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Abstract. In recent years, multiple research papers and tools were pub-
lished that addressed the interest of estimating the carbon footprint of
computational activities. Generally, the presented carbon footprint esti-
mation methods calculate the product of the compute hardware’s energy
consumption and a factor expressing the emissions for the corresponding
energy produced in the region where the compute hardware is located.
However, there are three open issues. First, the methods for determin-
ing the energy consumption are inaccurate or lack an evaluation of the
accuracy. Second, most tools use as carbon intensity a static long-term
average, e.g., over a year, that the tool authors gathered once, but since
some regions have a carbon intensity varying each day and throughout
the year, the accuracy of using a static carbon intensity is unclear and
requires an evaluation. Third, most tools enable estimates for a single
computer or a homogeneous set of computers only, excluding the easy
carbon footprint estimation for scenarios with a heterogeneous set of
compute hardware.
In this paper, we make three contributions. First, we analyze the eval-
uation gap regarding methods for determining the compute hardware’s
power consumption. Second, using example cases, we show that estimat-
ing a carbon footprint using a static long-term average carbon intensity
compared to hourly carbon intensity time series data can lead to large er-
rors; in the worst case among the example, the error was 325.8%. Third,
we present a tool assisting with carbon footprint estimates using time
series carbon intensity data and also supporting heterogeneous compute
hardware.

Keywords: carbon footprint, energy consumption, green computing

1 Introduction

Carbon emissions are made responsible for the climate change [1], creating a 
strong interest in understanding and reducing the carbon footprint of many 
kinds of energy-consuming activities, e.g., industry production processes, en-
ergy production, and traveling. Understanding an activity’s carbon footprint 
involves quantifying the greenhouse gas (GHG) emissions attributed to the ac-
tivity. GHGs include carbon dioxide (CO2), methane (CH4), and nitrous oxide
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(N2O). To simplify the quantification, the individual emissions can be expressed
as CO2-equivalent (CO2e) emissions.

The interest in understanding an activity’s carbon footprint reached com-
puter science. Contributions come from the area of machine learning [3–6, 15]
and cloud computing [9–12]. The contributions include various tools for estimat-
ing the carbon footprint of compute activities [14–20]. Briefly summarized, these
tools first measure or estimate the energy consumption of a single computer or
compute infrastructure and then estimate the carbon footprint caused by the
energy consumption by multiplying the energy consumption with a carbon in-
tensity (CI) for a region chosen by the user. The CI expresses the mass of CO2e
emissions per unit of energy consumption, e.g., as gram CO2e per kilowatt hour.

There are three issues with the existing tools for estimating the carbon foot-
print. First, these tools use methods for estimating the energy consumption that
are inaccurate or lack an evaluation of the accuracy. We explain this in the
related work in more detail.

Second, many tools use per selected region a static CI gathered once by the
tools’ authors, e.g., an annual average CI. Using a static CI is accurate if the user
knows the time interval covered by the average CI and makes an estimate for
this time interval. However, users generally do not intend to estimate the carbon
footprint for this predefined time interval only. If the real CI rarely deviates
from the static CI, this issue could be negligible, but in some regions, the mix of
energy production and the CI varies strongly over time; an example is Finland in
2022 as shown in figure 1. Thus, the issue is that the accuracy of the estimated
carbon footprint depends on how well the static CI represents the time interval
chosen by the user.
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Fig. 1: Finland’s energy production carbon intensity in 2022.
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Third, most of the tools assume a compute infrastructure consisting of a
single server or a homogeneous set of servers. However, there are scenarios like
the operation of web applications where the underlying compute infrastructure
can be heterogeneous, i.e., it consists of different kinds of hardware with indi-
vidual power. Thus, the third issue is the currently limited applicability of the
estimation tools that excludes some computational activities.

