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Abstract

Project management is indispensable in many fields, including in software development.
Project networks are often used to visualize the various tasks and their relations within
a project. A variant of project networks, the Activity-On-Node (AON) networks, can
be used to schedule the tasks of a project and, thus, determine the total duration of the
project as well as which tasks can not be postponed. As a central activity in project
management, the understanding and application of AON networks is an essential part of
the lecture “Software Project Management” of the Research Group Software Construc-
tion (SWC) at RWTH Aachen University. In this context, the SWC Research Group
uses syntactic exercise and examination tasks (ex-tasks) on AON networks to deepen
and evaluate the students’ understanding. However, the creation and evaluation of such
ex-tasks is time-consuming and error-prone, as there are no tools to support this process.
This thesis focuses on the automatic generation of AON networks for ex-tasks. More-
over, due to the AON layout used in the lecture and ex-tasks, it is very challenging to
generate such AON networks in this particular format, since known graph generation
algorithms can not be used to generate graphs in the given format. We accomplish the
generation and drawing of AON networks by leveraging existing approaches from graph
theory and extending them for the domain of AON networks and our network struc-
ture. We develop a microservice framework to automatically generate AON networks
and compute their properties. Using a microservice-driven approach, we are able to cre-
ate an extensible prototype of this framework that can easily be extended in the future,
to include additional features, such as automatic evaluation of ex-tasks.

Using this framework, we are able to create practical ex-tasks that only need minor
manual adjustments to be usable. In addition, the framework allows us to import pre-
viously created networks, calculate their properties and potentially improve their struc-
ture. Although we focus on generating relatively small AON networks, our framework
is generalized enough to also handle significantly larger networks.






Contents

1. Introduction
1.1. Structure of this Thesis . . . . . . . . . . .

2. Background
2.1, Graphs. . . . . L
2.2. Project Management and Project Networks . . . . . ... ... ... ...
2.3. Microservices . . . . . . . . .. e e e

3. Motivation and Problem Statement
3.1. Additional Requirements . . . . . . . . . . ... ... ... ... ... ...

4. Related Work
4.1. Task Graph Generation . . . . ... ... ... .. ... ... ...
4.2, SUMMATY . . . . .o e e e e e e e e e

5. Conceptual Foundations
5.1. Generation Method . . . . . . . . . . .. ...
5.2. Draw a Directed Graph . . . . . .. ... ... oo

6. Concept
6.1. Output Activity Network Structure . . . . . . . . . . ... ... ... ...
6.2. Abstracted Activity Network Diagram . . . . . .. ... ... ... ....
6.3. Steps Toward Generated Activity Network Diagrams . . . . . .. ... ..
6.4. Generating an Initial Activity Network Diagram . . . .. ... ... ...
6.5. Crossing Improvement . . . . . . . . .. ...
6.6. Crossing Avoidance . . . . . . . . . .. L Lo
6.7. Work Package Property Calculation . . .. .. ... ... . ........
6.8. Drawing the Activity Network Diagram . . . . . . . ... ... ... ...

7. Design
7.1. Datamodel . . . . . . .. e
7.2. Microservice Architecture . . . . . . . . . .

8. Implementation
8.1. Technologies. . . . . . . . . . . . . e
8.2. Configuration . . . . . . . ... L
83. Draw IO . . . . . . . . e

11
11

13
13
14

15
15
15

21
21
22
25
25
28
38
44
45

53
93
56

61
61
61
63



9. Evaluation

9.1. Generating Activity Network Diagram for Ex-Tasks . . . . .. .. .. ..
9.2. Generation of Larger Activity Network Diagrams . . . . . . ... ... ..

9.3. Discussion . .

10. Conclusion

10.1. Summary . .

10.2. Future Work
A. Appendix

Bibliography

69
69
74
75

77
77
78

79

81



List of Tables

2.1. Example activity list . . . . . . . ... oo

9.1. Table showing the statistical information from the 100 generated ANDs

71

iii






List

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

4.1.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.

6.17.
6.18.

6.19.

6.20.

6.21.

of Figures

Example graphs . . . . . . .. Lo 4
Finish-to-Start dependency . . . . . . . ... ... ... .. 5
Start-to-Start dependency . . . . . . .. ... Lo 5
Finish-to-Finish dependency . . . . . . . .. .. .. ... ... ... ... 5
Start-to-Finish dependency . . . . . . . . .. ... oL 6
Activity representation . . . . ... ... 6
Reference AND taken from a previous exam task . . . .. ... ... ... 8
Example graph generated by Task Graphs For Free (TGFF) [DRW98] . . 13
Example snippet of an AND as defined in the lecture . . . . . . .. .. .. 22
Example snippet of an AND as defined in the lecture placed within a grid 23
Comparison of drawing with and without a middle axis . . . . . ... .. 24
Example AND abstraction . . . . . . . .. ... .. oL 25
Generation process leading to the output AND . . ... ... ... .... 25
Negative effect of dummy vertices when used in the drawing step . . . . . 29
Example for the crossing point calculation between two dependencies . . . 30
Layer pair we do not consider since it is impossible to create a crossing in

the AND abstraction . . . . . . . .. . .. ... .. ... ... ... 32
Sliding window visualization . . . . . . . . . . .. ... ... ... .. 34
Activity diagram of layer-by-layer sweep . . . . . . .. ... 37
Crossing calculation limitations of the AND abstraction . . . .. ... .. 38
Visualization of possible swap dependencies . . . . . ... ... ... ... 40
Reducing step visualization . . . . . .. .. .. ... 0oL 41
Reducing step also considering the maximum row difference . . . . . . .. 42
Visualization of the extended possible swap dependencies . . . . .. ... 43
Problem when considering all dependencies going into work packages be-

tween the source and target layer as potential swap dependencies . . . . . 44
Visualization of the y-spacing concept . . . . . .. ... ... ... .... 45
Depending on the situation it might be better to place the start-to-x

dependency above or below . . . . . ... ... oL 46
Shifting dependencies depending on the number of other dependencies

passing by . . . ..o Lo 47
Problem when considering two dependencies starting in the same row,

going into the same target layer with different jump values. . . . . . . .. 48
Shifting dependencies that start at the same source and going to the same

direction . . . . . . . . L e e e 48



6.22. Arranging the dependency below the source would result in fewer crossings
within the AND . . . . . . . . . . . e
6.23. Exit and entry positions at a work package shifted depending on the
relationship between source and target work package . . . . . .. .. ...
6.24. Visualization of the bend point placement . . . . . .. ... ... .....
6.25. Initial abstract activity network diagram after applying the final trans-
formation step to it . . . . . . ...

7.1. Design of then internal AND model . . . . . . .. ... ... ... .....
7.2. UML class diagram of abstracted lectures activity network structure . . .
7.3. UML class diagram for the crossing improvement . . . . . . . ... .. ..
7.4. Data flow between microservices . . . . . ... ...
7.5. Logical flow between microservices . . . . . . . . . .. . ... ... ..
7.6. Sequence diagram for the generation process. . . . . . . . . ... ... ..
7.7. Sequence diagram for calculating an input AND . . . ... ... .....

8.1. Diagram visualization of the mxGraphModel in Source Code 8.1 . . . ..

9.1. Example for a generated ex-tasks activity network diagram generated with
Source Code A.1 (seed: 1645629446882) . . . . . . ... ... ... . ...
9.2. Reference AND taken from a previous exam task (Figure 2.7) . . . . . ..
9.3. Number of crossings in the AND abstraction after applying the crossing
improvement step and before the crossing avoidance step . . . . . . .. ..
9.4. Number of crossings in the AND abstraction after applying the crossing
improvement step and crossing avoidance step . . . . . . ... ... ...
9.5. Number of crossings in the AND drawing after applying the crossing im-
provement step and crossing avoidance step . . . . . .. ... ... L.
9.6. Example of a bad ex-task AND containing six crossings (seed: 1089) . . .
9.7. Example for a large AND generated with Source Code A.2 and both
heuristics combined (seed: 1645713753621) . . . . . . ... ... ... ..



List of Source Codes

8.1. mxGraphModel describing Figure 8.1 . . . . . . . . . ... ... ... ...

A.1. Default profile configuration used to generate ex-tasks . . . . .. .. ...
A.2. Profile configuration that generates large activity network diagrams

vii






1. Introduction

Planning and scheduling of tasks is part of our everyday life. Typically those tasks
are not big enough to need proper planning, and it is sufficient to keep track of them
using tools such as a calendar. However, this changes when it comes to more extensive
projects, especially in the context of businesses. Such projects often consist of many
different tasks involving several different people. Therefore, in order to first be able
to plan all those tasks and their relationship between each other, and, second, not to
lose track of them during the project duration, one needs to use proper tools. One
of those tools is an Activity Network Diagram (AND). An AND consists of two main
parts, the activities and the dependencies between the activities. Activities are used
to describe a task (i.e., description and estimated duration). The dependencies then
describe the temporal relationship between the various activities. There are four different
dependency types, each describing a slightly different relationship. For example, one
dependency describes the case where one activity is only allowed to start after another
is completed (e.g., one can only start building a house after finishing the foundation).
The dependencies can then be used to calculate the earliest point in time where one
can start with an activity and the latest point in time where it needs to be finished. In
total, after successfully planning all the activities and their dependencies and calculating
their additional properties, one knows when the project should be finished and which
activities are critical (i.e., can not be delayed or extended without delaying the whole
project).

Due to the importance of ANDs in project scheduling and progress tracking, they
are covered in many project management lectures. Therefore, exercise and examination
tasks (ex-tasks) are needed for these lectures to deepen and evaluate the understanding
of students. However, creating such tasks is, on the one hand, time-consuming and, on
the other hand, error-prone. This is because it does not make sense to repeatedly use the
same or very similar tasks, so one needs to create new tasks every semester. In addition,
the creation of such tasks is challenging by the fact that a small change (e.g., changing
a duration of an activity) leads to significant changes within the AND, meaning it is not
feasible to try out many different variants of an AND.

This thesis will address this problem by automating the creation of such tasks and
provide the possibility to modify and recalculate them by using a graph modeling tool.
The generation is performed by first creating an initial AND, then performing several
steps needed to fulfill aesthetic criteria, to then ultimately draw it. We develop this
functionality using a microservice-driven approach, to allow easy extension of our pro-
totype.



1. Introduction

1.1. Structure of this Thesis

In chapter 2, we briefly introduce the necessary background, which later chapters build
on. Then, in chapter 3, we provide the motivation and problem statement for this thesis
and also introduce our research questions. In chapter 4, we introduce some related
work. Before beginning with our work, we provide some conceptual foundations our
work is based on in chapter 5. Afterward, in chapter 6, we introduce the various steps
we performed to create an AND, and transform it into a proper output. In chapter 7, we
look at the design and the most interesting aspects of our prototype. Then, in chapter 8,
we introduce the technologies we used and describe the graph modeling tool we used
to work with ANDs. We evaluate how well we achieved the goal of generating tasks in
chapter 9. In the end, we summarize the results of this thesis and give some ideas that
can be done in future work, in chapter 10.



2. Background

This chapter provides the background that is needed in later parts of this thesis.

2.1. Graphs

The following section first gives a general overview of graph theory to, then, further
introduce one special graph type. This section is mostly based on [Deol7].

Directed Graphs

A directed graph (digraph) is usually denoted as G = (V, E) containing the set of vertices
V, and edges E. In this thesis, we can limit ourselves to non-empty finite vertex sets and
finite edge sets. The vertices V' = {vy,...,v,} can contain any arbitrary object, while the
edges E = {ey,...,en} are ordered pairs of vertices; thus, describing a connection only
in one direction.

The degree of a vertex v is split into the in-degree, denoted as d~ (v), and out-degree,
denoted as d*(v). The in-degree is the number of in-going edges, while the out-degree
is the number of out-going edges, of a vertex. For example, in Figure 2.1b the vertex vy
has an in-degree of one and an out-degree of two.

Furthermore, there are different ways to traverse a digraph. First, a path defines a
sequence of vertices and edges where each of them is only allowed to occur once (e.g.,
(u1, e10, o, €02, U2 in Figure 2.1a). A circuit is a special path where the sequence has to
start and end in the same vertex (e.g., appending (e21,u1) in the previous example).

Directed Acyclic Graphs

We can, then, define a directed acyclic graph (DAG) to be a digraph that does not
contain any circuit. A DAG has the special property that we can assign each vertex
a layer so that all predecessors of a vertex are in a lower layer, and all successors are
in a higher layer (e.g., we see in Figure 2.1c the layered representation of Figure 2.1b).
Formally, we can define this as a partitioning into the sets L1, Lo, ..., Ly, in such a way
that if (v,0’) € E and v € L; as well as v' € Lj, then ¢ < j must held. The number
of layers (i.e., the number of partitions) is denoted as h, and is called the height of the
DAG [HNO02].
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(a) Directed graph (b) DAG without layering (c) DAG with layering

Figure 2.1.: Example graphs

2.2. Project Management and Project Networks

Project management is the concept of planning, scheduling, and keeping track of the
progress, of a project. The first, and most essential, step at the beginning of a project
is to think about the different tasks the project consists of; thus, the planning [Heal6].
However, since our goal is to create synthetic ex-tasks where the structure and schedule
are essential and not the actual meaning, we not detail the planning step.

The simplest and most general representation of a project is the activity list. In an
activity list, all activities consist of four values: an identifier, a brief description, a
duration, and a list of direct predecessor activities. The direct predecessor list of an
activity contains all the activities that have to be completed before one can start that
activity [HLO5]. Table 2.1 is a general example of such an activity list.

The activity list is great for the planning step, but when it comes to scheduling and
progress tracking, it is better to look at the project using a project network, which
illustrates the flow of the project [HLO5].

Identifier | Description Direct Predecessor | Estimated Duration
A Pour Foundation - 4 weeks
B Construct walls A 2 weeks
C Landscaping A 3 weeks
D Construct roof B 1 week

Table 2.1.: Example activity list

2.2.1. Project Networks

A project network is generally used to visualize the dependencies between different ac-
tivities. It can be seen as a DAG G = (V| F) that has to visualize the following three
properties: the activity identifier, the estimated duration, and the dependencies between
activities. In general, two different formats of such a project network exist: the Activity-
On-Node (AON) and the Activity-On-Arrow (AOA) network. In this thesis, we only use
a variant of the AON networks, which we introduce in the following!.

'For more information on AOA networks, refer to the following papers: [LG96; WG04]
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In an AON network, the vertices describe the activities, and the edges describe the
dependencies between activities. Therefore, each vertex consists of an activity identifier
as well as a duration [Heal6]. It is essential to mention that an AON network usually
contains exactly one start and one end activity. If one has more than one start activity,
one must add a dummy start activity with dependencies to all initial start activities.
Similarly, when more than one end activity is present, one must add a dummy end
activity and create dependencies from the initial end activities to the dummy end activity.
Both dummy activities have a duration of zero.

2.2.2. Dependency Variants for Activity-On-Node Networks

We already introduced a single dependency type, in Table 2.1, indicating that an activity
is only allowed to start after all its predecessors are finished. Here, we introduce a total
of four different dependency types used by AON networks [LG96].

1. Finish-to-Start (FS) - Figure 2.2. A FS dependency states that the target can only
be started after the source activity has been finished for at least o time units.

Figure 2.2.: Finish-to-Start dependency

2. Start-to-Start (SS) - Figure 2.3. The SS dependency states that the target is only
allowed to start 8 time units after the source activity has started.

Figure 2.3.: Start-to-Start dependency

3. Finish-to-Finish (FF) - Figure 2.4. A FF dependency states that the target may
only be completed if the source has already been finished for at least v time units.

Figure 2.4.: Finish-to-Finish dependency
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4. Start-to-Finish (SF) - Figure 2.5. A SF dependency states that the target is only
allowed to finish after the source activity has been started for at least § time units.

Figure 2.5.: Start-to-Finish dependency

2.2.3. Schedule Computation

Until now, we have only considered an activity’s properties given prior to the scheduling
(i.e., the activity identifier and the duration). We now extend the activity properties
with information about the actual project schedule. For this, each activity gets the
following schedule properties: Farly Start (ES), Late Start (LS), Early Finish (EF), and
Late Finish (LF). The ES and EF indicate the earliest point in time, and the LS and LF
the latest point in time at which an activity can be started and completed [Heal6]. These
properties are added to the visual representation of activities as shown in Figure 2.6.

Early Early
Start Finish
Activity Identifier
Duration
Late Late
Start Finish

Figure 2.6.: Activity representation

Forward and Backward Pass

These four values are calculated in two phases, the forward pass and the backward
pass. In the forward pass, the ES of an activity is calculated and used together with
the duration to calculate the EF (EF = ES+ dur). To calculate an activity’s ES, one
needs to consider all possible ES’s resulting from in-going dependencies, and then set
the activity’s ES to the maximum of these values. This ensures that the activity can not
start until all dependencies have been satisfied. Concretely, the forward pass starts by
initializing the start activity with an ES and EF of zero and then calculates the ES and
EF for each activity where all predecessors have already been considered [Heal6; LG96].

In the backward pass, the LF of an activity is calculated and used together with the
duration to calculate the LS (LS = LF — dur). To calculate an activity’s LF, one needs
to consider all possible LF’s resulting from out-going dependencies, and then set the
activity’s LF to the minimum of these values. Concretely, the backward pass starts by
initializing the end activity’s LS and LF with the ES and EF determined in the forward
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pass, and then calculates the LF and LS for each activity where all successors have
already been considered [Heal6; LG96].

Given the definitions for the different dependency types in section 2.2.2, we can define
the following calculation rules that need to be used for the calculations in the forward
and backward pass. As mentioned, we calculate the ES in the forward pass and the LF
in the backward pass. We will use the notation X 4, with X € {ES, EF, LS, LF} to refer
to the properties of an activity A, which has a duration dura.

