilisation of resources needed to per-
form a job.

A scenario in this regard can be found for example in
synchronous systems having multiple microservices: When
a process needs to be executed or some data needs to be
fetched from a service then a call is made to that service.
The call can take time to respond depending on the com-
plexity of the process or the size of the data to be fetched.
While the service is processing the request, the client (caller
service) is in a blocked state waiting to get the desired re-
sponse. During this time the client cannot accept or process
any other task. Only when the server (processing service)
gives back the response and the client receives it, can it
move on to another task. This results in a poor utilisation
of resources.

On the contrary in EDAs, this case is handled using state-
driven asynchronous communication. The client in the EDA
is the producer that produces and sends an event notifica-
tion. Once the message has been sent, the job of the pro-
ducer is done. It can now move on to work on other pending
or new tasks. The server, which acts as a consumer, during
this time will consume the task from the event notification
delivery system and start processing it. Once the consumer
is done processing the task, it now has two options. First,
if the client needs to get notified of the process termination
status then the consumer will now become a producer and
push a message for the client informing about the status of
the task, whether it was completed, if there were any errors,
or similar. Second, if the producer does not need to know
the status of the task then the consumer will move on to
another task. This way both the client and the server do
not have to wait on each other while any process is being
executed and can work in parallel [15].

Making proper use of this asynchronous delivery of mes-
sages to more efficiently use the available resources is a sig-
nificant advantage for EDAs.

A problem when it comes to resource utilisation can occur
if there is an event that happens very frequently, to the point
of becoming almost a continuous change in the environment.
For example, a sensor can measure the temperature at a rate
of perhaps ten times per second. Because the temperature
always changes slightly, each of these measurements can be
considered an event, for which an event notification would

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

be produced. Depending on the application and available
resources, this high frequency of very similar events may
be unnecessary and possibly too straining on the system,
causing higher latency or perhaps even an overload of the
system. A way of reducing this would be a feature of the
producer to set a minimum sampling rate [3]. So if the
producer notices an event, like a change in temperature,
but a very similar event has been processed and sent as a
notification less than a set time ago, it will not produce
another notification, conserving resources.

The resource utilisation is also impacted by the way state
management is handled in EDAs. Redundant storage of
the same data distributed across different modules has a
negative impact on resource utilisation as it requires more
resources to store the same data.

For RabbitM@), resource utilisation can be reduced by
turning off various features like e.g. persistent messages and
durable queues (at the cost of recoverability), or consumer
acknowledgements and publisher confirms (at the cost of
completeness), or mirrored queues (at the cost of fault tol-
erance), among others. One can also reduce the number of
RabbitMQ nodes in the system (at the cost of reliability,
timeliness, or both) [11].

Due to Kafka’s high scalability, as explained in Section
274 resource utilisation can be handled very well. De-
pending on the requirements, multiple consumer or producer
nodes can be configured to spin up or down. The loose
coupling of modules allows us to use resources efficiently as
needed. Resources can also be more efficiently utilised by
taking traffic in account, i.e. adding or removing resources
to or from the cluster based on events and data traffic. Con-
figuring replication and partitioning levels also assists in ef-
ficient resource utilisation [2].

3.2.3 Capacity

Capacity refers to the limits of a system in terms of how
much activity it can handle |9]. It is determined by how
resource efficient the system is and how many resources are
available.

In event-driven architectures, capacity can be thought of
as the number of events, producers, consumers, subscrip-
tions, unsubscriptions, as well as event notification sizes that
the system can handle at a time. Is the designed architecture
powerful enough to accommodate all of these factors simul-
taneously? Is the event notification delivery system robust
enough to handle the required number of events? These
questions will help answer whether the capacity of the de-
signed system based on event-driven architecture actually
meets the requirements or not. It is therefore very important
to keep capacity in mind while designing an event-driven
system otherwise the advantages of EDA can turn out to be
disadvantages. Event queue overflowing can be taken as an
example in case more than the acceptable number of events
are fired at the same time.

If capacity is reached, it may mean catastrophic failure,
temporary outages or slower service, depending on how fault
tolerant the system is, as discussed in Section [3.1.3]

RabbitMQ increases its capacity in memory-constrained
scenarios per default by using the persistence layer [11],
which is employed for making messages more recoverable
in case of failure by writing them to disk, as discussed in
Section on persistence. This layer can also be asked to

write non-persistent (so-called transient) messages to disk,
in order to save memory. This of course comes at the cost of
latency and throughput, as writing to and reading from disk
is much slower compared to performing the same operations
to and from memory. It also causes more I/O operations.
As a consequence, this feature only activates at times when
the memory is not large enough to hold all the messages.

The concept of lazy queues in RabbitMQ is another way
of improving the capacity of the system in the following spe-
cific scenario |11]: They are to be used in the event of large
amounts of messages accumulating in the queues, due to
downtime of consumers, a sudden increase in messages, or
slow consumers. They can accommodate these queue sizes
by writing the messages to persistent storage as soon as pos-
sible instead of waiting for the memory to become full. The
increase in I/O operations and the inherent slowdown caused
by this are not as important in the intended use-case, as
message consumption is comparatively slow anyways. But
queues are not configured as lazy per default for these per-
formance reasons.

In Kafka, there are multiple ways to handle capacity de-
pending on the needs. If capacity is taken in the sense of how
much or for how long logs and data can be held by a Kafka
cluster, then this can be catered to by configuring the topic’s
retention period, log compaction and compression strategy,
and also the replication factor. If the concern is how much
data the Kafka cluster can handle, then configuring AWS
instance types or the number of nodes can solve this issue
12].

3.2.4 Scalability

Scalability is a major reason why event-driven architec-
tures are chosen in the first place. When the application
demands the ability to add or remove resources and partic-
ipants dynamically, as is often the case in distributed sys-
tems, scalability is the attribute to look for in a software
pattern.

This inherent advantage of EDAs stems mostly from the
fact that the participants of the system, the producers and
consumers, are only loosely coupled. This independence of
components means that adding additional producers and
consumers is comparatively simple, with little impact on the
rest of the system [15].

One of the predominant factors that determine the scala-
bility of an EDA is whether the system uses a point-to-point
or publish/subscribe model for messaging. Because the pub-
lish/subscribe model decouples the participants heavily, us-
ing it improves scalability considerably. But point-to-point
models enable stricter enforcement of latency constraints
within the system, due to its more straight-forward pass-
ing of messages from one producer to exactly one consumer.
This means that there is a trade-off between scalability and
the ability to fulfil latency constraints |3].

This trade-off is apparent when considering the quorum
queues in RabbitMQ: Because of the strict replication of the
queues’ contents when this mode is activated, as described in
Section [3.1.3] scalability is inhibited in order to increase re-
liability. As this setting is applied on a per-queue basis, one
can use a small number of highly reliable quorum queues
for messages where reliability is key, but resort to normal
queues everywhere else so as not to limit the resource con-
sumption and scalability of the system too much [11]. The
appropriate balance is of course determined by the needs of

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

the specific application.

Scalability is also an inherent feature of RabbitMQ’s im-
plementation due to Erlang’s actor model for concurrent
computation [5].

Kafka can handle scalability in all the four dimensions,
i.e. event producers, event processors, event consumers, and
event connectors. In other words, Kafka scales easily with-
out downtime. Scalability of data consumption can be taken
as an example. Adding new consumers helps in parallelis-
ing the data processing. Also by default, the distributed
placement of records over different partitions within a topic
enhances scalability as well as allowing multiple client ap-
plications, both consumers and producers, to read and write
data from multiple brokers simultaneously [2].

