
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338854879

Towards a Catalog of Enterprise Architecture Smells

Conference Paper · March 2020

CITATIONS

7
READS

397

2 authors, including:

Some of the authors of this publication are also working on these related projects:

EARTh – integrated Enterprise Architecture Roundtrip approach View project

Enterprise Architecture Debts View project

Simon Hacks

Stockholm University

56 PUBLICATIONS 260 CITATIONS

SEE PROFILE

All content following this page was uploaded by Simon Hacks on 28 January 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/338854879_Towards_a_Catalog_of_Enterprise_Architecture_Smells?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/338854879_Towards_a_Catalog_of_Enterprise_Architecture_Smells?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/EARTh-integrated-Enterprise-Architecture-Roundtrip-approach?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enterprise-Architecture-Debts?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hacks?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hacks?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Stockholm-University?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hacks?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hacks?enrichId=rgreq-ce9624bf8239403fb00c366d9069eea0-XXX&enrichSource=Y292ZXJQYWdlOzMzODg1NDg3OTtBUzo4NTIyMzk0MzQzODc0NTZAMTU4MDIwMTEyMzE4NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

15th International Conference on Wirtschaftsinformatik,
March 08-11, 2020, Potsdam, Germany

Towards a Catalog of Enterprise Architecture Smells

Johannes Salentin1, and Simon Hacks2

1 RWTH Aachen University, Aachen, Germany;
2 KTH Royal Institute of Technology, Division of Network and Systems Engineering,

Stockholm, Sweden
 johannes.salentin@rwth-aachen.de, shacks@kth.se

Abstract. Code Smells are well known in the domain of Technical Debt (TD).
They hint at common bad habits that impair the quality of the software system.
By detecting those smells it is possible to suggest a better solution or, at least,
make the developers aware of possible drawbacks. However, in terms of
Enterprise Architecture (EA), which is a more holistic view of an enterprise
including TD, there does not exist such a concept of EA Smells.
Such EA Smells can be a component of EA Debt, working like a metric to rate
the quality of data and estimate parts of the EA Debt in an EA Repository. The
main goal of this work is to start the development of a catalog to facilitate future
design and development of EAs. This catalog should be expanded and serve as
food for thought to create a corresponding tool for the detection of smells.

Keywords: EA Smells, EA Quality, EA Debt, Prototype, Catalog.

1 Introduction

In the software development industry, Technical Debt is regarded as a critical issue in
terms of the negative consequences such as increased software development cost, low
product quality, decreased maintainability, and slowed progress to the long-term
success of developing software [1, 2]. Technical Debt describes the delayed technical
development activities for getting short-term payoffs such as a timely release of a
specific software [3]. Seaman et al. [4] described Technical Debt as a situation in which
software developers accept compromises in one dimension to meet an urgent demand
in another dimension and eventually resulted in higher costs to restore the health of the
system in future.

Furthermore, Technical Debt is explained as the effect of immature software
artifacts, which requires extra effort on software maintenance in the future [5]. While
the Technical Debt metaphor has further extended to include e.g. database design debt,
which describes the immature database design decisions [6], the context of Technical
Debt is still limited to the technological aspects.

Therefore, we have proposed to combine the concepts of EA (Enterprise
Architecture), which provides a holistic view on an organization, and the concept of
Technical Debt [7]. However, our definition still lacks a means to identify possible
debts. To close this gap, we suggest transferring the concept of Code Smells to the

mailto:johannes.salentin@rwth-aachen.de
mailto:shacks@kth.se

domain EA Debts. Transferring a concept from the software architecture domain to the
EA domain seems obvious, as they share some terminology, concerns, and notations
[8]. Nonetheless, they focus on different domains (business vs. system) and,
consequently, have fundamentally different stakeholders with different perspectives
and viewpoints [8]. Accordingly, we will elaborate on aspects both domains have in
common, especially structural aspects.

The main goal of EA Smells and their automated detection is to increase the quality
of EAs and the awareness for common bad habits. Therefore, EA Smells should reflect
quality flaws in the EA itself. However, if the EA model is used as an input to determine
the EA Smell, the smell might only appear in the model and not in reality, based on the
on the degree of how the model reflects the reality. Further, EA Smells can be
considered in a prescriptive or descriptive manner. For prescriptive purposes different
scenarios of evolution can be compared to each other [9]. In a descriptive manner, the
actual status of the EA can be assessed and its development over time can be tracked.
With a catalog of EA Smells, developers can rely on it during the design process or
even afterwards while doing performance monitoring to assess the quality of data in
EA repositories. Sophisticated tools for automated detection can then provide a
convenient risk detection with built-in solution suggestions.