In this paper, we make three contributions. First, in section 2, we present
an overview of the existing tools and their carbon footprint estimation methods,
we describe the lack of evaluation, and we discuss the data gap that prevents
an evaluation. Second, in section 3, we quantify the error of estimating a carbon
footprint with an annual average CI for exemplary cases; we compared estima-
tions based on an annual average CI with estimations based on an hourly CI
time series for selected regions and time intervals in 2022. Third, in section 4, we
present an estimation tool that fills the gap of relying on hourly time series CI
data; this tool enables estimates for single computers and a set of different com-
puters, i.e., a heterogeneous compute infrastructure. Besides the contributions,
we provide some ideas for future work in section 5 and summarize our findings
in section 6.

2 Related work

The interest in determining the carbon footprint of computational tasks is not
new. As shown in table 1, there are multiple tools for assisting users in estimating
the carbon footprint of a computational activity:

– Reporting dashboards Some cloud providers give their customers access
to dashboards reporting the customer’s past cloud computing usage’s car-
bon footprint [9–11]. Of all the tools discussed here, they are the only ones
considering emissions from other activities (e.g., production and waste) be-
sides the data centers’ energy consumption. Those emissions are reported
using the Greenhouse Gas Protocol scopes as categorization [2]. While this
provides a much broader perspective on the emissions, the tools have only a
rough documentation or none at all and the exact calculations are not made
public.
An alternative integrating estimates for multiple cloud providers in one dash-
board is the open source tool “Cloud Carbon Footprint” (as of September
2023, the supported providers are AWS, Azure, and GCP) [18]. For each
cloud provider considered, the tool obtains the user’s cloud usage using the
provider’s API, maps the usage of cloud resources to hardware (considering
CPUs, GPUs, memory, storage and network traffic), estimates the hard-
ware’s energy consumption, and, finally, estimates the carbon footprint.

– Instrumentation libraries There are multiple libraries that allow devel-
opers to instrument their code such that the code execution’s energy con-
sumption is measured and the carbon footprint is estimated [3, 6, 7, 15].

– Estimation assistants The web applications “Green Algorithms” and “ML
CO2 Impact” enable their users to estimate a compute activity’s carbon

https://www.cloudcarbonfootprint.org/
https://www.green-algorithms.org/
https://mlco2.github.io/impact/
https://mlco2.github.io/impact/
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footprint based on the activity’s runtime and the used hardware [4, 5]. ML
CO2 Impact considers either a CPU or GPU, the computation’s runtime and
the computation’s location, while Green Algorithms also considers memory
and allows to consider both types of processors at the same time.

In the remainder of this section, we provide an overview of the methods used by
the aforementioned tools since the methods’ details are crucial to the estimations’
accuracy. For this analysis, we studied the openly available documentations and
source codes for all but the cloud providers’ tools. The tools have in common that
they first determine a compute activity’s energy consumption and then multiply
the result with a carbon intensity to obtain the footprint. They differ in how
they determine energy consumption and what carbon intensity information they
use, which we explain subsequently.

2.1 Determination of the energy consumption

The tools compute the energy consumption by summing up the estimated or
measured power of selected hardware components as shown in table 1.

Power measurements for CPUs, GPUs, and memory rely on processor fea-
tures. The Running Average Power Limit (RAPL) interface initially developed
by Intel can provide the CPU’s and memory’s power consumption. The NVIDIA
Management Library (NVML) interface does the same for GPUs by NVIDIA.

Power estimations for CPUs and GPUs are based on either the processor’s
Thermal Design Power (TDP) (Green Algorithms, ML CO2 Impact) or on fac-
tors derived from datasets with power measurements (Cloud Carbon Footprint).

Processor power estimations using the TDP assume it to be an approximation
of the processor’s power. A processor’s TDP specifies the thermal energy that
the processor may dissipate, which serves as a reference for what the cooling
must be able to handle. Since most of a processor’s power ends up as heat
and processor manufacturers have an interest in sufficient cooling to ensure the
processor’s stable operation, we conclude that the TDP can be considered as an
upper bound to the processor’s power.

