
This preprint is a preliminary version. The final version will be published at APSEC 2023.

Unit Test Based Component Integration Testing
Nils Wild

Research Group Software Construction
RWTH Aachen University

Aachen, Germany
wild@swc.rwth-aachen.de

Horst Lichter
Research Group Software Construction

RWTH Aachen University
Aachen, Germany

lichter@swc.rwth-aachen.de

Abstract—Effective and efficient testing of complex component
based software systems is hard. Isolated test cases that test
isolated components are focused and efficient but are not effective
in detecting integration faults. Integration test cases on the
other hand are hard to develop and maintain. In this paper
we present an unit test based integration meta-model and testing
approach, to test the integrateability of component based systems
based on structural and behavioral information derived from
test executions of the respective components test cases. The
meta-model is formalized using the property graph model and
integration criteria are presented to detect certain types of
integration faults early on. Last but not least we propose an
approach to derive integration tests from the data contained in
the model.

Index Terms—software testing, test automation, software qual-
ity assurance, integration testing

I. INTRODUCTION

Component-based software architectures emphasize sepa-
ration of concerns with respect to the wide-ranging func-
tionality available throughout a given software system. Such
architectures have proven to be beneficial to cope with team
organization and rapidly changing requirements. They also
allow for the composition of components to create tailored
systems for the needs of individual customers. Customer
requirements are usually fulfilled by multiple services that
interact with each other through a well-defined API [1].

Testing aims to assess that such customer requirements
are fulfilled. Many approaches have been developed to test
different quality attributes of software systems and achieve a
quality assessment effectively and efficiently. Testing isolated
components of a software system - referred to as unit testing
- is relatively cheap and fast. However, it’s impossible to
detect certain types of faults on the unit level. Thus tests on
the integration level are needed, that test the interaction of a
component with other components - its environment.

To mitigate integration faults, API definitions have to be
consistent across consumers and producers of services. API
changes need to be integrated into all affected components
[2]. Technical and organizational measures must be taken
to communicate such changes to all integrating parties [3].
Furthermore, the documentation has to be kept up-to-date [4].

Developers can start to integrate long before the components
or even functions of a component are completely developed.
In this paper, we will present a new approach to integration

testing, which is economic and can be applied at an early
stage.

Before presenting this approach to integration testing, we
briefly describe the challenges of early integration and pro-
vide an overview of fault types that can be detected on the
integration level.

II. CHALLENGES OF EARLY INTEGRATION

One of the core principles of agile approaches and DevOps
is to shift left [5]. This means shifting the identification of
problems to the left of the development life cycle, to increase
the quality and decrease the costs of error correction in later
phases. There are different approaches to shift-left. One is
to test sub-artifacts right after they are produced. This can
be a design model, a code unit, or any other artifact that is
produced as a result of some activity. Another one is to develop
incrementally. Instead of developing and testing a whole
feature at once, intermediate results are tested. Assessing the
quality has to be done continuously as artifacts evolve. To this
end, economic automation is required. This is why DevOps
includes test automation as well as continuous testing. From
an economic perspective, the latter requires the former, but the
former does not automatically imply the latter [6], [7].

Whenever a system is changed, tests need to be re-executed
(regression testing) and new tests need to be developed for new
and changed features. It is crucial to know when a component
is ready to be integrated and how this component is expected
to work in collaboration with others. Dedicated integration
tests, models, or any other form of documentation specify that
behavior. However, creating integration tests is difficult and
studies show that available models and documentations start to
diverge from the actual specification - the implemented system
- over time [4], [8]. This often makes them unusable as a basis
for integration testing.

An approach to keep the test specification up-to-date with
the actual specification of the system is needed to make sure
that each component is integrated with all components in the
way they are expected to interact. Given an arbitrary amount
of components that need to interact, there is a huge number
of possible integration tests. Each interaction between two
components can be tested separately - we will call these
tests interaction tests - as well as each possible sub-path of
interactions contained in the interaction path of all components
that realize the customer feature.

This preprint is a preliminary version. The final version will be published at APSEC 2023.

Creating and maintaining all these test cases is not feasible.
Because of that only a small portion of the total set of
integration tests is actually developed and automated [9]–[11].
Often, only the most important tests are automated leading to
an hourglass or ice cream cone shape of the testing pyramid
[12]. This contradicts the principle of testing as early as
possible since these important tests require all components to
be ready to integrate.

III. INTEGRATION FAULTS

Every integration test aims to detect faults, that could not
be detected on the unit level of the individual components.
Leung and White [13] presented a taxonomy to categorize
faults. They distinguish three specifications for a function:

• The documented specification is created before the com-
ponent is implemented.

• The actual specification is given by the implementation
of a component based on some interpretation of the
documented specification.

• The expected specification is based on an interpretation
of the documented specification by those components that
integrate with a component providing the function.

However, a documented specification does not always exist
in a form that the components can be tested against or is
incomplete. In that case, a way to test the compliance of the
actual and expected specifications of the integrating compo-
nents is needed, e.g. an integration environment. Based on
their taxonomy, we consider the following types of integration
faults.

A. Interpretation Faults

Interpretation faults are about a misunderstanding between
the provider and consumer of some functionality.

• Wrong function fault: The provided function does not
comply with the documented specification.

• Missing function fault: Some function that is required by
the consumer component is not provided. This type of
fault is similar to the wrong function type but in this case,
the provider component does not offer the functionality at
all. Furthermore, a missing function might not be part of
the documented specification but just part of the expected
specification.

• Extra function fault: This is the inverse type of the
missing function fault type. Here a function is provided
that is never used.

B. Miscoded call faults

Miscoded call faults are caused by calling some function
when it should not be called, or not calling the function when
it should be called. This fault type can be further distinguished:

• Extra call fault: A function is called on a path where it
should not be called at all.

• Wrong placed call fault: A function is called at the wrong
place on the path.

• Missing call fault: A function is not called on a path
where it should be called.

C. Interface faults

An interface fault occurs whenever the interface between
two collaborating components is violated, e.g. through a data
type mismatch or a violated parameter rule.

IV. PROBLEM STATEMENT AND GOALS

To overcome some challenges of integration testing, in
this paper, we will propose and present a new approach to
determine interaction paths of any length between components
that are ready for integration testing. These interaction paths
are to be used to derive integration tests in order to enable early
integration testing. In addition, the approach should require
little additional effort, i.e., it must be economical, and it should
be automatable. Both goals are a prerequisite for application
in the industry.