1. FS dependency: ESg = EFFs+ a and LFs = LS — a.
2. SS dependency: ESg = ES4 + 3 and LFy = LS — 8+ dura.

3. FF dependency: ESg = EFs + v — durg, where ESg = 0 if EF4 + v < durg. In
addition: LF4 = LFp — 7.

4. SF dependency: ESp = ES4 + 6 — durg, where ESg = 0 if ESy + 0 < durg. In
addition: LF4 = LFg — § + dury.

Float and Critical Path

The float of an activity is defined as the additional time that can be used for an activity.
The float always considers starting at the ES of an activity. This means that if a previous
activity has already used some of its float, one can no longer use the full float of the
current activity. The float can be calculated as follows: floaty, = LFs — ES4 — dura
[LGI6].

An activity is considered critical if it has a float of zero, indicating that this activity
should not be postponed even for a single time unit. If this happens, it directly impacts
the total project duration. The critical path is then defined as a path that only contains
critical activities and starts at the start activity and ends at the end activity [HLO5].

2.2.4. Activity Network Diagrams in the Lecture

In the following, we explain the particular features of the AON networks used in the
Software Project Management (SPM) lecture at the RWTH Aachen. We refer to the
SPM lecture’s AON variant as Activity Network Diagram (AND).

First, we call activities work packages. A work package consists of an identifier,
a description, a duration, the four schedule properties, and predecessor relationships.
Furthermore, we slightly change the layout of the dependencies we saw in Figure 2.2 to
Figure 2.5. For us, a start-to-x dependency always leaves a work package on the left
side, and an x-to-start dependency always enters a work package on the left side. The
same goes for a finish-to-x dependency, which always leaves a work package on the right
side and an x-to-finish dependency which always enters a work package on the right side.

In addition, we consider the F'S dependency as the standard dependency type and the
SS, SF, and FF dependencies as special dependency types; thus, most of the dependencies
have the FS type. Additionally, we also omit «, 3,~, and § for dependencies.
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In Figure 2.7, we can see an AND that was used as an ex-task in a previous year,
which was given as the reference AND for this thesis. We can see that we have exactly
one start and one end work package. To better identify the critical work packages, they
are highlighted in red. Furthermore, all special dependencies are labeled with their type.

Ex-Task Properties

The ex-task type for which we want to generate ANDs is solely used to check whether
students can apply the calculations rules we introduced in section 2.2.3. Therefore, we
omit the work package description since a unique identifier is sufficient in such ex-tasks.
In the following, we describe the minimum requirements an ex-task should satisfy.

Since each dependency type has a different calculation rule, an ex-task needs to have
at least one dependency of each type, to see if a student can apply the different rules. In
addition, one must also include an activity with multiple in-going and an activity with
multiple out-going dependencies to confirm if the student knows that one needs to take
the maximum and minimum of the ES and LF, respectively.

start-to-start

finish-to-finish (J

[51 g L7] Lil ;L]
oem  minl] bind] e
LI S Ii T‘ 4 W_I_)il - Iﬁ finish-to-finish m 1 W
1 ° 7] [ ° [
|_ start-to-finish

Figure 2.7.: Reference AND taken from a previous exam task

2.3. Microservices

One problem in large software projects is the increasing size of the project over time.
Therefore, the codebase of such projects tends to get large. In a monolithic system
this is mainly handled by ensuring that the code is as cohesive as possible; thus, code
that is somehow related is grouped [New15]. This approach can also be called Single
Responsibility Principle (SRP) which states that, on the one hand, everything that one
needs to change due to a similar reason should be grouped, and, on the other hand,
things that change for different reasons should be separated [Newl15]. Following this
approach minimizes the effort of applying changes because one most likely only has to
change the affected parts [Newl5; Lar+18].

The concept of microservices applies the SRP by dividing each functionality into an
independent service. By doing so, one separates each functionality and focuses only on
performing their designated task. This independence, and the small size of services,
enables the use of different technologies within each service [Ric19], promotes an agile
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development approach [SW21; Hanl10], and allows services to scale more dynamically
[Ric19].

One challenge when working with microservices lies in the definition of their bound-
aries. In general, it is clear which functionalities should be divided into more minor
services, however, how granular this division should be is usually not so simple. One
rule that helps to check whether one should further split up a service is how many peo-
ple are needed to manage that service. It is preferable to only have a small team be
responsible for a service [Ricl9).

Furthermore, due to their independence, services also need ways to communicate.
Therefore, one must adequately plan what a service exposes, as to not reduce their inde-
pendence (e.g., forcing services to use a specific technology). Usually, a service exposes
its functionality with an Application Programming Interface (API) [Ric19]. However,
often the user is only allowed to access a system through an API-Gateway which can be
used to encapsulate the underlying services or to aggregate the results of some services
[Ric19]. Thus, the gateway provides convenient methods to access the needed resources
without exposing any information about the actual services behind the gateway to the
user [Ric19].






3. Motivation and Problem Statement

Project networks are widely used to support project scheduling and progress tracking.
As a result, they are usually covered in project management lectures, such as the SPM
lecture this thesis focuses on; therefore, ex-tasks are required each semester to check
students’ understanding. However, there are no tools that support the creation of such
tasks, apart from diagram drawing tools. This means one must manually create the work
packages and dependencies and assign values to them. At first glance, this does not seem
to be a big problem since one only needs to assign a duration to the work packages and
create dependencies between them to then calculate the scheduling properties. However,
in ANDs, the schedule properties are very sensitive to changes; thus, when a single
duration is changed, or a dependency is created or modified, the schedule properties
must usually be recalculated for most work packages. In addition, these calculations are
very error-prone and time-consuming. This leads us to the first research question of this
thesis.

RQ1: Can we automatically generate ANDs that are practical for ex-tasks?

One problem when automatically generating graphs is the creation of an easy-to-read
and understandable output. It is not helpful to generate ex-tasks for ANDs if it takes
a long time to understand them or manually restructure them into an understandable
structure. In addition, this would also reduce the benefit of being able to import an
AND to calculate its properties since one would then have to restructure the output
anew each time. This leads to the second research question:

RQ2: Can we achieve a similar output structure as that of manually created
ex-tasks?

3.1. Additional Requirements

Certain additional requirements for the generation and processing of ANDs were given.
As mentioned above, along with being able to generate ANDs, we want to be able to
import modified or self-created ANDs. Importing ANDs will allow us to adjust the values
of generated or self-created ANDs without the need to recalculate everything manually.
However, this means that we need a suitable graph modeling tool that allows us to work
with ANDs manually and import and export them easily.

In addition, it is important that it should be possible to extend the functionalities
we provide in this thesis easily. At the same time, creating such extensions should
not necessitate a complete understanding of the system, to make the implementation

11
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of extensions simpler, and thereby, faster. Therefore, we had to design the application
using microservices that allow such easy extensibility as presented in section 2.3.

12



4. Related Work

In the previous chapter, we discussed the motivation of, and problem with, creating
ex-tasks manually, which led to our research questions. In this chapter, we now look at
related work concerning the generation of ANDs.

4.1. Task Graph Generation

We first discuss the generation of task graphs provided in [DRW9S8]. Dick et al. devel-
oped a generation approach for task graphs that can be used to evaluate and compare
allocation or scheduling methods in embedded real-time systems and operation systems
[DRW9S]. Although this application area is in a different domain, the task graphs they
generate have much in common with our ANDs. Task graphs are DAGs, the vertices
describe a task, and the edges are the communication between tasks. Furthermore, the
produced graphs also have exactly one start vertex (i.e., with no in-going edges) and do
not contain duplicated edges. The generation process is also configurable so that one
can define a boundary of how many vertices one wants to generate, and one can define
their maximum in-degree, and out-degree [DRW9S]. For example, in Figure 4.1 we can
see a generated task graph with a maximum in-degree and out-degree of two, and the
number of vertices was set between 8 and 12.

Figure 4.1.: Example graph generated by Task Graphs For Free (TGFF) [DRW9S|

As the authors themselves state, the generation relates to the domain of embedded
real-time and operating systems but can be applied more generally to many scheduling
domains [DRW98]. An extension of their initial method, proposed by Vallerio et al. in
[Val08], provides the possibility of having exactly one vertex with no out-going edges,
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which is then even more similar to our AND structure. Thus, when we consider ANDs,
we would only need to convert tasks into activities having our properties and assign a
dependency type to the edges to obtain a valid AND.

However, these generation approaches are not suitable for generating ex-tasks. The
reason being, that their main application is to provide a standardized generation tool for
evaluating and comparing scheduling methods. In doing so, the main goal of the authors
was to provide a tool capable of generating different types of graphs and configuring many
properties of the generated graphs [DRWO98|. However, the output as seen in Figure 4.1
is far away from the layout we saw in the reference AND in Figure 2.7; thus, the graph
drawing is not usable for us. In addition, we later introduce certain restrictions we want
to have during the creation, which can not be assured when using this generation tool
(e.g., restricting the edge length or the number of layers).

4.2. Summary

We have presented a generation tool suitable for generating syntactically valid ANDs,
but since it was developed for a different domain, one would need to convert vertices
and edges into activities and dependencies with their respective properties. Furthermore,
although it is highly configurable, it lacks configuration options needed for ex-tasks.

There is also a generator for AOA networks proposed in [AEH96], and one for AON
networks in [DVHO03]. However, both approaches focus on creating hard project manage-
ment problems (e.g., considering limited resource and their allocation) to evaluate the
performance of planning methods, and since the lecture ANDs do not consider resource
allocation, they are of no use for us.

Furthermore, due to the lecture’s particular AND structure (e.g., dependencies go
out on the left and right depending on their type), there exist no tools or methods for
automatically creating a drawing of such an AND. Hence, we need to introduce a proper
method to do this.
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This chapter introduces concepts that we will use or extend in the following chapters.
We first introduce a method for generating graphs. Then we introduce a general set of
rules that define when a graph is considered readable and explain typical steps that a
graph goes through to satisfy these rules.

5.1. Generation Method

This section introduces the graph generation method that we base our AND generation
on, and why we can not directly use it.

The layer-by-layer method is used to create DAGs. To do this, one first defines the
number of vertices n and the number of layers k£ that one wants to generate. The method,
then, considers every possible forward edge (i.e., an edge from a layer x to a layer = + i
with ¢ > 0) and creates them with a predefined probability p. For example, a vertex in
the first layer considers all vertices from layer 2 to layer k£ and creates an edge to each
with a probability of p [Cor+10; CSH19].

The problem with this method is that it produces DAGs with properties that are
unfavorable to us. For example, it always considers all possible forward dependencies
without any constraints. Therefore, the vertices in the first layer will most likely have
the most edges, and the further back a vertex is, the fewer edges it will have. For this
reason, we will use the basic idea of the layer-by-layer method to only generate forward
edges and extend it to match the constraints we later define.

5.2. Draw a Directed Graph

This section describes the general approach for drawing digraphs. In doing so, we in-
troduce a general set of rules that define the properties that a well-readable and under-
standable graph drawing should satisfy. These rules are necessary because well-readable
and understandable are subjective notions. We then present the typical steps taken to
satisfy them, which we later adapt for our needs.

5.2.1. General Digraph Drawing Rules

There are several rules used in literature that defines a well-readable and understandable
graph drawing. We will now use the rules succinctly defined by Bastert et al. in [BMO1]:
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e FEdges should primarily point in a single direction

o Vertices should be evenly distributed

e Long edges should be avoided

e (Crossings between edges should be avoided as much as possible

o FEdges should contain as few bends as possible

Various related procedures are used to create a graph drawing that complies with the
given rules, most of which are based on the Sugiyama Method [STT81]. The Sugiyama
method consists of four steps: transforming the graph into a proper hierarchy, reduc-
ing edge crossings, determining vertex positions, and lastly, drawing the graph [BMO01;
STT81]. In the following, we describe these steps.

5.2.2. Layer Assignment

Before the layer assignment, one must usually transform a digraph into a proper DAG
by removing cycles [EX89], but since we only consider DAGs in this thesis, we can omit
this step here.

Fach vertex in the DAG is then assigned to a proper layer as defined in section 2.1.
In this step, one usually temporarily inserts dummy vertices into the graph, used only
to have edges between two consecutive layers. For example, one would add a dummy
vertex in layer 2 when having an edge between layer 1 and 3. The edge would then
be represented by the two edges between the source and dummy and dummy and the
target vertex. This is done because only considering edges between consecutive layers
simplifies the crossing reduction applied later. In addition, the dummy vertices are also
used to find a proper layout (i.e., vertex position in the drawing) in the final drawing
step [BMO1; EW94]. The disadvantage of this approach is that one may have to add a
lot of such dummy vertices [HN02].

We do not consider dummy vertices later and adapt the following approaches to not
rely on them. The general reason why we do not use them is the unique dependency
layout of ANDs, where dummy vertices are of no use in the layout step. We explain this
in more detail in section 6.5.

We now present a simple method for applying a proper layering, the Longest Path
Algorithm (LPM). The LPM assigns a vertex to a layer based on the longest path from
the vertices with no predecessors (called root vertices) to itself [TC08; HN02]. For
example, assuming the root vertices are in L1, a vertex v gets assigned to the layer L,,
where n = length(longestPathToRoot(v)) + 1. By doing so, we assign the first possible
layer to each vertex which leads to a layering with the minimum height, which often
leads to a dense clustering of vertices near the roots [TC08]. We can directly apply this
to our ANDs since we only have a single root vertex, the start work package. For more
layering algorithms, refer to [TCO08].
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5.2.3. Crossing Reduction

In this step, after getting a proper layering, one tries to find a vertex ordering that reduces
the number of crossings between edges as much as possible. This problem is, in general,
NP-complete; thus, there exists no efficient algorithm solving it [GJ83]. Therefore, some
heuristics are used to minimize crossings while still being relatively efficient. However,
it is essential to mention that the methods we introduce in the following are typically
applied to normal DAGs (i.e., straight lines, edges leave vertices at any point, only edges
between consecutive layers), and ANDs have a different structure. We address this by
introducing an abstract view of the AND and introducing proper methods to handle
edges between layers that are more than one layer apart.

The remainder of this section mostly considers the crossing improvement between two
consecutive layers. Therefore, one often uses bipartite graphs to describe the approaches.
A bipartite graph is an undirected graph G = (V, E) where it is possible to partition
L into two sets Lq, and Ly in such a way that there are only edges from L; to Ly or
vice versa (i.e., if (v,u) € E then v € Ly and u € Ly, or v € Ly and u € Ly). The
ordering of the vertices in L; and Lg can be denoted as m; and w2 [BM01]. We explain
a method that uses the crossing reduction between two consecutive layers, and extend
this approach to be able to handle graphs with more than two layers.

Optimal Assignment with Permutation Method

One can find the optimal ordering of the vertices in L1 and Ly by calculating the number
of crossings for each possible permutation and then using the ordering that results in the
fewest crossings. The problem is that the number of permutations is large even when
considering only a few vertices; thus, this approach is not feasible for most graphs (i.e.,
it would be time-bound by n-factorial (n!) where n is the number of vertices). Even
restricting it to find an ordering of one partition while the other is fixed is still very
inefficient [JM96].

Layer-by-Layer Sweep

Due to the difficulty of reducing crossing between two consecutive layers where both
can be permuted, the most common method always considers one layer mutable and all
other layers fixed. The problem of this approach is that it is, in most cases, not possible
to find an ordering with as few crossings as possible by just reordering vertices in one
layer [JM96].

The layer-by-layer sweep, is used to handle the problem of just reordering a single
layer. In the first step of the layer-by-layer sweep, one assigns each vertex a position
within its layer (i.e., create an initial layer ordering). Then, in the forward sweep, one
iterates from the second to the last layer, and for each layer i € {2,3, ..., h} where h is
the height of the graph, one fixes the layer L;_;. One then uses a heuristic to reduce the
number of crossings between two consecutive layers which produces a new ordering of
layer L;. In the backward sweep, one runs from the penultimate layer, Ly_1, to the first
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layer, L1, in each step fixing layer L;;;. One then again applies the crossing reduction
heuristic on the layer L;. The forward and backward sweep is then repeated until the
heuristic can no longer reduce the crossings within the graph [ESK05; EW94].

For example, when considering a bipartite graph, one would first fix the first layer in
the forward sweep. Omne then applies a heuristic that tries to find an ordering of the
second layer that produces fewer crossings than the current ordering. In the backward
sweep, one would then fix the second layer and apply the heuristic to the first layer. The
procedure then repeats until no improvement can be found anymore.

The results produced by the layer-by-layer sweep are sometimes not optimal. However,
since considering all layers simultaneously is a challenging problem, it is still a reasonable
approach. Nevertheless, one can extend the layer-by-layer sweep with a randomization
of the ordering [BMO01]. This randomization can be applied if the layer-by-layer sweep
can not further improve the graph. In this case, one applies a new random ordering
to each layer and starts again with the layer-by-layer sweep. By repeating this process
several times, one may find a better result.

Barycenter Heuristic

This section is primarily based on [BMO01].

One heuristic that can be used in the layer-by-layer sweep as crossing improvement is
the Barycenter Heuristic. In general, it tries to assign neighboring vertices close to each
other which is based on the intuition that placing adjacent vertices close to each other
should only produce a few crossings.

This heuristic first calculates, for each vertex in a layer, the average position of
their neighbors. We first define the set of neighboring vertices N(u) where N(u) =
{w | (u,w) € E, or (w,u) € E} and use it to calculate the barycenter value for vertex
u as follows:

> mi(w), with w € L (5.1)
weN (u)

1
bary(u) = deg™ (u) + deg™ (u)

After getting all the barycenter values for one layer, one can sort the vertices of that
layer by their barycenter values and assign a new position based on the sorting.

Greedy Switch Heuristic

This section is based chiefly on [BMO1].

The Greedy Switch Heuristic works quite similarly to the Bubblesort Algorithm. It
always considers two neighboring pairs of vertices in one layer, calculates the initial
number of crossings, and the number of crossings there would be if the vertices were
switched. If swapping the two vertices would result in fewer crossings, one applies it;
otherwise, nothing changes. This procedure is then applied to all consecutive pairs of
vertices in the layer. The greedy switch heuristic is perfect for a post-processing step
because, unlike other heuristics, it never wholly changes the order, but only adjusts it
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5.2. Draw a Directed Graph

when there is an enhancement. Thus, it can be helpful to use it in combination with
other heuristics such as the barycenter heuristic [LMV97].