The processor power estimations by Cloud Carbon Footprint base on fac-
tors derived from the SPECpower dataset for CPUs and a dataset with power
measurements for GPUs created by the company Teads [13]. Each record in the
SPECpower database contains information on the total power consumption of
one or more servers when the CPU idles and when it is at max load. From this
data, the authors of Cloud Carbon Footprint derived an aggregated idle and
max load energy consumption per CPU thread (also referred to as vCPU) for
each CPU family, e.g., Intel Coffee Lake and Skylake. With a mapping of cloud
services to the combination of CPU families, a number of vCPUs, an assumed
load as well as hours of cloud service usage, the CPU energy consumption is
estimated. The approach for GPUs is similar.

To estimate the power of memory, storage, and network traffic factors are
used. For memory, the factor relies on statements made by memory manufac-
turers Crucial and Micron [21,22]. Cloud Carbon Footprint’s power estimations



Compute Carbon Footprint Estimation based on Time Series Data 5

T
ab

le
1:

So
ft

w
ar

e
to

ol
s

fo
r

de
te

rm
in

in
g

a
co

m
pu

te
ac

ti
vi

ty
’s

ca
rb

on
fo

ot
pr

in
t

an
d

th
ei

r
m

et
ho

ds
fo

r
de

te
rm

in
in

g
th

e
en

er
gy

co
ns

um
pt

io
n

an
d

ca
rb

on
in

te
ns

it
y

T
oo

l
P
ow

er
[(

m
)e

as
ur

e/
(e

)s
ti

m
at

e
(m

et
ho

d)
]

C
ar

b
on

in
te

n
si

ty
C

P
U

G
P

U
m

em
or

y
st

or
ag

e
n
et

w
or

k

reporting
dashboards

A
W

S
C

us
to

m
er

C
ar

bo
n

Fo
ot

pr
in

t
T
oo

l
un

kn
ow

n
un

kn
ow

n
un

kn
ow

n
un

kn
ow

n
un

kn
ow

n
un

kn
ow

n

A
zu

re
E

m
is

si
on

s
Im

pa
ct

D
as

hb
oa

rd
1

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

G
oo

gl
e

C
lo

ud
C

ar
bo

n
Fo

ot
pr

in
t1

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

C
lo

ud
C

ar
bo

n
Fo

ot
pr

in
t

e
(d

at
as

et
)

e
(d

at
as

et
)

e
(f

ac
to

r)
e

(f
ac

to
r)

e
(f

ac
to

r)
st

at
ic

instrumentation
libraries

ca
rb

on
tr

ac
ke

r
[3

]
m

(R
A

P
L
)

m
(N

V
M

L
)

m
(R

A
P

L
)

no
t

co
ns

id
er

ed
no

t
co

ns
id

er
ed

ti
m

e
se

ri
es

co
de

ca
rb

on
2

m
(R

A
P

L
)

m
(N

V
M

L
)

e
(f

ac
to

r)
no

t
co

ns
id

er
ed

no
t

co
ns

id
er

ed
st

at
ic

E
co

2A
I

[7
]

e
(T

D
P

)
m

(N
V

M
L
)

e
(f

ac
to

r)
no

t
co

ns
id

er
ed

no
t

co
ns

id
er

ed
st

at
ic

E
xp

er
im

en
t

Im
pa

ct
T
ra

ck
er

[6
]

m
(R

A
P

L
)

m
(N

V
M

L
)

m
(R

A
P

L
)

no
t

co
ns

id
er

ed
no

t
co

ns
id

er
ed

st
at

ic

T
ra

ca
rb

on
3

m
(R

A
P

L
)

m
(N

V
M

L
)

m
(R

A
P

L
)

no
t

co
ns

id
er

ed
no

t
co

ns
id

er
ed

st
at

ic

estimation
assistants

G
re

en
A

lg
or

it
hm

s
[5

]
e

(T
D

P
)

e
(T

D
P

)
e

(f
ac

to
r)

no
t

co
ns

id
er

ed
no

t
co

ns
id

er
ed

st
at

ic

M
L

C
O

2
Im

pa
ct

e
(T

D
P

)
e

(T
D

P
)