3.3 Security

Security is a highly important aspect of any software sys-
tem. A traditional monolithic system is a solid and stable
element of infrastructure. A small change or error or a ma-
licious attack on the system can crash the whole system in
one strike. Despite having this huge disadvantage, the errors
or the cause of the crash are easily traceable.

On the contrary in EDAs, where everything is divided into
independent blocks and modules, a security fault in one of
the components will mainly affect that component. But the
error traceability is somewhat of a challenge. Since EDAs
revolve mainly around network communication, applying as-
pects of network security can give us a solid foundation for
providing security for the whole system [11].

3.3.1 Confidentiality

Confidentiality is the property of a system to protect its
data and services from unauthorised access. Data shall only
be accessible to those authorised [9].

In the EDA world, this means that all the data, services,
and components should only be accessible by legitimate au-
thorised modules. Every producer has to go through an au-
thorisation step before being able to read any data like event
categories from the system. Similarly and perhaps more im-
portantly, the consumer also has to be authorised to be able
to consume an event from the notification delivery system
to ensure confidentiality.

Improvements to confidentiality can be made by intro-
ducing some form of encryption, which may come at the
cost of efficiency, as more resources are needed for encrypt-
ing and decrypting the information. In a proper end-to-end
encrypted scenario, even if the transmitted messages are in-
tercepted, the unauthorised entity would not be able to tell
the content of the message.

Confidentiality is a very important quality attribute in
the current data-centric world, as the handled data may be
private, or otherwise critical in nature, and should only be
seen by explicitly authorised participants.

Encryption of data via the TLS encryption scheme can be
turned on in RabbitMQ to ensure confidentiality [11].

RabbitMQ also employs a permission system as standard
that authorises what actions a client is allowed or not al-
lowed to perform. Firstly, the resources of a system are sep-
arated into logical groups, so-called virtual hosts. In order
to perform any action, a client needs permission to access
the virtual host it intends to act within. Secondly, the client
needs to be permitted to perform the particular action. Rab-

bitMQ differentiates between three different types of actions:
Configure operations add, remove, or alter resources within
the virtual host. Write operations send messages, and read
operations fetch them. The client needs to be allowed to per-
form the particular type of action on the particular virtual
host in order for the action to be executed. This authorisa-
tion scheme is able to be exchanged using plugins to fit the
particular need of the application [11].

Kafka communicates data in plaintext, i.e. in a highly
vulnerable way. This means that confidentiality is not han-
dled well by Kafka by default but it can be improved by
implementing certain protocols. A way to achieve confiden-
tiality would be to implement SSL authentication, as de-
scribed in Section [3.3.4l If communication is done over both
SSL encryption and authentication, then only the desired
components or client applications, having the private key to
decrypt the data, will be able to access the data [2].

3.3.2 Integrity

Integrity is the property of a system to assure the intended
delivery of data or services [9]. Data corruption can occur
on many different levels in an event-driven architecture. It
can happen while processing an event, during transmission
of the event notification, or during consumption.

The EDA should accommodate measures to provide end-
to-end data integrity and lack of errors, as wrong data can
have strong negative impacts in critical applications.

A widespread and easy to implement measure to reduce
the error in the transmission phase is to use communication
protocols that check the integrity of the data, like TCP [13].
This usually also has the benefit of increasing the reliability
of the data transmission, as discussed in Section |3.1

For the period of event processing that is unrelated to
the pure transmission, more sophisticated measures against
unauthorised access and unwanted data modification need
to be taken, like proper authorisation of participants, and
thorough testing of the event processing procedures.

In RabbitMQ, the use of TCP communication ensures
that the integrity of messages is preserved on the network
layer |11]. Proper authentication and authorisation tech-
niques, as discussed in Section and can be em-
ployed to prevent the alteration of messages, whether they
happen by accident or with malicious intent. Same goes for
Kafka [2].

3.3.3 Accountability

Accountability means how well the actions of some entity
can be traced back uniquely to that entity [9].

In the EDA world, accountability becomes very useful if
there is a system error and you need to trace the module,
be it a producer or a consumer, where the error has actually
taken place.

Another use-case could be a system that contains a num-
ber of sensors as producers. A faulty sensor might start
sending faulty events and therefore corrupting the message
transmission handler. An accountable system would help
with finding out the culprit so that the time to find the
faulty producers out of the total number of active producers
is reduced. This is especially important in very large-scale
event-driven systems.

However, due to the strongly decoupled nature of most
event-driven architectures, the participants are inherently

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

anonymised. This may pose challenges with providing ac-
countability in such a system, as the ability to identify other
participants would mean stronger coupling, and thus weaker
scalability.

RabbitMQ offers the so-called firehose tracer, which adds
an exchange where all publishing and delivery notifications
are also delivered to, next to their normal intended destina-
tion. This feature is not turned on by default, as it obviously
comes at the cost of some performance and is mostly in-
tended for debugging and development purposes. However,
it does increase the accountability of the system consider-
ably. Without this feature, the inherent decoupling of the
system makes retracing messages a somewhat tedious affair
of going through logged data [11].

Kafka, as mentioned above, provides distributed changel-
ogs/commit logs that store all state changes and event or
data related logs. This use of distributed changelogs helps
increase accountability as every single change is stored in
these changelogs which can be traced back when required
12].

3.3.4 Authenticity

Authenticity means that the identity of a subject or re-
source can be verified to be the one claimed [9].

An EDA designed with authenticity in mind makes sure
that the events and messages consumed by the consumers
were produced from trusted, verified, and authentic produc-
ers. This is important to ensure that there is no information
coming from malicious entities and that the system has not
been compromised.

But as with accountability, authenticity also suffers from
the anonymisation caused by strong decoupling, and thus
catering to authenticity can mean sacrificing scalability.

RabbitMQ offers secure authentication without stronger
coupling of participants by requiring either username and
password for a client to connect to the system, or a X.509
certificate. For properly verifying the password credentials,
RabbitMQ enables the use of different authentication back-
ends, which can be provided by plugins. An example would
be the LDAP (Lightweight Directory Access Protocol) plu-
gin, which comes pre-installed with RabbitMQ and offers
both authentication and authorisation services using an ex-
ternal LDAP server [11].

By default, Kafka does not provide authentication. How-
ever, there is SSL (Secure Sockets Layer) authentication and
encryption available for Kafka systems. Only adding SSL
encryption makes it a 1-way authentication where the client
application authenticates the server. To make it a 2-way
authentication, SSL authentication also needs to be imple-
mented which will make the broker authenticate the client
as well. But there are systems other than SSL that can be
used for authentication in Kafka [2].

4. CONCLUSION

Event-driven software is a popular choice for many mod-
ern applications in need of the ability to react quickly and
asynchronously to changes in their dynamic environment,
while being highly scalable. In this paper we presented
a quality model for messaging systems employed in event-
driven architectures, consisting of the main attributes of ef-
ficiency, reliability, and security, each with their own, more
specific subattributes. We have also demonstrated where

the attributes contradict each other, meaning that there is a
trade-off between characteristics and a balance needs to be
found depending on the application. The quality of software
based on an event-driven architecture can be improved con-
siderably when this model, its quality attributes, and the
relationship between them are taken into consideration.

Future work that could build on this quality model would
be the addition of quality metrics for the existing attributes,
as well as internal quality attributes like the maintainability
and portability of a messaging system.

Another avenue for further research are software patterns
that are closely related to event-driven architectures, like for
example complex event processing (CEP). Here the empha-
sis could lie on how to improve messaging systems for this
particular type of architecture, with more directly applicable
measures for improving the quality of the software.