EA Smells can be a component of EA Debt, working like a metric to rate the quality
of data and estimate parts of the EA Debt in an EA Repository. This represents a
valuable usage of the EA Debt concept, even though EA Smells are just a subset of the
overall EA Debt, which will influence the popularity of those ideas in a positive way,
resulting in encouragement. For example, such an EA Smell could be a bloated service
that has one large interface with many parameters or requires much data and performs
mostly heterogeneous operations with low cohesion

In order to define EA Smells and develop a first program for automated detection,
there are some steps, which must be considered. Our research questions will guide the
process of finding suitable answers to the open problems and structure the course of
action:

What corresponding EA Smells can be defined based on the existing Code Smells

and anti-patterns?

Then EA Smells can be defined in a catalog based on their counterparts in Code

Smells and a procedure is elaborated to detect some smells automatically in
representative EA repositories.

The rest of this work is structured as follows: First, we sketch the applied research
design. Next, we present the basic concepts that we will use to create a catalog of EA
Smells, namely Code Smells and EA Debt. Afterwards, we introduce our EA Smells
catalog by presenting the overall representation and giving some exemplary EA Smells
we discovered. Those EA Smells serve as input for our prototype that allows identifying
EA Smells in ArchiMate models. Before we conclude our work, we give an overview
regarding related work.

2 Research Design

This work follows the research questions and the proposed methodologies of Peffers et
al. [10] and Hevner et al. [11] of DSR (Design Science Research): DSR aims to produce
an artifact that addresses a problem [11]. Further, the artifact should be relevant to the
solution of an “heretofore unsolved and important business problem” [11]. Its “utility,
quality, and efficacy” [11] must be rigorously evaluated. The research should represent
a verifiable contribution and rigor must be applied in both the development of the
artifact and its evaluation. The development of the artifact should be a process that
draws from existing theories and knowledge to come up with a solution to a defined
problem. Finally, the research must be effectively communicated to appropriate
audiences [10, 11].

The problem is already identified and motivated Section 1. Based on this, we define
our objective of creating a first set of EA Smells that can assess structural aspects of
EA quality based on its model. Further, this set shall serve as basis for discussions with
EA practitioners for the future development of EA Smells. To get a first set of EA
Smells, we identify popular Code Smells and transform and adapted them to the domain
of EA. For that purpose, a suitable representation for smells must be chosen (cf. Section
4.1). Eventually, some remarks to the validity and possible risks to this very validity
are justified after the definition of EA Smells (cf. Section 4.2).

Section 5 deals with the challenges and requirements for the program that is to be
drafted as well as some considerations on the actual implementation. The resulting
program is tested on some examples to demonstrate the functionality of said program.
Due to the early stage of EA Debt research, we do not conduct a comprehensive
evaluation of our artifact.

Finally, the whole research and work is communicated through this work, also
showing potential elements for future research in Section 7. The full resulting catalog
of EA Smells1 can be found in online repositories with a searchable web application.

3 Basic Concepts

3.1 Code Smells

Code Smells, introduced by Fowler and Beck as “certain structures in the code that
suggest (sometimes they scream for) the possibility of refactoring” [12], are common
bad habits that can impair the quality of a software system or the software architecture,
when they are ignored. Like anti-patterns, they are seemingly good solutions that are
commonly and repeatedly used but known not to provide any satisfactory results. Thus,
corresponding symptoms, root causes and consequences along with solution
suggestions should be specified [13].

They are a component of Technical Debt and by identifying them, one can determine
how to refactor certain software artifacts. However, Fowler claims that no set of precise

1 https://ba-ea-smells.pages.rwth-aachen.de/ea-smells/

metrics can be given to discover the need for refactoring. Code Smells are a
compromise between precise source code metrics and unguided subjective evaluation
[12, 14, 15]. Still they can indicate deeper problems, while they can also amplify other
smells [16]. Often they are also called “bad smells” or “anti-patterns”. In many cases
unnoticed, Code Smells cause problems, sometimes only recognized after several
further implementations rest upon that faulty code. This harms the process of
refactoring and makes this process very complex and extensive. Often categories of
Business, Architecture and Application smells or patterns are distinguished [17–19].

In contrast to design pattern, which recommend a specific way of solving a problem
with positive examples [20], anti-pattern and Code Smells identify suboptimal solutions
and risks. However, an excessive use of design patterns can also cause bad smells, as
well as the process of refactoring can involve the potential of introducing new ones
when done wrong. Nevertheless, there should be some solution to the cause suggested
along with the negative example, which maybe was not covered by some design pattern.