e
(f

ac
to

r)
no

t
co

ns
id

er
ed

no
t

co
ns

id
er

ed
st

at
ic

C
IC

O
2
e

(t
hi

s
pa

p
er

)
e

(T
D

P
)

e
(T

D
P

)
e

(f
ac

to
r)

no
t

co
ns

id
er

ed
no

t
co

ns
id

er
ed

ti
m

e
se

ri
es

(1
)

pr
ov

id
es

em
is

si
on

s
fo

r
G

H
G

pr
ot

oc
ol

sc
op

es
1,

2,
an

d
3,

i.e
.,

co
ve

rs
m

or
e

th
an

em
is

si
on

s
re

la
te

d
to

co
m

pu
ta

ti
on

al
en

er
gy

co
ns

um
pt

io
n

(2
)

if
R

A
P

L
is

no
t

av
ai

la
bl

e,
fa

lls
ba

ck
to

T
D

P
-b

as
ed

es
ti

m
at

e
fo

r
C

P
U

;i
f
av

ai
la

bl
e,

us
es

la
te

st
ca

rb
on

in
te

ns
it
y

re
tr

ie
ve

d
fr

om
A

P
I

fo
r

pr
iv

at
e

co
m

pu
te

in
fr

as
tr

uc
tu

re
s
(3

)
ro

w
va

lu
es

on
ly

ap
pl

y
fo

r
lo

ca
lc

om
pu

te
rs

ru
nn

in
g

lin
ux

;d
iff

er
en

t
m

et
ho

d
us

ed
fo

r
cl

ou
d

se
rv

er
s

https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool/
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https://github.com/sb-ai-lab/Eco2AI
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for storage and network rely on estimated factors [13]. The factor for storage is
derived from projections for 2020 published in the 2016 U.S Data Center Usage
Report.

A current issue of all power estimation approaches is a missing validation.
The TDP-based estimation is likely inaccurate as it does not consider known
variances in the power depending on the processor’s load, but it provides an
upper bound for a processor’s power. Although the derivation of the factors
used for memory, storage, and network traffic appears plausible, their accuracy
is unknown; the authors of Cloud Carbon Footprint describe this transparently in
their documentation’s methodology section [13]. Thus, currently all estimation
tools are experimental. In our opinion, a thorough evaluation of the existing
estimation methods cannot be conducted without more comprehensive data on
the power consumption of the hardware components.

2.2 Determination of the carbon intensity

All considered tools estimate the carbon footprint using a CI reflecting the energy
mix of the server’s location, i.e., a CI for the data center or the region thereof.
Many tools use per location a static CI value gathered once by the authors.
We refer to such a CI that is constant over time as static. An exception is the
instrumentation library carbontracker [3], which recurrently requests an updated
CI during the execution of the instrumented code. This is an example of what
we refer to as time series CI, i.e., a series of CI values over time.

3 Carbon footprint estimation with static vs. time series
carbon intensity

In this section, we study the accuracy of estimating the carbon footprint of a
compute activity with a static CI as it is practiced by many tools presented in the
related work. We quantify the error of estimating with a static CI by comparing
it to estimating with hourly time series CI data, i.e., as a baseline we use the
more accurate estimation based on the time series CI data. As figure 1 shows,
a region’s CI can vary over the time of day and throughout the year, indicating
that estimating with a static CI may exhibit strong inaccuracies.

The error cannot be expressed as a single static number but depends on three
variables: the CI development (the time series CI data) of the region of the data
center we use to run a compute activity as well as the compute activity’s start-
ing time and runtime. Thus, our study has to consider these three dimensions
when quantifying the error. Conducting a study across the full extent of these
dimensions is not feasible and also not necessary to provide first insights into the
accuracy of estimating with a static CI. Thus, we limit the considered regions
and time to exemplary cases.

https://github.com/lfwa/carbontracker
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3.1 Method

To quantify the error, we start by estimating the carbon footprint for compute
activities of varying runtimes using a static CI and time series CI data. As
static CI, we do not use the values used by the tools of the related work as this
comparison would be convoluted and unfair for the tools: convoluted since not
all tools use the same static values and they do not all cover the same regions;
unfair since their static CI values are not all based on the same time frames.
Instead, we calculate each region’s average CI over a common time frame and
use this average CI as the region’s static CI.