5. REFERENCES

[1] S. Appel, K. Sachs, and A. Buchmann. Quality of
service in event-based systems. In Proceedings of the
22. GI-Workshop on Foundations of Databases, GuD,
2010.

[2] Confluent, Inc. Confluent.io Apache Kafka
Documentation, 2021.

[3] A. Corsaro et al. Quality of service in
publish/subscribe middleware. Global Data
Management, 19(20):1-22, 2006.

[4] S. Dixit and M. Madhu. Distributing messages using
Rabbitmq with advanced message exchanges.
International Journal of Research Studies in
Computer Science and Engineering (IJRSCSE), 6 (2),
pages 24-28, 2019.

[5] P. Dobbelaere and K. S. Esmaili. Kafka versus
rabbitmq: A comparative study of two industry
reference publish/subscribe implementations: Industry
paper. In Proceedings of the 11th ACM international
conference on distributed and event-based systems,
pages 227-238, 2017.

[6] F. D. T. e Silva. Kafka: Ordering guarantees, Feb
2018.

[7] G. Fu, Y. Zhang, and G. Yu. A fair comparison of
message queuing systems. I[EEFE Access, 2020.

[8] V. M. Ionescu. The analysis of the performance of
rabbitmq and activemq. In 2015 14th RoEduNet
International Conference-Networking in Education
and Research (RoEduNet NER), pages 132-137. IEEE,
2015.

[9] ISO/IEC 25010. ISO/IEC 25010:2011, systems and
software engineering — systems and software quality
requirements and evaluation (square) — system and
software quality models, 2011.

[10] B. Koldehofe. Principles of building scalable and
robust event-based systems. 2019.

[11] Pivotal Software. RabbitM(Q Documentation, 2021.

[12] J. Postel et al. User datagram protocol. 1980.

[13] J. Postel et al. Transmission control protocol. 1981.

[14] K. Sachs. Performance modeling and benchmarking of
event-based systems. Sierke, 2011.

[15] K. Sachs, S. Kounev, and A. Buchmann. Performance
modeling and analysis of message-oriented
event-driven systems. Software € Systems Modeling,
12(4):705-729, 2013.

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Software Testing Pyramid: How Architecture Influences
The Shape

Sahner Pascal René
RWTH Aachen University

Pascal.Sahner@rwth-aachen.de

ABSTRACT

Testing has been and will continue to be an important fac-
tor in the development of modern software. Many different
strategies have been developed and hierarchically catego-
rized. The test pyramid by Mike Cohn was one of the first
approaches to quantify the amount of tests on each hier-
archical level. Nevertheless, it is still debated whether the
shape of a pyramid is the most suitable in general. In this
paper we will introduce and explain several new test shapes
and analyze them in dependence of the underlying software
architecture.

Keywords

Software Testing, Test Shapes, Test Pyramid, Microservices

1. INTRODUCTION

As the demand for quality of software and speed of devel-
opment rise, the need of reliable software testing strategies
and efficient test development workflows does as well. With
an increasing modularity of software, testing does also have
to be diversified. The earliest commonly known approach
to do so is the software testing pyramid by Mike Cohn [4].
From bottom to top it is divided into three levels: Unit,
Service and UI. The width of each level represents the sug-
gested amount of test, whereat the position determines the
cost and effort for each test. Higher position imply increased
cost and effort.

But soon a discussion arose: Some argue about the gener-
ality of the pyramid and some about its shape. One could
even argue to add a third dimension as goals like speed of
development, security, dependability and reliability have not
been considered at all. It became clear, that the last word
has not been spoken and some more refinement is needed to
confront problems in different software architectures, envi-
ronments and development processes.

In this paper we will explain the most common testing strate-
gies and discuss several different shapes of the testing pyra-
mid mainly in dependence of the chosen architecture. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWC Seminar 2021 RWTH Aachen University, Germany.

Kazantzi Maria
RWTH Aachen University
Maria.Kazantzi@rwth-aachen.de

will also scratch some possibilities to alter or refine the pyra-
mid according to the corresponding conditions. As microser-
vice architecture is increasingly used and very common to-
day, we prioritize it in terms of depth of analysis.

2. THE IMPORTANCE OF AUTOMATION
IN SOFTWARE TESTING

Traditionally, software was tested manually. For this pur-
pose, it was deployed to a test environment and tested there
by hand, e.g. by operating an interface. Usually, one pro-
ceeded along a document that gave instructions on how to
perform the tests to ensure consistency. It should quickly be-
come obvious that this way of testing is very time-consuming
and error-prone: The one major source of error is that only
black box tests are performed. White box tests can not be
performed because it is not possible for the manual tester
to analyze the control flow of the program. He can only
operate on given interfaces. The other is of a social nature,
because the monotony of such a test procedure causes the
concentration of the testers to drop. This is the point at
which automation becomes important. On the one hand, a
wider range of test strategies becomes practicable - includ-
ing white box tests in particular - and on the other hand, the
susceptibility to errors is reduced. In addition, the developer
receives feedback more quickly.

3. SOFTWARE TEST SHAPES

Before we can talk about the different layers of the testing
pyramid more in depth, we first need to clarify the most
basic terminology and ideas of it. As the terminology differs
from paper to paper, we will give definitions for each one of
the layers, but also like to point out, that there are correct
interpretations aside from the ones given here. As depicted
above, the pyramid is subdivided into three layers. They are
briefly introduced and then explained, following the pyramid
from bottom to top.

Unit Tests

Tests on the unit testing layer aim — as the name indicates
— to test single units of software. [5] A unit can hereby be
seen as the smallest part of software that represents a sin-
gle most granular functionality. In the object oriented case
these are usually methods and sometimes classes. Unit tests
are meant to only test the single unit they correspond to.
As the correctness of the underlying unit is mainly deter-
mined by its input and output behavior, these tests can be
automated with little effort using testing frameworks. Pre-

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

defined input sets are therefore run against the interface of
the unit and the output is compared to a predefined output.

Integration Tests

On the layer of integration, the tests are meant to test the
integration between the application and its environment. At
the point of integration testing it is valid to assume, that ev-
erything already tested with a unit test works as expected.
Those integration points can be file accesses, database ac-
cesses, network messages and API calls to just name a few.
In these cases automation is state of the art as well, but due
to their nature, their execution times tend to be longer than
unit tests. Ham Vocke, an experienced software developer
and consultant at Thoughtworks in Germany wrote in his
blog: “They test the integration of your application with all
the parts that live outside of your application”[17]. Inte-
gration tests are also referred to as “service tests” in other
works, but we stick to the term integration test to draw a
clear line to architectural components that are called service
as well.

Ul Tests

The topmost layer of the pyramid is called Ul layer. The
goal of UI tests is to test the user interface of the entire
application. This must not be graphical ones. A command
line interface is a user interface as well. Furthermore net-
work based interfaces, such as REST APIs also count as user
interfaces. As these tests cannot be automated in every case,
testing can be slow and therefore cost-intensive. One exam-
ple for such an unautomatable test scenario is the check if
a graphical web interface looks “good” in all use cases. As
it is even hard to formalize what a good look is, it is even
harder to automatically check if the layout is broken from a
graphical point of view.