To achieve the economical goal, already existing knowledge
regarding the interaction of components must be reused. As in
every project unit test cases for all components are created and
maintained, the knowledge encoded therein should be reused
to determine how components expect to interact with their
environment.

The proposed new approach to integration testing was
developed with the following questions in mind:

RQ1 Can indicators of integration failure detection be deter-
mined from information extracted from unit test cases?

RQ2 How can interaction tests, checking the interaction be-
tween two components, be derived from the unit test cases
of both components?

RQ3 How can integration tests be derived from those inter-
action tests to continuously check the integration of a
system as it evolves?

The remainder of this paper is structured as follows: Section
V introduces the unit test based integration meta-model which
is the conceptual core of our approach. In Section VI we
describe how instances of this meta-model are used to derive
indicators for the integrability of component-based systems.
Section VII presents the iterative integration testing process
and its activities. In Section VIII we discuss how interaction
test results can be interpreted to locate faults and discuss
the advantages and limitations of the presented approach.
We discuss differences from other approaches that ensure the
integration of component-based systems in Section IX. The
planned next steps and future work conclude this paper in X.

V. THE UNIT TEST BASED INTEGRATION META MODEL

In the following, we present the Unit Test Based Integration
(UTBI) meta-model. It defines elements and relationships to
model structural as well as behavioral information needed
to test the integration of components with their environment
based on information gathered by existing unit test suites.

The meta-model is depicted in Figure 1. Components
(Comp) are core elements of the model. To abstract from
various types of communication mechanisms and protocols
any interaction between components is treated as an activation
of a component by a Message (Msg) through an Interface
that is provided by (provBy) the component, similar to the

This preprint is a preliminary version. The final version will be published at APSEC 2023.

Component

+ name: String
provided by

<<abstract>>
Interface

+ vsibility: AccessType
+ protocolName: String
+ protocolData: String

AbstractTestCase

+ name: String

derived from

TestCase

+ values: String[]

sent by
Message

+ payload: String
+ type: MsgType

received by

Incoming
Interface

bound to Outgoing
Interface

<<enumeration>>
MsgType

STIMULUS
COMP_RESP
ENV_RESP

<<enumeration>>
AccessType

PRIVATE
PUBLIC

0..*

1

tested by

1

0..*

0..* 0..*

0..*

1

triggered by

0..* 1

0..*

1

0..*

1

Fig. 1. Unit Test Based Integration Meta-Model

object activation concept used in Smalltalk [14]. Access to an
interface can either be public - used to integrate with third-
party components - or private. Furthermore, a distinction is
made between an IncomingInterface (InIF) and an OutgoingIn-
terface (OutIF). By means of an incoming interface, a message
is received by (recBy) a component while messages are sent
by (sentBy) an outgoing interface. An incoming interface is
bound to an arbitrary number of outgoing interfaces and vice
versa. Which interfaces are bound to each other depends on the
concrete protocol that is used for communication. The protocol
data is an attribute of the interface, e.g. in the case of AMQP
the respective bindings are defined depending on the exchange
type and queue bindings whilst URLs are used for REST.

For each component, the respective unit test cases are
modeled as well. Following the ISTQB terminology [15], a
component under test (CUT) is tested by an AbstractTestCase
(ATC) which is a test case template without concrete values
for input data and expected results. A TestCase (TC, also
called concrete test case) is derived from (derFrom) an ATC
by providing concrete parameter values.

Once a test case gets executed a sequence of messages
is triggered by the test case. We distinguish three types of
messages:

• A stimulus message (STIMULUS) is a message received
by the CUT from the test case.

• A component response message (COMP RESP) is a
message sent by the CUT back to the test case or to
other components (those components are called the CUTs
environment).

• A environment response message (ENV RESP) is a mes-

sage sent by a component of the CUTs environment
back to the CUT as a reaction to a received component
response message.

A. A formal representation of the UTBI meta-model

To analyze UTBI models, i.e. models containing compo-
nents, their test cases, and all messages triggered by the exe-
cutions of these test cases, an appropriate formal representation
is needed. Since the models are basically graphs the property
graph model is used [16]. A property graph is a directed
labeled graph where each node or edge could maintain a set of
property-value pairs. Given finite sets of labels L and property
keys K and an infinite set of property values V , a property
graph G over (L,K,V) is a structure (N , E, ρ, λ, ν), such that

• N and E are finite sets of node and edge identifiers,
• ρ : E −→ N ×N is a total function that associates a pair

of node identifiers to each edge identifier,
• λ : N ∪ E −→ L is a total function that associates each

node and edge with a label from L and
• ν : (N ∪E)×K −→ V is a partial function that associates

nodes and edges a value for each property key.
To represent UTBI models the label set L is the union of the

node labels LN = {Comp, InIF,OutIF,ATC, TC,Msg}
and the edge labels LE = {ltestedBy, lderFrom, ltrigBy , lnext,
lsentBy, lrecBy, lprovBy , lboundTo}. The properties defined for
the UTBI meta-model elements are mapped by ν accordingly.

B. Graph Queries

Given the property graph representation of UTBI models, a
means to query those models is needed. One way to express
queries among a graph are Regular-Path Queries (RPQ) [17].
RPQs allow to retrieve pairs of nodes that are connected
by a path conforming to a given regular expression. RPQs
are basic building blocks of query languages (e.g. Cypher)
for graph databases. An RPQ is an expression of the form
e(t1, t2), where e is a regular expression over the vocabulary
of edge labels and t1 and t2 are terms (nodes or variables).
Regular expressions over a set of edge labels LE are defined
as e ::= ϵ | l, with l ∈ LE | e+ e | e ◦ e | e∗.

A Two-way RPQ (2RPQ) extends the vocabulary of a given
RPQ by the inverse label (denoted as l−) for each edge label
in order to inversely traverse edges. 2RPQs are defined as
follows [18]: 2RPQ = {e(t1, t2)|e ∈ L(LE

⋃
{l−|l ∈ LE})}.

Let TRPQL be the set of all 2RPQs over the edge label
set L. The function match : TRPQL −→ Boolean with
match(trpq) = (trpq = Ø) checks whether a 2RPQ evaluates
to a path in the graph.