We continue with estimating the carbon footprint for hypothetical compute
activities with runtimes from one hour to the whole year, e.g., for 2022 the run-
times are in the interval [1, 8760]. For each runtime, we calculate the carbon
footprint for every possible starting hour such that the compute activity com-
pletes within the time frame. For example, considering 2022 again, for a 1-day
runtime, we calculate the carbon footprint for the job starting on the 1st of
January 2022 at 00:00, on the first of January at 01:00 until the latest possible
starting point on the 31st of December 2022 at 00:00; for a 1 year runtime, there
is only one possible start time to stay within 2022, which is January 1st at 00:00.
Similar to the tools of the related work, we assume the compute activity causes
a static power consumption. We calculate with a value of 1 kilowatt, but the
value is not important as we are only interested in how the carbon footprints
estimated with the static CI and the time series CI data relate to each other.

Then, we determine how much the carbon footprint estimated with the static
CI deviates from the carbon footprint estimated with the time series CI data, i.e.,
we determine the error in the estimation using the static CI. For the comparison,
we look at the relative error, i.e., for a geographical region g, a starting time s,
and a runtime r, the relative error is the difference in the carbon footprint
estimated using the static CI and the time series CI data in relation to the
carbon footprint estimated using the time series CI data:

relError (g, s, r) =
footprintstatic(g, s, r)− footprintts (g, s, r)

footprintts (g, s, r)

For the error analysis, we look at maxima as well as average values. In the
first case, we are interested in finding out what error to expect in the worst case.
For this, we proceed as follows: let Sr be the set of all starting times such that
a job with a runtime t completes within the considered time frame; then, for
every region and runtime, we search across the starting times Sr for where the
absolute value of the relative error is the highest:

maxError (g, r) = max
s∈Sr

abs (relError (g, s, r))

In the second case, we are interested in finding out what error to expect
when we would start a job at a randomly selected time within the considered
time frame. To achieve this, we calculate for every region and runtime the average
of the relative errors’ absolute values across all starting times:
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avgError (g, r) =
∑

s∈Sr
abs (relError (g, s, r))

|Sr|

3.2 Dataset (regions & time frame)

We applied the method to CI data provided by the company Electricity Maps
[24]. It gathers CI data for many regions in the world from various sources
and provides unified datasets. In June 2023, Electricity Maps published historic
datasets for 2021 and 2022 under an open-source license. The datasets contain
CI data for the direct emissions of the energy production as well as life cycle
analysis (LCA) emission data that includes not only direct emissions from the
energy production but also indirect emissions, e.g., “emissions from the extrac-
tion of resources required to build up installed capacity, emissions from direct
operations, and end-of-life related emissions” [23]. The datasets come in multiple
resolutions, with the most fine granular being hourly CI data.

In this study, we used as time series CI data the hourly LCA CI data by
Electricity Maps for 2022 for the regions Finland, France, Germany, the UK,
and Poland. We found those regions to be interesting as they exhibited different
mixes in their energy production. However, the choice of regions is not crucial as
we only intend to demonstrate a few exemplary cases of quantifying the error.

3.3 Results

In the presentation of the results, we focus on runtimes of up to 30 days as
this covers some of the largest batch jobs reported in machine learning in recent
years, e.g., Google’s Meena (30 days), T5 (20 days), Switch Transformer (27
days), and OpenAI’s GPT-3 (about 15 days) [8]. Common compute activities
are nightly batch jobs or build jobs, which typically run no more than half a
day. Therefore, we decided to select runtimes of the extreme values (1 hour and
8760 hours), as well as a few representative runtimes of nightly jobs (3, 6, and
12 hours) and long-running jobs (15 and 30 days).