3.1 Shape: Pyramid

Figure 1: A pyramid shaped hierarchy

Without any information about the system that needs to
be tested, the most obvious approach is to have a large set of
unit tests as they can be implemented even during develop-
ment, give fast feedback and ensure the most basic features
to run as expected right from the beginning. Then use a
smaller set of integration tests as the number of integration

points is usually significantly smaller than the number of
units. And lastly a minimal set of UT tests to reduce costs
caused by manual testing. This results in the pyramid shape
introduced by Mike Cohn [4] 1.

3.2 Shape: Hourglass

Figure 2: An hourglass shaped hierarchy

The hourglass describes testing scenarios with numerous
unit tests, just a few or even no integration tests and a large
number of UI tests. This kind of shape usually occurs when
the application does not have many integration points. In
those cases it is important to pay much attention to the
large UI testing layer as this can potentially become cost-
intensive.

3.3 Shape: Pencil

Figure 3: A pencil shaped hierarchy

The pencil shape is used to refer to scenarios where the
amount of unit and integration tests is nearly balanced and
the number of UI tests is minimized. Systems with a strongly
subdivided structure can fall into this schema as the inte-
grative part becomes larger and thus requires more tests. It
is also possible that the amount of unit tests is decreased, as

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

some functionality is represented by the integration of mul-
tiple modules. This shape was introduced by Simon Brown
[2] but not named.

3.4 Shape: Diamond

Figure 4: A diamond shaped hierarchy

The diamond shape is used to describe scenarios where
only the integration layer plays a greater role in testing.
Unit and UI tests are mostly avoided. Projects composed
of many stable subsystems may fall under this category. As
the single working subsystems do not need to be tested, the
unit test part is not needed. The integration of the working
modules has to be tested then and the number of UT tests is
kept low as they are usually the most expensive ones. This
shape was mentioned in a blog written by Mateusz Roth
[16].

3.5 Shape: Ice Cream Cone

Figure 5: An ice cream cone shaped hierarchy

The ice cream cone shape is often referred to as an anti-
pattern, but it is not necessarily one. It uses a minimal
amount of unit tests, just some integration tests and mainly
focuses on UI tests. This has the potential to become costly

and inefficient as it relies mainly on UI tests. In addition,
if a test on the UI layer detects an error on the unit layer
it might be hard to find the cause. This shape can also be
found in Mateusz Roths blogpost [16].

4. COMMON TESTING STRATEGIES
4.1 Unit Layer

On the unit test level there are three strategies commonly
in use.

4.1.1 Black Box Testing

Firstly, testing software in black box fashion is a tech-
nique, where the code or internal logic is not known or not
of interest. Due to the limitations of not knowing the inter-
nal structure, the defined test sets can only be created by
the specification and requirements regarding the unit.

Some commonly used techniques in black box testing are
the boundary value analysis (BVA) and the equivalence par-
titioning testing (ECP). In BVA the tester focuses on inputs
which are the boundaries of possible values or edge cases in
computation. Using the ECP testing technique, one parti-
tions the input set in consideration of the input and output
values. This reduces the overall number of input values as
one for each class is sufficient. This has the advantage of
reducing the needed test cases and therefore speeding the
testing up. Comparing these two techniques, they have a
lot of parallels as they both try to reduce the amount of
tests needed. The inputs of the BVA can be seen as classes
in the ECP. The classes of the ECP can be seen as boundary
values in turn as they each contain only a single representa-
tive. The BVA should be used when a special focus is set on
detecting errors in special cases. The ECP should therefore
be used when the input is easily classifiable [10].

4.1.2 White Box Testing

The second common strategy of unit test is white box
testing. In comparison to black box testing, the inner struc-
ture of the unit or its source code is known. This makes
it possible to analyze the control flow during the execution
of tests. Branches that are strongly dependent on the im-
plementation and not the specification, would possibly not
be considered in black box testing. It is widely practiced
to measure the quality of white box tests by checking their
line coverage. When trying to improve the tests quality, it
is important to ensure that at least every non trivial line is
tested.

The control flow testing is used to determine the execu-
tion order of instructions. This is usually done by modelling
branches, loops and instructions as a directed graph and
checking whether the order of visited vertecies is correct.
The term path coverage is used to describe how many paths
beginning in the start vertex and ending in the end vertex
are tested. As this can be infinitly many in case of the ex-
istance of a cycle, only the most important ones should be
considered. Another known technique in white box testing
is the basis path testing. Here the test cases are based on
logical paths or flows that can be taken through the pro-
gram. [t makes sure that each path of the code is taken in a
predetemined order. The tester executes all possible blocks
in a program with the aim to achieve maximum path cover-
age with the minimum number of test cases. This technique

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

helps to have test cases which execute every statement in
the program at least once.

In addition, using white box tests, the intermediate values
of computations can be accessed. This is useful to analyze in
more detail. White box testing is in general slower as more
tests are required to take advantage of the knowledge of the
unit. This also means, writing these tests takes more time.

4.1.3 Gray Box Testing

In order to overcome this problem, there is a mixture of
the two called gray box testing. In this test the internal
structure is at least partially known. The tester has enough
access to the algorithms and structures to be able to design
the test cases, but the testing itself is on black box level.
The big advandtage is that, even knowing the structure, the
design process of tests is speed up as the granularity of test
cases is reduced in comparison to white box tests. But as
the structure is known the input sets are designed to fit the
unit and cover its most important parts.

One example for a strategy using gray box testing is the
regression testing. Here the tester makes a functional im-
provement or fixes an error in the program. The aim of
this test is to determine whether that change has influenced
other parts of the program, by running new test cases. This
technique is used to confirm that the product is improving
in terms of quality and not relocating the faults by causing
new ones [1].

Comparing these three strategies, it is observed that black
box testing does not consume as much time during develop-
ment as gray and white box testing. This is because the
structure of the underlying unit is not considered and com-
plexity is left out. When putting a little more resources into
testing, gray box testing is suitable. It makes use of the
knowledge of the structure of the unit, but is not as detailed
as white box testing. As white box testing can be exhaus-
tive and time consuming, it is used for important parts of
the system as it more likely to detect bugs and errors [1].

4.2 Integration Layer

The best known testing techniques on integration level
are the top down integration and its opposite technique,
bottom-up. The top down technique is used to test all the
modules from top to bottom. Firstly, the higher levels are
integrated by moving downward through the structure, be-
ginning with the main module. Then the next modules are
integrated to the main module and are incorporated into the
structure in either a breadth-first or a depth-first manner.
This process has to be repeated automatically in order to
test all the modules together as a unit. One disadvantage of
this methode, is that the modules at a lower lever will not be
tested enough. The bottom-up integration has the reversed
way of working from the top-bottom technique. Unlike top
down Integration, the modules that must have a priority are
tested in the end.

4.3 UI Layer

Recovery, security and compatibility testing are some tech-
niques that are being used in the system testing level. Dur-
ing recovery testing, the tester tries to fail the software with
an eye on verification of the recovery of software. It is im-
portant to see, whether the software is able to work properly

after such an error. Secondly, the security testing is a tech-
nique to find all system problems in an application. The
tester behaves like a user who is going to use the system.
That means he will try to overwhelm the system, proba-
bly cause a lot of system errors and browse into insecure
data. In that way the security of the system will be tested.
Advantage of this technique is that it is fast and accurate.
However, it is not possible for the tester to cover all the
security vulnerabilities and cases. The last technique, com-
patibility testing is focused to evaluate the compatibility
of the system with the computing environment. Herewith
the software will be installed on different operating hard-
ware systems and networks. This technique and the recovery
strategy are time consuming and slow.