C. An example system

The application of the UTBI meta-model and its property
graph representation is best illustrated with an example. Figure
2 shows the property graph of a system consisting of the two
components OrderService (OS) and WarehouseService (WS)
and their incoming and outgoing interfaces. For each com-
ponent, only one unit test case is included. The execution of

This preprint is a preliminary version. The final version will be published at APSEC 2023.

OrderService: Component WarehouseService: Component

I1: IncomingInterface
visibility= PUBLIC
protocolData = "/placeOrder"

I2: OutgoingInterface
visibility= PRIVATE
protocolData = "/orderCreated" I4: IncomingInterface

visibility= PRIVATE
protocolData = "/orderCreated"

I5: OutgoingInterface
visibility= PRIVATE
protocolData = "/orderShippingStatus"

OrderItems: AbstractTestCase

UTC-1: ConcreteTestCase
parameterValues =
 ["2 Water", "InProgress"]

M1: Message
payload: "2 Water"
type: STIMULUS

M2: Message
payload: "id: 1, items: 2 Water"
type: COM_RESP M3: Message

payload: "id:1, status: InProgress"
type: ENV_RESP

ShipItems: AbstractTestCase

UTC-2: ConcreteTestCase
parameterValues = ["3 Tea"]

M4: Message
payload: "id: 2, items: 3 Tea"
type: STIMULUS

M5: Message
payload: "id: 2, status: InProgress"
type: COMP_RESP

I3: IncomingInterface
visibility= PRIVATE
protocolData = "/orderShippingStatus"

provided by provided by
tested by

derived From

triggered by

received By

triggered by

sent By

provided by

triggered by

next

provided by provided by

bound To

received By

bound To

tested by

derived From

triggered by

next

triggered byreceived By

sent By

next

Fig. 2. A UTBI example model showing two interacting components with their unit test cases

these test cases triggers sequences of messages, sent between
the test case, the CUT, and the CUT’s environment.

Now RPQs and 2RPQs can be defined to meet information
needs with respect to the example system. These are examples
of conceivable information needs (x denotes a variable).

• Which interfaces does component OS provide?
RPQ: lprovBy(x,OS) or 2RPQ: l−provBy(OS, x)

• Which test cases exist for testing component OS?
2RPQ: ltestedBy ◦ l−derFrom(OS, x)

• Which components interact with component OS directly?
2RPQ: lprovBy ◦ lboundTo ◦ l−provBy(OS, x)

• Does component OS interact with component WS di-
rectly?
match(lprovBy ◦ lboundTo ◦ l−provBy(OS,WS)) = true

VI. EXAMINING THE MODEL FOR INTEGRATION FAULTS

Given a property graph of a component-based system - like
the one depicted in Figure 2 - the model can be analyzed for
integration faults.

In order to do this, we first need to define some sets and
predicates based on the property UTBI graph model presented
in the previous section. Let

• CBS: set of all component-based systems and s ∈ CBS
• Cs ⊆ {c ∈ N|λ(c) = Comp}: all components of s
• M = {m ∈ N|λ(m) = Msg}: all messages
• Mc = {m ∈ M |match((lsentBy + lrecBy) ◦
lprovBy(m, c))}: all messages of c ∈ Cs

• Ms =
⋃

c∈Cs

Mc: all messages of s

• IIFc = {i ∈ N|λ(i) = InIF ∧ match(lprovBy(i, c))}:
all incoming interfaces of c ∈ Cs

• IIFs =
⋃

c∈Cs

IIFc: all incoming interfaces of s

• PrIIFc = {i ∈ IIFc|ν(i, type) = PRIV ATE}: all
private incoming interfaces of c ∈ Cs

• OIFc = {i ∈ N|λ(i) = OutIF∧match(lprovBy(i, c))}:
all outgoing interfaces of c ∈ Cs

• OIFs =
⋃

c∈Cs

OIFc: all outgoing interfaces of s

• PrOIFc = {i ∈ OIFc|ν(i, type) = PRIV ATE}: all
private outgoing interfaces of c ∈ Cs

The predicates in and out determine if a message m ∈ M
is received by an incoming interface or sent by an outgoing
interface:

• in : M −→ Boolean with
in(m) = ∃i ∈ IIF |match(lrecBy(m, i))

• out : M −→ Boolean with
out(m) = ∃i ∈ OIF |match(lsentBy(m, i))

In the following, we explain how to examine a proper model
of a component-based system for several integration fault types
(see Section III).

A. Examine for missing functions and extra functions faults

The basic unit that can be tested for integration is a single
component. Assuming that every private interface should be
bound to at least one other private interface, one can already
check for missing function faults and extra function faults.
Otherwise, there is at least one component providing some
function that is not used by any other component. Or there
is at least one component requiring some function that is not
provided by any other component. Let c1, c2 ∈ Cs ∧ c1 ̸= c2.

• Missing functions faults are indicated by incoming inter-
faces not bound to at least one outgoing interface:
∀i ∈ PrIIFc1∃o ∈ PrOIFc2 : match(lboundTo(i, o))

• Extra functions faults are indicated by outgoing interfaces
not bound to at least one incoming interface:
∀o ∈ PrOIFc1∃i ∈ PrIIFc2 : match(lboundTo(i, o))

In addition, missing interface bindings indicate possible test
gaps as no tests by other components are provided that use
interfaces that are not bound.

This preprint is a preliminary version. The final version will be published at APSEC 2023.

B. Examine for wrong placed and missing call faults

The information captured in the models from the execution
of the unit test cases can be used to define more elaborate
integration checks to indicate certain miscoded call faults.

This can be best explained by an example. In the model
depicted in Figure 2 the unit test case UTC-1 of component
OrderService expects an environment response message. The
message sequence could be as follows: UTC-1 stimulates
component OrderService with message M1 on interface I1
(/placeOrder). The OrderService component responds with
the message M2 via interface I2 (/orderCreated). Then, the
environment - another component or a mock - responds with
message M3 on interface I3 (/orderShippingStatus) to that
message.

We call such an expectation regarding the environment’s
response to a request an interaction expectation. These need to
be fulfilled by the components contained in the model as these
represent the environment. This can be generally formulated
as follows. Let c1, c2 ∈ Cs with c1 ̸= c2. Component
c1 expects an environment response message on incoming
interface inIFc1 as response to a message sent on its outgoing
interface outIFc1. This interaction expectation can only be
met if there is a path from outIFc1 to inIFc1. We call this the
interface path expectation that corresponds to the interaction
expectation. This expectation is met if a component c2 is
stimulated by another unit test case with a message on an
interface that is bound to outIFc1 and sends a message via
an interface that is bound to inIFc1 in response or there
is a recursive path over components ci..cn that satisfies this
condition.