Figure 2a and table 2a depict the maximum errors when estimating with the
region’s annual CI instead of the region’s hourly CI. For example, for a compute
activity running in a data center in France for 15 days, the error in the carbon
footprint estimation will be at most 46.3%. We find a few aspects of the results
noteworthy:

1. With longer runtimes, the maximum errors tend to get smaller, although
they are not monotonically falling.

2. The runtimes representative for nightly and machine learning jobs are within
the lower range of runtimes where the maximum error is rather high.

3. The maximum errors are always the highest for compute activities running
for 1 hour. This coincides with extremes in the hourly CI data.

4. The maximum errors are always the lowest for compute activities running
for 8760 hours, i.e., jobs running for the whole year 2022. The error is always
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Fig. 2: Carbon footprint estimation errors using an annual CI relative to the
estimation using hourly CIs for runtimes between 1 hour and 1 year (8760 hours)
and selected regions in the year 2022.



10 Christian Plewnia and Horst Lichter

Table 2: Errors in estimating a compute activity’s carbon footprint using an
annual CI relative to estimating the footprint using hourly CIs for a few repre-
sentative compute activity runtimes for selected regions in the year 2022.

(a) Maximum errors

Maximum error [%]

Runtime [h] Finland France Germany UK Poland

8760 (= 1 year) 0.0 0.0 0.0 0.0 0.0
720 (= 30 days) 123.5 30.7 35.1 43.3 12.7
360 (= 15 days) 145.0 52.9 41.3 77.2 14.4
12 221.1 201.5 169.3 243.2 52.2
6 225.4 267.3 175.3 276.2 76.7
3 228.2 293.2 181.2 313.5 83.8
1 231.4 294.7 183.3 325.8 85.6

(b) Average errors

Average error [%]

Runtime [h] Finland France Germany UK Poland

8760 (= 1 year) 0.0 0.0 0.0 0.0 0.0
720 (= 30 days) 39.4 12.0 7.4 10.6 3.6
360 (= 15 days) 40.0 14.3 10.5 14.1 4.6
12 43.9 25.7 23.8 34.4 9.3
6 44.3 26.7 26.2 36.6 10.4
3 44.5 27.3 27.3 37.9 10.9
1 44.6 27.6 27.8 38.5 11.1



Compute Carbon Footprint Estimation based on Time Series Data 11

0 for 8760 hours since the job’s time frame is the same as the time frame
over which the annual CI was calculated.

One aspect not shown by the here presented results is the direction of the
deviation. In some cases, the relative error identified as the maximum error is
negative, meaning the carbon footprint estimated with the annual CI is lower
than the one estimated with the hourly CI.

Figure 2b and table 2b depict the average errors when estimating with the
region’s annual CI instead of the region’s hourly CI. Due to the average applied,
the errors shown here are lower than the maximum errors shown before. Similarly,
as for the maximum errors, the average errors are the highest for a runtime of 1
hour and, with an error of 0%, the lowest for a runtime of 8760 hours.

The materials used to obtain the presented analysis results are provided in
the paper’s supplemental material. This covers the input datasets by Electricity
Maps, the source code for computing the errors, and the resulting datasets with
the maximum and average errors for all runtimes across the selected regions.

3.4 Discussion

The study allows us to draw three conclusions regarding the error of estimating
a compute activity’s carbon footprint with an annual CI instead of an hourly CI
for the considered time frame of 2022 and the regions Finland, France, Germany,
the UK, and Poland:

1. There can be large errors in the carbon footprint estimation. For instance, in
the worst case, we would have had a large error of 325.8% (maximum error
for the UK and a 1-hour runtime).

2. On average, the expected errors are much lower than the maximum error.
For example, the average error for a 1-hour compute activity running in the
UK is 38.5%.

3. The errors highly depend on the considered compute activity, i.e., the region
where the compute activity is executed as well as the compute activity’s
starting time and runtime. For example, for compute activities running in
the considered regions for 1 hour or 720 hours, the maximum error ranges
from 12.7% to 325.8% and the average error ranges from 3.6% to 44.6%.