5.2.4. Position Assignment

The last step is used to assign each vertex an exact position within the graph based
on the calculated layer and layer order. Here, one typically has to remove the dummy
vertices and use them as bend positions. However, we handle this step differently since
we did not use dummy vertices and ANDs have to be drawn differently due to the unique
layout of dependencies.
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6. Concept

The overall problem we want to solve in this chapter is to be able to generate ANDs with
a well-readable output to be used as ex-tasks. Having a well-readable output reduces the
number of manual changes one needs to apply after generation, since one does not have
to restructure the whole AND to use it. We saw in section 5.2 how one can typically
achieve such output for standard graphs. However, the ANDs we want to generate have
a particular structure that deviates significantly from such standard graphs.

We start by introducing the elements of the ANDs structure and the problems they
cause. Then we describe the AND abstraction we use to avoid these problems. This
abstraction is then used throughout this chapter to create an AND and apply specific
changes to it, so it can then be transformed into the lecture’s AND structure.

6.1. Output Activity Network Structure

This section introduces the essential elements of the lecture’s AND structure. We also
explain the difficulties they cause, which are the main reason we introduce the AND
abstraction. In the final step, we return to the lecture’s AND structure and transform
the AND abstraction into it.

6.1.1. Bends

The most significant difference between ANDs using the lecture structure and standard
graphs is the unique dependency placement. When looking at Figure 6.1, one can see
that we do not consider a dependency to be a straight line between the source and target
work packages. For us, a dependency usually consists of at least two bends with an angle
of 90 degrees. The problem is that, in contrast to just having a straight line, there are
many possibilities to place these bends. For example, when considering the dependency
AB, one can see that it has one 90 degree bend close to A and another one, further
above, used to reach B. However, we could move both bends further to the left or right,
resulting in a different drawing of the same dependency. Therefore, in contrast to a
standard graph, we have many possibilities to draw a dependency, which differ by their
bend positions.

6.1.2. Out-Going and In-Going Positions

Dependencies within the AND leave the source and enter the target work package on
different sides depending on the actual dependency type. For example, in Figure 6.1 the
dependency AC leaves and also enters on the right side; thus, it is a FF dependency.
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T
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Figure 6.1.: Example snippet of an AND as defined in the lecture

However, the problem is that the actual position where a dependency leaves a work
package on its designated side is not defined. Therefore, the dependency AC could just
as well go out in the upper right corner of work package A. A human would quickly see
that such a placement would be unreasonable, since the dependency target is below A.
However, since we want to automate this process, we must define concrete rules for the
exit and entry positions.

6.1.3. Conclusion

We see that the drawing step is based on many decisions that have to be made. For
each dependency, one has to decide where it leaves and enters a work package and where
its bends should be placed. Therefore, we only create the actual drawing structure
discussed in this section in the final drawing step, and work with an AND abstraction in
the preceding steps. This abstraction is important because it allows certain intermediate
steps to be performed, in addition to also simplifying other intermediate steps.

6.2. Abstracted Activity Network Diagram

We introduce the following AND abstraction to make the steps until the actual drawing
independent from drawing decisions, while still capturing as much information as possi-
ble. In general, we could also directly work with the introduced lecture AND structure,
giving the best results. However, always considering the lecture’s structure creates many
problems and makes certain methods too complex and inefficient. We first introduce the
abstracted work packages and then briefly explain the abstraction of dependencies.

6.2.1. Work Package Abstraction

To simplify the concept of work packages, we start by considering the previous AND
within a grid (see Figure 6.2). The x-axis describes the layer of a work package, and
the y-axis its position within the layer. All work packages that are on the same vertical
line gets assigned the same layer (e.g., L1 = {A}, and Ly = {B,C}). Additionally, we
introduce two row positions: the absolute row position and the relative position. We use
the absolute row position and the layer to define the exact position of an abstracted work

22



6.2. Abstracted Activity Network Diagram

package. This allows us to calculate crossings later, and helps during the transformation
to the lecture’s AND format in the final step. The relative position is mainly used to
calculate the absolute row position, but is also needed for an algorithm used to reduce
dependency crossings we later apply.

Relative Position

The relative position describes the position of a work package within its layer order, i.e.,
the number of work packages below itself. For example, in Figure 6.2 work package A
has a relative position of zero as it is the only work package in the first layer. In contrast,
in the second layer, work package C is below B, meaning B has a relative position of
one.

Absolute Row Position

In contrast to the relative position, the absolute row position describes the position of
each work package in the global context of the AND. Thus, if two work packages have
the same absolute row position, they are placed on the same horizontal line within the
AND.

Aabsolute row
position
| AB - . L[]
— =
|| A L[]
1 [] AC
| . L[]
— =
1 1 layer
T T >

Figure 6.2.: Example snippet of an AND as defined in the lecture placed within a grid

Since we generate ANDs from scratch, we must define a proper way to calculate the
absolute row position. In order to define how we calculate the absolute row position, we
first introduce the two main concepts the calculation is based on. The main idea is to
calculate the absolute row position, to be used during the intermediate steps, and also
to help in the drawing step (e.g., we can efficiently transform the absolute row position
into the actual work package position).

The first concept can be seen in Figure 6.2 where there is enough free space between
two work packages within one layer. The primary usage of this free space is to allow
us to apply an offset of one between layers with even and odd sizes. For example, in
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Figure 6.2 both layers do not have a common absolute row position since the first layer
contains an odd, and the second layer an even, number of work packages. This method
increases the probability of placing a dependency with just a few bends. This is best
shown by the dependency AC, where without such an offset, work package A would be
at the absolute position of work package B or C. If this is the case, the dependency
would need four bends since it first needs to go around work package B or C to reach
its entry position.

Secondly, we want to include a middle axis in the grid, such that work packages are
then evenly placed above and below that axis. Including this middle axis decreases the
maximum dependency lengths which positively affects the number of crossings, and thus,
the readability of the AND (as shown in Figure 6.3).

[T R | [T A L]
1 [ 1 [
[T 5 | [T 5 L] [T b L]
1 [ 1 [ 1 [
o | g T ]
1 [ 1 [ 1 [
(a) Drawing without a Middle Axis (b) Drawing with a Middle Axis

Figure 6.3.: Comparison of drawing with and without a middle axis

The following formula defines the absolute row position of a work package wu:

absRowPos(u) = (mazxLayerSize — size(u.layer)) + 2 - u.relativePosition (6.1)

6.2.2. Dependency Abstraction

As stated in section 6.1.2 the exit and entry position of dependencies encode the depen-
dency type in the AND’s lecture structure. However, since we consider work packages
only as a single point (i.e., layer and absolute row position), we simplify dependencies by
only using a label to define their type. By doing so, we reduce the dependency properties
to only the source and target work package and the dependency type. In addition, we
now only consider a dependency to be a straight line between the source and target work
packages to avoid handling the position of the bends during the intermediate steps.

6.2.3. Conclusion

We have discussed how to define an abstract AND that we can then later use to draw the
actual AND with respect to the lecture layout. In Figure 6.4 one can see the abstract
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representation of an AND having several work packages and dependencies. Unfortu-
nately, due to the abstraction, we lose some information, especially about crossings that
can occur within an AND, which we later discuss in detail. Nevertheless, both formats
still contain the standard work package information described in section 2.2.4. It is
important to keep in mind, that from now on, we use the AND abstraction and only
come back to the lecture structure in the final transformation step.

A absolute row
position

/ss/' :\
~

—+ A

1 \@}:@

Figure 6.4.: Example AND abstraction

6.3. Steps Toward Generated Activity Network Diagrams

The following generation is designed as an iterative process which can be seen in Fig-
ure 6.5. In the first step, we create the initial AND structure. The subsequent crossing
improvement step tries to order the randomly generated layers to have as few crossings
as possible. However, since we only use the AND abstraction, it is unlikely that all
crossings in the lecture’s AND structure are removed. Therefore, we use the crossing
avoidance step to further reduce crossings induced by the lecture’s AND structure. We
then calculate the schedule properties before transforming the AND abstraction to the
lecture’s structure in the final step.

Initial AND - Crossing - Crossing - Property o Transformation

i A . to lectures
Creation ”| Improvement | Avoidance ”| calculation ”~
structure

Figure 6.5.: Generation process leading to the output AND

6.4. Generating an Initial Activity Network Diagram

After introducing the AND abstraction we use throughout the following sections we now
describe the first step of the generation process, the initial creation of the AND.
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6.4.1. Properties of Suitable Activity Network Diagrams

Before generating ex-tasks, one must first define certain rules and restrictions that those
ex-tasks should fulfill to be considered suitable. The generation method should therefore
be configurable, so that one can later specify the concrete values one want to use for
ex-tasks.

e The main goal of ex-tasks we generate is not to find out whether a student can
calculate an AND with many work packages without an error, but rather to check
the overall understanding of how ANDs work. Therefore, we consider a minimum
and a maximum number of work packages to generate.

o It would not make sense to put all work packages in a single layer. If this were the
case, we could not consider special dependencies or multiple incoming or out-going
dependencies in one work package. Therefore, we also consider a minimum and a
maximum number of layers.

e Calculating with large numbers is generally more complex and error-prone. There-
fore, we want to be able to restrict the possible duration values, to ensure that the
work packages schedule properties not get too extensive.

e As stated in section 2.2.4 ex-tasks should at least contain each dependency type
once, so we include a number for each special type representing how often it occurs
within the AND.

In the following, we introduce another concept in more detail, which doubles as the
first method for crossing avoidance.

Dependency Length

Dependencies spanning many layers tend to lead to many crossings. Therefore, restrict-
ing the length of dependencies already reduces the number of crossings created during the
generation. For this, we first introduce the two terms jump value and jump distribution
which are crucial concept for our generation approach.

Definition 1. Let d = (ds,d;) be a dependency between the source ds and target work
package di, and lg,,lq, their layers with lg, < lg,. Then the jump wvalue of d is defined
by jump Value; = lg, — g

s

Definition 2. Let dist = (p1, p2, ..., pn) be an ordered set with p; € [0,1] and Y ;- | p; = 1.
We call dist the jump distribution, and p; € dist defines that a jump value i occurs
with the probability p;.

The jump distribution allows us to define the probability for specific jump values.
Therefore, we can also use it to specify approximately how many dependencies we want
to have of a given length, thus, limiting the number of long dependencies.
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6.4.2. Creation steps

Besides splitting the overall graph generation process into five steps as seen in Figure 6.5,
we further divide the initial AND creation step into two sub-steps: the structural creation
and the value assignment. The structural creation step generates work packages and
dependencies between them. In this step, we do not consider the duration of work
packages, and we only assign each dependency the standard FS type. In the value
assignment step, we assign each work package a duration and exchange some dependency
types to ensure that we have the number of special dependencies as defined. We use this
separation because it allows us to extend both steps freely. For example, the duration
assignment can be based on the duration of neighbors, meaning that we first need all
work packages and dependencies to assign durations. The general idea of the following
structural creation is based on the layer-by-layer method described in section 5.1.

In the following, we assume that we have already determined the number of layers
and the number of work packages we want to create.

Filling the Layers with Work Packages

The structural creation starts with filling all layers with the minimum number of work
packages, called minimum layer size. Since we do not want to have empty layers, we
must put at least one work package in each layer.

In the next step, we randomly assign the remaining work packages onto the layers.
Similarly to above, we use a maximum number of work packages, called mazimum layer
size, to further restrict the layer sizes. Therefore, we have to randomly assign each work
package to a layer that is not yet full.

Generating out-going Dependencies

After each work package has been assigned to a layer, we create dependencies between
those work packages. We have to ensure that each work package has at least one in-going
and out-going dependency. The only exception to this are the start and the end work
packages, where we only have to create out-going and in-going dependencies, respectively.

Therefore, we begin with creating F'S dependencies between the start work package and
all work packages within the first layer. Similarly, we create FS dependencies between
all work packages in the last layer and the end work package. We use FS dependencies
to ensure that each work package within the first layer has an ES of zero, and the ES of
the end work package is the maximum EF of the last layer.

We now consider each work package from the first to the penultimate layer and gener-
ate exactly one out-going dependency for each. To do so, we first randomly choose a jump
value with respect to the the jump distribution. We achieve this by choosing a uniformly
random value z € [0,1] and using the jump distribution to get the jump value it corre-
sponds to. For example, in case of the jump distribution [0.8,0.15, 0.05], we would gener-
ate the jump values as follows: z € [0.0,0.8] — 1, z € (0.8,0.95] — 2,z € (0.95,1.0] — 3.

A problem occurring here is the case where we choose a jump value resulting in a layer
outside of the AND’s boundaries (i.e., larger than the last layer). To solve this problem,
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we map all jump values leading to an invalid layer to the last layer. For example, when
we are in the third to last layer, each jump value greater than two would result in a
dependency to the last layer.

After generating a jump value, we only need to consider all work packages within the
layer corresponding to it, and randomly choose one work package from this layer as the
dependency target. We randomly choose a target because this allows us to create any
AND with the given restrictions (e.g., dependency length).

Generating in-going Dependencies

After the previous step, every work package has exactly one out-going dependency. How-
ever, since we randomly choose one work package from the target layer as a dependency
target, there can still be work packages without in-going dependencies.

To handle this, we only have to consider every work package that has an in-degree
of zero. We again calculate a jump value as described above and randomly choose a
source work package from the layer corresponding to the jump value. Since we create
in-going dependencies, we must consider the layer to the left. We again have the prob-
lem of choosing an invalid jump value which we handle the same as for the out-going
dependencies.

After creating all in-going dependencies, we have a valid AND where each work pack-
age has at least one predecessor and at least one successor. Therefore, we can now
continue with the second step, where each work package is assigned a duration, and we
exchange dependency types.

Assigning Dependency Types and Work Package Information

After creating all work packages and dependencies, we start with assigning each work
package a random duration with respect to the defined duration boundaries. However,
we have to ensure that the start and end work packages get a duration of zero assigned.

Additionally, at the moment, all dependencies have the standard FS type. As men-
tioned above, we have defined how often each special type occurs within the AND.
Therefore, we must change some dependency types to fulfill this requirement. We can
do this by considering all FS dependencies, randomly choosing one dependency, and
then changing the type to a special type. We repeat this until all special dependencies
are assigned.

6.5. Crossing Improvement

Improving crossings within a graph is a critical step leading to a well-readable output.
We already introduced the typical DAG drawing approach in section 5.2. We now further
discuss how we handle the crossings improvement in our use case.

All improvement methods are typically based on counting crossings within a graph,
applying changes to the graph, and then checking whether the changes improved the
number of crossings or not. The problem is that calculating the number of crossings
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is usually done only between dependencies with a jump value of one. To get a graph
that only has edges with a jump value of one, one usually adds dummy vertices for edges
spanning more than one layer, as intermediate points. In the end, the dummy vertices are
removed, and the edge is drawn by connecting all consecutive vertices describing the edge.
However, since dependencies in our use case only use 90-degree bends and non-standard
exit and entry positions at work packages, including dummy vertices can increase the
number of bends needed. For example, in Figure 6.6, we see an SF dependency with the
dummy vertex X in between. When drawing the dependency with X as an intermediate
point, we create eight bends while we only need four bends when drawing the dependency
without considering X. Therefore, using these dummy vertices is not reasonable for us.
However, not using dummy vertices means that we can have dependencies with a jump
value greater than one; thus, we need to introduce a proper method to calculate crossings
between dependencies that can also have larger jump values than one.

X II<J

Figure 6.6.: Negative effect of dummy vertices when used in the drawing step

6.5.1. Calculating the Number of Crossings

To calculate the number of crossings, we use an approach described by Anton et al.
[Ant+07] and extend it for our use case. The general idea of the approach is that one
considers each dependency within the AND as a linear equation, and calculates the
crossing points between them.

We divide the calculation of the number of crossings into three different steps. In
the first step, we describe how to calculate the crossing point between two arbitrary
dependencies. Then we explain how one can check whether the calculated crossing point
produces an actual crossing within the AND. Lastly, we introduce a method to calculate
the number of crossings of the whole AND using the first two steps.

Calculating the Crossing Point

We start by calculating the crossing point between two dependencies A = (A, A;) and
B = (Bs, By). To calculate the crossing point between these two dependencies, we first
calculate the slope of both linear equations representing them. This can be done as
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follows, where 7 is the absolute row position and [ the layer:

my = \rz, = rz.) for Z € {A, B} (6.2)
(lz, —lz,)
When considering the example in Figure 6.7 this would result in my = % = -2

and mp = 1. We can use the calculated slope to define the two linear equations yz =
my - x + b. However, we still need to calculate the value of b as follows:

by = Tz, — (ZZS * mz) for Z € {A,B} (63)

In Figure 6.7 this would result in b4 = 3 — (1 - —2) = 5 and bgp = 0. We now need to
calculate the crossing point between the two linear equations by setting both equations
equal and solving for x:

bp—1b
mA-z+bA:mB'x+bB:>x:M (6.4)
(ma —mp)
In our example this would lead to the crossing layer x = % = % We can now use

either of the two linear equations to calculate the absolute row position of the crossing:

y= -2 g +5 = % As a result we now have the crossing point (2,2) between the
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dependencies A and B.

absolute row
A ”
position

3 1 (A B,

<«——(5/3,5/3)

layer

| |
| | |
1 2 3

Figure 6.7.: Example for the crossing point calculation between two dependencies

Checking whether a Crossing Point produces a Crossing

After introducing how to calculate the crossing point between two dependencies, we
must check whether it produces an actual crossing within the AND.

First, in the following I,;in, lmaes refers to the minimum and maximum layer, and
Tmins T'maz Tefers to the minimum and maximum absolute row position. We first check
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whether the crossing point is within the ANDs boundaries by checking whether the
crossing layer is between l,,,;, and [,,4,, and the crossing row is between 7, and 7,,44.
If the crossing point is not within the AND, we do not have to apply further checks.
Otherwise, it could still not be an actual crossing. This can happen if the crossing point
does not occur between the actual dependencies but somewhere further to the left or
right but still in the AND’s boundaries. To include these cases, one has to check the
following four conditions [Ant407]:

TA, >TBS+mB'(lAS _ZBS) (6.5)
ra, <rp, +mp-(la, —IB,) (6.6)
rp, <ra, +ma-(Ip, —la,) (6.7)
rB, >ra, +ma- (Ip, —la,) (6.8)

We know that the crossing point produces a crossing within the AND if these four con-
ditions are true. In total, we have now calculate the crossing point for two dependencies
and checked whether it actually produces a crossing within the AND.