This can be formalized: Let m1,m2 ∈ Ms ∧m1 ̸= m2. An
interaction expectation is a tuple (m1,m2) where m1 is sent
to the environment and m2 is a response of the environment
to that message. In our example, the tuple (M2,M3) is an
interaction expectation of the component OrderService. The
set of all interaction expectations (IE) of a component c is
given by:

IEc = {(m1,m2)|ν(m1, type) = COMP RESP∧
ν(m2, type) = ENV RESP∧
match(lnext ∗ (m1,m2))}∧
match(lsentBy ◦ lprovBy(m1, c))∧
match(lrecBy ◦ lprovBy(m2, c))

The set of all interaction expectations for a system s is
given by union: IEs =

⋃
c∈Cs

IEc

As each message is sent to or received by an interface an
interaction expectation can be mapped to a corresponding
interface path expectation. Let c ∈ Cs, i1 ∈ OIFc and
i2 ∈ IIFc. An interface path expectation is a tuple (i1, i2)
where i1 is the starting (outgoing) interface and i2 is the
final (incoming) interface of an interaction path. An interface
path expectation for an interaction expectation ie is obtained
by mapping the first message of ie to the interface it is sent
by and the second message to the interface it is received from.

Let IPEc ⊆ {(i1, i2)|i1 ∈ OIFc ∧ i2 ∈ IIFc} be the set of
interface path expectations. The function ipe : IE −→ IPEc

returns the interface path expectation for a given interaction
expectations of component c. It is defined as follows:

ipe((m1,m2)) = (i1, i2)|match(lsentBy(m1, i1))∧
match(lrecBy(m2, i2))

In our example, the tuple (I2,I3) is the interface path
expectation corresponding to the interaction expectation
(M2,M3).

To determine if such a path can be triggered with a message
on the starting interface, the interfaces that are bound to
the starting interface need to be found. In our example, the
incoming interface I4 (/orderCreated) of component Warehous-
eService is bound to the outgoing interface I2 (/orderCreated)
of component OrderService. At least one component that
provides such an interface needs to react to messages on that
interface with a response on the final interface or there has to
be a recursive path over multiple components that do so. In the
example, the unit test case UTC-2 of component Warehous-
eService specifies that component WarehouseService can react
to a message at the incoming interface I4 (/orderCreated) with
a response on the outgoing interface I5 (/orderShippingStatus).
This interface is bound to the incoming interface I3 (/order-
ShippingStatus) of component OrderService and thus complies
to the interface path expectation that results from the execution
of the unit test case UTC-1 of component OrderService.

We denote a message m2 on an outgoing interface a
reaction to a message m1 on an incoming interface if m1

is the predecessor of m2 or the predecessor message of m2

was a reaction to m1. This can be formalized by a reaction
function as follows:

reaction : (Mc ×Mc) −→ Boolean with
reaction(m1,m2) = in(m1) ∧ out(m2)∧

∃lnext(mx,m2)|
(mx = m1 ∨ (out(mx) ∧ reaction(m1,mx)))

For interfaces we define a reacts function accordingly:

reacts : (IIFc ×OIFc) −→ Boolean with
reacts(i1, i2) = ∃m1,m2 ∈ M |match(lrecBy(m1, i1))∧

match(lsentBy(m2, i2)) ∧ reaction(m1,m2)

To determine interaction paths across components,
interface bindings need to be considered. The function
interactionPaths : OIFs × IIFs −→ Boolean determines
if there is an interaction path between an outgoing interface
and an incoming interface in a system s:

interactionPaths(i, j) =
∃i1 ∈ IIFs∃i2 ∈ OIFs|match(lbountTo(i, i1))∧
reacts(i1, i2)∧
(match(lbountTo(i2, j)) ∨ interactionPaths(i2, j))

This preprint is a preliminary version. The final version will be published at APSEC 2023.

The function isSuitable : CBS −→ Boolean determines if all
interfaces of all components of a system s ∈ CBS are bound
in a suitable way such that they could fulfill all interface path
expectations towards them. It is defined as follows:

isSuitable(s) = ∀c ∈ Cs∀(i, j) ∈ IPEc|
interactionPaths(i, j)

It determines for any interface path expectation given
by the component’s unit test cases that it is matched by the
behavior of other components based on their unit test cases,
such that a path of interface invocations can be found as a
reaction to a message on outgoing interface i such that a
respecting incoming interface j might be invoked in response.
This indicator can be used to check for certain missing and
wrong placed call faults. Nevertheless, it is just an indicator,
as the existence of those paths is necessary but not sufficient
to ensure integrability, as the actual bodies of the messages
have not been considered yet. However, the body of a message
has an influence on whether the components actually interact
in that way. The interface path expectation is an abstraction
from interaction expectations. Different messages on the
same starting interface can lead to different interactions.
Testing these interaction paths requires proper integration
testing using the messages that are actually triggered by the
components on that path. The same applies to the detection
of wrong function call faults and interface faults. As already
explained in Section III wrong function calls are usually
detected on the unit level. Nevertheless, there is a chance
that the documented specification is misinterpreted when
creating the tests, so the unit tests are successful, but the
implementation is still faulty. Proper integration testing can
detect such faults. The situation is similar for interface faults.
E.g. if one component triggers messages that are too big to be
consumed by their receivers, it would cause problems during
integration testing. This is not within the scope of UTBI
models. They can only provide indicators for integrability
and support integration testing, as we will show in the next
sections.

Extra call faults cannot be indicated with this approach
because UTBI models only contain knowledge of what is
expected and not what is not expected.

VII. THE ITERATIVE UTBI TESTING PROCESS

After presenting the UTBI meta-model and model analyses
to determine integrability indicators, the process of iterative
integration testing based on such UTBI models and their
analyses is presented next. The process is depicted in Figure
3. In the following, we describe the activities of this process
and the artifacts that are created by them.

A. Create UTBI component models

As already mentioned before, our approach and the UTBI
models are based on the existing unit test suites (UTS).