Along with those smells comes something like software evolvability or
maintainability. The IEEE Standard Glossary of Software Engineering Terminology
defined software maintainability as “the ease with which a software system or
component can be modified to correct faults, improve performance or other attributes,
or to adapt to a changed environment” [21]. Mäntylä and Lassenius adapted this term
to software evolvability, which refers to “the ease of further developing a software
element” [14]. This has a close match with the term perfective software maintenance
[21], which is defined as “software maintenance performed to improve the
performance, maintainability, or other attributes of a computer program” [21].

3.2 EA Debt

EA Debt is defined as the counterpart to Technical Debt in the domain of EA. It was
defined as:

“Enterprise Architecture Debt is a metric that depicts the deviation of the currently

present state of an enterprise from a hypothetical ideal state.” [7]

In that sense, also the organizational position and the principles governing its design
and evolution must be considered. This includes the different layers, respectively
domains, of Enterprise Architecture and its associated artifacts. Since the requirements
differ for each enterprise, there does not exist a uniform approach according to EA
models and quality issues. Therefore, the metaphor of EA Debt is a technique providing
some crucial factors for the estimation of an EA's quality. Once again, increased
awareness is a major benefit of the debt concept in combination with a common basis
for communication and discussion.

In order to support many different cases flexibly, the metaphor relies on the artifact-
based viewpoint of an EA, because especially in dynamically evolving environments
robustness is very important. In this way, further artifacts can be added or removed for
the purpose of adaption to the specific requirements [7].

4 Related Work

Following, we will illustrate related work and situate our research towards it. First, we
refer to studies that occupy the analysis of the quality of EAs, or their models
respectively, and its improvement. As, model quality is not only related to the domain
of EA, we refer, second, to work from other information system disciplines, transferring
the concept of smells.

A very popular framework for determining the success of information systems is
The DeLone and McLean Model of Information Systems Success, most recently
updated in 2003 [22]. This was adapted specifically to the domain of EA by Lange et
al. depicting EA product quality, EA function setup quality, EA service delivery, and
EA cultural aspects as components influencing the satisfaction and the intention of use
[23]. However, these works elaborate on different aspects and their influence on the
EA. Therefore, those approaches stay abstract and their relevance for practice is still
limited. By using the concept of debts and expressing the quality flaws by a concrete
number, we overcome this shortcoming and provide a more useful toolset for practice.

An Enterprise Architecture Model Quality Framework (EAQF) was developed by
Timm et al. that structures relevant information and helps enterprise architects to reflect
on their EA models [24]. This framework builds upon six principles to assess an
enterprise model's quality by Becker et al., namely the principles of validity, relevance,
economic efficiency, clarity, systematic model structure and comparability [25].
Furthermore, Pitschke provides a list of quality attributes and explains them in relation
to business process models [26]. Compared to the model of DeLone And McLean, the
beforehand introduced approaches are less abstract and might be applicable in praxis.
However, they fail to make quality flaws quantitative measurable and rely mostly on
interviews. Our EA Smells provide a further set of quantitative metrics that enable the
(semi)automatic assessment of EA (model) quality.

In general, the overall EA quality does not necessarily relate to EA models as an
artifact directly, but also to EA management processes and other services [24]. As a
common sense, an EA model's quality has to be evaluated with respect to its purpose,
environment and stakeholders' concerns [25]. This facet will be also included in our
future research by suggesting EA Smells that cover such aspects. Smells that do not
cover these aspects are not included so far, because the initial considered set of Code
Smells does not include processual facets.

We will not situate our research on EA Debt and EA Smells on the green field, but
also consider existing approaches for measuring EA related qualities. This includes e.g.
research on anti-patterns like process anti-patterns [27]. They can be understood as a
certain type of smell on the different layers of EA. Therefore, existing anti-patterns can
be understood as siblings of our EA Smells. We aim not to replace them but to reuse
and integrate them into the entire framework of EA Debts.

In terms of Code Smells, there are many studies investigating and transferring the
concept to other domains. Fontana et al. analyzed the frequency of Code Smells in
systems of different domains, which resulted in the domains incorporating a common
set of Code Smells [28]. As an example, the application of the Code Smell metaphor to
the different domain of Infrastructure as Code was proposed by Sharma et al.,

distinguishing implementation and design smells [29]. While implementation smells
involve quality issues like naming conventions, style, formatting and indentation,
design smells involve quality issues in the module design or structure of a project. This
approach is also followed by Schwarz et al. [30]. More recent research created
derivations with quality models for Puppet based on an empirical study [31] or by
exploiting text mining techniques [32]. Moreover, the scope was extended to, for
example, Docker by Cito et al. [33] or Android manifests by Jha et al. [34]. Besides
new domains, also further and more specific approaches can be considered, like the
differentiation between object-oriented and service-oriented environments. Extensive
SLRs were conducted by Bogner et al [35] and Sabir et al. [36], highlighting
idiosyncrasies of diverging approaches.