Calculating the Number of Crossings

At this point, we can check whether there is a crossing between two dependencies. How-
ever, it is not feasible to apply this method to all possible dependency combinations to
obtain the number of crossings. This is due to the fact that we have many combinations,
even for a small number of dependencies; thus, the computational effort when consider-
ing all of them would be too great in practice. Fortunately, we can significantly reduce
the number of combinations by only considering dependencies where a crossing could
occur, making the method applicable.

The main idea of the following approach is that we first abstract from concrete de-
pendencies to layer pairs (a,b) describing all dependencies between layer a and b. For
example, the pair (1,3) would describe all dependencies starting in layer 1 and ending
in layer 3. We then want to build pairs of the form ((a,b), (¢,d)) only when there could
be a crossing between dependencies from layer a to b and dependencies from layer ¢ to
d. We then solely use these pairs and their corresponding dependencies to calculate the
AND’s crossings.

We define:

Ip ={(ly,12) | startLayer <1y <ly < endLayer, |l; — l2| < mazJumpValue}  (6.9)

Intuitively, the [p set is the set of all pairs of layers where dependencies can occur
between the left and the right layer. This is why, we limit the distance between the left
and right layers to the maximum jump value because we know that no dependencies
exist between layers with a greater distance. For example, when considering an AND
with only three layers and a maximum jump value of one, we would get the following
set: Ip={(1,2),(2,3)}.
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Additionally, we define:
dp = {(d1,d2) | di,d> € Ip} (6.10)

We use the Ip set here to calculate all possible layer combinations between which there
could be a crossing. Therefore, we start by considering all possible combinations of two
pairs from the Ip set (i.e., the Cartesian product of Ip with itself) in the dp set (Equa-
tion 6.10). As the tuple ((a,b), (c,d)) is equivalent to the tuple ((¢,d), (a,b)) in terms
of crossings, we initially remove all such duplicates from the dp set. If we were to keep
these duplicate combinations, we would count crossings twice. For example, the Ip set
from above would result in the set dp = {((1,2), (1,2)), ((1,2),(2,3)), ((2,3),(2,3))}.
Before we use this set for the crossing calculation, we want to filter it further to achieve
the goal of greatly reducing the number of calculations needed. The only case left that
still has to be handled is where the target layer of the left pair is less or equal to the
source layer of the right pair (see Figure 6.8). In this case, we are not able to detect a
crossing within the AND abstraction, so we exclude it with the following constraint:

((a,b),(c,d)) € dpif b<c (6.11)
® (1,3) e (4,5)
layer
1 2 3 4 s

Figure 6.8.: Layer pair we do not consider since it is impossible to create a crossing in
the AND abstraction

The primary purpose of the concepts introduced throughout this section is to calculate
the number of crossings within our AND abstraction, which we define as follows:

Definition 3. Let dep(x,y) be the dependencies starting in layer x and ending in layer
y and checkCrossing(dy,d2) — {0,1} the function resulting in 1 if there is a crossing
between di and do, otherwise 0. Then the number of crossings of an AND is defined
by

numQOfCros = Z checkCrossing(dy, d,)

((a;b),(c,d))€dp
di€dep(a,b)
dr€dep(c,d)

Sliding Window to Decrease Computations

The primary goal within this section is to apply crossing improvement methods that are
based on the calculation of the number of crossings and the application of heuristics. In
section 5.2.3 we introduced two heuristics, the barycenter and the greedy switch heuris-
tic. The greedy switch heuristic heavily depends on a method to efficiently calculate
crossings, or more precisely, to check whether the number of crossings is reduced by
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swapping two neighboring work packages. Therefore, always calculating the number of
crossings of the whole AND is too complex, especially for larger ANDs. To still apply
the heuristic, we introduce a method to efficiently check whether swapping two work
packages improves the number of crossings.

Definition 4. Let wp; and wpy be two work packages with lyy, = lup,. Let a; be the
absolute row and r, the relative position of x € {wp1,wp2}. Then swapping two work
packages is defined by swapping rup, With ryp, and Gy, With Gy,

Definition 5. Let L = (I1,l,...,1,) be the ordered set of all layers within an AND.
We define the free layer as the layer | € L such that we only change the ordering of
work packages within this free layer, while all other layers I' € L\ {l} are considered
immutable.

We handle this problem by defining a window around the free layer and only calculating
the crossing number within this window. Depending on the window size, this reduces
the possible combinations where crossing can occur greatly.

Definition 6. We define the left window (left Win) as the largest jump value we consider
to the left of the free layer and the right window (right Win) as the largest jump value to
the right of the free layer. We then define the window as win = leftWin+ right Win+ 1.

We divide the window into two parts, the left and right window, to be able to use
different boundaries on each side, which can further decrease the complexity for larger
ANDs. We now use the left and right window to adjust the Ip set.

Pfreenayer = 11, 12) | (freeLayer — leftWin) < Iy < Iz < (freeLayer+ right Win)} (6.12)

Important to note is that the left bound is not smaller than the start layer, and the
right bound is not larger than the end layer.

We use the maximum jump value for both left and right window, ensuring that we
include all dependencies starting and ending in the free layer. Unfortunately, this does
not include all dependencies that can produce crossings when swapping two work pack-
ages in the free layer. This can be seen in Figure 6.9 where the work packages on the
right side are outside of the right window, but the dependency A that we currently do
not consider produces a crossing with the dependency B.

We handle this problem by extending our Ip set with only the necessary layer pairs.
First, we do not have to consider dependencies that end in the left window layer or
start in the right window layer since they can not produce crossings with the free layer
dependencies. Additionally, we have already included all possible dependencies from
the free layer. Therefore, we now only consider dependencies coming from outside the
left window to the inside (Equation 6.13) or going from inside the right window to the
outside (Equation 6.14). For example, in the case of Figure 6.9 we would include the
pair (4,6) into the Ip based on Equation 6.14.
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Figure 6.9.: Sliding window visualization. The dotted lines indicate the current window,
orange dots the work packages in the free layer, and the violet dots the work
packages outside of the window

(I1,12) € lpif |dep(l1,12)| > 1, l1 < (freeLayer — leftWin),

6.13
and (freeLayer — leftWin) < lo < freeLayer ( )

(I1,12) € lp if |dep(l1,12)| > 1, freeLayer < 1y < (freeLayer + right Win),

. . (6.14)
and (freeLayer+ right Win) < ly

We have now included all layer pairs into the lpfcerqye, et that have dependencies
that can produce crossing with the free layer. We now only have to calculate the dp set
as defined in Equation 6.10 using the lpsccrqyer s€t, and then calculate the number of
crossings for the free layer using Definition 3.

6.5.2. Apply Improvement with Layer-by-Layer Sweep

We can now calculate the crossing number of the whole AND and only for a window
around a free layer. Therefore, the only thing left to do is to apply the layer-by-layer
sweep, introduced in section 5.2.3, using these two calculation methods. The main goal
of the layer-by-layer sweep is to find an ordering for each layer that produces the fewest
crossings within the AND. In the following, we go through the different steps of the
layer-by-layer sweep, which can also be seen in the activity diagram in Figure 6.10.

Layer-by-Layer Sweep

The first two steps of the layer-by-layer sweep are the forward and the backward sweep
as described in section 5.2.3. In both phases, we iterate over the AND’s layers, once from
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the start to the end layer and once from the end to the start layer. We then apply a
heuristic for the layers in between by always considering one layer as the free layer. After
both sweeps, we need to apply certain checks to verify whether we improved the number
of crossings. We start by introducing how we applied the two heuristics introduced in
section 5.2.3 and section 5.2.3, and then explain the steps that must be taken after the
application of the two sweeps.

Barycenter Heuristic

In the case of the barycenter heuristic, we use the relative positions of each work pack-
age. So, we start by calculating the barycenter value for each work package within the
free layer as described in section 5.2.3. We sort the barycenter values and assign each
work package their new relative position within the free layer depending on the sorting.
Thereby, the work package with the lowest value gets the relative position zero assigned,
and the work package with the largest value the largest relative position. It is essential
to mention that we also have to recompute the absolute row positions since we changed
the ordering of a layer.

Greedy Switch Heuristic

When using the greedy switch heuristic, introduced in section 5.2.3, we use the window
method to check whether we improve the crossing number by swapping two neighboring
work packages. We keep the new ordering in case of an improvement; otherwise, we
swap back the two work packages and continue with the next. The advantage of this
approach is that it only changes the ordering if it actually detects an improvement within
the AND. However, in contrast to the barycenter heuristic, we need to calculate if we
achieve an improvement within the actual heuristic. So even though we defined the
sliding window method to reduce the calculations, it is still inefficient for large ANDs.

Saving the Best Ordering

Since some heuristics occasionally produce a worse result after one step but then com-
pensate for this again in a subsequent step [Pat04], we need to keep track of the best
number of crossings, and the respective layer ordering. By doing so, we can reapply this
ordering in case the subsequent steps can not achieve a better result. To ensure that
we stop at some point, we need to define a maximum number of consecutive rounds
that do not produce an improvement. A round refers to one complete execution of the
layer-by-layer sweep.

Improvement checks

After applying one of the two heuristics in the forward and backward sweep, we first
recalculate the number of crossings of the whole AND. If we have zero crossings, we
have the best ordering possible and can stop. Otherwise, we must check whether the
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last forward and backward sweep improved the number of crossings, in which case we
act as follows:

o If we improved the crossings, we save this ordering and the number of crossings
and reset the counter for rounds without an improvement. Then we continue with
the next layer-by-layer sweep round.

o If we worsen the crossings, we increase the counter for rounds without improve-
ments and check whether we reached its maximum. If this is the case, we reapply
the best ordering and stop with the layer-by-layer sweep.

The resulting AND should now have an ordering with as few crossings as we can detect
and reduce. However, we currently only consider the ANDs abstraction, which leads to
specific problems in this step considering the lecture’s AND structure, which we explain
in the following.

6.5.3. Limitation of the Crossing Calculation

Unfortunately, the calculation of the number of crossings does not always calculate
a correct result when considering the lecture’s AND structure. So, as described in
section 6.5.1 we use two linear equations and their crossing point to calculate if there
is a crossing between two dependencies. This approach works well for graphs as shown
in Figure 6.7 where vertices are dots, and edges are straight lines between them. This
is however, not the case for the lecture’s AND structure. As a result, there are cases
where the abstraction has zero crossings, but we still have crossings within the lecture’s
AND structure. For example, in Figure 6.11 we see the AND after the final layout step
and the equivalent AND abstraction. In this case, the number of crossings of the AND
abstraction is zero, although we can see that there is still one crossing within the actual
AND.

The problem is that it is practically impossible to calculate the correct number of
crossings considering the lecture’s AND structure. The reason for this is that the cal-
culation depends on the layout decisions, and therefore one would have to redraw the
complete AND every time one applies a change to it. In addition, instead of one linear
equation, most dependencies would then consist of several linear equations since they
are no longer a straight line. Furthermore, we would also not be able to reduce the
combinations as much as we are now, because depending on the drawing, we can have
a crossing between a dependency ending in a layer and another dependency starting in
the same layer. We address some of these issues in the final transformation step, where
we further try to reduce crossings by applying specific layout rules. In addition, we also
perform a crossing avoidance step in the following, which is used to reduce the crossings
further.
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Figure 6.10.: Activity diagram of layer-by-layer sweep
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(a) Drawing of the actual AND part (b) Calculation method view on the AND

Figure 6.11.: Crossing calculation limitations of the AND abstraction

6.6. Crossing Avoidance

In addition to creating ANDs, one of our main objectives is achieving a well-readable
output. In the previous section we applied methods to find an ordering that reduces the
crossings. However, due to the layout of ANDs in the lecture, and since we use an AND
abstraction, the previous crossing improvement most likely not removes all crossings
within the lecture’s AND structure. Therefore, we apply a crossing avoidance step to
reduce crossings further.

Definition 7. Let d = (ds,d;) be a dependency with ds as source and dy as target work
package. We define the absolute row difference as |absRowPos;, — absRowPosg,|.

Definition 8. Let A = (As, Ay) and B = (Bs, By) be two dependencies. Then swapping
dependencies A and B is defined by swapping their target work packages; thus, A =
(As,Bt) cmd B = (BS,At).

After applying the crossing improvement, the two main reasons for the remaining
crossings are dependencies with a sizeable absolute row difference and dependencies with
a large jump value. This is because the longer a dependency is, the more crossings it can
cause with other dependencies. Therefore, our primary goal in the crossing avoidance
step is to reduce the length of dependencies.

However, as described in section 6.4, our goal is also to generate some dependencies
that have a particular jump value. Hence, reducing the jump value of dependencies is
not reasonable, which would ignore this constraint. Therefore, we will focus on reducing
the absolute row difference of dependencies. For the sake of readability, we refer to the
absolute row difference only as row difference and the absolute row position only as row
position.

The general idea of the crossing avoidance is that we want to reduce the total row
difference within the AND by reducing the row difference for dependencies that have
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a significant row difference. We achieve this by swapping two dependencies when it
reduces the total row difference in the AND. It is essential to mention that this can
only be done because it is not needed to generate any possible AND. This is because, in
contrast to the crossing improvement, which only changes work package positions, the
crossing avoidance changes the meaning of the AND. We return to this problem in more
detail at the end of this section.

6.6.1. Identifying Problematic Dependencies

Definition 9. Let D = {d',d?,...,d"} be the set of all dependencies and th a predefined
threshold. We then define the problematic dependencies as probDepy, = {d | d €
D, absRowDiff(d) > th}. We also refer to this set as threshold dependencies.

We include a threshold when identifying problematic dependencies because it allows to
decrease the complexity when considering larger ANDs, since by increasing the threshold
we reduce the number of threshold dependencies. For the sake of understandability, we
consider a threshold of two in the following. However, the presented concepts also hold
for greater threshold values.

6.6.2. Reducing the Absolute Row Difference

After getting all dependencies having a row difference greater than or equal to the given
threshold, we can now reduce their total row difference. For this, we consider each
dependency independently and refer to a single dependency d € probDep,, simply as
threshold dependency. We try to reduce the row difference for each threshold dependency
by swapping them with any other dependency. By doing so, we have to make sure that
the improvement for the threshold dependency is more significant than the worsening of
the dependency we swap with. Since it might not be possible to improve all threshold
dependencies, we only apply the following steps until we can not apply further changes
to any threshold dependency.

Getting Possible Improvement Dependencies

Definition 10. Let Dy, = {d',d?,...,d"} be the set of dependencies ending in layer k.
Let rdy be the row difference, ds be source and dy the target of a dependency d € Dy.
We define the possible improvement dependencies for a given threshold dependency
td ending in layer k as the set posImpDep,; = {d | d € Dy, d # td, absRow(d;) €
[absRow(tds) — rdig + 1, absRow(tds) + rdyg — 1]}

To ensure that we can not create dependencies that have an invalid jump value (i.e.,
greater than the maximum jump value allowed), we start by only considering depen-
dencies ending in the same layer as the threshold dependency. Therefore, we get all
dependencies that end in the target layer and at least reduce the row difference for the
threshold dependency when swapping. For example, in Figure 6.12, the dashed area
marks all dependency targets that would reduce the row difference for the threshold
dependency AB.
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Figure 6.12.: Dependencies ending in the orange area would decrease the row difference

for dependency AB

Finding the Dependency with the most significant Improvement

We now use the possible improvement dependencies to find the dependency resulting
in the most significant improvement. We illustrate each of the following steps with the
example in Figure 6.13.

1.

40

We start by calculating the initial row difference of the threshold dependency. In
our example, we try to reduce the row difference of the dependency AFE; thus, the
current row difference is two.

We then look at all possible improvement dependencies and calculate their current
row difference. Since work packages C and D would decrease the row difference
when used as targets, we now consider all dependencies having one of them as the
target. This leads to the dependencies BC' with a row difference of two and BD
with a row difference of one.

Next, we calculate the row difference we get when swapping the threshold depen-
dency with the possible improvement dependencies. Let us first consider swapping
with the dependency BD. This results in the dependency AD with a row difference
of one and BF with a row difference of zero; thus, a total row difference of one.
When using dependency BC, we get the dependency AC with a row difference of
zero, and BFE also having a row difference of zero; thus, a total row difference of
Z€ro.

. Lastly, we calculate the row difference improvement we achieve for each case, and

use the dependency with the most significant improvement. Therefore, we again
consider all possible improvement dependencies and calculate the row difference
improvement when swapping. In both cases, we have an improvement of two for the
possible swap dependency since both start at the same work package. However, the
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improvement for the threshold dependency AFE is one when using the dependency
BD and two for the dependency BC; thus, swapping with the dependency BC gives
us the most significant improvement.

[ T L] [ T L] [ T L] [ T L]
A — ¢ A > ¢
1 [ 1 [ 1 [ 1 [
[ 1 b L] [ 1 5 L]
1 [ 1 [
[ T L] [ T L] [ T L] [ T L]
B —> E B > E
1 [ 1 [ 1 [ 1 [
(a) Dependencies which could result in an im- (b) Swapped target with the dependency with
provement the largest improvement

Figure 6.13.: Reducing step visualization

It is crucial to mention that there is not necessarily a dependency that gives such an
improvement. This is the case if all possible dependencies one could swap with would
create a negative effect more significant than the positive effect the threshold dependency
can achieve.

Post Checks after Swapping Two Dependencies

After swapping two dependencies, we first have to check whether the row difference of
our threshold dependency is now less than the given threshold. If this is the case, we no
longer consider it as a threshold dependency in subsequent steps; otherwise, we keep it
because we might improve it further after other changes have been applied.

In addition, we also need to check whether the dependency we swapped with already
had a row difference greater than the threshold. If this is the case, we apply the same
checks as for the threshold dependency. Otherwise, we need to check whether its new
row difference is greater or equal to the threshold and, if so, include it into the threshold
dependencies.