Create & Complete
UTBI system model

Create UTBI
component models

Analyse
UTBI system model

Generate ITSs

Execute ITSs

UTBI component
models

UTBI system
model

Report

Interaction
expectations

ITSs

Are all suitable
interactions paths
tested?

NO YES

UTSs

Fig. 3. The iterative integration testing process. Starting as soon as the UTSs
are available. (UML activity diagram)

Therefore, to create a UTBI component model, the compo-
nent’s UTS is executed. During the execution of the UTS, the
information regarding the contained unit test cases, the sent
and received messages and used interfaces are extracted into
a UTBI component model; the component itself is treated as
a black box. The behavior captured in this way reflects both
the actual specification of the component and the component’s
expected specification towards its environment.

B. Create & complete the UTBI system model

Once UTBI models for all components exist, these models
need to be integrated into a global UTBI system model. For
this purpose, incoming and outgoing interfaces that are bound
to each other are determined. This is done using protocol-
specific interface matching. The matching determines whether
or not an incoming interface is bound to an outgoing interface,
based on the protocol information of the interfaces stored
in the UTBI component models. The resulting UTBI system
model is complete with respect to the provided unit test suites.

C. Analyze the UTBI system model

The UTBI system model is analyzed using the integration
fault indicators presented in Section VI. The result of the
analysis is not only a report evaluating the indicators. In
addition, the interaction expectations are discovered.

As stated before, the existence of interaction paths that
comply with the interaction expectations is not sufficient
to test for integration but is necessary and an indicator of
integrability. Thus these interaction paths are used to generate
so-called interaction test suites (ITS). Each interaction test
tests an interaction of two components.

D. Generate & execute interaction test cases

Given a UTBI system model, each interaction path com-
plying with an interaction expectation can be mapped to a

This preprint is a preliminary version. The final version will be published at APSEC 2023.

OrderServiceUTC-1

placeOrder(2, Water)
I1

orderCreated(1, 2 Water)
I2

I3

orderShippingStatus
(1, InProgress)

UTC-2WarehouseService

I4
orderCreated(2, 3 Tea)

I5

orderShippingStatus
(2, InProgress)

M3

M1

M2

M4

M5STIMULUS

STIMULUS

COMP_RESP

COMP_RESP

ENV_RESP

Environ-
ment

M5

Mock

test dataflow message copy for assessment

Fig. 4. Messages triggered by the unit test cases.

OrderServiceITC-1

placeOrder(2, Water)
I1

orderCreated(1, 2 Water)
I2

I3

orderShippingStatus
(1, InProgress)

ITC-2WarehouseService

I4
orderCreated(1, 2 Water)

I5

orderShippingStatus
(1, InProgress)

M7

M1

M2

M6

M7
STIMULUS

STIMULUS

COMP_RESP

COMP_RESP

ENV_RESP

Environ-
ment

equivalent M2

M7

M2

test dataflow message copy for assessment implicit integration flow

Fig. 5. Messages triggered by the generated interaction test cases.

sequence of unit test cases that led to that interaction path
within the UTBI system model.

To describe the process of retrieving the test sequence in
detail we introduce the lreactionTo relation between messages
which describes that a component response message is a
reaction to a stimulus or environment response message. In
addition, the relation lpotentiallyTriggers between interfaces
is defined. It describes that a message sent to an outgoing
interface of one component is potentially interacting with
another component such that an outgoing interface of that
other component is triggered. These relationships are defined
as follows:

lreactionTo ⊆ Ms ×Ms with Ms ×Ms :=
{(m1,m2)|∃m3 match(lsentBylboundTol

−
recBy(m2,m3))∧

reaction(m3,m1)}

lpotentiallyTriggers ⊆ OIFs ×OIFs with OIFs ×OIFs :=
{(i1, i2)|lboundTol

−
receivedByl

−
reactionTolsentBy(i1, i2)}

Utilizing the lpotentiallyTriggers relation we can search
for paths from the starting interface of an interaction
expectation to the final interface. Each path that consists of
a sequence of traversed lpotentiallyTriggers relationships is
mapped to corresponding test case sequences that contain
these interface interactions. Using a breadth-first search
algorithm the shortest sequence is returned first. For each
unit test case of that sequence, a new interaction test
case is generated. This is done iteratively, such that the
original stimulus and environment response messages are
exchanged by those component response messages triggered
by the preceding test cases. This is repeated until a suitable
interaction path for each interaction expectation is tested
successfully or no more test sequences can be derived from
the UTBI system model.

E. Example

The iterative integration testing process is explained using
our example system again. Figure 4 depicts the messages with
their interfaces, that are triggered by the execution of the unit
test cases UTC-1 and UTC-2. During UTC-1 we observed

This preprint is a preliminary version. The final version will be published at APSEC 2023.

that M3 is expected as a response to M2. This results in
the interaction expectation (M2, M3). This can be mapped
to a corresponding interface path expectation (I2,I3), that
describes that component OrderService expects an incoming
message on interface I3 (/orderShippingStatus) as response
to an outgoing message on interface I2 (/orderCreated). This
interface path expectation is satisfied by the interaction path
over the interfaces I2, I4, I5, and I3. It is derived from the
behavior that was captured in the UTBI system model during
the execution of UTC-1 and UTC-2.

The interation path is used to generate interaction test cases
ITC-1 and ITC-2 as shown in Figure 5. For the ATC ShipItems
that UTC-2 is derived from, a new interaction test case
ITC-2 is generated where the triggered stimulus message is
equivalent to the component response message M2 originally
triggered by UTC-1. This message is used as a replacement
for the stimulus message M4 in the original test case UTC-2.
The interaction test case ITC-2 is captured similarly to the
unit test cases before and stored in the UTBI system model.
Thus the behavior of the WarehouseService in the context of
the interaction with the OrderService as defined by UTC-1 is
captured in the model. With the updated model, an interaction
test case ITC-1 is generated based on the ATC OrderItems that
UTC-1 is derived from. This time the environment response
message M3 triggered by UTC-1 is replaced by the component
response message M7 which is triggered by ITC-2. Thus, the
interaction test case ITC-1 will no longer use the expected
environment response, that was defined by the mock in the
original unit test case UTC-1, but the actual response of the
WarehouseService component in the context of that interaction.