In general, those smells that rely on structures in an architecture and their
corresponding translations in other domains miss a holistic view on the entire
organization. We close this gap by proposing our initial set of EA Smells that take such
aspects into account. However, those existing smells can already serve as a first idea
for a particular smell int the domain of EA.

5 A Catalog for EA Smells

5.1 Representation of EA Smells

Enterprise Architecture Smells is a counterpart for Code Smells. They serve as negative
examples and bad habits that impair the quality of an EA when ignored. They are
seemingly good solutions or typical mistakes, known not to provide any satisfactory
results, such that corresponding symptoms, causes, consequences and solutions should
be mentioned. EA Smells belong to the concept of EA Debt. In the following, we will
focus on EA Smells belonging to EA Models, although one could develop further
smells in the future, also taking the management of EAs into account. This also means
that Technical Debt along with its Code Smells belong to the overall EA Debt and EA
Smells respectively. Of course, Code Smells occur in the implementation and not the
model of an EA.

Similarly, the need for refactoring of an EA model and the corresponding real-world
instance cannot be determined precisely by any metrics. However, EA Smells are a
compromise between those metrics and subjective evaluation, which allows for
indication of deeper problems. Usually the specification and documentation of patterns
relies on a common format or scheme with well-known attributes like the Alexandrian
Form [37]. This does not hold for antipatterns and Code Smells, which can profit from
further attributes that are not mentioned in every representation. Based on some
proposed forms of representations commonalities are searched, despite slight
differences. It turns out, that the chosen data structure from Bogner et al. [35]
encompasses all attributes of considered sources.

For the sake of documentation the name, a description and optional further context
should be specified [16, 35, 38, 39]. Additionally, similar smells could be known under

multiple names, which justifies the aliases attribute and allows for a common
understanding, even though something is named differently [16, 35, 39].

It is useful to point out the consequences of a smell together with a possible cause
and opportunities for its detection, when those are not obvious. This way, a more
applicable solution suggestion or other remarks can be made [16, 35, 38, 39]. With the
help of an example rather complex problems can be illustrated and demonstrated for
better understandability [16, 35, 39]. Wake [38], for example, even includes exercises
to increase the comprehension of smells.

By means of tags additional categorization can be achieved, that does not need to
follow a certain structure. A tag is added for each category or property that we want to
emphasize [35, 39]. In order to relate smells to each other and expose their impact or
even amplification, the attribute relatedItems exists. Thereby, for example, the relations
“follows”, “precedes” or simply “relates” can be expressed [35]. Sometimes this is not
done explicitly, but it would facilitate to reveal the dependencies [16, 39]. Although the
EA Smells will be introduced in the following section, we already want to provide a
place for the sources (cf. [16, 35]) as evidence and for the purpose of transparency. This
enables future development of the catalog and the repository, without losing track of
occurrences of smells. Since the documentation varies for each source having slightly
different attributes or not every attribute being specified, many attributes are only
optional (cf. [16, 20, 35]). Still the name, description, and the solution should be
specified for each smell.

5.2 Exemplary EA Smells

This section explains the process of translating existing Code Smells to EA Smells on
some examples. To compile a catalog of EA Smells, we rely on already established
Code Smells and transfer them to the domain of EA Debt. Therefore, we collected 56
Code Smells collected in several SLR (Systematic Literature Reviews) [14, 35, 36, 40].
In total we end up with 45 EA Smells in our final catalog. We created an EA Smell
repository that contains further information, such as descriptions, details, relations and
associated tags. This repository can be viewed as a web application with convenient
browsing and searching2.

A smell can be directly applicable to the new domain (e.g. Weakened Modularity)
or it may require adaptions to the description to match the according terms and concepts
(e.g. Incomplete Node or Collaboration). There are also smells that need a broad
modification to fit to the new domain and yield their advantages (e.g.
Overgeneralization), or those that combine the approaches of multiple existing smells
(e.g. Missing Abstraction). Besides, a new EA Smell can be inspired by a smell, without
having a direct ancestor in Code Smells (e.g. Temporary Solution).

