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Abstract—When experimenting on solutions to Machine Learn-
ing problems, data scientists often integrate non-linear workflows
into Jupyter Notebooks to explore different approaches and
evaluate the impact of changes such as using different Machine
Learning models or adjusting parameters. This mode of working
leads to Notebooks that are cluttered and difficult to navigate
which complicates refining and reusing previous experiments
later on.

Jupyter Notebooks lack inherent support for such a mode
of working. Therefore, we propose the JupyterLab extension
HISTREE that provides an interactive tree-based representation
of the experiment history in Jupyter Notebooks. Hereby, Note-
book versions triggered by specified Notebook operations, are
automatically saved and arranged in a tree structure. In this way,
HISTREE allows data scientists to explore, compare, organize, and
refine their past experiment approaches.

In this paper, first, we introduce the concept of an experiment
history tree model. This is followed by a comprehensive descrip-
tion of the functionality of HISTREE, which aims to support
data scientists in organizing experiments in Jupyter Notebooks.
Initial feedback from user experiments shows that the tree-
based experiment model is very promising and that the HISTREE
extension is both useful and usable to conduct ML experiments
in Jupyter Notebooks.

Index Terms—Data Science, Exploratory Programming,
Jupyter Notebook

I. INTRODUCTION

Trial and error is a fundamental problem-solving method
in science, often used by data scientists when solving a
Machine Learning (ML) problem. Hereby, they iteratively
experiment with different solution approaches, techniques, or
parameters. They try various methods, observe the outcoming
model performance metrics, and – based on the results – adjust
their approach until they reach a satisfactory solution. This
experimentation process can therefore be modeled by a tree
structure, caused by frequent backtracking [1] [2].

Among the most popular tools for exploring ML problem
solutions are Jupyter Notebooks [3] [4]. A Jupyter Notebook
provides an interactive and flexible development environment
in a document-like structure, in which data scientists can add
text, executable code snippets, and other kinds of media in
the form of cells. The outputs of the code cells are presented
below the corresponding cell. This way, data scientists can
document what and for which reasons something is done in
their experiments.

However, the flexible, iterative nature of exploratory pro-
gramming often results in cluttered Notebooks that do not
adhere to best practices [5] [6].

A study conducted by Ramasamy et al. [7] analyzing
470 real-world Jupyter Notebooks showed that 81.1% of the
Notebooks did not follow a linear experiment workflow and
30% of the non-linear experiment workflows had at least three
potential divergence points.

There are several reasons for including multiple experiment
workflows in a single Notebook. Data scientists may need to
explore different solution approaches and compare the effects
of changes in an experiment, such as using different kinds of
ML models or parameters [1] [2] [8]. Additionally, they may
want to revisit a previous experiment for further refinement or
reuse.

These are some examples of user requirements that Jupyter
Notebooks do not natively support. Based on existing studies,
we have identified the following major user requirements
for experimentation tools like Jupyter Notebooks that data
scientists use when conducting non-linear experimentation
workflows. Such tools should provide abilities to:

R1: visually organize different experiments [8] [7] [9]
R2: keep track of an experiment, the written code, and exe-

cution results [1] [8] [9] [10]
R3: explore past experiments [1] [8] [11], i.e.

a. comprehend the experiment workflow history,
b. compare the results of different experiments,
c. select a previously performed experiment and further

refine it.

In addition, the following usability requirements should be
met by such tools as well:

R4: Tracking experiments should require minimal effort by
data scientists.

R5: The amount of information tracked and its visualization
should not overwhelm data scientists [1].

With regard to the implementation of these requirements,
this paper makes the following contributions:

• A conceptual tree-based experiment model based on
Jupyter Notebook versions.
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• A JupyterLab extension, called HISTREE, for experiment
history tracking, implementing the tree-based experiment
model and a set of features supporting experimentation.

• The results of user experiments on HISTREE to give
insights into usability and acceptance among Jupyter
Notebook users.

The paper is structured as follows. First, we discuss re-
lated work in Section II. After that, we introduce the tree-
based experiment history model in Section III before we dive
deeper into its application in Jupyter Notebooks in Section
IV. Following this, we describe HISTREE and its features in
Section V. Next, we present the results of user experiments in
which participants were asked to perform experiments using
HISTREE. Finally, the paper concludes with a summary of our
contributions and some remarks regarding future research.

II. RELATED WORK

In this section, we give an overview of tools that data sci-
entists use for experimentation. We introduce and analyze the
limitations of the tools VERDANT, VARIOLITE, TRACTUS,
and NEXTJOURNAL that provide partial history tracking for
ML experiments. Additionally, we briefly present the tools
TRACTUS and MARG that utilize a tree-based structure to
visualize information in ML experiments.