Hence, the interaction expectation (M2, M3) is verified if all
test cases on the interaction path over the interfaces I2, I4, I5,
and I3 have been successful. These are the test cases UTC-1,
ITC-2, and ITC-1. Note that M7 does not have to be the same
as M3 but only equivalent with regards to the expectations
of component OrderService towards the environment response
message for the interaction test ITC-1 to be successful.

The UTBI system model evolves as the components and
their unit test suites are getting developed. Using this model
as a basis for integration test generation allows testing the
interactions between components that are interacting according
to the model at a very early stage. The whole process starts
again if components and test suites change. The iterative
approach ensures that the sequence of generated interaction
tests is equivalent to an integration test that tests the interac-
tion expectation. To automate the iterative integration testing
process and demonstrate the soundness of the concept (Figure
3) a tool prototype, called InterACt 1, was developed together
with a small running example project.

VIII. DISCUSSION

In this section, we discuss how interaction test results can
be interpreted and used to detect faults. We also discuss the
advantages and limitations of the concept.

1InterACt can be accessed on Anonymous GitHub, URL: https://
anonymous.4open.science/r/InterACt-4A21

A. Interpretation of interaction test results

With the presented approach, the discovered interaction
expectations can be used to check whether the expectations of
components towards their environment can be verified using
the information extracted from the execution of all unit test
cases. The following applies:

• An interaction expectation is verified if for at least one
suitable interaction path all generated interaction test
cases have been successful.

• An interaction expectation can not be verified if one
generated interaction test case on each suitable interaction
path fails.

In other words: if all interaction paths that satisfy the interface
path expectation can not be successfully tested, either the
components contain defects, the unit tests are too strict or
the unit tests do not cover the interactions required to derive
the correct path. Assuming the unit test cases cover the correct
path but the interaction expectation can not be verified, at least
one of the components contains a defect. This does not mean
that the component whose test failed contains a defect, but
requires further investigation by a developer.

B. Advantages and limitations

Runeson and Engstrom [19] describe the testing of software
product lines as a three-dimensional problem across versions,
variants and levels. In contrast to standard integration testing,
our approach reuses the data, instructions, and oracles already
provided by the unit test cases instead of specifying separate
integration test case thus reusing test across levels. It also
allows to test arbitrary compositions of components and ver-
sions, resulting in system variants, as the UTBI-System model
is created based on a selection of UTBI-Component models.
This leads to several advantages:

A1: This saves the effort of creating integration tests for the
derived interaction expectations and allows to examine
systems for wrong function faults and interface faults that
can be traced back to incompatible actual and expected
specifications. For example, if the output domain of one
component is not a subset of the input domain of another
component it is interacting with, the test cases of the latter
are likely to fail when using the messages of the former
as replacements for the messages used in the original unit
tests.

A2: As the integration tests are based on an iterative execution
of interaction test cases for single components the inte-
gration scope can be varied by testing single interactions
up to complete paths, bridging the gap between testing
individual components and full-fledged integration tests.

A3: Furthermore, the integration tests adapt themselves to
changes in system design, component composition, and
behavior changes.

A4: In addition, the iterative process requires only one com-
ponent to be running at a time instead of large integration
environments. This limits the maximum resource usage

https://anonymous.4open.science/r/InterACt-4A21
https://anonymous.4open.science/r/InterACt-4A21

This preprint is a preliminary version. The final version will be published at APSEC 2023.

to the maximum resource usage of one component rather
than the entire system.

Our approach is meant to complement standard integration
testing. It allows to detect integration problems even when
little or no information about certain components is available.
Furthermore, our approach allows to continuously search for
integration faults during the development of components and
unit test suites as they evolve. Last but not least, components
affected by changes of another component can be detected,
whenever they are part of one interaction path. However, the
approach also has its limitations.
L1: A limitation of using the unit test cases as the single

source of truth is that the integration tests can only be
as complete as the coverage of the unit test suites of the
components. Coverage in this case refers to the coverage
of externally observable interaction paths through the
activation of outgoing interfaces in response to received
messages on an incoming interface. All relevant paths
need to be captured for extensive integration testing using
the proposed approach. Only those interaction expecta-
tions we can observe during the execution of the unit tests
are tested. With that in mind, the generated interaction
tests are not sensitive to all integration faults.

L2: Right now, the approach is limited to stateless com-
ponents unless the test cases adapt the initial state of
the component depending on the stimulus message. Oth-
erwise, the state would not match the contents of the
stimulus, so the test case of the component is meaningless
and will probably fail no matter what. In our example
given in Figure 2 the test cases for the WarehouseService
have to adapt the warehouse inventory to contain water
instead of tea when the stimulus message M4 of the ATC
ShippingTest is exchanged with the component response
message M2.

IX. RELATED WORK

In this section, we present related approaches to detect and
mitigate integration faults and their differences from the one
presented in this paper.

Instead of testing the implementation, specification-based
approaches like protobuff ensure the structural consistency of
APIs by generating the actual implementation from specified
documents. – But these approches lack behavioral information
[20]. Thus only interface faults can be prevented.

On the other hand, approaches like consumer-driven con-
tracts were developed to test early, by decoupling parts of the
integration test from the development of the interacting ser-
vices through contracts that can be executed by all interacting
parties. However, these are additional tests and do not replace
integration tests [21]. – In contrast to the approach presented in
this paper, consumer-driven contracts can not be used to check
pass-through APIs, which are common in choreography-based
architectures [22].

To test message-oriented systems, Santos et al. [23] propose
a testing technique, that requires specifying the behavior of a
system in advance, such that sequences of messages used to

test the system can be derived from it. It is closely related
to other specification-based testing approaches that use Linear
Temporal Logic (LTL) to test such systems [24], [25]. – This
is only possible if this specification is kept up-to-date with the
actual specification of the system under test, which is rarely
the case.

Benz [26] present an approach that requires existing models
of components and systems to generate test cases that cover
critical interaction scenarios. – Our approach reconstructs the
models from the observation of the unit test cases and allows
to execute the integration tests on a per-component basis.

Elbaum et al. [27] present an approach, called differential
unit testing, that contrasts with the one we present in this paper.
Instead of using isolated unit test cases to derive integration
test cases, they used system test cases to derive unit test
cases to test for differences in implementations of the same
component in isolation. – This is only applicable if multiple
implementations of the same component are developed, which
is not realistic.