Weakened Modularity. The smell Weakened Modularity is easy to translate to EA,
because the original Code Smell simply states that each module must strive for high
cohesion and low coupling. This idea is one of the most important design principles
and, therefore, directly applicable to the new domain of EA.

2 https://ba-ea-smells.pages.rwth-aachen.de/ea-smells/

Only the detection of this smell needs some alterations: Each cluster of an element,
which contains the element itself and all successive sub-elements, is investigated
separately and a modularity ratio is calculated by dividing the number intra-cluster
references (cohesion) and the number of inter-cluster references (coupling). Although
the basic approach of detecting the smell is not changed, it requires an additional check
for a minimal internal relation count, because otherwise every component without
internal relations (e.g. a simple service) would be reported as a smell. A further
difficulty lies in finding appropriate thresholds for the modularity ratio, which can be
dependent on the environment and specific use case. In general, this topic of thresholds
of metrics should be inspected in future research.

Incomplete Node or Collaboration. The smell Incomplete Node or Collaboration
is derived from Incomplete Library Class. Since in EA models there does not exist a
library class, this idea must be transformed to nodes or collaborations that represent
self-contained encompassing components that model, for example, application
platforms or application collaborations. However, these components do not fulfill their
responsibilities.

Those groups can be handled like libraries in software systems, as they can provide
stand-alone functionality that is integrated by other elements or services. If those
components come from a vendor, the functionality cannot be changed or extended by
oneself to meet the present requirements, leading to more extensive changes in the
current structure.

Overgeneralization. The smell Overgeneralization is derived from Ambiguous
Interface, which describes an implementation-wise interface that is too general and
does not publish all its provided functionality in a clear manner. For the purpose of
fitting better to EA models, the smell is converted to the idea of overgeneralization: In
order to assure that components provide the greatest extent of reusability, they must be
flexibly applicable. This generalization can be overdone, which will result in
overgeneralization. It will become more flexible than it needs to be.

Since not all functionality is provided and the operation is very general, all users of
that component must do quite similar additional work to use the component for its
purpose. As a solution, the always identical user modifications should be moved into
the component, following the “Once and Only Once” principle. Otherwise, the single
generic operation can be split into multiple more specialized operations to allow for
more suitable applications.

Missing Abstraction. The smell Missing Abstraction is derived from two existing
Code Smells. Firstly, Functional Decomposition describes the result of making every
subroutine a class in an object-oriented environment, ignoring class hierarchy
altogether. Secondly, Primitive Obsession describes the use of primitives instead of
small objects for simple tasks or data clumps.

In general, the smells depict the absence of a valuable abstraction. Hence, the EA
Smell Missing Abstraction is created. It is present when many rather small components
exist that are not aggregated into encompassing super elements. The EA model should
give a more abstract insight and, thus, provide components that are more general. Inside
those abstractions, further elements can be introduced to enable extensive description
of the architecture.

For example, instead of modelling contracts and the related customers together, only
separate data objects exist that clutter the model. Alternatively, a complex business
function is not directly modeled, but only by many sub-elements without them being
aggregated into an overall Business Function.

Temporary Solution. The smell Temporary Solution is inspired by Temporary
Field. Objects sometimes contain fields that do not seem to be needed at all the time.
The rest of the time, the field is empty or contains irrelevant data, which is difficult to
understand. Oftentimes, temporary fields are created for use in an algorithm that
requires a large amount of inputs. Therefore, instead of creating a large number of
parameters in the method, the programmer decides to create fields for this data in the
class.

The idea of temporary information, that would be unnecessary in a better-organized
structure, is then adopted to EA models with temporary solutions. Some components
are introduced, in order to make a relatively fast adaption such that the established
environment is working, although this temporary solution does not represent the desired
or intended solution. This is the very common view of debt being taken. Oftentimes,
those adaptions are made “on the fly”, without a full model being designed. In order to
keep the architecture working, adjustments must be made shortly. Those adjustments
are no optimal solutions resulting in cluttered abstractions and messed up architecture.

As an example, the EA is currently relying on a system A. In the long run a system
C should be used to realize the roadmap, but as the integration of that system is delayed
a temporary solution B has to be integrated, because data from system A is still used.
Such actions increase the dependency and hinder the intended development.

6 Demonstration

In the following, we will discuss different examples to explain and demonstrate the
behavior of the developed program. This should help to understand, on the one hand,
some weaknesses and, on the other hand, the potential of automated detection. The used
models are accessible through the repository of the program3. The program itself is
developed in Java and takes XML files as input that are in line with the ArchiMate
Exchange Format [41]. The program consists of three main components: a package that
handles the EA model, a package that provides different classes to detect different EA
Smells, and a central control component that brings together the abstract EA Smells
with the concrete EA model.