VERDANT: This JupyterLab extension designed to help
with foraging for information in Notebooks was developed by
Kery et al. [12] [13]. VERDANT captures and stores the history
of cells and their outputs while working in a Notebook, and
saves them as a separate file.

Each change will be tracked using a checkpoint. Check-
points are assigned version numbers, which are further
grouped by days. Each checkpoint is presented visually
through a representation known as a mini-map. The mini-map
displays a small vertical line for every modified cell within
the checkpoint, with each line’s color representing the type of
change made. The horizontal positioning of the line in the
mini-map corresponds to the location of the modified cell
in the Notebook. By hovering the cursor over a line, data
scientists can retrieve the precise cell number that changed.
Furthermore, clicking on the version number opens a read-
only snapshot (ghost book) of the Notebook at that time in a
new tab and visualizes the changes made. Ghost books have to
be exported into the Jupyter Notebook format to be modified.

To make it easier for data scientists to search the history
of a Notebook, VERDANT allows data scientists to search for
any text within cells and outputs that are or were once part
of the Notebook. Furthermore, VERDANT provides the ability
to inspect the history of individual cells or outputs, enabling
data scientists to quickly locate specific information without
going through the entire Notebook history.

The developers of VERDANT conducted a study where
participants were asked to perform code foraging tasks in
a Jupyter Notebook using VERDANT. The study identified
the difficulty of navigating between the different features of
VERDANT, which are spread across multiple menus. Although

revised versions of VERDANT have attempted to simplify the
navigation, the authors suggest that a more comprehensive
investigation into the interface design would be required to
address this issue.

However, one area where VERDANT does not provide direct
support is experimenting with alternative versions of code and
branching to keep track of those versions (R1). There is no
proper support for continuing work on previous versions of the
Notebook (R3c). While it is possible to export ghost books,
this generates a separate Notebook, making it impractical for
addressing quick and immediate local versioning needs.

VARIOLITE: To better assist data scientists in their need for
versioning, Kery et al. developed VARIOLITE, an Atom code
editor extension [11]. VARIOLITE introduces variant boxes
that can be placed around code snippets. These boxes enable
the creation of alternate versions of the code, switchable
through attached tabs. Although VARIOLITE offers some basic
experiment tracking, its primary focus is on versioning code
snippets rather than comprehensive file and project history.
The Atom code editor is deprecated since 2022.

NEXTJOURNAL: This is a cloud-based platform designed
for executing computational Notebooks that are compatible
with Jupyter Notebooks [14]. One distinguishing feature that
sets it apart from other platforms is its comprehensive history
tracking capability. This includes not only tracking the content
of the Notebook itself but also monitoring the entire computa-
tional environment and associated data. However, it should be
noted that while data scientists can navigate between different
versions, the history tracking system is linear in nature, similar
to VERDANT. It does not integrate history as a fundamental
element for organizing experiments but rather offers basic
functionality for undoing changes.

TRACTUS: The main concept behind TRACTUS, an
RStudio addin created by Subramanian et al. [10], is to view
code for data science applications as a series of experiments.
TRACTUS operates within the programming language R,
specifically designed for data science, and organizes the data
scientist’s experiments into hypotheses. These hypotheses are
statements that the data scientist aims to verify as either true or
false. The addin arranges these hypotheses in a tree structure
and provides visualizations to help the data scientist better
recall and understand the events that occurred in the code and
the significant insights gained from the results.

MARG: In contrast to the previous tools, the JupyterLab
extension MARG [15] is not providing any history tracking
capabilities but offers means for the narrative exploration of
non-linear workflows in a Notebook. Hereby, workflows are
visualized as ordered trees. Each node in the tree corresponds
to a Notebook cell and shows additional information, e.g. what
kind of activity is performed in the cell and the execution
number. Each path from the root to the leaf corresponds
to one linear workflow. Divergences from linear workflows
are depicted by branches in the tree. By clicking through
nodes in the tree, data scientists can better understand and
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navigate the structure of the Notebook and how cells are
forming workflows. In their paper, the authors use a static
representation of the tree for a certain example, a dynamic
generation of the tree while working in a Notebook is in
planning.

In general, all existing history tracking tools support only a
linear history or are not applicable to Jupyter Notebooks. This
highlights the need to support data scientists’ exploratory and
non-linear approach to experimentation with additional tools.

Furthermore, there have been positive outcomes in terms of
usability and acceptance in user studies of tools like TRAC-
TUS and MARG which employ a tree-based representation
of experiments.