Gälli et al. [28] present the EG-meta-model that intends to
develop test cases such that they can be composited. Since
tests serve as a form of documentation they contain examples
of how to use the units that are tested. These examples are
extracted and can then be used to composite new more com-
plex tests using the EG-Browser. – The idea of composing unit
test cases that serve as examples of how to use a component
is also the basis of the presented approach. However, we
considered different kinds of communication protocols and
extract expectations towards other components from those
examples provided by the unit tests to automatically generate
tests throughout the development and evolution of a system.

Schätz and Pfaller [29] propose an approach to validate the
behavior of a component after its embedding into a system
without instrumenting the component itself, treating it as a
black-box test. – While our approach aims to assess the
functionality of the system by reusing unit tests, this approach
aims to verify the functionality of a component through system
tests.

X. CONCLUSION & FUTURE WORK

The approach presented in this paper aims to support
traditional integration testing by reusing already and always
available artifacts, the unit test suites created for the developed
components.

To answer the research question RQ1, we have developed
the UTBI meta-model to get models containing structural
and behavioral information of components and their interfaces
based on unit test execution data. Using a property graph rep-
resentation of UTBI models, we were able to define important
integration failure indicators.

Analyzing the extracted information regarding the trig-
gered messages and the involved interfaces, we developed
a technique to generate so-called interaction tests to check
the successful interaction between components. As interaction
tests can be combined, they represent integration tests that

This preprint is a preliminary version. The final version will be published at APSEC 2023.

verify interaction expectations that were gathered from the
UTBI model. This answers research questions RQ2 and RQ3.

In the future, a test engineering approach and framework
will be developed to automatically generate interaction tests
that adapt to changes in system design and component be-
havior for stateful components. For this purpose, the unit test
cases of components need to be parameterized by incoming
messages, so they can adapt the provisioned state before
test execution to match the message contents, as already
broached in Section VIII. In addition, a concept of contracts
using LTL or similar logic could be introduced to be more
expressive about the desired behavior of the environment of a
component. Furthermore, interaction expectations that can not
be derived implicitly from unit test data could be defined by
such contracts. These can be evaluated in the same manner as
the derived interaction expectations, using the data contained
in the model as well as the test instructions and oracles
contained in the unit test cases.

The tool prototype InterACt that implements the concept
was already developed and evaluated on a small running
example. The concept will be further evaluated regarding
its ability to detect integration faults early and lower
integration burden by reusing existing unit test cases in
complex component-based systems, through an extension
of the example project and an additional industry study to
investigate the usability and scalability of the approach.

Complementary materials for reviewer:
InterACt: https://anonymous.4open.science/r/InterACt-4A21/
README.md
Demonstration video (10 mins): https://youtu.be/0xobsjsO9rQ

REFERENCES

[1] A. Sill, “The design and architecture of microservices,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 76–80, 2016. [Online]. Available:
http://doi.org/10.1109/MCC.2016.111

[2] M. Pezze and M. Young, Software Testing and Analysis: Process,
Principles and Techniques. Hoboken, NJ, USA: John Wiley & Sons,
Inc., 2008.

[3] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to
restful api evolution?” in Service-Oriented Computing, X. Franch,
A. K. Ghose, G. A. Lewis, and S. Bhiri, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 245–259. [Online]. Available:
https://doi.org/10.1007/978-3-662-45391-9 17

[4] S. Mahmood and A. Khan, “An industrial study on the importance of
software component documentation: A system integrators perspective,”
Information Processing Letters, vol. 111, no. 12, pp. 583–590, 2011.
[Online]. Available: https://doi.org/10.1016/j.ipl.2011.03.012

[5] D. Firesmith, “Four types of shift left testing,” Carnegie Mellon
University, Software Engineering Institute’s Insights (blog), Mar 2015,
accessed: 2023-Jun-30. [Online]. Available: https://insights.sei.cmu.edu/
blog/four-types-of-shift-left-testing/

[6] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen,
and T. Männistö, “Devops adoption benefits and challenges in
practice: A case study,” in Product-Focused Software Process
Improvement, P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc,
M. Felderer, S. Amasaki, and T. Mikkonen, Eds. Cham: Springer
International Publishing, 2016, pp. 590–597. [Online]. Available:
https://doi.org/10.1007/978-3-319-49094-6 44

[7] M. Senapathi, J. Buchan, and H. Osman, “Devops capabilities,
practices, and challenges: Insights from a case study,” in Proceedings
of the 22nd International Conference on Evaluation and Assessment
in Software Engineering 2018, ser. EASE’18. New York, NY, USA:

Association for Computing Machinery, 2018, pp. 57–67. [Online].
Available: https://doi.org/10.1145/3210459.3210465

[8] M. Nasution and H. Weistroffer, “Documentation in systems
development: A significant criterion for project success,” in 2009 42nd
Hawaii International Conference on System Sciences, 2009, pp. 1–9.
[Online]. Available: https://doi.org/10.1109/HICSS.2009.167

[9] V. Garousi and T. Varma, “A replicated survey of software
testing practices in the canadian province of alberta: What has
changed from 2004 to 2009?” Journal of Systems and Software,
vol. 83, no. 11, pp. 2251–2262, 2010. [Online]. Available: https:
//doi.org/10.1016/j.jss.2010.07.012

[10] A. Mann, A. Brown, M. Stahnke, and N. Kersten, “State of devops
report,” Puppet, Circle CI, Splunk, Tech. Rep., 2019. [Online]. Available:
https://puppet.com/resources/whitepaper/state-of-devops-report

[11] B. Lima and J. P. Faria, “A survey on testing distributed
and heterogeneous systems: The state of the practice,” in
Software Technologies, E. Cabello, J. Cardoso, A. Ludwig,
L. A. Maciaszek, and M. van Sinderen, Eds. Cham: Springer
International Publishing, 2017, pp. 88–107. [Online]. Available:
https://doi.org/10.1007/978-3-319-62569-0 5

[12] “Google testing blog: Just say no to more end-to-end tests,” https://
testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.
html, 2015, (Accessed on 14/01/2023).

[13] H. K. N. Leung and L. J. White, “A study of integration testing and
software regression at the integration level,” Proceedings. Conference
on Software Maintenance 1990, pp. 290–301, 1990. [Online]. Available:
https://doi.org/10.1109/ICSM.1990.131377

[14] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its
Implementation. USA: Addison-Wesley Longman Publishing Co., Inc.,
1983.