The SmellExample.xml is a made-up generic example that contains all currently
detectable EA Smells, which means that at least one instance of each smell should be
reported. It contains 47 ArchiMate elements with 88 relationships and was constructed
mainly for testing the detection of those smells. Again, each one of them will be
addressed in the following with an excerpt of the underlying model. Thereby, the smells
are distributed to three main components of the example model, such that we will
consider one component after the other.

3 https://git.rwth-aachen.de/ba-ea-smells/program

Figure 1. The “Register” component containing many EA Smells

First, no viewpoint is specified resulting in the Ambiguous Viewpoint smell at the
view “Default View”. Furthermore, an overall Dense Structure is detected with an
average degree of around 1.87. For more detailed information the processes “Register”
(average degree of 2.0) and “Complex Process with long Documentation” (average
degree of around 2.29) are detected as Dense Structures, so that these components
clutter the design. A visual impression for those Dense Structures can be found in
Figure 1 and Figure 2 respectively.

Figure 1 contains a Cyclic Dependency of three business services “Information
Retrieval”, “Information Validation” and “Business Service 1”. Additionally, a Service
Chain as part of a Message Chain of length five exists, that also contains those
elements. Besides, the business services “Customer Information Service” and
“Customer Information” are named quite similar and could contain related
functionality. Therefore, a Duplication is reported. Also based on the naming, the
“Customer Registration controller” arouses interest, because it very likely only
delegates tasks as a Lazy Component. Concerning the “DBMS” there are three direct
relations to components of the business layer that have access to the DBMS, resulting
in both Shared Persistency and Strict Layers Violation. Lastly, the “Simple Dead
Service” is easily classified as a Dead Component as it is not referenced.

Figure 2. The “Complex Process with long Documentation” containing many EA Smells

Next, we consider the cluster of the “Complex Process with long Documentation”
with a very long (423 characters) and unnecessary Documentation in Figure 2: When a
service is related to a high number of other services, this may indicate a Chatty Service.
Thus, the “Hub Chatty Common Functionality” is reported for further investigation. If,
on the other hand, a service only references data objects, like a business object, without
relating to other components, it is likely a Data Service only managing data access.
Consequently, the “Data Service” is detected as a possible instance of that smell.
Moreover, the “Hub Service” has many incoming and outgoing relations without
containing many coherent services. As a result, this element is reported for Hub-like
Modularization and Weakened Modularity.

Although the current program has some limitations regarding the detection of EA
Smells, it still manages to give hints and warnings for various smells. This leads to
increased awareness and makes the architects rethink and check their design. The
provided feedback can encourage and motivate improvements in design of the model,
so that the architects strive for better metric values and overall less detected smells.
Those aspirations not necessarily represent the best approach to better model quality,
but nevertheless can lead to developers making an extra effort, investing more time in
well thought out solutions.

Of course, the manual human evaluation of a model is not replaced, but the program
can easily suggest some aspects that may need further attention. Both processes
combined can create a synergy that only yields advantages for the quality of an EA
model. Running the program automatically needs no effort at all and does not
negatively affect the development. Contrary, one additional process checking the
quality may reveal overlooked shortcomings, that otherwise would be accepted
inadvertently.

7 Conclusion

Based on well-known Code Smells in the domain of Technical Debt, a corresponding
concept of EA Debt was defined lately that is now extended with EA Smells. It provides
a promising approach to facilitate the design and improve the quality of EA Models,
such that benefits of Code Smells can be transferred to the more holistic cause of EA.
This includes increased awareness and in general easier processes of discovering
deficits in model's designs.

First, a corresponding EA Smell Catalog was developed, where the smells are
inspired and derived from existing Code Smells. Especially, the detection of those
smells caused additional effort, because a program for automatic detection should be
developed. Consequently, an EA Smell Catalogue is available for collaborative future
work as a web. Third, the mentioned program was drafted and currently supports the
detection of 14 EA Smells in EA Models compliant to The Open Group ArchiMate
Model Exchange File Format Standard. In a last step, the emerged program was
evaluated and explained in order to highlight the possibilities and advantages of an
automated detection. Of course, there are also limitations to this process.