This motivates us to develop a tree-based concept and
implementation for handling and visualizing the experiment
history in Jupyter Notebooks which we will present in the
following.

III. THE TREE-BASED EXPERIMENT HISTORY MODEL

To solve an ML problem, data scientists usually conduct
a series of experiments. The experiments are evaluated
and improved until a solution is found that meets the
requirements. The following typical example describes a
simplified workflow when searching for a solution to a
clustering problem.

The data scientist starts the experiment by loading the data, then
selecting a few features. Next, they try out k-means, a popular
clustering algorithm. Finally, an evaluation is performed. As
the evaluation of the resulting clusters is not satisfactory, the
data scientist decides to try out DBScan, a different clustering
algorithm. Therefore, the data scientist goes back to the start
of the experiment, loads the same data, and selects the same
features as they did in the first experiment. However, now
the DBScan algorithm is applied. As the evaluation results
of this new experiment are better but still leave room for
improvement, the data scientist decides to keep DBScan but
change the selected features. To do so, the data scientist goes
back again to the start of the experiment, loads the same data
but now selects a different set of features before using the
DBScan algorithm again. As the obtained results are now very
good, a solution is found.

This way of working can be mapped onto the following
tree-based model for experiments:

• An experiment step is an atomic experiment action or
a semantic collection of related actions to achieve a
particular objective; experiment steps are ordered.

• An experiment step has no or exactly one predecessor. If
a step has no predecessor, it is called start step.

• An experiment step may have successors. If a step has no
successor, it is called a finish step. It is called a branching
step if it has more than one successor.

• An experiment consists of a linear sequence of exper-
iment steps (e.g. loading data, evaluating results). The
first step is a start step, and the last one is a finish step.

Load Data

Select
Feature Set A

Try K-Means Try DBScan

Evaluation:
Bad Results

Evaluation:
OK Results

Select Feature
Set B

Try DBScan

Evaluation:
Very Good Results

Exp. 1 Exp. 2 Exp. 3

finish step

start step
branching step

branching step

Fig. 1: Example of an experiment history tree

• All experiments that have a common branching step are
called variants related to this branching step. This means
that variant experiments have common experiment steps
(the ones from the start step to the branching step) and
different experiment steps (the ones after the branching
step to the experiment’s finish steps).

If we transform the described workflow into an instance
of this model, we get the experiment history tree shown in
Figure 1. As we can see, the experiment history tree models
three experiments. All experiments are variants related to the
step Load Data, which is the start step of all experiments
and also a branching step. Furthermore, experiments 1 and 2
are variants related to the Select Feature Set A step.
The evaluation steps are the finish steps of the experiments.

IV. THE EXPERIMENT HISTORY TREE IN JUPYTER
NOTEBOOKS

When data scientists use Jupyter Notebooks to conduct
experiments, all kinds of Notebook modification operations
are performed, e.g. cells are added or a new statement is typed
into a code cell. Each modification operation results in a new
version of the Notebook. A Notebook version is a timestamped
copy of the same; all versions of a Notebook are time-ordered.

To capture the experiments carried out in a Notebook in
an experiment history tree, it is not necessary to consider all
possible Notebook versions. It is sufficient to consider only
those modification operations and the corresponding Notebook
versions that are relevant in the sense of conducting the
experiments.

As the implementation of an experiment step can be mapped
onto one Notebook cell or a sequence of cells, the following
modification operations are relevant for creating the experi-
ment history tree that captures all conducted experiments of a
Notebook:

• insertCell: inserts a new cell to implement an experi-
ment step or a part of it
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• runCell: executes the code of a cell, which corresponds
to the execution of an experiment step

• runCells: executes a sequence of cells, which corre-
sponds to the execution of an experiment step consisting
of several parts

• deleteCell: removes a cell, which corresponds to remov-
ing an experiment step

• moveCell: moves a cell further up or down, which
changes the sequence of an experiment step or a part
of it

• changeCellType: changes the type of a cell (code, text,
raw). Changing the type also changes the experiment step
as e.g. code may be transformed to text/raw output or vice
versa.

Besides these modification operations, the Notebook cre-
ation operation new is relevant. It opens a new Notebook
containing an empty cell, which usually implements the start
step.

Formally, an experiment history tree is an ordered, labeled
tree consisting of nodes; each node represents exactly one
Notebook version. The nodes are labeled by a timestamp
together with the modification operation identifier that results
in the Notebook version represented by the node.

A. Automatic Experiment History Tree Creation

Opening a new Notebook, i.e. performing the new oper-
ation, creates the root node of the experiment history tree,
which represents the first version of this Notebook. The node
representing the currently editable Notebook version is marked
by a pointer, called the current node of the experiment history
tree.