The above conclusions are specific to the year and regions and thus may not
be applicable to other years and regions. In general, the study revealed that there
is a risk of large errors when estimating a compute activity’s carbon footprint
with a static CI instead of time series CI data. Further, in general, we have no
knowledge about the extent of the errors when using a static CI until we compare
the results to estimations with time series CI data.

The aforementioned problems lead to the question of whether to always prefer
the carbon footprint estimation with time series CI data. The tool we present
in the next section makes it possible to conduct carbon footprint estimations
using time series CI data with little additional effort compared to the tools
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presented in the related work. The only additional input that a user must provide
is information about the compute activity’s starting time. The tool takes care
of the estimations as long as time series CI data is available – an effort that can
be taken care of by the tool developers. Thus, the only case where a simplified
estimation with a static CI is preferable is when an estimation with time series
CI data is impossible due to missing data.

3.5 Threats to validity

This study can only consider a certain time frame. Future changes in the energy
mix, e.g., caused by building new renewable energy capacity, and varying weather
conditions can affect a region’s CI. Thus, the errors obtained by this study are
not valid beyond the considered time frame. However, we think it is unlikely that
many regions will have a (close to) constant CI in the foreseeable future, which
is why we think the study’s idea will remain relevant beyond the considered time
frame.

4 Compute carbon footprint estimation tool (CICO2e)

The Compute Infrastructure CO2e estimator (CICO2e) is a web application
enabling its users to estimate the energy consumption and carbon footprint for
a configurable heterogeneous compute infrastructure using CI time series data.
The user can configure the composition of the compute infrastructure, which is
used to determine the energy consumption, and choose what CI time series data
to use, which is used together with the energy consumption to determine the
carbon footprint. Subsequently, we describe the tool’s usage.

To obtain an estimate, the user must first configure a compute infrastructure.
The user can add data centers to the infrastructure and servers to each data
center. An example of an infrastructure with one data center and two types
of servers is shown in figure 3. Each server is defined by how much energy it
consumes and a usage plan specifying one or more rules for how many instances
of that server are running at a time, e.g., 1 server instance running in November
2022 or a weekly recurring pattern of 6 instances running on weekdays during
2022. Figure 4 shows an example of a usage plan and its rules configuration.
The flexible configuration of the usage rules allows for modeling different kinds
of compute activities, e.g., one-time scientific jobs, constantly running machine
learning clusters and flexibly scaling web application clusters. To assist the user
in estimating the energy consumption of a server, an estimate can be calculated
based on a specification of the CPU, the GPU and the memory. The energy
consumption is estimated based on the TDP (for the CPU and GPU) and on a
factor (for the memory).

The servers only define the direct energy consumption of the compute hard-
ware. Indirect energy consumption by supplemental hardware like cooling and
network devices is covered by the Power Usage Effectiveness (PUE) factor, which
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Fig. 3: Screenshot of the compute infrastructure composition in CICO2e

Fig. 4: Screenshot of the usage plan configuration in CICO2e
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Fig. 5: Screenshot of the estimated carbon footprint in CICO2e

a user can configure for the data center. It is up to the user to get the PUE from
the data center’s provider.

For the data center, the user must also configure the CI data matching the
data center’s energy mix. We added hourly CI datasets covering 12 regions for
the years 2021 and 2022, which were released by Electricity Maps [24] using the
Open Database License. In the example in figure 3, the data center uses the CI
data for Ireland.

Once the compute infrastructure is configured, the user can request the car-
bon footprint estimate. It is computed by a server application in the background.
The estimations use the processors’ TDP and the factor for the memory power
consumption that is also used by other tools. Since we use the TDP for the
processor power estimation, the result is not the real consumption but an upper
bound. Using the result from the server, the user interface shows the estimated
total energy consumption, the estimated total carbon footprint of the energy
consumed (GHG protocol scope 2 emissions), and a graph depicting a develop-
ment of power consumption and carbon footprint over the time of the compute
infrastructure usage. For example, figure 5 shows an estimate for the previously
configured compute infrastructure.