S. RELATED WORK

There are many blogs analyzing the test pyramid regard-
ing microservices, but the focus is rarely laid on the shape.
[3] argues for a diamond shape. In his figure, the layers are
exactly upside down in relation to their usual order. But
considering the symmetric properties of a diamond shape,
this does not play any role. [13] also argues for a diamond
shape. He additionally introduces a new layer below the unit
testing layer: The static layer. It is meant for tests using
static elements of a language. The type check in javascript is
given as an example. [16] also addresses problems regarding
the shape. He argues for a trophy shape when considering
static tests and a diamond shape otherwise.

6. SHAPE ANALYSIS

Now as we clarified terms and gave cummon knowledge
of testing with the pyramid, it is possible to start with the
architecture dependant analysis.

6.1 Monolithic Architecture

Monolithic architecture is also called multi-tier architec-

ture due to its internal structure. It usually consists of into
three layers: The presentation layer, the application layer
and the data layer.
At first, the presentation layer is the view of the system
from a users point of view. This is also called the user inter-
face. The presentation layer communicates with the other
two by using internal API calls. Next, the application layer
handles HTTP requests from the interface. The Data layer
uses to manage all queries comming from the application
layer and coordinates data accesses. [11]. Characteristic for
monolithic systems is, that it includes multiple services in a
single program from a single platform. This causes the code
for each unit to be deployed at the same time. Those dif-
ferent services communicate with each other using external
systems or consumers from different interfaces. The appli-
cation runs independent from other computing applications
and if a developer intends to update parts of it, he can make
changes to the whole stack at once.

6.1.1 Advantages

This architecture in general has several advantages:

1. The Monolithic architecture contains all of its modules
in a single deployable unit.

2. It is simple to test owing to the fact that the tester is

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Presentation Layer

Application Layer

Data Layer

Figure 6: The structure of a monolith architecture.[12]

able to easily create end-to-end test case by running
the application manually.

3. It is easy to deploy, because it is a single unit.

4. At the beginning of a project it is easier to develop
within a monolithic architecture, since it is small and
manageable.

5. It is easier for developers who did not participate in
the development right from the start to understand
how the application works, because it has only one
code base.

6.1.2 Disadvantages

On the other hand when a product grows in size, the
monolithic architecture is not the most efficient structure
for it.:

1. The structure grows more and more complex.
2. The level of complexity rises as a result.

3. It becomes harder to manage and test the different
modules, because they have to be tested at once.

4. Cooperation between different teams requires more ef-
fort as they develop in the same environment and have
to pay attention not to do any contradicting changes.

5. When the application is already developed, the team
can not easily change the framework and the language
that was used. Even if they only look at a single mod-
ule.

6. The need to change a library for a certain module
might destroy the functionality of another module.

7. In this way the development slows down.

8. Load balancing and scaling is almost impossible at a
certain size.

9. Malfunction of single modules cause the entire system
to fail.

10. Even for minor changes the whole system has to be
deployed again.

Web Interface

Catalog Module

> Database

Browser I

Ordering Module
Payment Module

Shipping Module

Figure 7: Example of a monolithic architecture.

6.1.3 An Example

Consider the example given in figure 7 of a monolithic
application. This application contains a web interface, a
catalog, ordering, payment and shipping module. All these
modules should use the same file system. They are deployed
as one unit. When testing this application, the focus should
lay on the business logic and communication between mod-
ules. On the unit layer one would use white box and black
box tests to test modules. In this example that would be the
catalog, ordering, payment and shipping module. Integra-
tion testing is then used to check the interfaces between the
modules. With special respect to the payment module as its
functionality is of great importance. Moreover, regression
tests can be applied to verify that changes in the code will
not effect the functionality of the system. Apart from the
functionality, the security of the application has to be tested
as well. This can be achieved by using end to end tests. End
to end testing involves testing an applications flow from be-
ginning to end. Testing tools help to provide flexibility and
to use test cases that have been used before, due to changed
specifications. Furthermore it makes it possible to have re-
sults and status at the time of the test. Testing the web
interface would fall under unit testing.

6.1.4 Shape Analysis

Literature research did not yield any results setting the
pyramid into relation to testing practices regarding mono-
lithic applications. Especially no emperical data was found.
The research was finished June 13, 2021. So in the following
we will just argue about the shape.

If there is a lot of business logic, the number of unit tests
is probable to be large. And this is usually the case as sin-
gle modules are large, because they have to cover a lot of
functionalities. In relation, the amount of integration tests
should not be larger as monolithic applications usually do
not have many integration points. As it is shown in figure 5
and figure 4 the number of unit tests is smaller in comparison
to the number of integration tests, which is not the most ad-
vantageous approach in the case of monolithic architecture.
Therefore the ice cream cone shape 5 and the diamond shape
4 can be excluded. When the application has to communi-
cate a lot with external systems or is strongly subdevided
into modules, the integration layer can grow in size. This
would make a pencil shape 3 possible. Furthermore, limit-
ing the amount of UI tests is rewarding as they are the most
expensive and have long runingtimes. This is caused by the

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

fact that every request has to go through all layers. Taken
into account all this information, a pyramid shape seems to
be the most suitable. A pencil shape is rather unlikely, but
possible. The last case we look at is a large application only
consisting of a handfull modules. In this case the complex-
ity is moved from the integration to the UI layer. The unit
layer is excluded in this shift as those tests should not test
communication between units by definition. An hourglass 2
is then the result.

All in all, a pyramid shape is the most likely, the pencil
shape and the hourglass shape are possible.

6.2 Service Oriented Architecture

The original idea for service oriented architecture comes
directly from the scalability and maintainability problems
of large monoliths. The aim of service oriented architec-
ture is to break down monoliths into smaller services. Even
though these services mostly share one data source, they
are much less coupled in contrast to the monolith. Never-
theless, they communicate together via a single enterprise
service bus. If one service causes problems with the bus,

SOA
I | I |
Application Service Service repositol Service bus
frontend P v
[I |
Contract Implementation Interface
Business logic Data

Figure 8: The structure of soa architecture. Source: [6]

this can affect others. In contrast, integration points to
other applications and services can be implemented much
easier. If we now compare the service-oriented architecture
with microservice architecture, the services are much more
extensive and stronger coupled. Figure 8 gives an overview
over the structure of a service oriented application.

It should be noted that this architecture has been in use for a
long time: It was used to a greater extent from around 2000,
but was largely superseded by the microservice architecture
since around 2010. The test pyramid was first mentioned in
2009. Therefore, the work used here has no references to the
test pyramid. Let us now make an initial assumption:

We first take a look at the individual service: By design,
this should be only a part of the overall system, but in it-
self it can also grow to the size of a monolith [12]. For this
we have already established the pyramid 1 and the pencil
3 shape as the most likely forms in the previous section.
We now take this as the basis for the set of individual ser-
vices. Since the user interface should be independent of the
underlying architecture, we also assume that the number
of Ul tests in the service oriented architecture is equal to
that of the monolith. However, we now add the enterprise
service bus and the service repository as integration points.

This increases the integration level of the shapes to a dia-
mond shape 4. Since we did not find any empirically proven
studies, statements and assertions are quoted in the follow-
ing and logically linked in order to argue about different
shapes. The Paper [15] points out that unit testing behaves
in the case of the service oriented architecture the same, as
with usual software components. Therefore a proportional
connection between the quantity of business logic and the
number of unit tests can be concluded directly. If an appli-
cation has thus much business logic, then also the need for
unit tests turns out to be high. Furthermore, the services
can be tested as whole as black boxes. Test cases can even be
generated directly from the specification of the service [15].
On the integration level, the behavior of the services among
each other is tested. Tests regarding application external
sources can also be added. In particular, these sources must
be tested to determine whether their behavior has changed
and whether they still react as expected.