The creation process of the experiment history tree follows
the principle that each performed modification operation which
leads to a new Notebook version is represented in the ex-
periment history tree by adding a child node to the current
node. The label of the new child node indicates the type of
operation that has been performed. For example, if a cell has
been executed, then a new node representing a new Notebook
version is added. As this was created by a runCell operation,
the new node is marked with runCell. If, for example, a cell
has been executed, a new node marked by a runCell operation
is added as a child node to the current node. The current node
is automatically set to the last recently added node.

When the current node is set to a different node of the
experiment history tree by the Notebook user, the Notebook
version that is represented by this node is loaded and can
be edited. If a new modification operation is performed in
this Notebook version, the resulting new Notebook version
is represented by a new child node added to the existing
child nodes of the current node. This always creates a new
experiment variant.

This process can be described as follows:
• When a new Notebook is opened, the root node of the

experiment history tree is created and the current node
points to the root node.

Fig. 2: JupyterLab with installed HISTREE extension

• When a modification operation is performed in the cur-
rently editable Notebook version (represented by the
current node of the tree) the current node receives a new
child node. If the current node already has child nodes,
then the new child node is added to the right of the
existing child nodes.

Because of the timestamps, the experiment history tree is
temporally ordered. Along each path from the root node to
the leaf nodes, each child node has a more recent creation
timestamp than its parent. Along each child level of a parent
node, each child node has an older timestamp than its sibling
nodes to the right.

V. HISTREE - A JUPYTERLAB EXTENSION

To make the experiment history model and tree available for
Jupyter Notebook users, we have developed the JupyterLab
extension HISTREE1. HISTREE offers serveral new features
which aim to meet the aforementioned user requirements (R1-
R3) while contributing to the usability requirements R4 and
R5. A screenshot of JupyterLab with the HISTREE extension
open in the sidebar can be seen in Figure 2.

The sidebar displays the experiment history tree which can
be enlarged and reduced by scrolling and moved by dragging
with the mouse, similar to a digital map. The tree visualizes the
history of the Notebook, each node representing an experiment
step, which is stored in its own Notebook version. Unique
icons, possibly decorated, are used to quickly see which mod-
ification operation was performed in the respective experiment
step (see Table I).

1HISTREE makes use of a significantly modified version of the VERDANT
JupyterLab extension [13] as the backbone for history tracking.
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Fig. 3: Steps to create an experiment branch

TABLE I: Node icons and decorations. The decorations can be
applied to any node type and may also occur in combination.

Icon Version whose last modification operation is:

a new cell was inserted (insertCell)

a cell was executed (runCell)

a sequence of cells was executed (runCells)

a cell was deleted (deleteCell)

a cell was moved (moveCell)

the type of a cell was changed (changeCellType)

Decoration

current node

bookmarked node

highlighted node

A. Offered Features

In the following, we briefly present the features of HISTREE,
subsequently referenced by F1 to F5.

Switching Notebook Versions (F1): HISTREE enables the
data scientist to change to a different Notebook version by
clicking on a node in the tree. As a consequence, the Notebook
will be changed to reflect the state of the Notebook as it was in
the version that corresponds to the clicked node. In addition,
the clicked node now becomes the current node, indicated by
a circle around the node.

Switching to a different Notebook version is a necessary
feature to explore past experiments (R3), e.g. to look at
previous experiment results to compare (R3b) or reuse them
(R3c). Going through the different versions in the history of
the Notebook also helps to comprehend how exactly the results
of the Notebook were generated by the numerous executions
that happened in its history (R3a).

Branching (F2): By switching to and then modifying a
previous Notebook version, a branch in the experiment history
tree is created. This allows the data scientist to work on an
alternative experiment approach without having to overwrite
any previous cells or cluttering the Notebook with too many
different approaches. As all other variants of the experiment
are then available as different branches, the data scientist can

switch between them for performing comparisons or contin-
uing work on the most promising approach. The procedure
to create a branch is shown in Figure 3. First (Step 1), the
data scientist clicks on the node they wish to branch out of,
causing that node to become the current node. Then (Step 2),
they perform a modification in the Notebook which causes a
new node to appear as the first node of the new experiment
branch. In the shown example, a print statement was added
to an empty cell and then executed. This caused a new node
created by the runCell operation to be added to the experiment
history tree in a new branch.