6.6.3. Special Cases for the Crossing Avoidance

At the moment, we only consider possible swap dependencies that end in the same target
layer, which ensures that we do not create invalid jump values and that the crossing
avoidance does not change the number of dependencies with particular jump values (i.e.,
the jump value distribution). Additionally, we only swap two dependencies when the
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total row difference is less than before, which is necessary not to swap two dependencies
infinitely often. However, even though this method already yields good results, some
cases are not covered, the handling of which would further improve the AND. Therefore,
we now introduce the improvements we made to the method.

Reducing Maximum Absolute Row Difference

We currently do not consider the case where the total row difference remains the same,
but we still remove a crossing when we swap two dependencies. One can see this in
Figure 6.14a, where swapping both targets results in the same total row difference as
before (i.e., 2+ 0 vs. 1+ 1), but still results in fewer crossings (Figure 6.14b).

To include this, we need to adjust the method to find the dependency that gives
us the most significant improvement. We still consider the total row difference as the
most decisive criteria. However, we use the maximum row difference as an improvement
factor if we either achieve the same total row difference as before or have at least two
dependencies yielding the same improvement. In this case, we compare the maximum
row difference for all cases and then choose the one with the lowest maximum row
difference. For example, the initial case (Figure 6.14a) has a maximum row difference
of two for the dependency AD. When swapping both dependencies, we reduce it to a
maximum row difference of one (Figure 6.14b); thus, we apply the depicted swap in this
situation.

_IAI_ _IAI_

1 [ 1 [

_IBI_ ‘_ICI_ _IBI_ _ICI_

1 [ 1 [ 1 [ 1 ]
1 T T
> D D
1 [ 1 [

(a) Swapping both dependencies would result (b) Swapping both dependencies still reduces
in the same total row difference the number of crossings

Figure 6.14.: Reducing step also considering the maximum row difference

Dependencies with larger jump value

Furthermore, the initial approach only considers dependencies that end in the same layer
as the threshold dependency. This is because our primary goal is to reduce the total
row difference while maintaining the jump value distribution. Due to this constraint,
however, dependencies do not consider all of their possible improvement dependencies.
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One can see this in Figure 6.15 where we would not consider the dependency BC' as
possible swap dependency despite the fact that using it results in a smaller row difference
while still maintaining the jump value distribution.
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Figure 6.15.: The orange area marks the area where possible improvement dependencies
are allowed to end as defined in Definition 10 and visualized in Figure 6.12.
The blue area marks the extended area when considering the dependency
AF and a maximum jump value of two

To handle this, we extend the possible swap dependencies to look at all work packages
that are reachable with the maximal jump value from the source layer, since setting one
of these work packages as the new target results in a valid jump value.

Definition 11. Let td be a possible threshold dependency. Let Dy = {d | lg, €
[lta, + 1, l1q, + mazJump Value]}. We then define the extended possible improvement
dependencies for td as the set extPosImpDep,; ={d | d € D¢y, d # td, absRow(d;) €
[absRow(tds) — rdig + 1, absRow(tds) + rdyg — 1]}

However, we have to adjust the procedure that gives us the swap dependency with
the most significant improvement to avoid getting invalid jump values. One case where
this can happen is shown in Figure 6.16a where swapping both dependencies leads to a
row difference improvement but creates an invalid jump value of three (Figure 6.16b).

To include this, we only have to check if the jump values stay the same or have simply
been swapped. By doing so, we ensure that we do not produce invalid dependencies and
maintain the jump value distribution.

6.6.4. Number of Producible Activity Network Diagrams

As mentioned at the start of this section, one problem of this approach is the number
of producible ANDs. In contrast to the crossing improvement, we change the targets of
dependencies in the crossing avoidance, which changes the meaning of the AND. This
can be seen when looking back at Figure 6.13b. If we only see this AND we are not able
to decide whether it was produced by Figure 6.13a with crossing avoidance, or if it got
created like this. This means that if we want to produce any possible AND, it is not
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Figure 6.16.: Problem when considering all dependencies going into work packages be-
tween the source and target layer as potential swap dependencies

reasonable to use this crossing avoidance step. However, we apply this crossing avoidance
step because it is better, in our use case, to generate ANDs with fewer crossings, which
are more readable.

6.7. Work Package Property Calculation

At this point, we have created the AND and applied various changes to it. Since the cross-
ing avoidance step applies changes to dependencies, we can only calculate the schedule
properties after the crossing avoidance step. In the following, we introduce the calcula-
tion’s prerequisites and then explain the calculation itself.

6.7.1. Prerequisites

The following calculation method is based on the forward and backward pass, introduced
in section 2.2.3. Additionally, it depends on a well-layered AND, which means that each
dependency goes from a left to a right layer. The generation method we introduced
in section 6.4 is based on the layer-by-layer method; thus, we only create well-layered
ANDs. However, we also want to be able to input modified ANDs to calculate their
properties. Therefore, before applying the calculation, we need to check whether the
AND is correctly layered and, if not, apply a correct layering with one of the methods
described in section 5.2.2.

6.7.2. Calculation

The forward and backward passes now make use of the layered AND. In general, we can
only calculate the values of a work package in the forward pass when we have already
considered all of its predecessors. Since we have a layered AND where each work package
only has predecessors in previous layers, this statement is equivalent to that we already
calculated the ES and EF in all previous layers. Therefore, in the forward pass, we
run from the start to the end layer and always calculate the ES and EF for each work
package within a layer before continuing with the next layer. This means that when we
reach the kth layer, we know that all work packages up to this layer have their correct
ES and EF assigned. We calculate the ES and EF using the calculation rules defined in
section 2.2.3.
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6.8. Drawing the Activity Network Diagram

In the backward pass, we again uses the fact that the AND is correctly layered, but
this time we go from the end to the start layer and calculate the LS and LF.

After applying both phases, we have an AND with correctly calculated properties,
and the only thing left to do now is to transform the AND abstraction into the lecture’s
AND structure.

6.8. Drawing the Activity Network Diagram

Until now, we have only considered our AND abstraction. In this final transformation
step, we now transform this abstraction into the lecturer’s AND structure. Here we
focus on the essential concepts that the transformation is based on.

6.8.1. Drawing the Work Packages

The position assignment of work packages is based on two concepts. We first have the
z-spacing we include between two neighboring layers. This x-spacing is later used to
arrange dependencies between two layers.

Furthermore, we also include the y-spacing between two absolute row positions, allow-
ing us to create dependencies with more direct paths. For example, in Figure 6.17 we
consider the SF dependency AB with an absolute row difference of one. Without addi-
tional y-spacing, we would need to create more bends than needed or a long dependency
(see Figure 6.17a); thus, the y-spacing allows us to more directly arrange dependencies
to the target work package (Figure 6.17b).

e | 5 L]
i — . ¢ 1
! 1 []
iy A L[] | A L]
1 [] 1 []
(a) Activity network diagram without y- (b) Activity network diagram with appropriate
spacing y-spacing included

Figure 6.17.: Visualization of the y-spacing concept

6.8.2. Drawing the Dependencies

As already discussed at the beginning of this chapter, a dependency within the lecture’s
AND structure is not considered to be a straight line between two work packages, but
rather contains some 90-degree bends. Therefore, there are many possibilities for how
we can arrange those dependencies. As mentioned in section 5.2.1 having few bends is
one criterion for a well-readable graph drawing; thus, we decided to create dependencies
with the fewest bends needed (at most four bends).
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6. Concept

Since the exit and entry sides at a work package are well defined by the dependency
type, as stated in section 2.2.4, we omit the sides here and only focus on where, and in
which direction (i.e., upwards or downwards), a dependency leaves and enters a work
package. We introduce several special rules to decide whether a dependency leaves a
work package towards the top, as seen in Figure 6.17b, or towards the bottom. If none
of the rules we introduce are applicable, we place a dependency towards the top when
the target is above the source and towards the bottom when the target is below the
source. In addition, we always draw a dependency directly to its target layer through
the nearest y-spacing, so we only go upwards or downwards in the actual target layer.
This reduces the case complexity, and the following rules are based on this assumption.

Dependencies to the same Absolute Row Position

We consider the case of a dependency going into a work package with the same absolute
row position. A problem of this case can be seen in Figure 6.18, where placing the
dependency towards the top or bottom of the source work package influences the total
number of crossings. Therefore, we want to specify a rule that chooses the best of the
two variants.

The main idea of this rule is that we determine how many crossings are exclusively
produced when placing the dependency at the top and at the bottom, and then use the
placement yielding fewer crossings.

- T L T[]
A > ¢
1 [ 1 []

i v T
1 ] mi -

Figure 6.18.: Depending on the situation it might be better to place the start-to-x de-
pendency above or below

Definition 12. Let wp be a work package. Let pred WP(wp) be all predecessor work pack-
ages and succ WP(wp) all successor work packages from wp. We then define zAbv(wp) =
> acawp(up) (absRow(a) > absRow(wp)) for x € {pred, succ} to be the number of prede-
cessor/successor dependencies going to a work package above wp. Similarly xBelow(wp) =
> acawp(up)(absRow(a) < absRow(wp)) is the number of predecessor/successor depen-
dencies going to a work package below wp.

Definition 13. Let d = (ds,d;) be a dependency, and absRow(ds) = absRow(d;).
Let bt(d) = {wp | absRow(wp) = absRow(ds), lg, < luwp, < lq,}. We then define
crosTop(d) = succAbu(ds) + 3, pepia) (SuccAbu(wp) + predAbuv(wp)) + predAbu(d:) and
crosBot(d) = succBelow(ds)+3 ., e pq) (SuccBelow(wp)+predBelow(wp))+predBelow(dy)

When having a dependency where the source and target work packages are on the
same absolute row position, we calculate crosTop and crosBot. Then, we can handle
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6.8. Drawing the Activity Network Diagram

this case by choosing the arrangement producing the fewest crossings depending on these
two calculated values.

Finish-to-Start Dependency Offset Assignment

Since most of our dependencies are F'S dependencies, we must take special care to han-
dle cases that can occur for them. The most significant problem for them is placing all
dependencies on the same line within the x-spacing. When doing so, it can be impossible
to see where a dependency ends. For example, in Figure 6.19 we can arrange all depen-
dencies on the same line, causing no problem. However, when considering a dependency
starting above A and ending below B that uses the same line, we are no longer able to
identify which dependencies end in B or further down. Therefore, our goal is to arrange
FS dependencies in the x-spacing in such a way that they do not use the same line and
do not create avoidable crossings.

_IAI_
1 [ ]

-
0

Figure 6.19.: Shifting dependencies depending on the number of other dependencies pass-
ing by

The general idea is that we want to assign each FS dependency an offset describing
how far we shift the dependency to the left in the target layer. For example, in Fig-
ure 6.19 dependency AB has an offset of two. As mentioned above, we assume that each
dependency first directly goes into its target layer before going upwards or downwards
to the target work package.

Definition 14. Let d = (A5, Ay) be a F'S dependency with absRow(As) > absRow(Ay).
Let D = {d | dype = FS, lg, = la,, ds # As}. We then define the offset of A as
offsety = |{dp | dp € D, absRow(dp,) > absRow(As), absRow(dp,) < absRow(A;}|.

We only consider an FS dependency that goes downwards (i.e., the target is below
the source) in Definition 14 but it works analogously for the upward case. When again
considering Figure 6.19, we can see that dependency AB has the offset of two because
two dependencies come from above and go into the same target work package.

The problem is that we currently do not consider dependencies that start in the same
absolute row positions, in different layers, and go to the same target layer and in the
same vertical direction (see Figure 6.20). We handle this case by increasing the offset
for a specific dependency depending on how many such dependencies start to the right
of it. For example, in Figure 6.20 we only increase the offset for dependency AC.
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_ICI_
[ 1 []

A 4

Figure 6.20.: Problem when considering two dependencies starting in the same row, going
into the same target layer with different jump values

Finish-to-Start Multiple Out-Going Dependencies

We also want to consider the case of two or more dependencies from the same work
package going into the same layer and in the same direction, to further increases the
readability of the AND (see Figure 6.21). The goal is to keep the offset for the closest
target and increase it the most for the target the furthest away.

_IBI_
[ 1 [ ]

[

_IAI_
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Figure 6.21.: Shifting dependencies that start at the same source and going to the same
direction

To achieve this, we consider all dependencies starting at the same source and going
in the same direction. We can then order these work packages by their absolute row
position. The offset of a dependency is then increased by its positioning in that ordering.
So, the dependency ending in the nearest target work package can keep its offset while
we increase it the most for the dependency where the target is the furthest away. For
example, in Figure 6.21, we keep the offset of dependency A B and increase the offset for
the dashed dependency by one.

Special Dependencies at Activity Network Boundary

Definition 15. Let A = (A, Ay) be a special dependency and bt(A) = {wp | la, <
lup < la,, absRow(wp) > absRow(As)}. We then define dependency A to be in a local
maximum if |bt(A)| = 0.

Definition 16. Let A = (A, A;) be a special dependency and bt(A) = {wp | la, <

lup < la,, absRow(wp) < absRow(As)}. We then define dependency A to be in a local
minimum if |bt(A)] = 0.
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6.8. Drawing the Activity Network Diagram

As mentioned above, whether a dependency goes out at the top or at the bottom
of the source work package usually depends on whether the target is above or below
the source. However, there are cases where arranging a dependency at the bottom for
a dependency where the target is above can yield good improvements (analogously for
downward dependencies). These cases are those where the dependency is in a local
minimum or maximum, because, by definition, we know that there are no work packages
that can produce crossings above a local maximum or below a local minimum. For
example, in Figure 6.22, assuming work package B is a local maximum, we can, instead

of leaving at the bottom, leave at the top, which avoids the crossing with the dependency
AB.

T

1 e
B T Iy
1 mil 1 [

Figure 6.22.: Arranging the dependency below the source would result in fewer crossings
within the AND

Placing the dependency on the outside of a local minimum or maximum can sometimes
also have the effect of increasing the number of crossings. Furthermore, when both
arrangements yield the same number of crossings, one should always choose the more
direct variant since the dependency length is much smaller in that case.

We only consider a special dependency being in a local maximum, but the local min-
imum case works analogously. Again, it is essential that each dependency directly goes
into its target layer before going upwards or downwards. This is needed, because the
main idea of the following rule is based on calculating the crossings produced exclusively
by the different drawing possibilities up to the point where they are drawn similarly
(e.g., up to the blue cross in Figure 6.22).

Definition 17. Let A = (As, Ay) be a special dependency in a local mazximum. Let
sa(A) = {wp | absRow(wp) = absRow(As), la, < luyp < la,} (in case of SF or FF
dependency la, < lyy < la,). Then we can define the outside number of crossings
as outsideCros(A) = |{D | D # A, Ds € sa(A), lp, >1a,}|

We start by calculating the number of crossings produced when placing the dependency
on the outer side in Definition 17. For example, in Figure 6.22 we need to calculate the
number of out-going dependencies from B that go into a layer to the right of D, indicated
by the dashed dependency.
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Definition 18. Let A = (As, At) be a special dependency in a local maximum. Let
sa(A) = {wp | absRow(wp) = absRow(Ay), la, < lup < la,}. Then we can define the
normal number of crossings as normalCros(A) = |{D | D # A, D; € sa(A) or Ds €
sa(A) and lp, <la,}|.

In the second step, we now calculate the number of crossings we produce up to the
target layer when placing the dependency normally (see Definition 18). For example,
in Figure 6.22 we consider the dependency AB since it only produces a crossing when
placing the dependency normally.

As a result, we have the number of crossings produced exclusively by placing the
dependency normally or to the outside. Therefore, it only remains to choose the drawing
variant producing fewer crossings.

6.8.3. Placing the Bends

We have introduced several special rules that we apply to create a well-readable layout.
On the one hand, we calculated the offsets for F'S dependencies and, on the other hand,
whether we place a dependency at the top or at the bottom in specific cases.

Furthermore, we decided to shift the exit and entry position at the work packages
for special dependencies further to the top or bottom depending on the dependency
arrangement (e.g., in Figure 6.23 the SF dependency AB goes out at the top of A and
goes in at the bottom of B). We do this because we only have relatively few special
dependencies, so it is easier to distinguish between special and standard dependencies.
In contrast, a F'S dependency always leaves and enters at the middle of the source and
target.

JBI_
1 ]

LJAI_
1 []

Figure 6.23.: Exit and entry positions at a work package shifted depending on the rela-
tionship between source and target work package

Finish-to-Start Bend Points

In addition to the x-spacing between two neighboring layers, we create a margin between
the work packages and the x-spacing, to have the space to arrange special dependencies
and draw the dependencys’ arrows. We also use the right margin’s boundary as starting
point to shift F'S dependencies to the left based on their calculated offset (i.e., an FS
dependency with an offset of zero is placed onto the right boundary and the greater the
offset, the further the dependency is shifted to the left).
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6.8. Drawing the Activity Network Diagram

We have three different cases for the bend point assignment. First, when having a F'S
dependency to a work package into its own absolute row position with no work package
in between, we do not have to include any bends (e.g., dependency AC in Figure 6.24).

In the second case, we consider a dependency where we can directly go into the target
layer, but the target is not on the same absolute row position. In this case we directly go
into the target layer and then upwards or downwards to the target work package (e.g.,
dashed dependency starting from D in Figure 6.24).

In the last case, we consider a dependency where one can not directly go into the
target layer (e.g., dependency AF in Figure 6.24). In this case we first check in which
direction we leave the source, then use the nearest y-spacing to get into the target layer
and lastly go upwards or downwards to the target.
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Figure 6.24.: Visualization of the bend point placement

Special Dependency Bend Points

The FF dependency is the only special dependency that might also directly go into the
target layer without using the y-spacing (e.g., dependency DF in Figure 6.24). This is
because both other special types always first have to go around their own source work
package to reach the target layer.