On the integration layer, the non-availability of services does
also play a role[15]. The overall picture now shows that the
number of integration points is decisive for the number of
integration tests. This in turn depends on the number of
services on the one hand and on the number of external in-
terfaces and dependencies on the other. A large number of
services and many external interfaces therefore increase the
number of integration tests required.

In 2007 there was no solution for automated UI testing
for service oriented applications[15]. Monitoring the run-
ning system is mentioned as a solution. By now, these
frameworks exist. As an example SoapUl is given https:
//www.soapui.org/. Nevertheless, since these tests are par-
ticularly cost-intensive and require a running instance of the
entire system, they should be used less frequently in relation
to the other test types. All in all, the resulting shapes can be
roughly narrowed down: The ice cream cone shape falls out
of the grid, since the number of integration tests alone should
be greater than that of the UI tests. The same applies to
the hourglass shape. The scope of the business logic and the
degree of subdivision, i.e., the number of services, remain as
variables. If a system consists of only a few services, whose
nature is more like that of a monolith, a pyramid shape is
created. Provided, of course that the main task of this sys-
tem is not communication, i.e. integration with external
components. Then the distribution of the tests would look
more like a pencil shape. This is also the case if the scope of
the business logic remains the same, but the subdivision into
services is more granular. The integration points created in
this way then have a direct effect in the form of an increase
in the size of the integration level. In case the amount of
business logic is small, a weak subdivision into services re-
sults in a pencil shape again. If the degree of subdivision is
large, however, a diamond shape 4 can also result.

6.3 Microservice Architecture

Modern, web-based applications are increasingly being de-
veloped and deployed in the microservice architecture style.
In this style, the individual functionalities of the overall sys-
tem are divided into microservices that are as independent
as possible. The microservice architecture can be seen as an
implementation of the software oriented architecture. The
particular difference is that a special focus is set on design-
ing the services as minimally as possible. In addition, in-
dependance and loose coupling of the services are desired

Copyright © 2021 for this paper by its authors

https://www.soapui.org/
https://www.soapui.org/

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

properties. Microservices can therefore be regarded as a
separate architecture [9]. Graphic 9 shows the structure of

Monolithic Architecture Microservice Architecture

Ajuua ajqefojdap ajSuis

—
User Interface
Microse
bR Microservice

z
E=]
<
]
2 l
5
©
B —
Fol Data Interface Microservice [| Microservice:
5
2
g LR
]

T.l' — —
- *Independent entities with
cross communication through API's or Message Queuing

W continuousautemation.com

Figure 9: The structure of a microservice compared to a
monolith.[12]

such a system. Advantages of this architecture are seen in
particular in the fact that the modularity increases and in-
dividual components can be changed independently of one
another or even exchanged, provided that the interfaces do
not change. In general, the goal is to have to make only mi-
nor changes to the overall system in case of minor changes to
requirements, technology or the overall scope of functions.
Loose coupling is particularly advantageous in the develop-
ment process: Each service can be assigned to a development
team. This allows the teams to develop more independently
of each other. Even in different programming languages and
using different technologies. Companies in particular see this
as a way to cut costs and work more efficiently, since unnec-
essary delays between teams are reduced to a minimum. In
addition, these systems are easier to scale than monoliths:
services can be developed individually so that they can be in-
stantiated multiple times. On the other hand disadvantages
include network latency and the possible failure of commu-
nication. However, the greatest difficulties arise especially
when it becomes necessary to change the interfaces of ser-
vices in cause of further development. In addition, there are
all the problems that distributed systems bring with them
in contrast to monoliths.

6.3.1 Refining The Integration Layer

Since the most complexity now lies at the network level,
a special look must be taken at the integration layer of the
pyramid. For this purpose, it is divided into two layers: On
the first of those layers the contract tests are categorized.
These are used to check the correctness of an interface. For
this purpose, the services or its components are first divided
into producer and consumer. A consumer is defined by the
fact that it accesses resources provided by external sources.
A producer, on the other hand, provides resources to ex-
ternal consumers. Contract tests can now be defined from
producer or consumer side. These are then referred to as
consumer-driven contract tests or provider-driven contract
tests. In consumer-driven contract testing, consumers de-
fine their expectations for the interface they consume. In
practice, this type of testing has the advantage that in the

early stages of development, the producer team can imple-
ment along the expectations specified by the tests, imple-
menting only the most necessary functionality. As long as
the tests continue to run without errors, any changes can be
made. This gives development teams more autonomy. [17]
Provider-driven tests should be implemented by the other
team. That is by those who provide a resource. They then
have to use the tests to check whether they violate a pre-
viously defined property. This is usually not possible with
public APIs, since not every consumer can be taken into
account. Otherwise, the development process would stag-
nate. Within a company, on the other hand, it is possible
and practiced[17]. Both variants thus test the correctness of
the provided interface. As already mentioned, the interfaces
and their consistency and definition are decisive for the func-
tionality of the overall system. Therefore, contract tests are
used to determine whether the service as a whole responds
correctly and in a predefined way to external requests.

The cases in which a microservice acts as a consumer are
assigned to the second layer. It is called the same as the
layer before splitting: Integration layer. The integration
tests associated with it are intended to test whether the ser-
vice correctly accesses the resources it needs. However, this
also includes operating system resources, file system accesses
and all other components already localized at the integration
layer in monoliths.

6.3.2 Shape Assumption

The part of the application known as business logic is
tested with unit tests, as in the monolith. This part should
be minimal according to the concept of the architecture.

External External
Service Service

Service Interface

Data Access Service
Agents

-
External External External
Database Service o Service

Figure 10: The structure of a microservice with a mapping
to testing layers. Adepted from [14]

Figure 10 visualizes the mapping components of a mi-
croservice to the layers. If the entire system consisting of

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

all services is tested at once, this is called an end-to-end
test. This type of test is usually classified as Ul test. This is
how Mike Cohn suggested it[4]. It is also important to note
that exposed interfaces (e.g., REST APIs) count as user in-
terfaces, just like CLIs and web interfaces do. Thus, they
also fall under the category of Ul testing. Even if testing in
the case of REST APIs can be done using integration test-
ing methods and tools, these are to be located at the level
of UI tests. The following assumption arises from these pro-
cedures, which are taken from common practice: Since the
services are usually minimal, the number of unit tests is
reduced. The communication that such a system would per-
form on the module level if it was a monolith is shifted to
the network level. This logically increases the number of in-
tegration points. It also increases the number of integration
tests required. Since the system does not change from the
point of view of a user and UI tests are generally more dis-
advantageous than the other test types, their quantity does
not change.

Now, if we follow the usual testing procedures, the pen-
cil shape turns out to be representative for single services.
Should the overall system consist of multiple microservices
whose test shape corresponds to the pencil shape, it also
results in a pencil shape for the entire system.

6.3.3 Shape Analysis

In the following section, we will analyze whether this as-
sumption can also be proven empirically or at least on a
case-by-case basis.

In the online journal “Yo Briefcase”, James Hughes argues
in his article "Micro Service Architecture” [8] for a general
reduction in the number of tests. In particular, he empha-
sizes that tests should be as much value adding as possi-
ble. His argument is based on the principle that a microser-
vice should be responsible for only one functionality, but
do it well. From this he concludes that the general risk of
introducing an error through changes, which leads to the
dysfunctionality of the overall system, is reduced. He also
names the “natural behavior of a service based system” as
evidence. From this point of view, it cannot be clearly con-
cluded at which levels the reduction of tests should be clas-
sified compared to the monolith. But with the presented
view on microservices “do one thing, and do it well”, it is
probable that the unit layer is meant. This would speak for
the pencil shape. On the other hand, the reduction of the
tests can also be seen as equal. This would only shrink the
pyramid, but not change its shape. An ice cream cone can-
not be inferred with this reasoning, since nothing explicit
was said about the UI tests.