Modification Summary (F3): Whenever the data scientist
moves the mouse cursor over a node in the tree, a modification
summary appears. A simple example is shown in Figure 4.
The modification summary displays the type of modification
operation – like Cell 3 was executed – that lead to a new
version, the time and date when the modification operation
was performed, and a diff-style summary of the changes that
happened within the modified cell and its output. If multiple
changes have occurred within a version, as is the case with a
runCells-operation, all changes are listed in the modification
summary.

If the data scientist wants to move their cursor over the
displayed modification summary, e.g. to copy parts of it, the
summary can be pinned by clicking on a small pin needle icon
that appears next to the node the cursor is currently hovering
over.

Fig. 4: The modification summary feature in use

Bookmarking (F4): To make it easier to find important
nodes in the tree, nodes can be bookmarked using the context
menu by right-clicking the node or with the bookmark-star
button in the top right corner of the sidebar, which will
bookmark the current node. Bookmarking a node will add a
small yellow star decoration in its top left corner to signify its
importance.



This preprint is a preliminary version. The final version will be published at APSEC 2023.

Relevant Node Highlighting (F5): This feature can be
activated by pressing the Highlight Relevant Nodes-button with
a spark icon in the top right corner of the sidebar. While
activated, those nodes that have had some sort of effect on
the currently selected cell will be highlighted using an orange
glow around each node. An example is shown in Figure 5.
In the currently selected cell, the variable features has
been assigned. All nodes that have contributed to the creation,
deletion or modification of this cell are highlighted with an
orange glow.

The purpose of this feature is to help with finding particular
nodes in the tree, as the data scientist often wants to look at or
branch out of a previous Notebook version where they know
that a particular cell has been added or modified. With the
relevant node highlighting activated, they can simply select
the cell by clicking on it which will highlight a small number
of nodes in the tree – one of which being the node of
interest. Then they can go through these highlighted nodes
until they have found the version they were looking for, either
by switching to them by clicking, or by moving their cursor
over the nodes and using the modification summary feature.

Fig. 5: The relevant node highlighting feature in use

B. Summary

We have selected the features of HISTREE to support
data scientists performing multiple experiments in non-linear
workflows. We have made an effort to ensure that all user
requirements listed in Section I are at least partially addressed.
Table II shows a course-grained mapping between those re-
quirements and the implemented features.

VI. USER EXPERIMENTS

To collect feedback from data scientists and gain insights
into how they use HISTREE for solving ML problems, user
experiments were designed and conducted, guided by the
Technology Acceptance Model (TAM) [16]. It defines use-
fulness and ease of use as central factors for acceptance:

TABLE II: User requirements covered by HISTREE

User Requirements
Features R1 R2 R3

Switching Notebook Versions (F1) •
Branching (F2) •
Modification Summary (F3) • •
Bookmarking (F4) •
Relevant Node Highlighting (F5) •

• Usefulness refers to the perceived probability that a tool
will increase job performance. In our case, we want to
investigate to what extent HISTREE supports organizing
the conducted experiments.

• Ease of use refers to the extent to which the user perceives
the usage of a tool, i.e. HISTREE, as effortless.

In the following, we will describe the design and process
of the user experiments.

A. Participants

Ten participants, P01 to P10, took part in the user exper-
iments. All participants were academic data scientists who
gained their experience through data science and ML-related
university courses or private projects.

All participants were asked for a self-assessment of their
experience with regard to Python and Jupyter Notebooks on
a continuous scale between 1 (very little experience) and 5
(a lot of experience). The results of the self-assessments can
be found in Table III. The average experience for Python and
Jupyter Notebooks was graded 3.1 and 3, respectively. The
highest grade of experience was 4.5 for Python, and 5 for
Jupyter Notebooks, while the lowest grade of experience was
2 for both categories. Therefore, the participants represent a
wide range of experience with Python and Jupyter Notebooks.

None of the participants had any experience with history
tracking extensions like VERDANT in the Jupyter Notebook
environment. However, five out of the ten participants had used
Git for version control purposes with Jupyter Notebooks.

All participants took part in the study voluntarily and gave
their consent to the recording of the interview.

TABLE III: Participants’ self-assessed experience

Python Exp. JN Exp. Used JN w/ Git

P01 3 3 Yes
P02 2 2 No
P03 2 3 No
P04 2 3 No
P05 4.5 4 No
P06 4 2 Yes
P07 3 2 Yes
P08 4.5 5 Yes
P09 3 3 No
P10 3 3 Yes

Average 3.1 3 –
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B. Task

Finding a suitable task to give to the participants for
evaluating HISTREE was a major challenge. If the task was
too simple, it may not warrant a lot of experimentation from
the participants and the features of HISTREE – branching in
particular – would not be used very much. A certain level
of complexity is also needed to reflect real-world tasks that
data scientists are performing daily. However, the given task
cannot be too complex, as the evaluation would take too
long to complete and may also be too difficult for some
of the participants to perform properly without step-by-step
guidance.