However, if we are not in the case above, we also first check in which direction the
special dependency leaves, then go to the target layer (i.e., left side of target for SS and
right side for FF and SF dependencies) through the nearest y-spacing to then go upwards
or downwards to the target work package (e.g., SF dependency AB, SS dependency BE,
and FF dependency AF in Figure 6.24).
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6.8.4. Conclusion

In this section, we first described specific rules to define the position of work packages,
and decision rules on which the bend placement is based. In the last step, we used these
decision rules and the spacings we introduced during the work package placement to
describe how to assign each dependency its bend points. The main focus was to not
create dependency crossings and to only use at most four bends for each dependency.
This last step is crucial for achieving a well-readable output, because if certain cases are
not considered carefully, the previous steps we applied to the AND abstraction would
be mostly useless. This is due to the first observation we made in this chapter, where
we discussed that by wrongly assigning positions and bend points, the resulting AND
can be hard to understand.

To sum up, we look back at the initial example AND abstraction in Figure 6.4.
Throughout this chapter, we mainly worked with such an abstract view of the AND, and
only in the final step did we transformed it to the lecturer’s AND structure. Figure 6.25
shows what the initial abstract AND example looks like after having applied the final
transformation step to it.
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Figure 6.25.: Initial abstract activity network diagram after applying the final transfor-
mation step to it
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In the previous chapter, we have shown the different steps a generated AND is processed
with before it gets drawn in the final step. We mainly used our AND abstraction
throughout these steps and only transformed it to the lecture’s AND structure in the
last step. We now introduce our data model, which includes the internal AND model used
to represent the AND abstraction. In the end, we introduce the different microservices
we use and how they interact with each other.

7.1. Data model

7.1.1. Activity Network Diagram Design

We will start by explaining the structure of the internal AND model, which can be seen
in Figure 7.1, that corresponds to the AND abstraction described in section 6.2.

First of all, we have a class describing the dependencies, consisting of the identifier
of its source and target vertices and its dependency type. The vertex object directly
contains the structural properties we introduced for the AND abstraction in section 6.2,
so we can quickly access them, since we need them more frequently. The actual work
package information is then included as a separate object to isolate this information
from the structural information.

The actual AND model contains a list of dependencies and a vertex map with the id
as key and the vertex as value. This vertex map allows us to quickly access the vertices
corresponding to a dependency and to check whether the AND already contains a vertex.
In addition, we also included a map having the layer number as key and the layer size
as value. This allows us to quickly access a layer’s size and get the maximum layer size,
both of which are needed to calculate the absolute row position of vertices.

Business Logic

Interactive software systems often consist of three distinct tiers: the presentation, ap-
plication, and data tier [LL13]. The presentation tier is used to interact with a user,
and its primary purpose is to provide information to or get data from the user. We use
a Command Line Interface (CLI) for this. The application tier contains the logic to
process the presentation tier’s information and modify the data in the data tier. The
data tier is solely used to manage the information given by the application tier [LL13].

We do not use such a strict division between the application and data tier, since we
want to avoid creating too many abstractions, as we currently do not persistently store
the AND model. Therefore, the ActivityNetworkDAQO also contains some functionality
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ActivityNetworkDAO
- dependencies: List<Dependency>
- vertexMap: Map<String, Vertex>
- layerSizes: Map<Integer, Integer>

+ addVertex(Vertex vertex): void

+ addDependency(Dependency dependency): void

+ getVertexByld(String vertexId): Vertex
+ getSuccessorDependencies(Vertex vertex):
List<Dependency>

Dependency

- sourceld: String
- targetld: String
- dependencyType: DependencyType

<<enumeration>>
DependencyType

START_TO_START
START_TO_FINISH
FINISH_TO_START
FINISH_TO_FINISH

Figure 7.1.: Design of then internal AND model

to modify its properties, e.g., to add dependencies or vertices. Nevertheless, we only
included the basic functionality and still used business logic objects to provide more
extensive functionalities. This reduces the effort required if we want to make the internal
data model persistent in the future. We briefly introduce the main business logic objects

Vertex

- id: String

- layer: int

- relRowPos: int

- absRowPos: int

- inDegree: int

- outDegree: int

- workPackage: WorkPackage

+ updateAbsRowPos(int maxLayerSize,

int myLayerSize): void
+ isStart(): boolean
+ isEnd(): boolean

WorkPackage

- name: String
- duration: int
- earlyStart: int

+ clearProperties(): void
+ isCritical(): boolean

T

StartVertex EndVertex

isStart(): boolean isEnd(): boolean

and their usage in the following.

e The ActivityNetworkOrderer provides functionality to check whether an AND is
correctly layered, and in case it is not, it provides a method to create a new valid
layering. Additionally, since the absolute row position of a vertex is based on the
maximum and its own layer size, the object allows recalculating the absolute row

position for each work package.

e The ActivityNetworkModifier provides safe methods for modifying the AND. Safe,
in this context, means that we ensure that all properties are still correct after
changing anything within the AND. This is needed since the base AND model
provides methods to add vertices or dependencies but does not check whether the

AND is correctly layered or each absolute row position is correct.
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7.1.2. Transformed Activity Network Diagram

To make the transformation described in section 6.8 independent of the final output
format, we include a transformation from the internal AND model into a data model
that includes all the properties needed for the AND drawing. This data model can be
seen in Figure 7.2 showing that we still have a similar structure to the internal AND
model, but rather with actual drawing properties. For example, the dependency type is
replaced by the exitX and entryX values describing the work package sides a dependency
leaves its source and enters at the target work package.

ActivityNetworkTransformed

- vertexTransformedMap: Map<String, VertexTransformed>
- dependencyTransformedList: List<DependencyTransformed>

+ createFromActivtyNetworkDaoAndTransformationConfig(
ActivityNetworkDAO andDAO,
TransformationConfig transformationConfig): ActivtiyNetworkTransformed

_

DependencyTransformed
- sourceld: String
VertexTransformed - targetld: String
i - - exitX: double
- id: String - entryX: double
- X: double - exitY: double
- y:.double - entryY: double
- width: double - controlPoints: List<Pair<Double,Double>>
- height: double
- isStartOrEnd: boolean + createFromFinishToStartDependency(
- workPackage: WorkPackage VertexTransformed source, ...,
- : Dependency dependency, ...): DependencyTransformed
+ createFromVertexAndTransformationConfig( + createFromSpecialDependeny(
Vertex vertex, VertexTransformed source, ...): DependencyTransformed
TransformationConfig transformationConfig): VertexTransformed

Figure 7.2.: UML class diagram of abstracted lectures activity network structure

7.1.3. Design of the Crossing Improvement - Strategy

The essential step to get a well-readable AND as output is the crossing improvement.
This is because the generation step randomly creates dependencies between work pack-
ages without considering any positioning aspects like creating dependencies between
work packages that are close to each other. Therefore, we must reorder each layer af-
terward to bring all work packages, and thereby the dependencies into a good structure
(see section 6.5).

We use the strategy pattern, which is one of the well-known Gang Of Four [Gam+95]
design patterns, to model the crossing improvement. The main idea of the pattern is to
create an abstract view of a class of algorithms by introducing an interface describing the
structure of the algorithm, called Strategy. A Concrete Strategy then implements this
interface and can be assigned to the strategy used throughout the application. Therefore,
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changing the concrete strategy usually only has to be done in a single place.

We first applied the strategy pattern to the crossing heuristics. These heuristics have
in common that they consider one layer as free and the remaining layers as fixed. There-
fore, we introduce the abstract class CrossingHeuristic, including a permute method, as
one strategy. The two concrete strategies, the greedy switch and barycenter heuristics
extend this class, so both must implement the permute method. The strategy pattern
is particularly well suited here, as there are several other such heuristics [MLO03].

Furthermore, we also applied it for the two crossing counter approaches where one
approach calculates crossings in the whole AND and the other approach only around a
specific layer (see section 6.5.1).

As a result, we have a highly extensible crossing improvement. However, we deviated
from the original strategy pattern described in [Gam+95] since we did not use interfaces
but rather abstract classes. This simplifies the concrete strategies since they all must
depend on the AND. The explained design can be seen in the UML class diagram in
Figure 7.3.

ActivityNetworkCrossinglmprover

- andDAO: ActivityNetworkDAO

H - completeCrossingCounter: CompleteCrossingCounter

- crossingHeuristic: CrossingHeuristic

+ applyLayerBylLayerSweep(): int

<<abstract>>
CrossingHeuristic

- andDAO: ActivityNetworkDAO

+ permute(int freeLayer)
<<abstract>>
Zﬁ CrossingCounter

andDAO: ActivityNetworkDAO

calculateCrossingCount(...): int
BarycenterHeuristic GreedySwitchHeuristic
- andOrderer: ActivityNetworkOrderer - singleLayerCC: SingleLayerCrossingCounter %
+ permute(int freeLayer) + permute(int freeLayer)
<<abstract>> <<abstract>>
SingleLayerCrossingCounter CompleteCrossingCounter
+ calculateCrossingCount(int layer): int + calculateCrossingCount(): int

1 i

SimpleSingleLayerCrossingCounter SimpleCompleteCrossingCounter

- windowLeft: int + calculateCrossingCount(): int
- windowRight: int

+ calculateCrossingCount(int layer): int

Figure 7.3.: UML class diagram for the crossing improvement

7.2. Microservice Architecture

One of our requirements was to use a microservice architecture to increase the exten-
sibility of the application. In the following section, we first give a static view of the
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microservices by explaining the functionality of each service. Then we will look at the
dynamic view, i.e., the relationship and communication, between services.

7.2.1. Microservices - Static View

In the following, we introduce the functionality of the five services we use. In doing so,
we sometimes refer to a configuration, which we introduce in section 8.2. However, it is
only essential for this section to know that such a configuration exists.

APl Gateway

The API gateway is the entry point to the system, and we use it to provide all the
functionality to the user. Its main task is to provide user-friendly interfaces so that the
user does not have to rely on the communication technologies used between the services
[Ric19]. In addition, a gateway is often used to aggregate results from different services.
However, we primarily use the gateway to transform user calls into an equivalent call
utilized by the underlying services, forwarding them, and in the end, returning the result
to the user.

Generation Service

The generation service is used to create the initial internal AND model. For this pur-
pose, it must be provided with a suitable configuration that is to be used during the
creation. Furthermore, it is only reasonable to apply the crossing avoidance step after
the generation since it does not only reorder work packages but changes dependencies
which should not happen with an input AND. Therefore, we have also included the
crossing avoidance step in this service.

Calculation Service

The calculation service provides the functionality to calculate all AND properties. Since
the calculation method requires an AND with proper layering, it also applies a new
layering if the AND is not well layered.

Transformation Service

The transformation service is always the last service an AND runs through before being
returned to the user. In doing so, it first transforms the internal AND model into the
AND model containing the actual drawing information. The AND model is then further
transformed into a proper graph format for a specific graph modeling tool such as MS
Visio! or Draw I02. We first transform the internal AND model to the AND model
containing the drawing information because this allows us to relatively quickly add new
graph formats.

"https://www.microsoft.com/de-de/microsoft-365 /visio/flowchart-software
https://app.diagrams.net/
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The service can also get specific graph formats as input and transform them into the
internal AND model. This is needed to get a modified AND, or an AND created from
scratch, as input to calculate its properties and output it again. The AND structure
and the properties of the work packages must be preserved when transforming it. This
is because the output graph should have the same structure as the input, and all values
are needed for possible functional extensions.

Configuration Service

The configuration service is used to store and modify the configurations we use within
the generation and transformation service. It provides interfaces that encapsulate the
typical CRUD (Create, Read, Update, and Delete) functionalities.

7.2.2. Microservices - Dynamic View

The previous subsection introduced the different microservices and their functionality,
but only provided a static view of the architecture. We now explain how these services
interact and communicate with each other.

The services communicate with each other by using a message broker. In Figure 7.4
we can see that the APl Gateway at the top is the entry point to the system, and all
communication goes through the message broker. This means that each service queues
messages at the message broker that the designated target services can then consume.
However, since Figure 7.4 still does not visualize which services interact with each other
via the message broker, Figure 7.5 includes the logical flow between the services.

We now look at the sequence diagram in Figure 7.6 visualizing the generation process.
For the sake of readability, we omit the message broker. First, the user has to provide a
profile name correlated to an existing configuration which is to be used for the generation
and transformation. The gateway then gets the corresponding profile configuration from
the configuration service and forwards it to the generation service. The generation service
performs all steps prior to the calculation as introduced in section 6.3 and forwards the
generated AND to the calculation service. After the calculation, the transformation
service produces the output AND, and sends it to the gateway, which returns it to the
user.

In Figure 7.7 we see the sequence diagram for inputting an AND to calculate its prop-
erties. This process is very similar to the generation process, except that the generation
step is replaced with the transformation of the input AND into the internal AND model.
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API Gateway E
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A
Message Broker E
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Figure 7.4.: Data flow between microservices

API Gateway E
A
Y
Business Logic E Message Broker E
A M
Generation E Configuration E ( essage Queue ( >
Service Service
—> data flow
Calculation E TransformationE ——> logical flow
Service Service

Figure 7.5.: Logical flow between microservices
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User

:API| Gateway

:Configuration
Service
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8. Implementation

In this chapter we introduce the technologies used to implement the services introduced
in the previous chapter. Then we describe the configuration we use for the generation
and transformation process. Additionally, we introduce the graph modeling tool we use
to visualize, modify, and create ANDs.

8.1. Technologies

For the implementation of the different microservices, we use Java Spring Boot'. We
use Maven? to build each service, and to manage the dependencies to modules of other
projects. We use Docker? to create docker containers for the microservices which al-
lows to deploy services simply and quickly. To simplify the workflow with the several
docker containers, we use Docker Compose?, allowing us to start all containers with a
simple command and configure them within a single file. We use the NoSQL database
MongoDB® to persistently store the profile configurations because of the document-like
structure of the configurations. We use Apache Kafka® as message broker because it pro-
vides efficient methods to exchange messages. Additionally, we use Jackson” to be able
to serialize and deserialize Java Objects, to exchange them between services. To provide
the different functionalities to users, we defined a simple REST API at the gateway
service. Lastly, we use Draw IO as the graph modeling tool, which we will introduce in
detail in section 8.3.

8.2. Configuration

Our first prototype had the generation and transformation properties statically set within
the respective services. The problem with this approach is that it does not allow us
to adjust the configuration depending on the desired output. The ability to change
which configuration is used is especially useful for the drawing step, as we can use
a configuration specifying a compact printing for the final version of ex-tasks, and a
configuration for draft ex-tasks, where space is not an issue.

"https://spring.io/projects/spring-boot
https://maven.apache.org/
3https://www.docker.com/
“https://docs.docker.com/compose/
Shttps://www.mongodb.com/
Shttps://kafka.apache.org/
"https://github.com/FasterXML /jackson
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We use two configuration formats to handle this, one for the generation and one for
the transformation. Both of these combined then create a configuration profile that is
persistently stored in a MongoDB.

8.2.1. Generation Configuration

Even though, we only want to create ex-tasks in this thesis, we designed the generation
step in such a way that it can also generated larger ANDs. We now introduce the gen-
eration configuration properties and then explain a problem they have. Each generation
configuration consists of the following:

e a minimum and maximum number of layers

e a minimum and maximum number of work packages

e a minimum and maximum size of the first, intermediate, and last layer
e a minimum and maximum duration

o a jump distribution

o a number of finish-to-finish dependencies

e a number of start-to-finish dependencies

o a number of start-to-start dependencies

e a boolean defining if the post-processing should be applied after the generation

Minimum and Maximum size of Layers

The only exceptions where the above values deviate from the ones used in section 6.4.2
are the minimum and maximum layer sizes. Here, we divided these two values further
into six distinct properties. These properties are used to more finely define the layer
sizes of the first layer, all intermediate layers, and the last layer, which is helpful for the
creation of ex-tasks. The reason for this is that the first and last layers are uninteresting
for ex-tasks since their in-going (for the first layer) and out-going (for the last layer)
dependencies are easy to calculate. This is due to the fact that the start and end work
packages have a duration of zero and only FS dependencies.

Generation Configuration Problem

The generation configuration has the problem that the minimum and the maximum
number of work packages we can generate do not depend only on the corresponding
values defined in the configuration. Equation 8.1 and Equation 8.2 define the additional
conditions for the minimum and maximum number of generatable work packages. These
conditions show that it might not be possible to generate ANDs with the minimum or
the maximum number of work packages as specified in the configuration.
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minNum WP > minSizeFLay + (minNumLay — 2) * minSizelLay + minSizeLLay (8.1)

maxNumWP < mazSizeFLay+ (maxNumLay — 2) x maxSizelLay + mazSizeLLay (8.2)

We handle this problem by using the maximum value of the two lower bounds (i.e.,
the defined value and the value in Equation 8.1) and the minimum value of the two
upper bounds. By doing so, we ensure that we only use correct boundaries within the
generation.

8.2.2. Transformation Configuration
Having presented the generation configuration, we will now provide the transformation
configuration, which consists of the following elements:

e a critical path color

e an z-zero and y-zero position

e an z-spacing and y-spacing

o a work package width and height

 a start/end work package width and height

e a boolean defining whether the name and duration should be separated by a line
break or white space

e a boolean defining whether to use rounded bends

8.3. Draw 10

Draw 10 is a tool that allows creating just about any diagram one can think of. It
follows a simple drag and drop system where one can move and combine shapes in any
way. We use Draw IO, since one of our requirements was to be able to modify ANDs
and build ANDs from scratch, which is possible with Draw 10. In addition, the graph
representation language of Draw 1O allows the importation and exportation of ANDs
in a format that can be transformed into the internal data model. However, using such
a comprehensive tool also has some disadvantages because we have to define certain
restrictions and assumptions to transform a created or modified AND into our internal
AND model.

8.3.1. Diagram Representation with XML structure

We begin with introducing the Draw 10 diagram representation which is based on an
XML structure, which is generally a reasonable decision, as diagrams often follow a
hierarchical structure. So, considering the work package representation, we could think
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of a group element as the parent with five children. These children would then describe
the actual properties of a work package, such as the name and duration, or the ES.
Additionally, one could introduce several tags describing the different elements, such as
vertices and edges. Unfortunately, the Draw IO XML representation does not do any of
these things.

The Draw 10 XML structure first always consist of an outer mazGraphModel followed
by a root tag. Then the root tag contains all the visible diagram elements as direct
children. This means that the XML representation does not make use of the hierarchical
structure of XML but instead tries to avoid it by using other techniques. For example,
the root tag only contains mxCell elements as children. Here, each of these elements has
either an edge = “I1” or vertex = “1” attribute. In other words, instead of working with
different tags (e.g., mzVertex and mxzEdge), they define the type using an attribute.