Simon Brown comes to a more precise conclusion in his
blogpost “Modularity and testability” [2]. However, it should
first be noted that in this article he is primarily compared
modularized monoliths and microservice architecture. He
claims that when the modules of the monolith are tested as
black boxes, the shape of the pyramid changes. He describes
the changed state as “a balanced mix of low-level class and
higher-level service tests”. In addition, he states that mi-
croservices are likely to fall into the same grid. In the image
he presents for this, the Pencil shape is even depicted 11,
although it is not referred to as one. However, he then re-
stricts the statement again: there is no typical form of the

“test behaviours not implementation details”

Component/Service

Integration

Rethinking the testing pyramid?

Figure 11: The shape presented by [2]

testing pyramid. The form depends on the concrete project.
How the project now influences the form, he does not write.
This reinforces the assumption made at the beginning that
in general a pencil shape applies to microservice architec-
ture.

However, these are not empirically proven claims. The
meta-study “Testing Microservices Architecture-Based Ap-
plications: A Systematic Mapping Study” [18] looks more
closely at microservices testing. For this purpose, 2481 stud-
ies were pre-selected and 33 of them were chosen after four
steps of selection. The distribution of the studies regard-
ing their types can be taken from figure 12, the distribution
over the methodology from figure 13. The distribution over

I Case Studies
O Experiments
[Surveys

O Not Described

Figure 12: The research methods used in the primary study
18]

the years can be taken from figure 14. The first and most
important finding of the study is that unit and integration
tests are the most popular approaches. The analyzed stud-
ies commonly agree in categorizing tests of the business logic
unit tests. Let us now take a look at figure 16. It gives the
usage number of each approach used in the primary stud-
ies. Interesting to note is that the importance of integration
tests is given to be greater than the one of unit tests. Given
that business logic testing is considered unit testing and the
relation of testing approaches in 16 represents roughly the
relation of functionalities in a generic microservice based

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

[Proposal of solutions
O Validation Research
O Evaluation Research

O Opinion Paper

o

Figure 13: The type of the primary study [18]
11

il

2015 2016 2017 2018 2019

Figure 14: The years from that material was used in the
primary study [18]

system, it is possible to conclude that in common the in-
tegrative part is larger than the unit part. This underlines
the increased importance if integration tests in microservice
environments. Furthermore, the importance of integration
testing in the overall community picture is summarized as
follows: “addressing the challenges in automated and inter-
communication testing is gaining the interest of the commu-
nity”. From that we can conclude that integration testing
is at least as important as unit testing and UI testing is
done the least. This speaks clearly against a pyramid 1 and
an hourglass 2 shape, as the integration layer is valued to
small. The statement that unit and integration testing are
the most important excludes the ice cream cone shape 5 as
well. The overall shape extracted from this study is depicted
in figure 15. This is still no contradiction to the assumption

Figure 15: A UFO shaped hierarchy

of the pencil shape 3. It rather gives the information that
the shape of testing microservice based applications mainly
depends on the granularity of the single services. The larger
services are, the larger the unit layer and the smaller the in-
tegration layer becomes, while the Ul layer stays the same.
In the case of maximal granularity a diamond shape 4 is rep-
resentative, where low granularity and large services state
for a pencil shape 3.

To sum up for microservices, it is not possible to limit
the selection of shapes to a single one. Depending on the
concrete application shapes from diamond to pencil are the
most likely. Being close to a pyramid, ice cream cone or
even hourglass shape is usually an indicator that either the
focus of the tests can be refined or the application violates
the definition of a microservice based system.

7. LIMITATIONS TO GENERALITY

The overall validity of the findings in this work depends
on the actual need to tests specific components. If pro-
grammers and designers never made mistakes, testing would
be obsolete. This is not the case indeed, but generated or
reused software can achieve similar circumstances. This
might be from greater importance in future, because for
many projects the definition of models and structure is be-
sides from the user interface enough to describe the entire
system.

In the following we give an example of a microservice based
application where the ice cream cone shape is optimal.
Consider a small company which produces and sells articles
via an online portal. The portal has a product manage-
ment, a user login and some way to pay. If we first de-
fine the models corresponding to users, this information is
enough to derive the database models from it. If we add
validity information to it, even the generation of a service
between the database and the browser is possible, as it only
receives request, checks and forwards them. Same applies
for the product palette. When considering permission man-
agement, given user roles, it is possible to generate a service
including its database for permission management and au-
thentication. When using the same platform for generation,
it is even possible to generate the authentication code on
the integration layer.

The only thing missing is the user interface, as all API end-
points are generated. As this is very customer specific, we
do not assume it to be generatable. As the unit level code
is completely generated, no unit tests are required. Even
on the integration level only the communication of the user
interface with the endpoints has to be tested. What remains
are tests of the user interface and further manual tests.
This would result in an ice cream cone shape.

The shape does also thinner on the lower two levels when
functioning services are used as part of a new application.
Testing this service then belongs to another project or com-
pany even.

8. CONCLUSION

As it turns out the architecture has a large influence on
the shape. Depending mainly on the amount of business
logic and granularity, the integration and unit layer vary in
size. It is usually a good idea to keep the Ul layer as small as
possible independant from the architecture. For monoliths,

Copyright © 2021 for this paper by its authors

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

12
9
554
3 3
2222 22) ; ;
DDDDDDDD11111111111111111111111111
[o
r—-—r— 1 1 17 T17 17 717 717 717 TTI
eH BO &nH BH BH &Sh &h BO BN BH BH SO &h BO BN o g B0 &h B8O ZN Sh “ BO Sh = 20 o0 &0 BO BH LH &H ¥ & 2o W oE)
£ EEEEESEEEESEEESEEE L8 85 £ £ B E S EE S EE S E BE 38 2 E
tiiiiiiiitiiiiiiciitiiliiAiiiti88E8=3 %%
FH[—'FH[—'FH[—'FFPFF[—g—u[—*FFHPEHPgHPFFFFFEFé&gF
:.*:xgg*—'e':»'cducx%'cquu,g:'c:uxo':E'comho-cLL — m
=2 5§ g 8§ 5 g5 28 L E20x 22323 8 32228 2 § 8 EE 8 2 g8 3 » o=
SoMmcs 5 EzH 9 AaAE8RE S 53528 ¢ &R 2 £5 58 ¢z 59 55 2<
5] % @ E E = o E 5 o8 S 35 g7 E 58 ~G £ 58 0 0 g 5 2B T = 2
g s 285 8@ = TEBHES v E o8 ~5A0 2 Z B w P x» 585 8w 8 E S A
L s E O 9 - S o e =5 3 = o &< =1 S = =) mmmu UU
= - 0 = = S £ 2 2 & =3 o 8 _ = 3 © = & Z E
= m g g 5 Dumamsgw<-gg = S E £ & = =
= s &~ E.—sﬁ 5 g = = g 2 < o
8 o e g S -] 530 3 4
b G RS b 2 -2 S
Q é'ﬂ 5 < =] 2 =
E = 8 2 3 S
Z £ = g g = v g
=1 = i=1 (=9 O
] @) .S 2 7]
O 5 G]
s
-
m

Figure 16: The testing approaches for microservice-based applications from the study [18]. Single approaches can be categorized

multiple times.

a pyramid shape is the most likely, the pencil shape and the
hourglass shape are possible. Using SOA a diamond and
pencil are likely, a pyramid is possible. In a microservice
environment, same arguments as for the SOA apply, but
the granularity can be assumed as high and the size of a
service as small. Therefore a pencil, diamond and ufo shape
are common. We also pointed out giving an example that
the ice cream cone is not necessairly an anti pattern. To
fulfill future demands new test shapes will arise and new
architectures will reqire more refinement. Although it is
strongly project dependant.