The selected task was about constructing a model for
predicting housing prices using a popular data set from the
Kaggle Intro to Machine Learning tutorial [17].

C. Procedure

We structured the user experiments into three parts, which
are described below. They were held in German, except for the
one with P10 which was held in English. The user experiments
lasted between 40 and 85 minutes with an average of about
58 minutes and were conducted in a semi-structured format.

Part 1 - Getting to Know HISTREE: In the first part, the
participants were shown a Jupyter Notebook in the JupyterLab
environment with the HISTREE extension open in the sidebar.
They were also given a very brief explanation of HISTREE.

They were then asked to play around with the HISTREE
extension to get used to the concept of the experiment history
tree and explore the user interface. No proper ML-related task
was given out during this part.

Part 2 - Solving an ML Task: Next, a Notebook containing
two different solutions to the chosen housing prices problem
was shown to the participants. Both solutions, each using a
different regression model, were situated in a different branch
of the experiment history tree. The participants were informed
that this Notebook was in a ”cold” state, meaning that it was
opened with a fresh kernel without any variables being filled
yet.

First, the participants were asked to find out how well the
two already existing solutions have performed, i.e., how high
the average validation error was for the models.

After that, they were asked to create a better model for
predicting housing prices. As part of the task, the participants
were encouraged to try out a model other than the ones already
used in the Notebook. The participants were told to use the
features of HISTREE whenever they believed them to be useful.
But they were allowed to use any other tools they would
usually use for completing this kind of task, like searching
the internet. They were also allowed to ask the experiment
lead data science-related questions.

Part 3 - Answering Questions and Collecting Feedback:
After the participants completed this task to a degree that they
were satisfied with, they were asked questions to find out how
they assess the HISTREE extension and what they wanted to
see improved.

The following five questions regarding the usefulness of
the HISTREE features were asked, all being answered with
values on a continuous scale between 1 (not useful) and 5
(very useful).

Q1: How useful is the switching Notebook versions feature
(F1), i.e. to look at previous versions using the experiment
history tree?

Q2: How useful is the branching feature (F2), i.e. to create
branches in the experiment history tree?

Q3: How useful is the modification summary feature (F3), i.e.
to see a summary of the changes that occur in a node by
hovering over it?

Q4: How useful is the relevant node highlighting feature (F4),
i.e. to see which nodes have an impact on the selected
cell?

Q5: How useful is the bookmarking feature (F5), i.e. to mark
important nodes in the tree?

Furthermore, we wanted to get an overall score from the
participants. There, two more questions were asked.

Q6: Does HISTREE provide too much, too little, or exactly
the right amount of information?

Q7: How likely are you to use HISTREE for further projects?

For Q7, the likelihood was asked to be rated as values on a
continuous scale between 1 (not likely) to 5 (very likely). At
the end, the participants were asked for any further feedback
and suggestions to further assess the ease of use.

VII. ANALYSIS OF THE RESULTS

The following section presents the results obtained in the
user experiments and their interpretation, a discussion of
threats to validity, and a final summary.

A. Usefulness of the Features

First, we look at the participants’ scores on the usefulness
of the HISTREE extension (questions Q1 to Q5), interpret the
given scores, and sum up the opinions of the participants with
regard to each feature. The average scores are visualized in
Figure 6, and the values given by the participants can be seen
in Table IV.

TABLE IV: Responses given to questions Q1-Q7

Q1 Q2 Q3 Q4 Q5 Q6 Q7
P01 5 5 5 5 5 Just Right 5
P02 4 5 5 4 2 Just Right 4.5
P03 5 5 5 5 4 Just Right 5
P04 5 4.5 4 3 3 Too Much 5
P05 5 5 5 4 2 Too Much 5
P06 5 5 5 4 3 Too Much 3
P07 5 4.5 4.5 5 4 Just Right 5
P08 4.5 5 4 5 3 Too Much 4
P09 5 5 4 4 3 Just Right 5
P10 5 5 3.5 4 3 Just Right 4
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Fig. 6: Average values for features F1-F5

Switching Notebook Versions (F1): The ability to switch
between different Notebook versions was rated to be highly
useful by the participants, responding to Q1 with an average
grade of 4.85. Eight out of the ten participants gave full
marks. This feature was used extensively when solving the
given problem, mostly to look at the solutions in the other
branches, and occasionally copy code from other branches to
their own branch. It was also the primary feature used for
finding specific information from the history of the Notebook,
like when looking up how much error the models from the
different branches produced.