[15] “ISTQB glossary — abstract test case,” https://istqb-glossary.page/
abstract-test-case/, (Accessed on 14/01/2023).

[16] R. Angles, “The property graph database model,” in Proceedings of
the 12th Alberto Mendelzon International Workshop on Foundations
of Data Management, Cali, Colombia, May 21-25, 2018, ser. CEUR
Workshop Proceedings, D. Olteanu and B. Poblete, Eds., vol. 2100.
CEUR-WS.org, 2018. [Online]. Available: http://ceur-ws.org/Vol-2100/
paper26.pdf

[17] I. F. Cruz, A. O. Mendelzon, and P. T. Wood, “A graphical query
language supporting recursion,” SIGMOD Rec., vol. 16, no. 3, pp. 323–
330, 1987. [Online]. Available: https://doi.org/10.1145/38714.38749

[18] M. Y. Vardi, “A theory of regular queries,” in Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, ser. PODS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 1–9. [Online].
Available: https://doi.org/10.1145/2902251.2902305

[19] P. Runeson and E. Engstrom, “Software product line testing – a 3d re-
gression testing problem,” in 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, 2012, pp. 742–746.

[20] Google, “Protocol buffers,” http://code.google.com/apis/protocolbuffers/,
(Accessed on 14/01/2023).

[21] C.-F. Wu, S.-P. Ma, A.-C. Shau, and H.-W. Yeh, “Testing for event-
driven microservices based on consumer-driven contracts and state
models,” in 2022 29th Asia-Pacific Software Engineering Conference
(APSEC), 2022, pp. 467–471.

[22] C. K. Rudrabhatla, “Comparison of event choreography and
orchestration techniques in microservice architecture,” International
Journal of Advanced Computer Science and Applications, vol. 9, no. 8,
2018. [Online]. Available: http://doi.org/10.14569/IJACSA.2018.090804

[23] A. Santos., A. Cunha., and N. Macedo., “Schema-guided testing of
message-oriented systems,” in Proceedings of the 17th International
Conference on Evaluation of Novel Approaches to Software Engineering
- ENASE,, INSTICC. SciTePress, 2022, pp. 26–37. [Online]. Available:
http://doi.org/10.5220/0010976100003176

[24] A. Michlmayr, P. Fenkam, and S. Dustdar, “Specification-
based unit testing of publish/subscribe applications,” in 26th
IEEE International Conference on Distributed Computing Systems
Workshops (ICDCSW’06), 2006, pp. 34–34. [Online]. Available:
https://doi.org/10.1109/ICDCSW.2006.103

[25] L. Tan, O. Sokolsky, and I. Lee, “Specification-based testing with
linear temporal logic,” in Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration, IRI 2004, 2004, pp.
493–498. [Online]. Available: https://doi.org/10.1109/IRI.2004.1431509

https://anonymous.4open.science/r/InterACt-4A21/README.md
https://anonymous.4open.science/r/InterACt-4A21/README.md
https://youtu.be/0xobsjsO9rQ
http://doi.org/10.1109/MCC.2016.111
https://doi.org/10.1007/978-3-662-45391-9_17
https://doi.org/10.1016/j.ipl.2011.03.012
https://insights.sei.cmu.edu/blog/four-types-of-shift-left-testing/
https://insights.sei.cmu.edu/blog/four-types-of-shift-left-testing/
https://doi.org/10.1007/978-3-319-49094-6_44
https://doi.org/10.1145/3210459.3210465
https://doi.org/10.1109/HICSS.2009.167
https://doi.org/10.1016/j.jss.2010.07.012
https://doi.org/10.1016/j.jss.2010.07.012
https://puppet.com/resources/whitepaper/state-of-devops-report
https://doi.org/10.1007/978-3-319-62569-0_5
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://doi.org/10.1109/ICSM.1990.131377
https://istqb-glossary.page/abstract-test-case/
https://istqb-glossary.page/abstract-test-case/
http://ceur-ws.org/Vol-2100/paper26.pdf
http://ceur-ws.org/Vol-2100/paper26.pdf
https://doi.org/10.1145/38714.38749
https://doi.org/10.1145/2902251.2902305
http://code.google.com/apis/protocolbuffers/
http://doi.org/10.14569/IJACSA.2018.090804
http://doi.org/10.5220/0010976100003176
https://doi.org/10.1109/ICDCSW.2006.103
https://doi.org/10.1109/IRI.2004.1431509

This preprint is a preliminary version. The final version will be published at APSEC 2023.

[26] S. Benz, “Combining test case generation for component and integration
testing,” in Proceedings of the 3rd International Workshop on Advances
in Model-Based Testing, ser. A-MOST ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 23–33. [Online].
Available: https://doi.org/10.1145/1291535.1291538

[27] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and
replaying differential unit test cases from system test cases,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, pp. 29–45, 2009.
[Online]. Available: https://doi.org/10.1109/TSE.2008.103

[28] M. Gälli, R. Wampfler, and O. Nierstrasz, “Composing tests from
examples.” Journal of Object Technology, vol. 6, pp. 71–86, 2007.
[Online]. Available: https://doi.org/10.5381/JOT.2007.6.9.A4

[29] B. SchÃ¤tz and C. Pfaller, “Integrating component tests to system tests,”
Electronic Notes in Theoretical Computer Science, vol. 260, pp. 225–
241, 2010, proceedings of the 5th International Workshop on Formal
Aspects of Component Software (FACS 2008). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1571066109005222

https://doi.org/10.1145/1291535.1291538
https://doi.org/10.1109/TSE.2008.103
https://doi.org/10.5381/JOT.2007.6.9.A4
https://www.sciencedirect.com/science/article/pii/S1571066109005222

	Introduction
	Challenges of early integration
	Integration faults
	Interpretation Faults
	Miscoded call faults
	Interface faults

	Problem statement and Goals
	The unit test based integration meta model
	A formal representation of the UTBI meta-model
	Graph Queries
	An example system

	Examining the model for integration faults
	Examine for missing functions and extra functions faults
	Examine for wrong placed and missing call faults

	The iterative UTBI testing process
	Create UTBI component models
	Create & complete the UTBI system model
	Analyze the UTBI system model
	Generate & execute interaction test cases
	Example

	Discussion
	Interpretation of interaction test results
	Advantages and limitations

	Related Work
	Conclusion & future work
	References