9. REFERENCES
[1] S. Acharya and V. Pandya. Bridge between black box

and white box—gray box testing technique.
International Journal of Electronics and Computer
Science Engineering, 2(1):175-185, 2012.

S. Brown. Modularity and testability, Oct 2014.

D. Cilano. Test automation - from "test pyramid” to
“test diamond”, Jul 2019.

M. Cohn. Succeeding with agile: Software
development using scrum, addison-wesley. 2009.

M. Cohn. The forgotten layer of the test automation
pyramid, Sep 2017.

W. Commons. Soa elements, 2006.

M. Fowler and J. Levis. Microservices, Mar 2014.

J. Hughes. Micro service architecture, Apr 2013.

J. Huttunen et al. Micro service testing practices in
public sector software projects. 2017.

P. M. Jacob and M. Prasanna. A comparative analysis
on black box testing strategies, 2016.

M. F. James Lewis. Microservices. March 2014.

J. McAllister. Microservices decoded: Best practices
and stacks - dzone integration, Nov 2015.

J. Nyman. Test shapes - stories from a software tester,
Sep 2020.

[14] T. Pickens. Testing strategies for microservices, Nov
2015.

L. Ribarov, I. Manova, and S. Ilieva. Testing in a
service-oriented world. 2007.

M. Roth. Why the test pyramid is a bullshit - guide to
testing towards modern frontend and backend apps,
Oct 2019.

H. Vocke. The practical test pyramid, Feb 2018.

M. Waseem, P. Liang, G. Marquez, and A. Di Salle.
Testing microservices architecture-based applications:
A systematic mapping study. In 2020 27th
Asia-Pacific Software Engineering Conference
(APSEC), pages 119-128. IEEE, 2020.

(15]

(16]

(17]
(18]

Copyright © 2021 for this paper by its authors

	e4faf4c8-22c6-4fce-944b-79a1aa600428.pdf
	Introduction
	Motivation

	Mutation Testing
	Central Ideas
	Mutation Testing vs. Code Coverage
	Main Challenges

	Suggested approaches to mutation testing weaknesses
	Reducing the Computational Effort
	Time Intensive Review Process
	Low Adoption in Software Development

	Mutation Testing in practice
	Mutation Testing at Facebook
	Mutation Testing in Safety Critical Software
	Tools used in Industry

	How to further drive mutation testing adoption
	When and how to use mutation testing
	Tackling developer doubts
	Improving the Mutant Review Process

	Conclusion
	References

	51131be3-c795-4d24-a737-f3eaa3bad415.pdf
	Introduction
	Background
	Fault taxonomies
	Testing
	Manual testing
	Automated Testing

	Related Work
	Fault Taxonomies
	Not All Bugs Are the Same
	BugsJS

	Discussion
	Conclusion
	References

	f3fb2cc3-78f2-469c-b84a-976765b876c0.pdf
	Introduction
	Background
	Characteristic of Cloud Computing
	Deployment Models of Cloud
	Service Models of Cloud

	Motivation

	Related Work
	An Approach to Abstraction of Cloud Computing
	Relation of Use Case to Cloud Computing Dimension
	Refinement of Cloud Computing Dimension

	Discussion
	Conclusion and Future Work
	Acknowledgments
	References

	a47c44d2-36ba-4006-b616-bd48a835ac8d.pdf
	Introduction
	Related Work
	Environmental Impact of Cloud Computing
	Power Consumption of Data Centers

	Carbon Footprint of Computing Workloads
	Hardware Utilization and corresponding Power Usage
	Power Consumption of a workload
	Base Power
	Calculating the Carbon Footprint

	Optimization Strategies
	Choice of Location
	The right Temperature
	Power-Efficient Hardware
	PowerNap
	Cluster Management
	Workload Shifting

	Conclusions
	Acknowledgments
	References

	081cdc92-05d9-4729-970e-c80cd765a43b.pdf
	Introduction
	Methodology
	Project management challenges
	No concrete definition of roles in data-driven project teams
	Difficulty of choosing a process methodology
	Unclear requirements
	Teamwork and communication problems
	Plannability problems

	Fulfilling the 4 V's

	Project Management Approaches
	Approaches for the definition of roles in data-driven projects
	NIST
	EDISON
	SAIC
	Springboard
	Gartner

	Approaches for a process methodology
	CRISP-DM
	Agile Kanban
	Scrum
	Team Data Science Process
	Knowledge Discovery in Data Science
	Refined Scrum-DS

	Approach for fulfilling the 4 V's

	Discussion
	Conclusion
	References

	32231794-dcc0-4054-932c-ee4a1eb62fe6.pdf
	Introduction
	Background
	Design Patterns
	Cloud Computing
	Service Models

	Cloud Native Applications
	Properties

	Hyperscalers

	Related Work
	Methodology for categorization
	Grouping of Design Patterns
	Generic Names for Interrelated Design Patterns
	Pattern Categorization

	Overview of findings
	Identical Pattern Group
	Similar Pattern Group

	Discussion
	Conclusion and Future work
	References

	e2cc3512-de46-4a81-b268-2f545dc4f383.pdf
	Introduction
	Background
	Containers
	Pods
	Nodes
	Clusters
	Deployment
	Cluster Computing
	Container Orchestration Platforms
	Quality of Service Requirements

	Related Work
	Quality of Service Requirements for Workloads and Clusters
	QoS requirements of Service
	Performance
	Availability
	Scalability:
	Security:
	Serviceability:

	QoS configurations/features cluster offers:
	Scalability:
	Availability:
	Security:
	Performance:
	Serviceability (Maintainability)

	Limitations

	Conclusion
	References

	e3e3f21f-96ea-42d3-902a-2b29a060e298.pdf
	Introduction
	Research Goal

	Background
	Event-Driven Architectures
	RabbitMQ
	Kafka
	Quality Models
	Related Work

	Quality Attributes
	Reliability
	Completeness
	Correctness
	Fault Tolerance
	Recoverability
	Ordering Guarantee
	Durability

	Efficiency
	Timeliness
	Resource Utilisation
	Capacity
	Scalability

	Security
	Confidentiality
	Integrity
	Accountability
	Authenticity

	Conclusion
	References

	68984209-83f4-40cf-a6e6-b2e25393da23.pdf
	Introduction
	The importance of automation in software testing
	Software Test Shapes
	Shape: Pyramid
	Shape: Hourglass
	Shape: Pencil
	Shape: Diamond
	Shape: Ice Cream Cone

	Common Testing Strategies
	Unit Layer
	Black Box Testing
	White Box Testing
	Gray Box Testing

	Integration Layer
	UI Layer

	Related Work
	Shape Analysis
	Monolithic Architecture
	Advantages
	Disadvantages
	An Example
	Shape Analysis

	Service Oriented Architecture
	Microservice Architecture
	Refining The Integration Layer
	Shape Assumption
	Shape Analysis

	Limitations To Generality
	Conclusion
	References