Although the definition of EA Smells for EA models is a step in the right direction,
this concept can be expanded to smells for EA Management, addressing additional
problems that may occur in an enterprise life cycle. Besides, suggested refactorings
could be collected in a catalog as well, immediately providing a mapping to related EA
Smells. Further, architecture principles are often perceived as the cornerstones of EA
[42]. They provide design and representation rules and guidelines, which need to be
translated into evaluation criteria [43]. EA Smells can serve as such evaluation criteria
and, consequently, strengthen the implementation of architecture principles within the
organization.

In terms of the program, a more sophisticated and universal detection framework can
be designed, that can be integrated into Continuous Integration pipelines [44].
Furthermore, different approaches for detection can be tested, like genetic or
evolutionary algorithms. However, we do not believe that all EA Smells can detected
fully automatically. Therefore, tool-support for assessing EA Smells by means of
interviews of experts will be necessary, too.

Lastly, we did not evaluate our EA Smells so far. In future, we plan first, to conduct
case studies with different organizations, where we will check if our first set of EA
Smells is applicable and if there are possibly other kinds of EA Smells that should be
considered. Next, we will conduct interviews with different experts in the domain of
EA to get further insights on the EA Smells. Last, we will conduct empirical studies to
evaluate EA Smells in general and research their interrelations.

References

1. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. Journal of Systems and
Software 86, 1498–1516 (2013)

2. Cunningham, W.: The WyCash portfolio management system. ACM SIGPLAN OOPS
Messenger 4, 29–30 (1993)

3. Zazworka, N., Seaman, C., Shull, F.: Prioritizing Design Debt Investment Opportunities.
Proceeding of the 2nd workshop on Managing technical debt - MTD ’11, 39–42 (2011)

4. Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., Vetrò Antonio: Using
technical debt data in decision making: Potential decision approaches. In: 3rd International
Workshop on Managing Technical Debt, MTD 2012 - Proceedings, pp. 45–48 (2012)

5. Guo, Y., Seaman, C.: A portfolio approach to technical debt management. In: Proceeding of
the 2nd working on Managing technical debt - MTD ’11, p. 31 (2011)

6. Albarak, M., Bahsoon, R.: Prioritizing technical debt in database normalization using
portfolio theory and data quality metrics. In: Proceedings of the 2018 International
Conference on Technical Debt - TechDebt ’18, pp. 31–40 (2018)

7. Hacks, S., Höfert, H., Salentin, J., Yeong, Y.C., Lichter, H.: Towards the Definition of
Enterprise Architecture Debts. In: Proceedings of the 2019 IEEE 23rd International
Enterprise Distributed Object Computing Workshop, pp. 9–16 (2019)

8. Booch, G.: Enterprise Architecture and Technical Architecture. IEEE Software 27, 96
(2010)

9. Hacks, S., Lichter, H.: A Probabilistic Enterprise Architecture Model Evolution. In: 2018
IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), pp.
51–57 (2018)

10. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. Journal of Management Information
Systems 24, 45–77 (2007)

11. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS quarterly 28, 75–105 (2004)

12. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Professional (2018)

13. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack,
A., Nord, R., Ozkaya, I., et al.: Managing Technical Debt in Software-reliant Systems. In:
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, pp.
47–52. ACM, New York, NY, USA (2010)

14. Mäntylä, M.V., Lassenius, C.: Subjective Evaluation of Software Evolvability Using Code
Smells: An Empirical Study. Empirical Software Engineering 11, 395–431 (2006)

15. IEEE: IEEE Standard for Software Maintenance. IEEE Std 1219-1998, 1–56 (1998)
16. Suryanarayana, G., Samarthyam, G., Sharma, T.: Refactoring for Software Design Smells:

Managing Technical Debt. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA
(2014)

17. Král, J., Žemlicka, M.: The Most Important Service-Oriented Antipatterns. In: International
Conference on Software Engineering Advances (ICSEA 2007), p. 29 (2007)

18. Bogner, J., Boceck, T., Popp, M., Tschechlov, D., Wagner, S. and Zimmermann, A.:
Service-Based Antipatterns, https://xjreb.github.io/service-based-antipatterns/

19. Lippert, M., Roock, S.: Refactoring in large software projects: performing complex
restructurings successfully. John Wiley & Sons (2006)

20. Shvets, A.: Refactoring: clean your code, https://refactoring.guru/refactoring
21. IEEE: IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-

1990 121990, 1–84 (1990)
22. DeLone, W.H., McLean, E.R.: The DeLone and McLean model of information systems

success. A ten-year update. J. Manage. Inf. Syst. 19, 9–30 (2003)
23. Lange, M., Mendling, J., Recker, J.: A Comprehensive EA Benefit Realization Model‐An