As mentioned, each visible element is a direct child of the root tag. Therefore, the
model does not include a typical parent-children relationship of elements by placing the
children between the parent tags. This means that in Draw IO, each element contains
an attribute parent = “xy” referring to the actual parent element. To do so each mzCell
element contains a unique identifier as an attribute. Only the essential structural infor-
mation, such as the position or width of an element, are contained in a child maxGeometry
element. In Source Code 8.1 we see the Draw 10 XML representation of Figure 8.1.

[ 4 4]
>
[5 5 ]

0|

A
4

11

Figure 8.1.: Diagram visualization of the mxGraphModel in Source Code 8.1

Fortunately, there is the JGraphX® package that provides some functionality to work
with the mxGraphModel in Java. Although the primary use case of this package is to
visualize and work with the mxGraphModel within Java Swing (i.e., an old GUI-Toolkit
for Java), it is sufficient for us. It provides functionality to create a mxGraphModel
programmatically and then transform it into the XML structure. In addition, one can
also transform the XML structure into a mxGraphModel needed to get a modified or
entirely new AND as input.

8.3.2. Mapping the Internal AND to mxGraphModel

The JGraphX package allows us to create a mxGraphModel and fill it with mxCells.
For the sake of readability, we refer to an mxCell only as cell from now on. When
creating an AND drawing, the first step is to transform the internal AND used within
the services into the AND representation that contains the actual drawing information.
Since the transformed vertices and dependencies already contain all of the properties we
need for the mxGraphModel, we only have to create each cell and output the resulting

Shttps://github.com/jgraph /jgraphx
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<mxGraphModel ...>
<root>

<mxCell id="0" />
<mxCell id="1" parent="0" />

<mxCell id="14" style="...;exitX=1;exit¥=0.5;entryX=0;entryY=0.5" parent="1"
source="2" target="9" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>

<mxCell id="2" value="" style="group" parent="1" vertex="1">
<mxGeometry x="220" y="320" width="100" height="60" as="geometry" />
</mxCell>

<mxCell id="3" value="A&lt;br&gt;4" style="..." parent="2" vertex="1">
<mxGeometry width="100" height="60" as="geometry" />

</mxCell>

<mxCell id="4" value="0" style="..." parent="2" vertex="1">
<mxGeometry width="30" height="20" as="geometry" />

</mxCell>

<mxCell id="5" value="4" style="..." parent="2" vertex="1">
<mxGeometry x="70" width="30" height="20" as="geometry" />

</mxCell>

<mxCell id="6" value="1" style="..." parent="2" vertex="1">
<mxGeometry y="40" width="30" height="20" as="geometry" />

</mxCell>

<mxCell id="7" value="5" style="..." parent="2" vertex="1">

<mxGeometry x="70" y="40" width="30" height="20" as="geometry" />
</mxCell>

<mxCell id="8" value="" style="group" parent="1" vertex="1">
<mxGeometry x="410" y="320" width="100" height="60" as="geometry" />
</mxCell>

<mxCell id="9" value="B&lt;br&gt;3" style="..." parent="8" vertex="1">
<mxGeometry width="100" height="60" as="geometry" />

</mxCell>

<mxCell id="10" value="4" style="..." parent="8" vertex="1">
<mxGeometry width="30" height="20" as="geometry" />

</mxCell>

<mxCell id="11" value="7" style="..." parent="8" vertex="1">
<mxGeometry x="70" width="30" height="20" as="geometry" />

</mxCell>

<mxCell id="12" value="5" style="..." parent="8" vertex="1">
<mxGeometry y="40" width="30" height="20" as="geometry" />

</mxCell>

<mxCell id="13" value="8" style="..." parent="8" vertex="1">

<mxGeometry x="70" y="40" width="30" height="20" as="geometry" />
</mxCell>

</root>
</mxGraphModel>

Source Code 8.1: mxGraphModel describing Figure 8.1
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mxGraphModel. Here, a work package consists of six cells, an outer group cell containing
five child cells, one for each of the work package properties. The cell for the name and
duration is the same size as the group, while the four cells for the schedule properties
are smaller and placed in their respective corners, as described in section 2.2.3.

8.3.3. Mapping mxGraphModel to the Internal AND

The first version of our prototype did not read in all work package values but only the
name and duration. In general, this is sufficient when only considering importing ANDs
to calculate their schedule properties. However, as we want to maintain the extensibility
of our architecture, we make sure that there is no information loss during the importation
of an AND. We now explain how we transform a mxGraphModel into the internal AND
model that takes all properties into account.

First, in contrast to producing the output mxGraphModel, parsing mxGraphModel is
more challenging. The most prominent problem is identifying which property a vertex
cell describes, since the group cell, the name and duration cell, and each schedule prop-
erty cell are all vertex cells. Therefore, we now describe how we identify what part of
an AND a given vertex cell describes, which we then use to explain the transformation.

Identifying the Start and End Cell

We begin with the start and end work package cells. The first approach we considered
to identify them was distinguishing them by their different width and height since these
properties usually differ from normal work package cells. However, this would only be
possible when using the width and height values from the transformation configuration
provided, but we want to handle the input independently from the configuration. There-
fore, we decided that the start cell needs to have the name start and the end cell the
name end, since that is the most simple and convenient method to differentiate them
from normal work package cells.

Identifying the Group Cell

As stated above, a work package always consists of a group cell containing five child
cells, one for each of the five properties of an AND (the name and duration make up one
property). Therefore, we first check if a cell contains five child cells. However, to avoid
accidentally identifying any cell with five children as a work package group cell, we also
check whether the cell contains four children with numeric or empty values, which must
be the case for the four schedule properties.

Identifying the Schedule Property Cell

To identify schedule property cells, we first check if the parent cell is a group cell and if
it has no children of its own. Finally, to ensure that it is a schedule property and not
the name and duration cell, we check whether the value is either numerical or blank.
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We identify which of the four schedule properties it is by checking in which corner of the
group cell it is located.

Identifying the Name and Duration Cell

To identify the name and duration cell, we first check whether the parent cell is a group
cell and the cell itself has no children. If this is the case, we only need to check whether
it has the same width and height as its parent cell (i.e., the group cell).

Creating Work Packages Vertices

To create work package vertices from vertex cells, we consider each vertex cell individ-
ually, check whether it is a start, end, or regular work package group cell, and then
create the individual AND parts. We can directly create start and end vertices since
they always have a duration of zero and no visible schedule properties. For normal work
package group cells, we need to consider each child and extract their values. In addition,
each internal vertex gets the id of the group cell assigned, since we can be sure that it
is unique.

Additionally, we want to preserve the input positions, since we always want to keep the
work packages in the same layer for the resulting output. The absolute row position and
relative position should also be preserved but might change if the crossing improvement
finds a more suitable ordering. To achieve this, we need to save cells’ x- and y-positions
when transforming them. After transforming all work package cells to AND vertices, we
first group them by their corresponding x-positions and assign them a layer based on
the group’s x position. We then consider each group separately and sort them by their
corresponding y-positions to assign each vertex a relative position.

In the end, we have a list of work packages, each with the correct layer and relative
position assigned. Therefore, we only need to calculate the absolute row positions to set
all properties correctly.

Creating dependencies

Creating dependencies is easier than creating work package vertices, since the depen-
dency type is the only thing we must transform. This is because each edge cell already
contains its source and target cell id. To transform the dependency type, we need to
extract the exitX and entryX positions and assign the dependency type based on these
two values (e.g., exitX = 0 and entryX = 1 means leaving on left side of the source and
entering on the right side of the target, thus an SF dependency).
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0. Evaluation

We now discuss the results of this thesis. We begin by considering the generation of ex-
tasks since this was the primary goal of this thesis. In doing so, we compare the reference
AND for this thesis (see Figure 9.2) with a generated AND having a similar number of
work packages. We then use quantitative analysis to verify that the generated ANDs
meet the requirements and to compare the performance of the crossing improvement
heuristics we introduced. Lastly, we consider the generation of larger ANDs, and how
well our generator performs in this case.

We always specify the random seeds which were used to generate our sample and
example ANDs, to provide the possibility to replicate the ANDs we used.

9.1. Generating Activity Network Diagram for Ex-Tasks

The following section is mostly based on ANDs that were generated with the default
ex-task profile configuration in Source Code A.1.

9.1.1. Qualitative Analysis

We will begin by reconsidering the reference AND we have seen in Figure 9.2 and compare
it with the generated AND in Figure 9.1 having the same number of work packages and
layers.

Property Comparison

The reference AND has five different special dependencies compared to only four in the
generated AND. The reason for this is that we have specified a value for each special
dependency type, that describes how often it occurs in a generated AND. For our ex-
tasks, this value is set to one for each special dependency type. If we increase a single
special dependency type by one, we get the same number as in the reference AND, but
it is not reasonable because we always create the same special type twice. This shows
that the current generation configuration is missing a parameter that specifies how many
random additional special dependency types should be generated. However, this is not
a big problem because one can manually add another special dependency type after the
generation.

If we look at the in-degree and out-degree of work packages, we see that we have
a maximum in-degree and out-degree of two in the reference AND. In contrast, we
have work package F in the generated AND with three in-going and three out-going
dependencies. This is because the generation method favors a jump value of one for
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ex-tasks. Therefore, a layer with only a single work package has a high probability of
having many in-going and out-going dependencies. Furthermore, we can see that we
have more work packages with only a single in-going and out-going dependency in the
generated AND (eight versus four). This shows that it might be helpful to include a
method that moves dependencies from work packages with a high in-degree or out-degree
to work packages having only a single in-going or out-going dependency.
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Figure 9.1.: Example for a generated ex-tasks activity network diagram generated with
Source Code A.1 (seed: 1645629446882)
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Figure 9.2.: Reference AND taken from a previous exam task (Figure 2.7)

Layout Comparison

We can see that the reference AND is more compact than the generated AND. However,
this is mainly due to the empty space we introduced between neighboring work packages
within a layer, affecting only the AND drawing height. This is essential because it is
more important to have a compact width, which is the case for the generated AND, in
order to be able to place the AND on an exercise or exam sheet.

Furthermore, we can see that the generated AND does not contain labels for the special
dependency types. However, the dependency type is well defined by their out-going
and in-going sides, and the label is only included within the reference AND to avoid
misunderstandings by students. Therefore, not including the label is not a problem,
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especially since automatically placing the label without overlapping with other work
packages or dependencies is much more complicated than manually placing the label
before completing the ex-task.

When further looking at the dependency arrangement in the reference AND, we can see
similar decisions as we have included in our drawing. For example, the SF dependency
HI in the reference AND is placed to the bottom even though the target work package
is above H. When now considering the generated AND, we have similar behavior for the
dependency AFE which is the result of one of our introduced drawing rules. In addition,
we decided to have a maximum of four bends to increase the readability, which is also
the case in the reference AND.

9.1.2. Quantitative Analysis

We conducted a quantitative analysis to evaluate the different methods and approaches
we applied. In doing so, we generated 100 ANDs with the profile configuration Source
Code A.1 and seeds 1000 to 1099. We analyzed structural information such as the number
of work packages and layers, and three crossing improvement heuristic approaches, the
barycenter heuristic, the greedy switch heuristic, and combining both by first applying
the barycenter and then the greedy switch heuristic, to evaluate which approach performs
the best. In the following, we describe the results we obtained.

Structural Evaluation

Min | Median | Max | Mean

Number of work packages 11 12 13 12.0
Number of layers ) 5 6 5.49
Dependencies of length one | 12 16 20 15.51
Dependencies of length two | 0 2 7 2.04
Maximum in-degree 2 3 5 2,78
Maximum out-degree 2 2 4 2,38

Table 9.1.: Table showing the statistical information from the 100 generated ANDs

We now discuss whether the generated ex-tasks fulfill the requirements we defined in
section 2.2.4 and the limits defined in the generation configuration. Table 9.1 summarizes
the most important metrics we considered.

We can see that most of the values are in line with the expected values, for example
in our sample, the average number of layers is 5.49 and the number of work packages is
12, where we would expect an average number of layers of 5.5 and an average number of
work packages of 12. The only deviation is the number of dependencies with length one
and two, where we expected to get around 80% dependencies of length one and 20% of
length two but 88.5% have length one and only 11.5% a length of two. The reason for
this is that we only have a small number of work packages in the start, penultimate, and
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last layer, where we can only create dependencies of length one; thus, dependencies of
length two can only be generated originating in the first layer to the third to last layer.
To validate that this is the reason for this behavior, we considered some large ANDs
with only a single work package in the first and last layer, which showed that we then
approximately get 80% dependencies of length one and 20% of length two. However,
since we only have one dependency of length two in the reference AND, and the generated
AND already has two of them on average, we should not increase the probability for a
jump value of two.

We also considered the maximum in-degree and out-degree, but excluded the start
work package’s out-degree and end work package’s in-degree. We do this because the
schedule properties resulting from their dependencies are not challenging to determine.
In doing so, we see that each AND contains at least one work package with two in-going
dependencies and one work package with two out-going dependencies, which is needed
for an ex-task. In addition, we see that we often have a work package with an in-degree
of three, which we might want to consider decreasing, as discussed in section 9.1.1.

Lastly, each AND contains each special dependency type once. Hence, the profile
configuration in Source Code A.l produces ANDs that fulfill the minimum ex-tasks
requirements defined in section 2.2.4.

Crossing Heuristic Performance

We will now look at which of the three crossing improvement approaches stated above
works the best and also evaluate the effect of the crossing avoidance step we included.

We start by looking at Figure 9.3, which shows the number of crossings we had before,
and Figure 9.4, showing the number of crossings we had after, we applied the crossing
avoidance step in the AND abstraction. Here we can see that the crossing avoidance
step greatly reduced the number of crossings in the AND abstraction. Thus, it is very
likely that we also have such a reduction in the actual AND drawing, but, at the very
least, this should not have made it worse.

Furthermore, we also compared the number of crossings before and after the crossing
avoidance for each generated AND, which confirmed that the crossing avoidance step
never increases the number of crossings in the AND abstraction. In addition, when
excluding the cases where we already had zero crossings before the crossing avoidance
step, the crossing avoidance achieved a reduction in the number of crossings in about
59% of cases.

When now looking at how well the three different approaches perform, we can see
that the greedy switch and barycenter heuristics produce quite similar results after the
crossing avoidance step (Figure 9.4). Nevertheless, the barycenter heuristic produces
fewer crossings in the resulting AND drawing (Figure 9.5), indicating that completely
reordering the layer instead of just swapping work packages tends to produce better
results for the actual AND, even though the result in the AND abstraction are quite
similar.

However, we can see that the combined approach outperforms both other methods in
all three stages. The reason for this is that we first get the results of the barycenter
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heuristic in the first step but then use the greedy heuristic to find further improvements;
thus, we improve and already acceptable results. To further validate this, we generated
some large ANDs and compared the number of crossings before the crossing avoidance
step. We saw that the barycenter heuristic performs considerably better than the greedy
switch heuristic with respect to the runtime and the resulting number of crossings.
Applying bot approaches sequentially reduces the resulting number of crossings even
more.

In summary, we showed that using the barycenter followed by the greedy switch
heuristic gives the best results, so this is the approach that should be used.

Crossing after Crossing Improvement and before Crossing
Avoidance in AND Abstraction
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Figure 9.3.: Number of crossings in the AND abstraction after applying the crossing
improvement step and before the crossing avoidance step

9.1.3. Activity Network Diagram Generation Problems

The generated AND we discussed in section 9.1.1 is only a single example AND having a
well-readable structure. We can see in Figure 9.5 that only in 39% of cases are there no
crossings in the AND, and there are even ANDs with a total of six crossings. One such
AND can be seen in Figure 9.6, and we can identify several reasons for this problem.
First, we did not consider the special dependency combination at work package K in our
decision when a work package is in a local minimum or maximum, since it is improba-
ble. In addition, we can see that we have three dependencies with a high absolute row
difference (EK, GK, and HL) where the crossing avoidance step can not further reduce
their absolute row difference. Additionally, we also have five dependencies with a jump
value of two, which is considerable more than the average of two such dependencies, we
see in Table 9.1. This clearly shows that the intuition that long dependencies tend to
lead to many crossings is correct.

Nonetheless, we see in Figure 9.5 that the probability of having at least two crossings
is only about 31% in our 100 generated ANDs. This shows that we can produce well-
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Crossings after Crossing Avoidance in AND Abstraction
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Figure 9.4.: Number of crossings in the AND abstraction after applying the crossing
improvement step and crossing avoidance step

readable output ex-task ANDs most of the time, and an AND as seen in Figure 9.6 is
only an exception. In addition, since the generation process for ANDs of this small size
is fast, we can simply generate new ANDs until we get a more preferable output. If
doing so, it usually only requires a few tries to get a practical AND as output.

9.2. Generation of Larger Activity Network Diagrams

In addition to generating ANDs for ex-tasks, the generation also supports the generation
of larger ANDs. We already mentioned large ANDs in the previous section, and used
them to validate our results. Now we want to look at a large example AND in Figure 9.7
to visualize, and briefly discuss, the possibilities of our generation method.

The initial large AND, without any changes, had a total of 359 crossings. The crossing
improvement method reduces the crossings to only 77 with both heuristics combined,
79 with only the barycenter, and 240 with only the greedy switch heuristic. When
considering the runtime, the barycenter heuristic is the fastest with 1.5 seconds, the
combined approach needed 23 seconds, and the greedy switch heuristic 35 seconds. These
values illustrate the runtime difference between the three approaches and show how
efficient the barycenter heuristic is while still providing a good result.

Lastly, for such large ANDs, the crossing avoidance step can greatly reduce the cross-
ings, in this case reducing them from 77 to only 12 for the combined approach. Since
the generation of such ANDs is not our focus, we will not discuss this further.
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Crossings in Final AND Drawing
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Figure 9.5.: Number of crossings in the AND drawing after applying the crossing im-
provement step and crossing avoidance step
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Figure 9.6.: Example of a bad ex-task AND containing six crossings (seed: 1089)

9.3. Discussion

After looking at some generated ex-task ANDs and the analysis of them in the previous
sections, we now discuss these results and revisit the research questions we defined in
chapter 3.