Branching (F2): The branching feature achieved the highest
score among the assessed features, receiving an average grade
of 4.9 for Q2, with eight participants giving it full marks,
and the remaining two scoring it with a 4.5. Participants P01
and P07 said that this feature helped to compare the different
approaches by helping to organize the experiments. Participant
P07 also added that the tree representation much better sup-
ports grasping the history of the experiments as opposed to
having just one linear timeline of changes. The participants
were quickly able to create a new branch and were using
branching effectively in their experimentation efforts. About
half of the participants created only one additional branch for
the new solution and stuck to it without further branching
out. The other half also used further smaller subbranches for
backtracking when an experiment failed, or to try different
features or a model if they had not already done so in their
initial branch.

Modification Summary (F3): The modification summary
feature was well regarded by the participants, receiving an
average grade of 4.5. It was considered so important to partic-
ipants P03 and P06 that they said that the HISTREE extension
would not make a lot of sense without this feature. The
modification summary was mostly used for quickly finding out
what changed in a Notebook version or a small set of versions.
This was often done for the purpose of finding a particular

version the participants wanted to look at more closely or
branch out of.

A major point of criticism was the way the pinning of the
modification summary was handled. Some participants had
trouble finding the pin button, and most wanted to move the
mouse over to the modification summary without clicking the
pin button, expecting the modification summary to stay open.

Highlighting Relevant Nodes (F4): Once the participants
understood the idea behind the relevant node highlighting
feature, they found it to be very useful in certain situations.
The average grade for the feature was 4.3. P01 and P10 said
that it would have been more useful in a more complex project.
The generally positive feedback is somewhat surprising, as
there were not many situations in the study where the relevant
node highlighting would have been of great benefit due to the
brevity of the given task. Still, it was sometimes used to find
different versions of a particular cell, or a specific version of
the Notebook where they knew they edited a particular cell.
P05 and P07 remarked that the feature helped manage the size
of the tree, as it made it easier to see the parts of the tree that
they were interested in at the moment. Even in cases where
it does not provide any use, it was noted by P04 that it does
not detract from the extension, as it is fully optional.

Bookmarking (F5): The bookmarking feature was not as
well received by the participants, receiving an average grade
of 3.2 in response to Q5. It was still regarded as potentially
useful by most participants, but often with the caveat that the
data scientist should have the ability to label their bookmarks.
Participants P05, P06, and P09 did not see much use in the
feature, saying that they already have a good understanding
of where everything is situated within the tree. Given these
mixed results, it is not surprising that bookmarks were rarely
used during the experiments.

B. General Acceptance
At the end of the user experiments, the participants were

asked to assess the sufficiency of the information provided by
HISTREE and whether HISTREE is a tool they would want to
use in the future. The individual categorical and quantitative
answers can be seen in Table IV.

Amount of Provided Information (Q6): The consensus
among participants about the amount of information provided
by HISTREE can be summed up as generally adequate, but
leaning towards too much. Out of the total ten participants,
six expressed that the information was just right, while four
felt that it was too much. The main complaint was that the
tree could grow too big, which was mentioned by half of the
participants (P04 - P08). To alleviate this problem, participants
P04 and P08 suggested a more flexible collapsing system that
would enable the data scientist to collapse any group of nodes
within the tree and not just sub-trees, as is currently the case
with HISTREE. This would make the size of the tree more
manageable, as long as the data scientist occasionally collapses
sequences of nodes that they are not interested in anymore.
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Future Usage (Q7): On a continuous scale from 1 (not
likely) to 5 (very likely), the average score obtained was
4.55, indicating a strong inclination towards using HISTREE in
future projects. Nearly all participants expressed their desire to
incorporate the HISTREE extension, with only one participant
scoring below 4 in terms of likelihood.

According to P02, even if the project does not immediately
call for intense usage of features like branching, it would still
be good to have the option of using these later on. The same
participant also saw a lot of value in the automatic versioning
aspect of the extension, calling it ”Git for free”. Participant
P05 even said that they could imagine this extension as a
standard feature in JupyterLab. Only P06 was not yet fully
convinced that they would try it again, stating that it was
not because of HISTREE itself, but rather because they dislike
the fundamental concept of Jupyter Notebooks. In fact, they
thought so highly of the features of HISTREE that they
subsequently asked if they could also be implemented in a
more traditional code editor.

C. Threats to Validity

Internal Validity: The user experiments were conducted in
person with the same hardware for each participant, except
for P10 who accessed a computer running with the extension
using a remote access software. The impact of this is limited,
as no significant problems occurred due to the remote nature
of the interview compared to the other participants.