Exploratory Study. In: 2012 45th Hawaii International Conference on System Sciences, pp.
4230–4239 (2012)

24. Timm, F., Hacks, S., Thiede, F., Hintzpeter, D.: Towards a Quality Framework for
Enterprise Architecture Models. In: Lichter, H., Anwar, T., Sunetnanta, T. (eds.)
Proceedings of the 5th International Workshop on Quantitative Approaches to Software
Quality (QuASoQ 2017) co-located with APSEC 2017, pp. 10–17. CEUR-WS.org (2017)

25. Becker, J., Probandt, W., Vering, O.: Grundsätze ordnungsmäßiger Modellierung.
Konzeption und Praxisbeispiel für ein effizientes Prozessmanagement. Springer Berlin
Heidelberg, Berlin Heidelberg (2012)

26. Pitschke, J.: Gute Modelle‐Wie die Qualität von Unternehmensmodellen definiert und
gemessen werden kann, https://www.enterprise-design.eu/files/images/downloads-
wissen/modelqualitaet_v2.0.pdf

27. Koschmider, A., Laue, R., Fellmann, M.: Business Process Model anti-Patterns: a
Bibliography and Taxonomy of published Work. In: ECIS (2019)

28. Fontana, F.A., Ferme, V., Marino, A., Walter, B., Martenka, P.: Investigating the Impact of
Code Smells on System’s Quality: An Empirical Study on Systems of Different Application
Domains. In: 2013 IEEE International Conference on Software Maintenance, pp. 260–269
(2013)

29. Sharma, T., Fragkoulis, M., Spinellis, D.: Does Your Configuration Code Smell? In: 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), pp. 189–
200 (2016)

30. Schwarz, J., Steffens, A., Lichter, H.: Code Smells in Infrastructure as Code. In: 2018 11th
International Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 220–228 (2018)

31. van der Bent, E., Hage, J., Visser, J., Gousios, G.: How good is your puppet? An empirically
defined and validated quality model for puppet. In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 164–174
(2018)

32. Rahman, A., Williams, L.: Characterizing Defective Configuration Scripts Used for
Continuous Deployment. In: 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), pp. 34–45 (2018)

33. Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An Empirical
Analysis of the Docker Container Ecosystem on GitHub. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), pp. 323–333 (2017)

34. Jha, A.K., Lee, S., Lee, W.J.: Developer Mistakes in Writing Android Manifests: An
Empirical Study of Configuration Errors. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pp. 25–36 (2017)

35. Bogner, J., Boceck, T., Popp, M., Tschechlov, D., Wagner, S., Zimmermann, A.: Towards
a Collaborative Repository for the Documentation of Service-Based Antipatterns and Bad
Smells. In: (2019)

36. Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y.-G., Moha, N.: A systematic literature review
on the detection of smells and their evolution in object-oriented and service-oriented
systems. Software: Practice and Experience 49, 3–39 (2019)

37. Alexander, C.: A pattern language: towns, buildings, construction. Oxford university press
(1977)

38. Wake, W.C.: Refactoring Workbook. Addison-Wesley Longman Publishing Co., Inc,
Boston, MA, USA (2003)

39. Shvets, A., Frey, G. and Pavlova, M.: AntiPatterns, https://sourcemaking.com/antipatterns
40. Kerievsky, J.: Refactoring to Patterns. Pearson Higher Education (2004)
41. The Open Group: ArchiMate Model Exchange File Format. Version 2 (2015)
42. Greefhorst, D., Proper, E.: Architecture principles: the cornerstones of enterprise

architecture. Springer Science & Business Media (2011)
43. Stelzer, D.: Enterprise Architecture Principles: Literature Review and Research Directions.

In: Dan, A., Gittler, F., Toumani, F. (eds.) Service-Oriented Computing.
ICSOC/ServiceWave 2009 Workshops, pp. 12–21. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

44. Hacks, S., Steffens, A., Hansen, P., Rajashekar, N.: A Continuous Delivery Pipeline for EA
Model Evolution. In: Reinhartz-Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.)
Enterprise, Business-Process and Information Systems Modeling. BPMDS 2019, EMMSAD
2019, pp. 141–155. Springer International Publishing (2019)

View publication stats

https://www.researchgate.net/publication/338854879

	1 Introduction
	2 Research Design
	3 Basic Concepts
	3.1 Code Smells
	3.2 EA Debt

	4 Related Work
	5 A Catalog for EA Smells
	5.1 Representation of EA Smells
	5.2 Exemplary EA Smells

	6 Demonstration
	7 Conclusion
	References