The results in the previous section have shown that we can generate ex-tasks with good
properties. We have shown that we satisfy all the minimum requirements we defined
for a practical ex-task in section 2.2.4. However, we have also found some weaknesses
compared to the reference AND (Figure 9.2). The first problem is that the current
generation only considers a number for each special dependency type describing how
often it should be generated, so currently, one can not create a dependency of a random
special type. Moreover, the generated ANDs often contain at least one work package
with three in-going dependencies, which is not necessarily desirable. However, this is not
a significant problem considering that we can easily modify a generated AND manually,
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such as adding a fifth special dependency type, or removing or replacing a dependency
at a work package. So, in the end, we can generate practical ex-tasks that only need
minor adjustments to be used, which answers our first research question.

The second research question is about the resulting AND drawing of a generated
graph, i.e., whether we can obtain a similar result for our generated ANDs as for the
reference AND. We have shown that the drawing rules we defined work well for most
generated ANDs when applying the crossing improvement and crossing avoidance steps
beforehand. In total, only a small number of generated ANDs have a significant number
of crossings in the resulting AND, which are caused by improbable structural properties
(e.g., many dependencies with a jump value of two). Therefore, we can say that the
several steps an initially generated AND runs through, and our drawing rules in the
final steps, lead to a well-readable output being relatively similar to the reference AND.
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Figure 9.7.: Example for a large AND generated with Source Code A.2 and both heuris-
tics combined (seed: 1645713753621)

76



10. Conclusion

10.1. Summary

This thesis presented an automated approach to generating ANDs with a well-readable
output. Our primary goal was to generate ANDs suitable for ex-tasks to support the
time-consuming and error-prone process of creating such tasks. A critical requirement,
here, is getting well-readable output, otherwise one must apply many manual changes
to make a generated AND understandable.

In the first step, we introduced an AND abstraction to isolate the intermediate steps
from the lecture’s AND structure. This abstraction was needed since including layout
decisions such as the actual work package and dependency placement makes the interme-
diate steps too complex, some to the point where they become inapplicable. We defined
the AND abstraction so that it still contained layout information, such as the position,
but removed anything drawing related such as the unique dependency structure.

The generation process consists of several different steps. We start by creating the
initial AND abstraction and then applying certain changes to it. First, we try to find the
best work package ordering in each layer to reduce the crossings as much as possible. Af-
ter the crossing improvement, the ANDs may still have crossings, so we apply a crossing
avoidance step to reduce them further. After completing the crossing improvement and
crossing avoidance steps, we have the final AND structure and proceed by calculate its
schedule properties. In the final transformation step, we transform the AND abstraction
into the lecture’s AND structure. To implement these steps, we use five microservices,
and Draw IO as the graph modeling tool. Draw 10O allows modifying a generated AND
and building a new AND from scratch. This is needed to be able to easily modify a
generated AND without the need to manually recalculate the schedule properties.

In the end, we evaluated how practical and readable the generated ex-task ANDs are.
In doing so, we compared a generated AND with the reference AND for this thesis, which
showed that the generated AND only needs slight adjustments to have similar properties
as the reference AND. In addition, we conducted a quantitative analysis to validate that
generated ex-task ANDs fulfill their minimum requirements, which they do. We also used
the quantitative analysis to compare two heuristics, and the combination of the two, used
for the crossing improvement, which showed that the combined approach works the best.
Nevertheless, we also saw that we sometimes get ANDs with many crossings, which are
difficult to read. However, since the generation process for the ex-tasks is fast, one can
generate new ANDs until one gets a proper output, without expending significant time.

Overall, we conclude that our generator for ex-tasks produces good results, with a
well-readable output, that only need slight adjustments to be used as ex-tasks.
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10.2. Future Work

To end, we discuss some ideas for future work for further improving the framework
developed in this thesis.

Extending Generation Configuration

We discussed certain problems with the current generation method that could be solved
by extending the generator. It might be useful to add a fifth property specifying how
many special dependencies of a random type should be generated in addition to the
base number of special dependencies. One could also introduce a limit for the in-degree
and the out-degree to avoid work packages with high in- or out-degrees. Furthermore,
the duration assignment is currently completely random, which could be extended to
more systematically assign durations, to make it more difficult to directly identify which
dependency yields the minimum or maximum values needed for the forward pass and
backward pass.

Implementation of an Evaluation Service

The main focus of our prototype was to reduce the time needed to create ex-tasks.
However, not only the creation but also the evaluation of such tasks is time-consuming
if one does not want to punish students for cascading errors. At the moment, in case of
a wrong value, one has to manually calculate the parts affected by this error since the
following calculations could be correct using the wrong value. Therefore, the evaluation
process can be time-consuming depending on the number of students who handed in a
solution containing a wrong value. In addition, manually calculating with the wrong
values makes the evaluation process itself error-prone.

This problem could be addressed by including an evaluation service into the microser-
vice architecture that takes an AND as input and automatically evaluates it by consid-
ering cascading errors. In doing so, one must introduce a proper evaluation metric or
a proper output that visualizes the effect of errors. Ren et al. [RZC20; RZJ21] have
developed such an automated grading approach for AON networks by using Excel as
submission format and Excel formulas to grade them. However, their AON networks
only contain F'S dependencies; thus, one must check whether their approach is applicable
for the lecture’s ANDs.

Implementation of an User Interface

Currently, the generation and calculation of ANDs, and the operations for the profile
configurations are only accessible using a command line interface. Therefore, extending
the microservice architecture with a UI that provides suitable methods to access the
functionalities is reasonable. In doing so, one might also include a more convenient
graph modeling tool that can be directly included in the UI.
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A. Appendix

OCONOUPdWN =

"profileName": "defaultProfileConfig",

"generationConfig": {
"minNumberOfLayers": 5,
"maxNumberOfLayers": 6,

"minNumberOfWorkPackages": 11,
"maxNumberOfWorkPackages": 13,

"minSizeFirstLayer": 2,
"maxSizeFirstLayer": 3,
"minSizeIntermediatelayers": 1,
"maxSizeIntermediatelLayers": 3,
"minSizelLastLayer": 1,
"maxSizelLastLayer": 2,
"minDuration": 1,
"maxDuration": 5,
"jumpDistribution": [

0.8,

0.2
1,
"number0fFinishToFinish": 1,

"number0fStartToFinish": 1,
"numberO0fStartToStart": 1,
"applyPostProcessing": true
},
"transformationConfig": {
"criticalPathColor": {
"red": 248,
"green": 206,
"blue": 204
},
"workPackageWidth": 100,
"workPackageHeight": 60,
"startEndWidth": 80,
"startEndHeight": 30,
"hasRoundedEdges": true,
"hasLineBreakSeparator": true,
"xzero": 20,
"xspacing": 70,
"yzero": 500,
"yspacing": 30

Source Code A.1: Default profile configuration used to

generate ex-tasks
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A. Appendix

"profileName": "largeANDProfileConfiguration",
"generationConfig": {
"minNumberOfLayers": 10,
"maxNumberOfLayers": 12,
"minNumberOfWorkPackages": O,
"maxNumberOfWorkPackages": O,
"minSizeFirstLayer": 8,
"maxSizeFirstLayer": 10,
"minSizeIntermediatelayers": 7,
"maxSizeIntermediatelLayers": 12,
"minSizeLastLayer": 5,
"maxSizeLastLayer": 7,
"minDuration": 1,
"maxDuration": 6,
"jumpDistribution": [
0.82,
0.18
1,
"number0fFinishToFinish": 5,
"number0fStartToFinish": 5,
"numberO0fStartToStart": 5,
"applyPostProcessing": true
})
"transformationConfig": {
"criticalPathColor": {
"red": 248,
"green": 206,
"blue": 204
},
"workPackageWidth": 100,
"workPackageHeight": 60,
"startEndWidth": 80,
"startEndHeight": 30,
"hasRoundedEdges": true,
"hasLineBreakSeparator": true,
"xspacing": 80,
"yzero": 500,
"yspacing": 30,
"xzero": 20
}
}

Source Code A.2: Profile configuration that generates large activity network diagrams

80



Bibliography

[AEH6]

[Ant+07]

[BMO1]

[Cor+10]

[CSH19]

[Deol7]

[DRW9S]

[DVHO3]

[ESKO5]

M. Agrawal, S. E. Elmaghraby, and W. S. Herroelen. “DAGEN: A generator
of testsets for project activity nets.” In: European journal of operational
research 90.2 (1996), pp. 376-382. DOI: 10.1016/0377-2217(95)00361-4
(cit. on p. 14).

G. A. Anton et al. “Optimizing the graphical arrangement of network con-
struction schedules.” In: Proceedings of the Construction Research Congress,
eds. PS Chinowsky, AD Songer, PM Carrillo. Reston, Virginia: American
Society of Civil Engineers. Citeseer. 2007 (cit. on pp. 29, 31).

O. Bastert and C. Matuszewski. “Layered drawings of digraphs.” In: Drawing
graphs. Springer, 2001, pp. 87-120 (cit. on pp. 15-18).

D. Cordeiro et al. “Random graph generation for scheduling simulations.”
In: 8rd International ICST Conference on Simulation Tools and Techniques
(SIMUTools 2010). Malaga, Spain: ICST, Mar. 2010, p. 10 (cit. on p. 15).

L.-C. Canon, M. E. Sayah, and P.-C. Héam. “A Comparison of Random Task
Graph Generation Methods for Scheduling Problems.” In: Euro-Par 2019:
Parallel Processing. Ed. by R. Yahyapour. Cham: Springer International
Publishing, 2019, pp. 61-73. DOI: 10.48550/arXiv.1902.05808 (cit. on
p. 15).

N. Deo. Graph theory with applications to engineering and computer science.
Courier Dover Publications, 2017. 1SBN: 9780486807935 (cit. on p. 3).

R. Dick, D. Rhodes, and W. Wolf. “TGFF: task graphs for free.” In: Proceed-
ings of the Sixth International Workshop on Hardware/Software Codesign.
(CODES/CASHE98). 1998, pp. 97-101. DOL: 10.1109/HSC. 1998 . 666245
(cit. on pp. 13, 14).

E. Demeulemeester, M. Vanhoucke, and W. Herroelen. “RanGen: A Ran-
dom Network Generator for Activity-on-the-Node Networks.” In: Journal of
scheduling 6.1 (2003), pp. 17-38. DOI: 10.1023/A:1022283403119 (cit. on
p. 14).

M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. “An Efficient Imple-
mentation of Sugiyama’s Algorithm for Layered Graph Drawing.” In: Jousr-

nal of Graph Algorithms and Applications (2005), pp. 305-325. DOI: 10.71
55/jgaa.00111 (cit. on p. 18).

81


https://doi.org/10.1016/0377-2217(95)00361-4
https://doi.org/10.48550/arXiv.1902.05808
https://doi.org/10.1109/HSC.1998.666245
https://doi.org/10.1023/A:1022283403119
https://doi.org/10.7155/jgaa.00111
https://doi.org/10.7155/jgaa.00111

Bibliography

[EW94] P. Eades and N. C. Wormald. “Edge crossings in drawings of bipartite
graphs.” In: Algorithmica 11.4 (1994), pp. 379-403. por: 10.1007/BF011
87020 (cit. on pp. 16, 18).

[EX89] P. Eades and L. Xuemin. “How to draw a directed graph.” In: 1989 IEEE
Workshop on Visual Languages. IEEE Computer Society, 1989, pp. 13-17.
DOI: 10.1109/WVL.1989.77035 (cit. on p. 16).

[Gam+95] E. Gamma et al. “Elements of Reusable Object-Oriented Software.” In: De-
sign Patterns. massachusetts: Addison-Wesley Publishing Company (1995)
(cit. on pp. 55, 56).

[GJ83] M. R. Garey and D. S. Johnson. “Crossing Number is NP-Complete.” In:
SIAM Journal on Algebraic Discrete Methods 4.3 (1983), pp. 312-316. DOI:
10.1137/0604033 (cit. on p. 17).

[Han10] E. Hanser. Agile Prozesse: Von XP tiber Scrum bis MAP. Springer-Verlag,
2010. 1SBN: 978-3642123122 (cit. on p. 9).

[Heal6) J. Heagney. Fundamentals of project management. Amacom, 2016. ISBN:
9780814437360 (cit. on pp. 4-7).
[HLO5] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research, 9th.

Ninth. 2005 (cit. on pp. 4, 7).

[HNO02] P. Healy and N. S. Nikolov. “How to Layer a Directed Acyclic Graph.”
In: Graph Drawing. Ed. by P. Mutzel, M. Jiinger, and S. Leipert. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 16-30. DOI: 10.1007/3-
540-45848-4_2 (cit. on pp. 3, 16).

[JM96] M. Jiinger and P. Mutzel. “Exact and heuristic algorithms for 2-layer straight-
line crossing minimization.” In: Graph Drawing. Ed. by F. J. Brandenburg.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 337-348. po1: 10
.1142/9789812777638_0001 (cit. on p. 17).

[Lar+18]  X. Larrucea et al. “Microservices.” In: IEEE Software 35.3 (2018), pp. 96—
100. por: 10.1109/MS.2018.2141030 (cit. on p. 8).

[LG96] K. G. Lockyer and J. Gordon. Project management and project network
techniques. Sixth. Pearson Education, 1996. 1SBN: 9780273614548 (cit. on

pp. 4-7).

[LL13] J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. dpunkt. verlag, 2013. 1SBN: 9783864900921 (cit. on
p. 53).

[LMV97] M. Laguna, R. Marti, and V. Valls. “Arc crossing minimization in hierarchi-

cal digraphs with tabu search.” In: Computers & operations research 24.12
(1997), pp. 1175-1186. DOI: 10.1016/S0305-0548(96) 00083-4 (cit. on

p. 19).

82


https://doi.org/10.1007/BF01187020
https://doi.org/10.1007/BF01187020
https://doi.org/10.1109/WVL.1989.77035
https://doi.org/10.1137/0604033
https://doi.org/10.1007/3-540-45848-4_2
https://doi.org/10.1007/3-540-45848-4_2
https://doi.org/10.1142/9789812777638_0001
https://doi.org/10.1142/9789812777638_0001
https://doi.org/10.1109/MS.2018.2141030
https://doi.org/10.1016/S0305-0548(96)00083-4

Bibliography

[MLO3]

[New15]
[Pat04]
[Ric19]

[RZC20]

[RZJ21]

[STTS1]

[SW21]

[TCO8]

[Val0g]
[WG04]

R. Marti and M. Laguna. “Heuristics and meta-heuristics for 2-layer straight
line crossing minimization.” In: Discrete Applied Mathematics 127.3 (2003),
pp. 665—678. DOI: 10.1016/30166-218X(02)00397-9 (cit. on p. 56).

S. Newman. Building microservices - Designing Fine-Grained Systems. OR-
eilly Media, Inc., 2015. 1SBN: 9781491950357 (cit. on p. 8).

P. Patarasuk. “Crossing reduction for layered hierarchical graph drawing.”
In: (2004) (cit. on p. 35).

C. Richardson. Microservice Patterns. With Examples in Java. 2019 (cit. on
pp. 8, 9, 57).

R. Ren, J. Zhang, and Y. Chen. “An Automated Grading Method for
Activity-on-Node Calculations to Support Construction Management Ed-
ucation.” In: Construction Research Congress 2020. 2020, pp. 733-742. DOI:
10.1061/9780784482872.080 (cit. on p. 78).

R. Ren, J. Zhang, and Y. Jiang. “New Automated Activity-on-Node Cal-
culation Grading Method for Construction Management Education Innova-
tion.” In: Journal of Civil Engineering Education 147.3 (2021). por: 10.10
61/ (ASCE)EI.2643-9115.0000043 (cit. on p. 78).

K. Sugiyama, S. Tagawa, and M. Toda. “Methods for Visual Understanding
of Hierarchical System Structures.” In: IEEE Transactions on Systems, Man,
and Cybernetics 11.2 (1981), pp. 109-125. DOI: 10.1109/TSMC. 1981 .4308
636 (cit. on p. 16).

J. Shore and S. Warden. The art of agile development. O’Reilly Media, Inc.,
2021. 1SBN: 9781492080695 (cit. on p. 9).

H. Tang and S. Chen. “Research on Layering Algorithm of DAG. In: 2008
International Conference on Computer Science and Software Engineering.
Vol. 2. 2008, pp. 271-274. DOI: 10.1109/CSSE.2008.803 (cit. on p. 16).

K. Vallerio. “Task graphs for free (tgff v3. 0).” In: (2008) (cit. on p. 13).

W. L. Winston and J. B. Goldberg. Operations Research: Applications
and Algorithms. Vol. 3. Thomson Brooks/Cole Belmont, 2004. 1SBN: 978-
0534520205 (cit. on p. 4).

83


https://doi.org/10.1016/S0166-218X(02)00397-9
https://doi.org/10.1061/9780784482872.080
https://doi.org/10.1061/(ASCE)EI.2643-9115.0000043
https://doi.org/10.1061/(ASCE)EI.2643-9115.0000043
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/CSSE.2008.803

	Introduction
	Structure of this Thesis

	Background
	Graphs
	Project Management and Project Networks
	Microservices

	Motivation and Problem Statement
	Additional Requirements

	Related Work
	Task Graph Generation
	Summary

	Conceptual Foundations
	Generation Method
	Draw a Directed Graph

	Concept
	Output Activity Network Structure
	Abstracted Activity Network Diagram
	Steps Toward Generated Activity Network Diagrams
	Generating an Initial Activity Network Diagram
	Crossing Improvement
	Crossing Avoidance
	Work Package Property Calculation
	Drawing the Activity Network Diagram

	Design
	Data model
	Microservice Architecture

	Implementation
	Technologies
	Configuration
	Draw IO

	Evaluation
	Generating Activity Network Diagram for Ex-Tasks
	Generation of Larger Activity Network Diagrams
	Discussion

	Conclusion
	Summary
	Future Work

	Appendix
	Bibliography