A more significant threat would be that the participants
knew that the purpose of the experiments was for evaluating
HISTREE, presumably using it more intensely or adjusting
their usual workflow for the task, which they would not have
done otherwise.

External Validity: One threat to the external validity of
the study is the fact that all participants were of a relatively
narrow demographic, namely university members. While they
do represent a broad range of skill levels and some have
significant experience with Python, Jupyter Notebooks, and
data science, there were no professional data scientists among
the participants. The generalizability of the results is also
somewhat hampered by the relatively small sample size of
ten individuals.

Due to the time constraints of the interviews, as well as the
large variety of skill levels among the participants, the task
had to be relatively simple. While it was chosen with great
care to have enough complexity to give a reason to use the
features of HISTREE, it does not represent a larger real-world
ML experimentation effort.

The short amount of time the participants could work with
HISTREE also means that longer-term use over the course of
multiple days or weeks could not be assessed. It should also
be stressed that this was the first time for each participant
to use HISTREE. Thus, no concrete conclusions can be drawn
about how someone who has had more time with the extension
would use it.

VIII. DISCUSSION

In our user experiments, the HISTREE extension was able
to fulfill the requirements set out at the beginning, with the
experiment history tree offering a capable way of both visual-
izing (R1) and traversing (R3) the experiments conducted in a
Jupyter Notebook. Its automatic versioning capabilities made
the tracking of experiments and their results practically effort-
less (R2, R4) while offering a good amount of information
to the data scientist (R5). The only major problems identified
were that the experiment history tree could potentially grow
too large, especially for larger projects, and that bookmarks
cannot be labeled. Overall, the participants were highly im-
pressed with the extension and its features. Going back to the
Technology Acceptance Model [16], HISTREE proved to be
both useful and easy to use. The participants were able to make
good use of the extension’s feature set during the task, keeping
their experimentation efforts organized in branches, which they
frequently switched between to compare their approaches and
findings. They seemed to enjoy using the extension and did
not have significant trouble understanding how it functions or
how to use it.

The positive attitude towards HISTREE gives great confi-
dence in the viability of the extension in real-world usage.

IX. CONCLUSION & FUTURE WORK

In this paper, we have presented a tree-based automated
approach to organizing ML experiments in Jupyter Notebooks.
We have made the following contributions:

• We have identified user and usability requirements for
tools used by data scientists for their experiments and
have highlighted the shortcomings of the already-known
tools (Sections I & II).

• We have developed a tree-based experiment history model
to adequately represent the non-linear experiments per-
formed, which is technically based on the concept of
Notebook versions (Section III).

• We have identified the relevant version-forming opera-
tions in Notebooks, and mapped those to the experiment
history model (Section IV).

• We have developed a tool, the JupyterLab extension
HISTREE, that implements the experiment history model
and provides important features that support data scien-
tists in conducting the experiments (Section V).

• We have conducted and analyzed user experiments ac-
cording to the Technology Acceptance Model to evaluate
the usefulness and ease of use of HISTREE (Sections VI
& VII).

Besides the overall positive feedback, the evaluation also
highlighted some parts of HISTREE that should be improved
for future versions. Among many smaller tweaks to the ex-
tension, bookmark labeling as well as a more flexible way of
collapsing groups of nodes was requested in particular, with
the latter being important for combating the issue of the tree
becoming too large over time. While HISTREE does offer a
way of collapsing sub-trees, this was deemed insufficient by
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the participants who asked for any group of consecutive inner
nodes in the experiment history tree to be collapsible.

An important and widespread problem not yet properly
covered in this paper is the poor reproducibility that Jupyter
Notebooks generally suffer from, mostly due to problematic
dependency management and non-linear execution order [5].
HISTREE does have the potential of mitigating the latter issue,
as it offers a way of comprehending the execution history
of the Notebook in detail using the experiment history tree.
Evaluating to which extent this can improve reproducibility
is subject to future research. While it is not currently part
of the feature set, a way of tracking the packages used in a
Notebook could also potentially be added to HISTREE to help
with recreating the original computing environment to improve
reproducibility.

After the tool is deployed and publicly available, future
research should focus on surveys and/or studies with data
scientists who have tried out the extension over a longer
period and for larger projects. Such studies could aid
significantly in further improving HISTREE to become even
more useful to data scientists in their day-to-day work.

Complementary materials for reviewers:
Data of user experiments:
https://anonymous.4open.science/r/HistreeBlinded-BE0F
Demonstration video of HISTREE (2:47):
https://youtu.be/lCylbZacPuw
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