The application was designed such that CI datasets can be added by adapting
the backend’s configuration. This allows developers to integrate updated hourly
CI data by Electricity Maps or other sources, including the latest Electricity
Maps data that is available for a fee.
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5 Future work

Future work should focus on the evaluation of compute hardware energy esti-
mation methods, which requires addressing the data gap. For processors and
memory, we imagine that a benchmark similar to the SPECpower benchmark
could be developed, which does not rely on a complex setup for measuring the
AC input, but uses the RAPL and NVML interfaces discussed in the related
work; however, this goes with the assumption that these interfaces provide reli-
able power measurements.

Once the evaluation is done, the next step is to look into methods for opti-
mizing the carbon footprint of compute activities based on estimations; we found
some work going in this direction, but we think this will not be fruitful until we
have a reliable estimation method.

While in our experience many consumers of energy pay a fixed price per
kilowatt hour, we can imagine that variable pricing can become more common
in the future. The more the energy production becomes renewable, the more the
availability of energy may vary – and with it the price. In such a case, being able
to estimate energy costs using time series pricing data could become interesting,
which could be achieved by replacing the CI time series data with pricing time
series data in our tool. Similarly, paying compensation for carbon emissions could
become more common in the future. If this happens, being able to estimate and
minimize the compensation expenses could become an interesting topic as well.

We have also plans for the future of CICO2e. Electricity Maps intends to
provide free access to their carbon intensity datasets for 2023 at some point;
as soon as they are available we want to integrate them into our tool. We also
consider adding assistance for users in composing cloud compute infrastructures
since hardware specifications of cloud servers are usually not easy to find; the
Cloud Carbon Footprint project already gathered information that could be used
to realize this assistance.

6 Conclusion

In this paper, we addressed three issues of carbon footprint estimation tools.
First, in section 2 we show that many tools’ methods or estimating the energy
consumption of a computer lack an evaluation. Thus, for many tools the esti-
mate’s accuracy is unknown. An exception are tools relying on the processor’s
TDP: while the TDP does not correspond to the energy consumption, it provides
an upper bound to it. The general issue with developing a reliable, more accu-
rate method is the data gap with respect to the power consumption of compute
hardware. Closing this gap is a challenge left for future work.

The second issue we addressed is that most tools use a static carbon intensity
(CI) to estimate the carbon footprint. We showed in section 3 that the use
of a static CI can lead to inaccurate carbon footprint estimates. Among the
exemplary cases we analyzed, the error of calculating the footprint with a static
CI was up to 325.8% compared to calculating with an hourly CI time series.
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The highest error occur for the compute jobs with short runtimes and the error
tends to decrease with longer compute job runtimes. To overcome these errors,
we recommend carbon footprint estimation tools to rely on time series CI data
instead of a static CI if possible or to clearly document what CI is used and
what it means for the estimate’s accuracy.

Third, there was a gap not covered by existing tools. They could create a
carbon footprint estimate for either a past cloud infrastructure that could be
composed of a heterogeneous set of servers or for a model of a past or planned
infrastructure that, however, could consist of a single computer or a homoge-
neous set of servers only. CICO2e is an addition to the existing tools that fills
this gap as it can estimate the carbon footprint for a model of a past and planned
heterogeneous compute infrastructure alike. Following our own recommendation,
CICO2e estimates carbon footprints based on time series CI data. We intend to
continue the development of CICO2e (e.g, by supporting easier modelling of
compute infrastructures composed of public cloud servers) and welcome contri-
butions.

Supplemental material

– Analysis
The datasets and the source code of the analysis in section 3 can be found
in the paper’s supplemental material published at GitHub:
https://github.com/swc-rwth/CICO2e-paper-supplemental-material

– CICO2e application
The CICO2e web application is online accessible at:
https://cico2e.swc.rwth-aachen.de

– CICO2e source code
The source code of CICO2e is published at GitHub:
https://github.com/swc-rwth/CICO2e
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